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Abstract

Traditional computational chemistry techniques
are often a severe bottleneck in scaling up the dis-
covery of materials or new useful molecules. Ma-
chine learning techniques have proven effective
to overcome such limitations and often lead to un-
precedented results. In this work we focus on find-
ing candidate molecules that are benzoquinones
derivatives to be used in organic flow batteries.
We present a sampling algorithm equipped with
chemistry-based constraints in order to generate
a molecular library and we utilize a Bayesian
optimization strategy to select the best suited
molecules.

1. Introduction

The transition to sustainable energy is one of the most press-
ing problems in the current century, both on global and na-
tional level. On a global level, we face problems connected
with climate change, pollution, and depletion of resources.
On a national level, dependencies on energy supplies from
politically instable regions, as for example in Europe, fur-
ther fuels political and economic challenges. Consequently,
many government have progressed towards substituting fos-
sil energy, in particular electricity, by renewable sources.

Renewable sources, however, have their well-known set of
challenges as they are subject to seasonal changes and de-
pend on weather and daytime. The main challenge we face
is to store the surplus energy from renewables in storage
facilities such as mechanical, physical, thermal or chemical
storages on a mid or even long term. Among these op-
tions, organic flow batteries are a promising recent approach
with the potential to make a difference in energy storage
technology (Huskinson et al., 2014), with a vast number
of options for realizing redox active molecules based on
organic chemistry.
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Unfortunately, several problems concerning the mass adop-
tion of this technology remain (Luo et al., 2019). Firstly,
even though certain types of organic molecules might
be promising, such as anthraquinones, phazines, thio-
phenazines, etc., and reach voltages of even above 1V in
single cell settings, their investigation in larger setups or
integrated systems is hardly ever reported. Another, nearly
equally important point, is the lack of suitable starting mate-
rials for organic flow batteries at large scale. Typically, the
molecules reported for organic flow batteries in literature
are complicated to synthesize using expensive pathways or
the raw materials are not produced at sufficient scale.

This work is part of a project aiming at above mentioned
challenges, based on Al-guided development of flow battery
components. Particular emphasis is on the redox active
species already produced at industrial scale from biobased
sources, such as waste materials from the wood industry,
such as quinones and their precursors such as vanillin and
related aldehydes. In particular, Bayesian optimization and
active learning strategies are employed to find derivatives
with the lowest redox potential.

2. Methods

The design of functional molecules often relies on combi-
natorial, high-throughput screening strategies enabled by
high-performance computing. Despite the successes of high
throughput experimentation in chemistry, biology, and mate-
rials science, these approaches typically employ exhaustive
searches that scale exponentially with the size of the search
space. Data-driven strategies that can adaptively search
parameter spaces without the need for exhaustive explo-
ration are thus replacing traditional design of experiment
approaches in many instances (Hickman et al., 2022).

These strategies use machine-learnt surrogate models
trained on all data generated through the experimental cam-
paign, and are updated each time new data is collected. One
such approach is Bayesian optimization which, based on
the surrogate model, defines a utility function that priori-
tize experiments based on their expected informativeness
and performance (Mockus, 2012). In our case we employed
Bayesian optimization to discover promising molecules with
a minimal number of computationally expensive quantum
chemistry calculations.
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Figure 1. Four random examples from our molecular library.

Table 1. Candidate functional groups for molecules generation.

SMILES
CcxX N(C)(C)COX
ccx NCOCX
CS(=0)(=0)O[NA] N[O-][O-]
Ccox NS(=0)(=0)O[NA]
CcCL 0ox
C2=CC=CC=C2 oCcx
Cc=CX 0CS(=0)(=0)O[NA]
C=CCX 0C2=CC=CC=C2
c=Cccex 0C2=C(F)C(F)=C(F)C(F)=C2(F)
C#CX oCL
C#CCX 0S(=0)(=0)O[NA]
C#COX SX
C#CNX scx
C=NX Nelo)'s
C=NCX SCOX
C=NCCX SCS(=0)(=0)0[NA]
C=NOX S(=0)(=0)0[Na]
CONX C2N=CCS2
CONCX C2N=CC=N2
CONCCX [N+]2=CC=CC=C2.[CL-]
C#N [N+](C)(C)(C).[CL-]
[F] [SI](C)(C)(C)
[CL] S(=0)CX
[BR] [S1](0)(C)(C)
NX S(=0)(=0)CX
NCX P(=0)(0)(0)
N(C)CX SSCX
N(C)COX H

2.1. Molecular library generation

In order to produce a dataset for our BO strategy we follow
the procedure of (Jain et al., 2023). We start with a core
molecule, 2-Methoxy-1,4-benzoquinone, in SMILES repre-
sentation. Then, we utilize a sampling algorithm to add in
the position 2, 3 and 5 of the benzene ring, different atoms
and functional groups from Table 1.

The symbol X it is used to indicate another call of the sam-
pling algorithm to continue the chain, if not present means
that the procedure needs to stop. In the first call of the sam-
pler all elements have equal probability to be attach to the
core molecule, while in the following iterations the proba-
bility of elements that do not have the symbol X increase.

When a molecules in SMILES representation is generated,
in order to be added to the library needs to respect the
following constraints:

* Oxygen cannot bind directly with another oxygen or
with an halogen.

* In the molecule should be present just one halogen
element.

* No halogen is allowed next to a triple bond.

* No nitrogen-nitrogen single bond.

¢ Sodium can only bind to oxygen.

» Halogens cannot bind with nitrogen or sulfur.

e Maximum 1 triple bond for each growth point in the
core molecule.

¢ The number of hetero-atoms should be under 40% of
the total atoms in the molecule.

* Complexity of the molecule must be > 20 and < 80.
* Synthesizability score > 0.5.

* Log-Solubility > —2.

The first conditions are heuristics based on basic chemical
knowledge and are necessary to avoid infeasible molecules.
The complexity constraint in this work is calculated as the
number of non hydrogen atoms in the whole molecule
excluding the atoms from the core. To impose synthe-
sizability constraint we used RAScore (Thakkar et al.,
2021), that is based on the computer-aided synthesis plan-
ner AiZythFinder. RAscore predicts the probability of
AiZythFinder (Genheden et al., 2020) being able to identify
a synthehtic route for target organic molecule. For comput-
ing the Log-Solubility of the molecules we use AgSolPred,
a ML model trained on AgSolDB (Sorkun et al., 2019) that
is the largest publicly available aqueous solubility dataset.
Some examples of our library are shown in Figure 1.
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Figure 3. Results of the two surrogate models on our pre-liminary library.

2.2. Feature and Label Calculation

After the molecular library generation, we used the RDkit
library to generate 205 molecular features based on the
SMILES representation and then applied PCA in order to
reduce the features dimension to 30. For the calculation of
the label (redox potential), was calculated as:

AG -2625.50

Ered = -
2-96.485

-+ 0.699

where the Gibbs free energy is calculated as:
AG =Gox +AGyug — Grep — Guq

All the above parameter were calculated with density func-
tional theory (DFT) using PySCF library (Sun et al., 2018),
at the B3LYP/6-31++G level of theory. We have compared
the Gibbs free energy with the ground state energy of a
subset of generated molecules and we noticed a not signifi-
cant difference. For this reason, we directly use the ground
state energy in place of Gibbs free energy in the above for-
mula for computational efficiency and faster screening of
molecules.

2.3. Bayesian Optimization Strategy

To start the strategy we select at random n molecules from
the molecule library and we use DFT to compute the re-
dox potentials for these n molecules. Using E,..; values
as dependent variables and the 30 features as independent
variables, we develop two different surrogate models. We
use a Gaussian Process Regression (GPR) model with the
Matern kernel and a Bayesian Neural Network (BNN) with
architecture described in (Hise et al., 2018). These models
predict the mean p and standard deviation o of E,..4 values
for the other molecules in the library. These two quantities
are used in the expected improvement (EI) acquisition func-
tion to guide the selection of the next molecules for E,..q4
evaluation, aiming to minimize E,..4 in the dataset labeled
with DFT-calculated values. We compute the EI for each
molecule in the library and select the one with the high-
est EI for the next DFT calculation. This newly evaluated
molecule is then added to the labeled dataset, marking the
completion of one Bayesian Optimization (BO) iteration.
Each iteration involves retraining the surrogate model with
the updated labeled dataset to predict the EI of all molecules,
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thereby selecting another unlabeled molecule. This iterative
process generally enhances the surrogate model predictive
accuracy, progressively identifying more optimal molecules
for DFT calculations. The BO runs until it either finds opti-
mal candidate or reaches a maximum number of iterations
allowed.

3. Results

We generated 40, 000 molecules as a preliminary library
whose distribution over complexity, RAscore and solubility
is shown in Figure 2. We then split the library in 10 subsets
each containing 15, 000 random molecules to test our BO
strategy. In this case we pre-compute all redox potentials
with DFT for testing the surrogate models reducing the
computational time. We start selecting n = 500 and if the
minimum was selected in this initial training set we removed
it and sample another point from the subset. We fixed the
maximum number of the Bayesian Optimization steps at
1000.

In Figure 2 and 3 we can see the results of our experiments.
On the z-axis we put the iteration step when the surrogate
model find the minimum in the subset while in the y-axis we
put a CDF proxy, specifically p = ij:l Liitn)<itman} /N>
that indicate if the surrogate model was able to find the
minimum in each subsets. As we can see BNN outperform
GP given that was able to find the minimum in more subsets
and in less iterations.

Importantly, these results demonstrate BO’s efficacy in scal-
ing up screening for promising molecules. In particular,
BO based on BNNs was able to find the highest scoring
candidate among a library of 40k in less than 1k iterations
in a majority of runs.

4. Conclusion and Future Works

We have demonstrated that given a molecules library de-
signed with chemistry domain knowledge, our BO strategy
was able to identify the best suited molecules in few iter-
ations. In future weeks, further constraints and a bigger
library molecules (at least 500k) will be used in order to
fully exploit the power of the procedure in a real case sce-
nario.

Ultimately, we will test the top K molecules with the lowest
redox potential, synthesizing and characterizing them using
state-of -the-art techniques (e.g., multidimensional NMR
spectroscopy, XRD, in case crystals can be obtained, IR
spectroscopy). The standard reduction potentials and their
dependency on the pH value will be investigated by cyclo-
voltammetry. The activation energies will be determined
using the Randles-Sevcik as well as the Levich approach.
Solubility and stability will be also determined at different

pH values and conditions (ambient vs N2 atmosphere, UV,
temperature). In cases where molecules provide sufficient
stability (1 week without decomposition when stored in so-
Iution) and solubility (at least 0.5 mol/L), they will be tested
in single cell flow batteries.
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