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ABSTRACT
Motivated by the collaborationwith Fliggy1, a leadingOnline Travel
Platform (OTP), we investigate an important but less explored re-
search topic about optimizing the quality of hotel supply, namely
selecting potential profitable hotels in advance to build up ade-
quate room inventory. We formulate a WWW problem, i.e., within
a specific time period (When) and potential travel area (Where),
which hotels should be recommended to a certain group of users
with similar travel intentions (Why). We identify three critical chal-
lenges in solving theWWWproblem: user groups generation, travel
data sparsity and utilization of hotel recommendation information
(e.g., period, location and intention). To this end, we propose LINet,
a Location and Intention-aware neural Network for hotel group
recommendation. Specifically, LINet first identifies user travel in-
tentions for user groups generalization, and then characterizes the
group preferences by jointly considering historical user-hotel inter-
action and spatio-temporal features of hotels. For data sparsity, we
develop a graph neural network, which employs long-term data,
and further design an auxiliary loss function of location that effi-
ciently exploits data within the same and across different locations.
Both offline and online experiments demonstrate the effectiveness
of LINet when compared with state-of-the-art methods. LINet has
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†Corresponding author.
1www.fliggy.com/
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been successfully deployed on Fliggy to retrieve high quality ho-
tels for business development, serving hundreds of hotel operation
scenarios and thousands of hotel operators.

CCS CONCEPTS
• Information systems → Recommender systems; • Comput-
ing methodologies → Neural networks.
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1 INTRODUCTION
Online Travel Platforms (OTPs), such as Booking2, Airbnb3 and
Fliggy, have become one of the most popular hotel consumer book-
ing channels [28, 34, 39]. Similar to traditional e-commerce plat-
forms (e.g., Amazon4 and eBay5), OTPs also maintain effective
user-product matching systems. However, unlike other products,
hotel-related products have strict capacity constraints and time-
sensitive prices due to highly volatile market demand and intensive
competition with the other OTPs. Within the OTPs, setting ade-
quate inventory and competitive prices are critical for boosting
hotel sales. Therefore, business developers (BDs) must negotiate
with hotel operators in advance to reserve adequate available rooms
and obtain user-friendly corresponding prices, especially on the
eve of the events with peak hotel booking.

2www.booking.com/
3www.airbnb.com/
4www.amazon.com/
5www.ebay.com/
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Figure 1: The Four-stage Hotel Supply-consumption Process.

In order to further illustrate the operating model of OTPs be-
tween hotel operators and users, we abstract the hotel business
operation of OTPs into a four-stage process shown in Figure 1. This
process can be further divided into two parts, namely the supply
side (Stages 1 and 2) and the consumption side (Stages 3 and 4). For
Supply-side: OTPs evaluate each hotel based on historical data,
and identify a set of potentially highly profitable hotels (Stage 1).
Based on this, BDs negotiate with the selected hotel operators to
acquire hotel room inventory and the corresponding competitive
prices (Stage 2). For Consumption-side: In Stage 3, OTPs will
adopt crowd marketing strategies, including "push" (trade show
promotions, point of sale displays, etc.) and "pull" (email marketing,
sales promotions and discounts, etc.) promotion strategies for vari-
ous targeted user groups. In Stage 4, personalized recommendation
models display hotel products to users in real time based on user
preference and historical user-product interaction behaviors.

We observe that Stage 1 is the bottleneck of the entire process
as all subsequent stages are essentially conducting optimization
based on the result of Stage 1. On the one hand, Stage 1 needs
to provide a list of candidate hotels for Stage 2 in order to guide
BDs with limited time budget to negotiate with potentially highly
profitable hotels. On the other hand, without explicitly taking the
user travel intention and interest in the consumption side into
account, the candidate hotels selected in Stage 1 would not satisfy
the requirements of Stage 3 and 4. Based on the above discussion, we
need to consider a newWWW problem in Stage 1: within a specific
time period (When) and potential travel area (Where), which
hotels should be recommended for a group of users with similar
intentions (Why), so as to maximize the overall sales volume.

The WWW problem aims to recommend hotels to user groups
in Stage 1, which is different from traditional recommendation sys-
tems. Previous methods at OTPs mainly used time series prediction
[23, 30, 38] to forecast hotel sales, based on which to recommend
hotels, but failed to consider user-hotel interaction. Recent studies
applied deep neural networks to improve recommendation quality
[43, 44], but rely heavily on fine-grained ongoing user information,
which is not available in the early stages. The WWW problem is
also related to group recommendation [5, 15, 36], but existing stud-
ies ignored key factors in hotel recommendation scenarios (travel
period, location and travel intention), which affect user decision on
booking hotels in the later stages. From the above discussion, we
summarize three challenges of solving the WWW problem:

(1)Grouping users based on hotel recommendation metrics.Most of
the existing group recommendation methods represent the group
preference by simply aggregating the individual preferences of
group members. However, in WWW problem, we need to provide
a method that reasonably divides users into groups in the hotel
recommendation scenarios, considering factors such as user travel
intentions and targeted travel locations. The accuracy of group
generation directly affects the performance of downstream hotel
recommendation.

(2) Resolving the issue of travel data sparsity. The average number
of hotels booked on Fliggy for each user is less than 1 throughout
the year of 2022, making the hotel room booking a low-frequency
event. In particular, the WWW problem further restricts historical
user-item interaction data to a specific spatio-temporal range, in-
tensifying the issue of data sparsity, and group-item interactions
are even more sparse. It is highly necessary to propose a new model
to tackle the data sparsity of WWW problem.

(3) Leveraging three dimensions of hotel recommendation infor-
mation. As mentioned above, the key point of the WWW problem
is not only to solve the item recommendation for a specific user
group, but also to accurately and comprehensively specify the fea-
tures of user travel intentions, travel period, and the locations of
hotels and destinations. However, existing group recommendation
ignored these features, and only considered group-item interac-
tions. Hence, it is necessary to design a group recommendation
framework that fully utilizes three aspects of information in hotel
group recommendation scenarios.

In this work, we propose LINet, a Location and Intention-aware
Neural Network for Hotel Group Recommendation, consisting of
three preference-representing submodules and a user-grouping sub-
module. To tackle the first challenge, we construct Intention Recog-
nition & Group Generation Module (IRG2) which combines location
information with travel intention. To address the second challenge,
we consider both internal and external features that reflects group
preferences. The Internal Global Presentation Representation Mod-
ule (IGPR) and Internal Local Preference Representation Module
(ILPR) characterize long-term and short-term internal interests, re-
spectively. To explain the effect of external spatio-temporal factors
on users’ hotel booking decisions, we develop the External Location-
Time Representation Module (ELTR), which learns monthly-level
popular Points of Interest (POIs) and describes periodic travel re-
quirements and location-related purchasing preferences. Finally,
in order to solve the data sparsity involved in WWW problem, we
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adopt the graph neural network to employ longer sequence of user
click, and purchase data and incorporate a location binary cross
entropy loss in ELTR. Our major contributions in this work are
highlighted as follows:

• We define and formalize the WWW problem in hotel group
recommendation to optimize the quality of hotel supply on OTPs,
and identify three major challenges faced by the WWW problem.

•We propose a new model LINet, which contains three submod-
ules: IGPR, ILPR and ELTR, to effectively utilize three dimension of
hotel group recommendation information to group users and fur-
ther represent group preference. We further design an auxiliary loss
of location and a deep graph network based on the newly proposed
Group-Hotel Interaction Graph (GHIG), to enhance the learning
efficiency of sparse user-hotel interaction data.

• Extensive offline experiments on real-world datasets and on-
line A/B tests show the superiority of LINet towards state-of-the-art
baselines. Specifically, LINet gained more than 3% Room Night6
increase in the two-week online A/B test. Recently, LINet has
been deployed on Fliggy successfully, serving online hotel supply-
consumption process.

2 RELATEDWORK
Based on the granularity of modeling, we divide the previous works
that can be adapted to solve the WWW problem into three cate-
gories in this section, namely time series forecasting, personalized
recommendation and group recommendation.

2.1 Time Series Forecasting
Time series forecasting, an effective method deployed on OTPs to
predict future hotel sales based on historical data, is equivalent to
treating all users as a whole group in the context of WWWproblem.
Existing studies can be further divided into statistical models, ma-
chine learning models and deep learning models. Statistical models
such as Prophet [33] decouple the trending and periodic compo-
nents of time series, and specifically consider factors such as peak
travel periods to achieve more precise forecasts. Machine learning
models such as LightGBM [21] model the time series forecasting
task as a regression problem with historical data as input features.
Deep learningmodels, such asMQ-RNN [38], DeepAR [30], and TFT
[23], consider time series as a specific form of serialized data and
apply recurrent neural networks for prediction. However, the above
methods ignore user-side interaction data and location information,
which limits their ability to resolve the WWW problem.

2.2 Personalized Recommendation
Personalized recommendation methods have been widely studied in
e-commerce platforms, aiming at recommending products that bet-
ter match user interests by analyzing user behaviors, are equivalent
to treating each group as a generalized user in the context of WWW
problem. With the development of deep neural networks, industrial
recommendation systems have transitioned from traditional models
with manually selected features as input to deep learning models
such as Wide&Deep [8], deepFM [13], DIN [44] and DIEN [43].
However, user requests and real-time user feedback have not been

6Room Night, a core statistical metric for the hotel industry, is the number of times a
hotel room is occupied by a user(s) for an overnight stay in a given period.

generated when WWW problem arises, making it hard to capture
user preferences precisely. Additionally, the behaviour patterns of
users within a group may be quite different, resulting in a certain
deviation in the representation process of group preferences.

2.3 Group Recommendation
Existing group recommendation studies can be further divided into
memory-based and model-based methods. The memory-based ap-
proach makes recommendation by aggregating the preferences of
all members based on a pre-defined policy, including AVG(Average)
[2, 3], LM(Least Misery) [1] and MS(Maximum Satisfaction) [4]. In
order to dynamically adjust the weight of users in different groups,
model-based methods are proposed to model groups’ decision-
making processes. Traditional approaches adopt information fusion
method [7, 14, 27, 31, 32, 37], game theory [6], and probabilistic mod-
els [11, 26, 41]. Recently, with the successful application of attentive-
based networks and graph neural networks [16, 20, 22, 25, 35],
related technologies have been applied to group recommenda-
tion, further improving recommendation performance. AGREE [5],
GroupSA [15], MoSAN [36] and GRHAM [24] applied neural atten-
tive networks to dynamically adjust the influence weight of each
user. GAME [18] and S2-HHGR [42] introduced the social network
of users and adopted the attention mechanism to characterize each
user’s social influence. In order to solve the issue of data sparsity,
SIGR[40] improved the traditional stochastic gradient descent al-
gorithm. KGAG[10] introduced the knowledge graph and adopted
graph convolutional networks to capture the structural information
of items and users. All these works, however, fail to utilize three
aspects of information involved in WWW problem, i.e., travel peri-
ods, location information, and user travel intentions, and therefore
cannot make effective hotel group recommendation.

3 PRELIMINARIES
In this section, we first define the related concept in hotel group
recommendation, and then formalize the WWW problem in read-
world scenarios on OTPs.

The Stage 1 of the hotel supply-consumption process can be
abstracted into the environment that within a specific travel time
period 𝑡𝑖 , a group of users with a certain intention 𝐺𝑖 arrive at a
particular location 𝐿𝑖 , where the group recommendation problem
emerges. Thus, in WWW problem, we need to categorize users into
groups based on their travel intentions, and subsequently make
hotel recommendations that consider both the group’s preferences
and the hotels’ spatio-temporal attributes.

We next present the notations needed to formulate the WWW
problem. Let 𝑈 = {𝑢1, 𝑢2, ..., 𝑢𝑛}, 𝐺 = {𝐺1,𝐺2, ...,𝐺𝑢 }, 𝐻 = {ℎ1, ℎ2,
..., ℎ𝑚}, 𝐿 = {𝑙1, 𝑙2, ..., 𝑙𝑠 } and 𝑇 = {𝑡1, 𝑡2, ..., 𝑡𝑙 } be the set of users,
user groups, hotels, locations and time periods, respectively.We con-
siderD =

{(
x(𝑖 ) , 𝑦 (𝑖 )

)
| 𝑖 = 1, . . . ,𝑤

}
as a dataset with𝑤 data sam-

ples, where𝑦 (𝑖 ) denotes the purchase label, and each 𝒙 (𝑖 ) inD is the
features of a data sample in the form of x(𝑖 ) = (𝐺 (𝑖 ) , 𝑙 (𝑖 ) , 𝑡 (𝑖 ) , ℎ (𝑖 ) ),
which contains the information of four types of entities, namely
a set of users with a certain intention 𝐺 (𝑖 ) =

{
𝑢
(𝑖 )
1 , 𝑢

(𝑖 )
2 , ..., 𝑢

(𝑖 )
𝑛 (𝑖 )

}
,

a certain location 𝑙 (𝑖 ) ∈ 𝐿, a certain travel period 𝑡 (𝑖 ) ∈ 𝑇 , and a
target hotel ℎ (𝑖 ) ∈ 𝐻 .
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Figure 2: The Architecture of LINet.

The objective of the WWW hotel group recommendation prob-
lem is to learn a model F from the dataset D, where the model
F is capable of predicting the preference score 𝑠 (𝑖 ) of group 𝐺 (𝑖 )

for the target hotel ℎ (𝑖 ) , which indicates the probability that ℎ (𝑖 ) is
purchased by group 𝐺 (𝑖 ) , i.e.,

F : 𝒙 (𝑖 ) → 𝑠 (𝑖 ) . (1)

The negative log-likelihood loss function can be formulated as:

L = − 1
𝑤

𝑤∑︁
𝑖=1

(
𝑦 (𝑖 )𝑙𝑜𝑔(𝑠 (𝑖 ) ) + (1 − 𝑦 (𝑖 ) )𝑙𝑜𝑔(1 − 𝑠 (𝑖 ) )

)
, (2)

where 𝑠 (𝑖 ) is the score predicted by the model with the input 𝒙 (𝑖 ) .

4 LINET
This section presents the details of the proposed Location and
Intention-aware neural Network (LINet) for the WWW problem
in hotel group recommendation.

4.1 Overview
The central idea of LINet is to establish an effective framework for a
comprehensive and accurate representation of group preferences by
incorporating three key elements of information, namely travel peri-
ods, location information and user travel intentions, corresponding
to "when", "where" and "why" inWWWproblem. Figure 2 shows the
overall framework of LINet. As the upstreammodule for subsequent
group recommendation task, the Intention Recognition and Group
Generation Module (IRG2) functions as a group generation network
by combining user travel intentions and location information. To
address the challenge of data sparsity while effectively representing
group preferences from historical <group, item> interaction data,
LINet implements the Internal Global Preference Representation
Module (IGPR) and the Internal Local Preference Representation

Module (ILPR) to characterize the group’s long-term and short-term
preferences, respectively. Subsequently, the External Location-Time
Representation Module (ELTR) processes spatio-temporal data, con-
structing the Periodicity Representation Module (PRM) and the
Location Representation Module (LRM) to capture the influence
of time-related and location-related factors on group preferences.
Through the above four modules, we obtain the group travel inten-
tion representation, the long-term group preference representation,
the short-term group preference representation, and the spatio-
temporal representation. These representation vectors are then fed
to a MultiLayer Perceptron (MLP) to produce the complete group
preference representation. Finally, LINet adopts the Neural Collab-
orative Filter (NCF) [17] layer to determine the group’s predicted
preference score for the target hotel. We elaborate each module of
LINet in the following subsections.

4.2 Intention Recognition and Group
Generation

We construct Intention Recognition and Group Generation Module
(IRG2) to generate user groups, which are regarded as the input
of the following submodules. Users on OTPs typically have rela-
tively direct and clear travel intentions, such as taking vacations
and business trips. Therefore, without loss of generality, we select
three representative travel intentions as the training label of IRG2,
including local travel, leisure travel, and business travel7, which
are the most widely used indicators on OTPs to distinguish user
groups. IRG2 module trains a classification model based on the
travel intention labels to identify users targeting at a certain loca-
tion with the same travel intention, thereby assigning these users
to a group. Hence, each group generated in IRG2 is in the form

7Note that the travel intentions not mentioned in this work will not affect the generality
of LINet since the data processing procedure is exactly the same for all travel intentions.
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Figure 3: Group-Hotel Interaction Graph.

of <𝑖𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛,𝑢𝑠𝑒𝑟𝑠>. Since the accuracy of group genera-
tion directly affects the performance of group recommendation, we
discuss the choice of another label, i.e., users’ purchasing power,
for comparison in Appendix.

4.3 Internal Group Preference Representation
In order to characterize the long-term and short-term group prefer-
ences, LINet implements two internal group preference representa-
tion modules.

4.3.1 Internal Global Preference Representation (IGPR). In theWWW
problem, we need to capture the long-term preference of each group
due to the following two reasons. First, the context of WWW prob-
lem makes the effective historical user-hotel interaction data much
more sparse, which means that the model cannot accurately re-
flect group preferences if it simply employs historical data from
a recent period of time. Second, although the users within each
group fluctuate based on travel intentions and destinations, the
long-term preferences of a group tend to remain relatively stable.
For instance, groups with business travel intentions are inclined to
book business-type hotels near the office area, while groups with
tourism intentions are likely to book resort-type hotels near scenic
spots. Hence, we propose Group-Hotel Interaction Graph below to
address the issue of data sparsity, serving as a complement to the
groups’ recent behaviors.

In Group-Hotel Interaction Graph, an undirected weighted het-
erogeneous graph network is constructed based on the interaction
data of <group, hotel> over a longer period of time and the similar-
ity between hotels. As shown in Figure 3, the undirected heteroge-
neous graph is defined over the user group set 𝐺 and the hotel set
𝐻 , where the edges are defined by three kinds of relation, namely
the click and purchase relation between user groups and hotels, and
the similarity relation between hotels. In order to construct a rela-
tively dense graph, we consider the user’s historical click behaviors
together with the purchase behaviors when creating edges of the
graph. Specifically, we select the historical click log with the same
location and price range as the purchased hotel and the closest time,
so as to minimize the impact of introducing click data on capturing
group preferences. Next, we obtain the weight of edges representing
similarity relation 𝑠𝑖 𝑗 and the weight of edges representing <group,
hotel> interaction relation𝑤𝑖 𝑗 through the layer-wise propagation
rule [22]. The 𝑙𝑡ℎ𝑙𝑎𝑦𝑒𝑟 representation of hotel ℎ (𝑖 ) is then calcu-
lated by aggregating the (𝑙 − 1)𝑡ℎ𝑙𝑎𝑦𝑒𝑟 representation of both its

neighbours’ 𝑁 (𝑖) representation and its own:

𝒉𝒊𝒍 =
∑︁

𝑗∈𝑁 (𝑖 )
𝑠𝑖 𝑗𝒉

𝒋
𝒍−1 + 𝒉𝒊𝒍−1 . (3)

Based on Equation (3), we obtain the representation of the group
preference considering its 2-hop adjacency relationship:

𝒈 𝒊𝒍 =
∑︁

𝑗∈𝑁 (𝑖 )
𝑤𝑖 𝑗𝒉

𝒋 + 𝒈 𝒊𝒍−1 . (4)

Finally, we adopt graph convolutional network [22] to learn the
representation of long-term internal group preference 𝒈𝒈 .

4.3.2 Internal Local Preference Representation (ILPR). We next de-
scribe users’ most recent behaviors, and capture users’ short-term
and direct interests, which generally lead to high probability of
purchase. To this end, we propose Internal Local Preference Rep-
resentation Module. Specifically, ILPR further includes two sub-
modules: Recent User Embedding Aggregation Module and Recent
Hotel Embedding Aggregation Module, which are elaborated in
details as follows.

Recent User Embedding Aggregation Module. In order to
reflect different influences of users within a group, this module is
designed to dynamically adjust the contribution weight of each
user to the performance of group recommendation. In WWW prob-
lem, users with more historical interactions are assigned higher
weights. Specifically, a neural attention network parameterizedwith
𝛼 (𝑖, 𝑗,𝑚) is applied with the embedding result of group’s member
𝒖𝒊 , the target hotel 𝒉𝒋 and each group’s travel intention 𝒈𝒊𝒏 as input.
The query of the attention network is composed of 𝒉𝒋 and 𝒈𝒊𝒏:

𝑞𝑢𝑒𝑟𝑦𝑢 = 𝑐𝑜𝑛𝑐𝑎𝑡 < 𝒉𝒋 ,𝒈𝒊𝒏 >, (5)

and a multi-layer feedforward neural network H is constructed to
obtain each user’s influence weight:

𝑎𝑡𝑡𝑖 = H(𝑐𝑜𝑛𝑐𝑎𝑡 < 𝑞𝑢𝑒𝑟𝑦𝑢 , 𝒖𝒊 >). (6)

The final output of RUEA is an aggregated representation of the
users with recent purchase behaviours 𝒈𝒖 :

𝒈𝒖 =

𝑀∑︁
𝑖=1

𝑒𝑎𝑡𝑡𝑖∑𝑁
𝑗=1 𝑒

𝑎𝑡𝑡 𝑗
· 𝒖𝒊 . (7)

Recent Hotel Embedding Aggregation Module. The users
within a group have similar purchasing preferences and the pur-
chasing behaviors of a group have a relatively stable pattern over
a period of time. Therefore, the hotels recently purchased by a
user will be likely revisited by other users within the same group.
Hence, we introduce Recent Hotel Embedding Aggregation Module
to capture the group’s recently preferred hotels. Specifically, the
property of recently interacted hotels and the target hotel, and the
group’s travel intention, are encoded into 𝒉𝒌 , 𝒉𝒋 and 𝒈𝒊𝒏 via an em-
bedding layer. Then a neural attention network parameterized with
𝛼 (𝑘, 𝑗,𝑚), similar to RUEA is applied, and obtain the aggregated
representation of the group’s recent interacted hotels 𝒈𝒉 .

4.4 External Location-Time Representation
In addition to group internal preferences, external physical factors
also affect the performance of hotel group recommendation. We
introduce a module to learn the impact of time-related and location-
related factors involved in WWW problem.
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4.4.1 Periodicity Representation Module (PRM). In the hotel group
recommendation scenario, the influence of time-related factors
such as seasonal factors and holiday factors, is mainly manifested
in the form of periodicity. Therefore, PRM is proposed to capture
users’ dynamic hotel reservation demand. Periodic expression has
been studied in academia, where ST-PIL [9] focused on the pe-
riodicity of day granularity and employed the attention mecha-
nism and a memory matrix to characterize the periodicity of users’
behavior. The proposed method in [9] is adapted to address the
WWW problem in PRM. Specifically, we organize the popular POIs
within a specific location by month and obtain a memory matrix
𝑷 = [𝒑1,𝒑2, ...,𝒑12] ∈ R12×𝑑𝑝 through a pooling layer and a Mul-
tiLayer perceptron (MLP):

𝒑𝒊 = 𝑀𝐿𝑃𝑖 (𝑐𝑜𝑛𝑐𝑎𝑡 < 𝒑 𝒊
1,𝒑

𝒊
2, ...,𝒑

𝒊
𝒔𝒊 >), (8)

where 𝑝𝑖
𝑗
denotes the representation vector of the POI with index 𝑗

in the 𝑖𝑡ℎ month. Then an attention network is adopted with the
concatenation of the target hotel’s location 𝑳𝒕𝒂𝒓𝒈𝒆𝒕 , the groups’
travel time 𝒕 𝒕𝒓𝒂𝒗𝒆𝒍 and the group’s travel intention 𝒈𝒊𝒏 as the
query:

𝑞𝑢𝑒𝑟𝑦 = 𝑐𝑜𝑛𝑐𝑎𝑡 < 𝑳𝒕𝒂𝒓𝒈𝒆𝒕 , 𝒕 𝒕𝒓𝒂𝒗𝒆𝒍 ,𝒈𝒊𝒏 >,

𝑎𝑡𝑡 𝑗 = H(𝑐𝑜𝑛𝑐𝑎𝑡 < 𝑞𝑢𝑒𝑟𝑦,𝒑𝒋 >).
(9)

Finally, we leverage the softmax function and obtain the represen-
tation of the periodicity of POIs 𝒆𝒑 within location 𝐿 (𝑖 ) :

𝒆𝒑 =

12∑︁
𝑗=1

𝑒𝑎𝑡𝑡 𝑗∑12
𝑘=1 𝑒

𝑎𝑡𝑡𝑘
· 𝒑𝒋 . (10)

4.4.2 Location Representation Module (LRM). Since the location of
hotels remains unchanged, the number of hotels and the correspond-
ing prices show obvious geographical distribution characteristics.
Therefore, the spatial factors significantly affect the users’ hotel
booking decision in addition to the time-related factors consid-
ered in PRM. In order to accurately characterize the influence of
locations, LRM is proposed to capture two aspects of information,
namely the static location-related properties, including the lati-
tude and longitude, GeoHash 4&5&6 and the coverage radius, and
the statistical location-related properties, including the number of
hotels and room nights of different price ranges and POIs within
1, 2 and 3 km of the location center. Specifically, LRM utilizes an
embedding layer to obtain the static location-related representation
𝒍𝒔𝒕𝒂𝒕 𝒊𝒄 and the statistical location-related representation 𝒍𝒔𝒕𝒂𝒕 𝒊𝒔𝒕 𝒊𝒄 .

To the end, by combining the representation result of PRM and
LRM, we obtain the spatio-temporal representation of the group’s
external preference 𝒈𝒆 :

𝒈𝒆 = 𝑀𝐿𝑃 (𝑐𝑜𝑛𝑐𝑎𝑡 < 𝒍𝒔𝒕𝒂𝒕 𝒊𝒄 , 𝒍𝒔𝒕𝒂𝒕 𝒊𝒔𝒕 𝒊𝒄 , 𝒆𝒑 >). (11)

4.5 Training & Serving
Through the aforementioned submodules, LINet provides the rep-
resentation of the group intention 𝒈𝒊𝒏 , the representation of the
internal long-term group preference 𝒈𝒈 , the representation of the
short-term user preference 𝒈𝒖 , the representation of the short-term
interacted hotels 𝒈𝒉 and the spatio-temporal representation of the
group’s external preference 𝒈𝒆 . The final preference representa-
tion of the group targeting at a specific location (Where) with a
specific intention (Why) during a specific period (When), which

corresponds to the three dimensions of the WWW problem, is
then obtained using a MLP layer leveraged by a fully-connected
feedforward neural network:

𝒈 = 𝑀𝐿𝑃 (𝑐𝑜𝑛𝑐𝑎𝑡 < 𝒈𝒊𝒏,𝒈𝒈,𝒈𝒖 ,𝒈𝒉,𝒈𝒆 >) . (12)

The group preference representation 𝒈 and the representation of
the target hotel 𝒉 are then fed into the NCF layer to learn the
interaction between groups and hotels:

𝒑𝒈 = 𝑁𝐶𝐹 (𝒈,𝒉) . (13)

In the training phase, the loss function of LINet, as shown in
Equation (14), consists of two parts, where 𝛼 is a hyperparameter:

𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠𝑔 + 𝛼𝐿𝑜𝑠𝑠𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 . (14)

The first part of the loss function, i.e., 𝐿𝑜𝑠𝑠𝑔 , corresponds to the
Group Binary Cross Entropy Loss in Figure 2, which utilizes the
interaction data between groups and hotels as the label 𝑦𝑖 :

𝐿𝑜𝑠𝑠𝑔 = − 1
𝑤

𝑤∑︁
𝑖=1

[𝑦𝑖𝑙𝑜𝑔(𝜎 (𝒑 𝒊
𝒈)) + (1 − 𝑦𝑖 )𝑙𝑜𝑔(𝜎 (1 − 𝒑 𝒊

𝒈))] . (15)

The second part of the loss function, i.e., 𝐿𝑜𝑠𝑠𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 , corresponds
to the Location Binary Cross Entropy Loss in Figure 2, which is
proposed to efficiently exploits data within the same and across
different locations, in order to better address data sparsity. Specif-
ically, for a specific group 𝐺∗, the interaction data of the groups
with different travel intentions and the same location as𝐺∗, and the
groups with different locations and the same travel intention as𝐺∗,
is utilized to supplement the sparse interaction data of 𝐺∗. Next, a
MLP layer is adopted to capture location-related features with the
spatio-temporal representation of the group’s external preference
𝒈𝒆 , the group intention 𝒈𝒊𝒏 and the target hotel 𝒉 as input:

𝒑𝒍 = 𝑀𝐿𝑃 (𝑐𝑜𝑛𝑐𝑎𝑡 < 𝒈𝒆,𝒈𝒊𝒏,𝒉 >) . (16)

Then we can obtain the location-related loss:

𝐿𝑜𝑠𝑠𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 =
1
𝑤

𝑤∑︁
𝑖=1

−[𝑦𝑖𝑙𝑜𝑔(𝜎 (𝒑 𝒊
𝒍 )) + (1 − 𝑦𝑖 )𝑙𝑜𝑔(𝜎 (1 − 𝒑 𝒊

𝒍 ))] .

(17)
After training, LINet is utilized to compute the preference score

of target hotels. Specifically, at serving time, when group𝐺∗ arrives
at the location 𝐿∗ with the travel intention 𝐼∗ during the period
𝑇 ∗, the detailed data representation is fed into LINet to derive the
predicted preference score of each hotel located in 𝐿∗. Hotels with
the highest K scores are then recommended to user groups.

5 EXPERIMENTS
5.1 Comparison Methods
We compare LINet with the baselines below.

• MQ-RNN[38]: is a seq2seq time series forecasting model that
can perform multi-horizon forecasting, which is widely used to
forecast hotel sales on OTPs.

• DeepAR[30]: predicts time series distribution using the au-
toregressive RNN architecture, which effectively solves the problem
of scale inconsistency between multiple time series.

• TFT[23]: follows the Transformer architecture with strong
interpretability for multi-horizon time series forecasting.

• DIN[44]: utilizes an attention mechanism to capture the rele-
vance between users’ historically interacted items and the target
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item, and serves as the baseline based on personalized recommen-
dation without considering location information.

• AGREE[5]: learns different weights of users in group decision-
making through a standard attention network and adopts the NCF
framework to model the interactions between groups and items.

• MoSAN[36]: calculates the preference of each group member
through an attention based sub-network and obtains the group
preference by direct summation.

• DeepGroup[29]: learns the representation of group prefer-
ences from group implicit feedback, which focuses on making rec-
ommendations for a new group of users.

5.2 Offline Experiments
5.2.1 Dataset. We conduct offline experiments on the real-world
Fliggy dataset, which consists of the location and time information
of user historically interacted hotels based on user logs collected in
May 2022 at Fliggy. The statistics of datasets are listed in Table 5
in Appendix. In order to construct GHIG, we specifically extract
one year’s data logs of user clicks and purchases from May 2021 to
May 2022 as the long-term data. Positive samples in the dataset are
set to those purchased hotels while different settings of negative
samples are further analyzed in Appendix. User travel intentions
are mainly divided into three types, including local travel, leisure
travel and business travel.

5.2.2 Metrics. In the offline experiment,𝐻𝑖𝑡𝑅𝑎𝑡𝑒@𝑘 and 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
@𝑘 , twowidely usedmetrics in recommendation system, are adopted
to measure the performance of different methods. 𝐻𝑖𝑡𝑅𝑎𝑡𝑒@𝑘 de-
notes the proportion of test cases that the target recommended
hotels are within in the top 𝑘 recommendation list of a group, de-
fined as:

𝐻𝑖𝑡𝑅𝑎𝑡𝑒@𝑘 =

∑
(𝑔𝑖 ,ℎ 𝑗 ) ∈𝑆𝑡𝑒𝑠𝑡 𝐼 (𝑡𝑎𝑟𝑔𝑡 ℎ𝑜𝑡𝑒𝑙 𝑜𝑐𝑐𝑢𝑟𝑠 𝑖𝑛 𝑡𝑜𝑝-𝑘 𝑙𝑖𝑠𝑡)

|𝑆𝑡𝑒𝑠𝑡 |
,

(18)
where 𝑆𝑡𝑒𝑠𝑡 denotes the test set with each test case being in the form
of a group-hotel pair (𝑔𝑖 , ℎ 𝑗 ), and 𝐼 denotes the indicator function.
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 denotes the proportion of hotels actually purchased
by groups among the top 𝑘 recommended hotels predicted by the
model:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 =
1
|𝐺 |

∑︁
𝑔𝑖 ∈𝐺

𝑆𝑟𝑒𝑐 (𝑔𝑖 )@𝑘 ∩ 𝑆𝑔𝑡 (𝑔𝑖 )
𝑘

, (19)

where 𝑆𝑟𝑒𝑐 (𝑔𝑖 )@𝑘 denotes the predicted top-k recommendation
hotel set for group 𝑔𝑖 and 𝑆𝑔𝑡 (𝑔𝑖 ) denotes the ground truth ho-
tels purchased by group 𝑔𝑖 . The parameter 𝑘 in 𝐻𝑖𝑡𝑅𝑎𝑡𝑒@𝑘 and
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 is set to 50 in Section 5, and the experimental results
on 𝑘 = 10, 30 are listed in Table 10 in Appendix.

5.2.3 Settings. For time series models, we set the length of the
input window to 128. For other models, we set the dimension of the
input features to 16 and the output layer to a three-layer MLP where
the dimension of each layer is set to 256, 128 and 1, respectively. The
number of group members for all group recommendation models
is set to 50. Specifically for LINet, the number of each group’s
historical interacted hotels in the RHEA module is set to 50, and the
number of popular POIs per month in the PRM module is set to 10.
We train all models by setting the mini-batch size to 512 and using

the Adam optimizer with a learning rate of 0.001. The number of
training epochs is 1 on the Fliggy dataset, and the value of each
experimental result is the average of 5 repeated tests.

5.2.4 Comparison with Baselines. We compare LINet with seven
baselines on the real-world Fliggy dataset. By analyzing offline ex-
perimental results in Table 1, we obtain the following observations:

• Observation 1: Methods without considering user-side interac-
tion features, i.e., all time-series focusing based models, get the worst
performance on all types of groups. This is because effectively cap-
turing the diverse interests of user groups is the most important
factor in solving the WWW problem.

• Observation 2: For the two groups (leisure travel and business
travel), DIN, the personalized recommendation method, outperforms
conventional group recommendation methods. Since the WWWprob-
lem is essentially a group recommendation task, this observation
seems counterintuitive. This is mainly because the preferences of
these two groups are relatively simple and directive, leading to
behavior patterns that are simplified to a single user, which can
be effectively captured by DIN. For instance, leisure travelers pre-
fer hotels near popular POIs and business travelers prefer hotels
near business locations. However, this may not hold for groups
with complicated travel intentions, such as Local Travel, as their
historical behavior patterns are not relatively stable.

• Observation 3: The data sparsity issue significantly affects the
accuracy ofmodel predictions.As shown in Table 1, the 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@50
of leisure travel Group is around 15%, while this metric of other
groups is above 60%. This is because the historical interaction data
of leisure travel Groups is rather sparse compared to other groups,
making it difficult to accurately characterize groups’ preferences.
Additionally, in order to evaluate the effectiveness of our proposed
LINet on addressing the issue of travel data sparsity, we specifi-
cally construct a sparse dataset and further conduct experiments in
Appendix to compare with baseline methods.

• Observation 4: LINet dramatically beats baseline methods.
Specifically, LINet gains at least 3% relative improvement in𝐻𝑖𝑡𝑅𝑎𝑡𝑒
@50 and at least 2.3% relative improvement in 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@50 of all
groups compared to the best baseline. This is achieved by effec-
tively addressing the three challenges faced in the WWW problem
through the implementation of three sub-modules that concurrently
incorporate travel periods, location information, and user travel
intentions. Furthermore, the implementation of GHIG and an auxil-
iary location loss effectively mitigate the issue of data sparsity. The
effectiveness of each submodule is further demonstrated in Section
5.2.5 by conducting an ablation study.

5.2.5 Ablation Study. To analyze the effectiveness of our proposed
submodules in LINet, we conduct an ablation study. We consider
variants of LINet below:

• LINet-𝒈𝒈 : a variant of LINet which deletes the Internal Global
Preference Representation Module (IGPR).

• LINet-𝒈𝒆-𝒈𝒈 : a variant of LINet which deletes IGPR module
and the External Location-Time Representation Module (ELTR).

• LINet-𝒈𝒆-𝒈𝒈-𝒈𝒉: a variant of LINet which deletes ELTR, IGPR
and the Recent Hotel Embedding Aggregation Module (RHEA).

Experiment results of the ablation study are listed in Table 2.
First, compared with LINet-𝒈𝒆-𝒈𝒈-𝒈𝒉 , LINet-𝒈𝒆-𝒈𝒈 improves the
𝐻𝑖𝑡𝑅𝑎𝑡𝑒@50 by at least 2.1% and the 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@50 by at least 2.5%.
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Table 1: Comparison of different methods on the Fliggy dataset.

Methods 𝐻𝑖𝑡𝑅𝑎𝑡𝑒@50 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@50
Local Travel Leisure Travel Business Travel Local Travel Leisure Travel Business Travel

MQ-RNN 46.8% 46.3% 49.8% 61.2% 12.8% 61.8%
DeepAR 46.7% 46.2% 49.7% 61.1% 12.6% 61.6%
TFT 47.0% 46.4% 50.0 % 61.4% 13% 62.1%
DIN 48% 53.6% 53.6% 62.5% 16.7% 65.8%

AGREE 48.6% 48.8% 52.3% 63.6% 14.9% 64.6%
MoSAN 49.4% 51.2% 53.3% 64.9% 16.1% 65.4%

DeepGroup 48.1% 48.3% 51.9% 63.2% 14.4% 63.8%
LINet 50.9% 64.3% 55.9% 66.4% 19.5% 68.9%

Table 2: Ablation study of LINet.

Methods 𝐻𝑖𝑡𝑅𝑎𝑡𝑒@50 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@50
Local Travel Leisure Travel Business Travel Local Travel Leisure Travel Business Travel

LINet 50.9% 64.3% 55.9% 66.4% 19.5% 68.9%
LINet-𝒈𝒈 50.4% 64.1% 55.5% 66% 19.4% 68.2%

LINet-𝒈𝒆-𝒈𝒈 49.6% 55.7% 54.4% 65.2% 17.3% 67%
LINet-𝒈𝒆-𝒈𝒈-𝒈𝒉 48.6% 48.8% 52.3% 63.6% 14.9% 64.6%

Second, compared with LINet-𝒈𝒆-𝒈𝒈 , LINet-𝒈𝒈 has at least 1.6% rela-
tive improvement in𝐻𝑖𝑡𝑅𝑎𝑡𝑒@50 and at least 1.2% relative improve-
ment in 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@50. Third, compared with LINet-𝒈𝒈 , LINet has
at least 0.3% relative improvement in 𝐻𝑖𝑡𝑅𝑎𝑡𝑒@50 and at least 0.5%
relative improvement in 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@50 on the validation set of the
three types of groups. This confirms that long-term and short-term
group internal preferences, and external spatio-temporal factors are
all important for improving hotel recommendation performance.

5.3 Online A/B Test
To further evaluate the performance of LINet in the real online
environment, we conducted a two-week A/B test on the Fliggy
platform in June 2022. The MoSAN model, which outperformed
other baselines in offline experiments, served as the baseline. As
shown in Figure 1, the WWW problem solved in the paper is an
upstream task in the hotel supply-consumption process, requiring
real feedback data from downstream stages. Therefore, we utilize
Room Night to measure the overall impact of different models in
the online recommendation system. Moreover, we cannot equally
assign daily traffic to each model like testing personalized recom-
mendation systems. Instead, we select cities that are geographically
adjacent in a hotel business division run by the same group of BDs,
and employ the two models to generate 1,000 high-priority hotels in
each city for BDs. Specifically, the chosen cities are further divided
into four experimental groups, where CityGroup1 and CityGroup2
have approximate higher total Room Nights while CityGroup3 and
CityGroup4 have approximate lower total Room Nights. In the two-
week A/B test period, the first week is used to observe the metric
stability, and the second week is used to verify different models
using the Differences-in-Differences method. Results in Figure 4
show that compared to MoSAN, LINet achieves an average 3.2% lift
in Room Nights, which further illustrates the effectiveness of LINet
in addressing the WWW problem at OTPs.

Figure 4: Online Room Nights of different CityGroups at
Fliggy from June 6, 2022 to June 19, 2022.

6 CONCLUSION
Different from existing recommendation systems, which are lim-
ited to optimizing the performance of the consumption side of
e-commerce platforms, we consider the problem of improving the
quality of the supply side of OTPs. In this paper, we define the
WWW problem, and identify three challenges related to user group
generation, data sparsity and utilizing hotel recommendation infor-
mation including duration, location, and intention. A novel location
and intention-aware neural network for hotel group recommenda-
tion, namely LINet, is designed to capture user travel intentions
and better represent spatio-temporal information. The effective-
ness of LINet was evaluated through offline and online experiments,
demonstrating superiority over baseline methods. LINet has been
successfully deployed at Fliggy and is serving millions of users.
Future works include multi-target prediction to improve the per-
formance of hotel group recommendation based on repurchase and
click rate.
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A APPENDIX
A.1 Group Generation Study
A.1.1 Comparison of Different Methods. We compare our adopted
IRG2 with the grouping-user method that utilizes users’ purchasing
power, another metric commonly used for user grouping in crowd
marketing, as labels. Specifically, we define the Jaccard Index be-
tween the top 50 selling hotels booked by different user groups as
the discrimination metric of the classification approach adopted in
WWW problem. As shown in Table 3 and Table 4, IRG2 provides
lower Jaccard Index, which means the group generation model
based on user travel intention recognition has stronger discrimina-
tion.

Table 3: Jaccard Index between top 50 selling hotels of
groups divided by purchase power.

Purchase Power Low Mid High

Low 1 0.49 (33/67) 0.39 (28/72)
Mid 0.49 1 0.45 (31/69)
High 0.39 0.45 1

Table 4: Jaccard Index between top 50 selling hotels of
groups divided by travel intention.

Travel Intention Local Leisure Business

Local 1 0.27 (21/79) 0.28 (22/78)
Leisure 0.27 1 0.25 (20/80)
Business 0.28 0.30 1

A.1.2 Verification of Model Effectiveness. IRG2 is designed to solve
the upstream task of WWW problem, i.e., generating user groups
based on user travel intention recognition. In order to evaluate the
impact of the accuracy of intention recognition and group genera-
tion on downstream applications, we add users with misidentified
intentions to each group. Specifically, experiments under two differ-
ent settings are conducted, with 10% and 15% of users in each group
replaced by those with other intentions, respectively. As shown in
Table 6, the 𝐻𝑖𝑡𝑅𝑎𝑡𝑒@50 is relatively reduced by at least 7.3% and
the 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@50 is relatively reduced by at least 6.8% when there
are 10% abnormal users. The 𝐻𝑖𝑡𝑅𝑎𝑡𝑒@50 is relatively reduced by
at least 9.8% and the 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@50 is relatively reduced by at least
9.2% when there are 15% abnormal users. This confirms the impor-
tance of the group generation task and the ability of our proposed
IRG2 in learning the representation of user travel intentions and
solving the grouping-user task.

A.2 Negative Sampling Study
With regard to the training of LINet, positive samples can be de-
fined as the hotels purchased by user groups, since the purchasing
behaviours indicate that the recommended hotels directly match
groups’ preferences. However, defining negative samples for group
recommendation is a non-trivial problem [12], for the effectiveness

Table 5: Statistics of datasets.

Categories Training Testing
Fliggy Fliggy Fliggy (sparse)

Users 728,299 81,523 8,503
Groups 9,415 1,035 379
Hotels 117,391 13,482 2057

Locations 3,581 415 162
Avg interactions per group 27.6 26.8 7.1

of a recommendation system is significantly influenced by the qual-
ity of the negative samples chosen. Before comparing LINet with
baseline methods, we conduct an experiment to evaluate the influ-
ence of different settings to negative samples on LINet. Specifically,
we verify two settings of negative samples:

• Setting 1: For each positive sample, we randomly sample hotels
from the hotel pool near its location as negative samples.

• Setting 2: In addition to random sampling, we consider those
hotels that the group has clicked on but not purchased and this part
accounts for 20% of all negative samples.

The experimental results in terms of the above settings are listed
in Table 7 and Table 8. We derive two important observations:

• LINet achieves significantly better performance under Setting 2.
This is because the negative samples obtained by Setting 1 are quite
simple for LINet, failing to simulate the complicated pattern of neg-
ative samples in real scenarios. [19] also proved that effective hard
sample mining can improve the model effect. In the experiments
conducted in this paper, the second setting is utilized.

• The amount of negative samples has great impact on the perfor-
mance of LINet. Specifically, with the increase of negative samples,
the 𝐻𝑖𝑡𝑅𝑎𝑡𝑒@50 and 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@50 are improved at first, since the
increase of negative samples enhances the generalization ability of
LINet in differentiating between positives and negatives. However,
there is no obvious improvement in the two metrics when the ratio
of negative samples reaches 10/11. Therefore, 1:10 is applied as the
fix ratio of the positive and negative samples in the experiments
conducted in this paper.

A.3 Data Sparsity Study
Generally, users have a relatively limited number of trips per year,
therefore making the hotel booking a low-frequency event. Further-
more, the WWW problem defined in this paper restricts historical
user-item interaction data at a certain OTP to a specific spatio-
temporal range, which intensifies the issue of travel data sparsity.
In order to evaluate the effectiveness of our proposed LINet on cap-
turing features from sparse data, we specifically construct a sparse
dataset Fliggy (sparse) by selecting those groups with historical
interaction logs less than 10 from Fliggy dataset. The statistics of
the two datasets are listed in Table 5. We compare LINet with four
baseline methods based on group recommendation and the experi-
mental result is shown in Table 9. On the Fliggy (sparse) dataset,
LINet gains at least 7.3% relative improvement in 𝐻𝑖𝑡𝑅𝑎𝑡𝑒@50 and
at least 3.5% relative improvement in 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@50 compared to
the best baseline, which confirms the effectiveness of LINet in ad-
dressing the issue of travel data sparsity.
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Table 6: Experiments on the impact of IRG2 on downstream applications.

Settings 𝐻𝑖𝑡𝑅𝑎𝑡𝑒@50 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@50
Local Travel Leisure Travel Business Travel Local Travel Leisure Travel Business Travel

10% abnormal users 47.2% 46.9% 50.3% 61.9% 13.3% 62.5%
15% abnormal users 45.9% 45.7% 48.5% 60.3% 11.9% 60.9%

Table 7: Experiments by varying the amount of negative samples under Setting 1.

+:- 𝐻𝑖𝑡𝑅𝑎𝑡𝑒@50 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@50
Local Travel Leisure Travel Business Travel Local Travel Leisure Travel Business Travel

1:1 48.9% 62.8% 53.4% 64.0% 16.6% 65.6%
1:2 49.1% 62.1% 53.7% 64.3% 16.8% 66.1%
1:5 49.4% 62.3% 53.9% 64.5% 17.1% 66.4%
1:8 49.5% 62.5% 54.3% 64.8% 17.4% 66.7%
1:10 49.7% 62.9% 54.6% 65.0% 17.9% 67.1%
1:15 49.6% 63.93% 54.57% 64.9% 17.92% 67.05%

Table 8: Experiments by varying the amount of negative samples under Setting 2.

+:- 𝐻𝑖𝑡𝑅𝑎𝑡𝑒@50 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@50
Local Travel Leisure Travel Business Travel Local Travel Leisure Travel Business Travel

1:1 50.1% 63.5% 54.9% 65.6% 18.9% 67.8%
1:2 50.3% 63.7% 55.2% 65.8% 19.0% 68.1%
1:5 50.5% 64.0% 55.5% 66.0% 19.2% 68.3%
1:8 50.8% 64.2% 55.7% 66.4% 19.3% 68.6%
1:10 50.9% 64.3% 55.9% 66.4% 19.5% 68.9%
1:15 50.85% 64.32% 55.88% 66.32% 19.51% 68.89%

Table 9: Comparison of different methods on the Fliggy (sparse) dataset.

Methods 𝐻𝑖𝑡𝑅𝑎𝑡𝑒@50 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@50
Local Travel Leisure Travel Business Travel Local Travel Leisure Travel Business Travel

TFT 22.6% 23.3% 26.1 % 42.6% 10.2% 43.1%
AGREE 24.1% 24.8% 27.3% 44.8% 11.3% 45.5%
MoSAN 24.5% 24.9% 27.5% 45.3% 11.4% 45.6 %

DeepGroup 23.7% 24.3% 26.7% 44.0% 10.9% 44.9%
LINet 26.3% 27.1% 29.4% 46.9% 13.1% 47.6%

Table 10: Comparison of different methods on 𝑘 = 10, 30 in 𝐻𝑖𝑡𝑅𝑎𝑡𝑒@𝑘 and 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 .

Methods
𝐻𝑖𝑡𝑅𝑎𝑡𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

@10 @30 @10 @30
Local Leisure Business Local Leisure Business Local Leisure Business Local Leisure Business

MQ-RNN 12.1% 12.9% 12.6% 32.6% 32.7% 33.5% 80.2% 26.8% 82.5% 70.8% 20.3% 71.1%
DeepAR 11.9% 12.6% 12.4% 32.5% 31.9% 33.3% 79.7% 26.2% 82.1% 70.5% 19.7% 70.5%
TFT 12.2% 13.1% 12.8% 32.9% 33.4% 33.7% 80.3% 26.9% 83.0% 71.2% 20.8% 71.3%
DIN 12.5% 14.9% 13.3% 33.7% 37.8% 35.2% 81.3% 29.4% 83.9% 72.5% 23.4% 74.4%

AGREE 12.7% 13.8% 13.1% 34.1% 36.1% 34.9% 82.1% 28.3% 83.6% 73.3% 22.5% 73.7%
MoSAN 13.2% 14.2% 13.2% 34.3% 37.0% 35.1% 84.2% 29.0% 83.8% 73.8% 23.1% 74.2%

DeepGroup 12.6% 13.5% 13.0% 33.8% 35.5% 34.7% 83.1% 28.1% 83.2% 73.1% 21.8% 73.1%
LINet 13.6% 15.4% 13.9% 35.4% 40.8% 36.6% 86.7% 30.6% 87.3% 75.7% 25.4% 77.4%
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