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Figure 1: Our approach enables: (a) generating whole-body manipulation of articulated objects from text input
(e.g., “a person uses the mixer”); (b) manipulating the object to a target pose and articulation (the blue object is
the target pose); (c) synthesizing whole-body motion guided by trajectories from hand-only data; (d) generating
motions involving simultaneous walking and object manipulation (e.g., opening a box while walking).

Abstract

Synthesizing whole-body manipulation of articulated objects, including body mo-
tion, hand motion, and object motion, is a critical yet challenging task with broad
applications in virtual humans and robotics. The core challenges are twofold.
First, achieving realistic whole-body motion requires tight coordination between
the hands and the rest of the body, as their movements are interdependent during
manipulation. Second, articulated object manipulation typically involves high
degrees of freedom and demands higher precision, often requiring the fingers to be
placed at specific regions to actuate movable parts. To address these challenges, we
propose a novel coordinated diffusion noise optimization framework. Specifically,
we perform noise-space optimization over three specialized diffusion models for
the body, left hand, and right hand, each trained on its own motion dataset to
improve generalization. Coordination naturally emerges through gradient flow
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along the human kinematic chain, allowing the global body posture to adapt in
response to hand motion objectives with high fidelity. To further enhance precision
in hand-object interaction, we adopt a unified representation based on basis point
sets (BPS), where end-effector positions are encoded as distances to the same BPS
used for object geometry. This unified representation captures fine-grained spatial
relationships between the hand and articulated object parts, and the resulting trajec-
tories serve as targets to guide the optimization of diffusion noise, producing highly
accurate interaction motion. We conduct extensive experiments demonstrating that
our method outperforms existing approaches in motion quality and physical plausi-
bility, and enables various capabilities such as object pose control, simultaneous
walking and manipulation, and whole-body generation from hand-only data. The
code will be released for reproducibility.

1 Introduction

Human-object interaction (HOI) motion generation [47, 54] has broad applications in virtual reality,
character animation [5, 68, 48], and robotics. These interactions range from simple activities like
sitting on a chair [54, 47] to more complex tasks involving articulated object manipulation [6, 21],
such as opening a box or a microwave. This paper focuses on the challenging setting of whole-body
manipulation of articulated objects. Given an initial pose of the human and the object, along with a
textual instruction, our goal is to synthesize realistic, physically plausible interaction sequences that
involve coordinated body, hand, and articulated object motion.

Most prior works on HOI generation [16, 47, 74, 4, 28, 29, 8] suffer from two key limitations.
First, they typically focus on either body-only motion [47, 28, 29] or hand-only manipulation
[73, 81, 6, 21, 8]. Although hand-only methods can produce plausible contact behaviors in short-
range scenarios, they fail to capture important whole-body dynamics such as bending down, reaching
forward, or walking while manipulating objects. Such whole-body behaviors are essential for
generating realistic human-object interactions, especially when manipulation is not restricted to a
fixed space. Second, most existing works target rigid objects [70, 29, 8], while articulated objects
introduce more complex motion patterns and require continuous in-hand adjustments.

Whole-body manipulation of articulated objects is highly challenging. First, it demands coordinated
motion between the body and hands to reflect natural physical behaviors. Body movement affects how
the hands approach and manipulate objects, and conversely, hand-object interactions can influence
global posture. Second, precise control of finger positions is essential to maintain accurate, physically
plausible contact throughout the sequence. This is especially important for articulated objects, where
the manipulation often requires placing the fingers at specific regions to actuate the articulation while
avoid colliding with other parts.

To address these challenges, we propose a novel framework called CoDA (Coordinated Diffusion
noise optimization for whole-body manipulation of Articulated objects), which jointly synthesizes
the motions of the human body, hands, and articulated objects. Our core idea is to optimize the
input noise vectors of three specialized diffusion models, which independently model the body, left
hand, and right hand, to generate coordinated whole-body motion. This decoupled design allows
each component to be trained on its own data source, such as using large-scale datasets like AMASS
[38] for body motion, manipulation datasets like ARCTIC [13] and GRAB [56] for hand motion,
thereby improving generalization across diverse motions. Coordination naturally emerges during
optimization, as gradients from hand motion objectives flow through the human kinematic chain,
allowing the global posture to adapt in response to fine-grained hand motion. This optimization
further enables precise control over hand-object contact, while the diffusion noise space [25] provides
strong motion priors to preserve naturalness in the generated sequences.

To enable precise manipulation while accounting for object geometry and articulation, we adopt
a basis point set (BPS) representation [49, 8§1] to encode both the object surface and end-effector
trajectories in a unified form. Specifically, we represent the positions of the end-effectors, namely
the wrists and fingertips, by their distances to the same BPS used for encoding the object geometry.
The unified representation captures the relative spatial relationship between the hand and the object
geometry as well as its articulation during complex manipulation tasks. The generated trajectories,
based on this representation, provide a continuous target signal for optimizing whole-body motion.



We evaluate our approach on both the ARCTIC [13] dataset of articulated object manipulation and
the GRAB [56] dataset of rigid object interactions. Our method achieves state-of-the-art performance
on both benchmarks, outperforming existing approaches in motion quality and physical plausibility.
Beyond benchmark evaluation, our framework enables several compelling capabilities, as illustrated
in Figure 1. It supports object pose control at specific times, and coordinated whole-body behaviors
involving simultaneous locomotion and manipulation, which are absent from the ARCTIC dataset. In
addition, our framework allows us to leverage hand-only datasets [2] to generate whole-body motion,
enabling broader data usage and generalization. To the best of our knowledge, this is the first work to
jointly generate body, hand, and articulated object motions for whole-body manipulation tasks.

2 Related work

Human-object interaction. Human-object interaction (HOI) generation [54, 28, 9] has received
increasing attention due to its potential to enable virtual humans to perform various actions in
3D environments. Early works focus on generating static interactions such as sitting or lying on
furniture [54, 16, 82, 84, 80], using either auto-regressive pipelines or whole-sequence generation
[61, 62,40, 1, 86]. Recent methods explore diffusion-based models [22, 47, 27, 4, 74, 23] and apply
guidance techniques [11, 19] to improve human-scene contact quality. Beyond static objects, several
works consider dynamic objects [70, 71] or generate human motion conditioned on given object
trajectories [28, 10]. For example, OMOMO [28] proposes a two-stage framework that first generates
wrist trajectories and then completes body motion accordingly. Other approaches [45, 70, 29, 12,
53, 72] jointly generate body and object motion, and incorporate contact-aware guidance into the
diffusion process to improve the quality. Another line of research [17, 42, 69, 59, 43, 63] enables
physically simulated characters to perform scene-level interactions by learning control policies
through environment interaction. These methods mainly focus on navigation and interactions with
large-scale objects such as furniture or obstacles. While generating plausible body motion, they
ignore finger motion, which is crucial for fine-grained manipulation.

Hand-object interaction. ManipNet [77] synthesizes object manipulation given wrist and object
trajectories, using multiple representations to model the hand-object relationship. GRIP [58] design
a temporal hand-object spatial feature for stable grasping. Some works [87, 33] address the task
of denoising noisy hand motion to recover clean interaction sequences. While these methods
explore various representations for modeling hand-object spatial relationships, they rely on access to
predefined wrist and object trajectories. [85, 81, 79] explore settings where only the object trajectory is
provided. CAMS [85] introduces a canonicalized representation to enable precise contact generation.
[81, 79] generate manipulation by predicting contact maps as intermediate representations. Other
works generate hand and object motion jointly, without relying on predefined trajectories. DiffH20
[8] applies grasp guidance to diffusion models for more coherent hand-object interactions.. Text2ZHOI
[6] employs cascaded diffusion to iteratively refine the results. HOIGPT [21] leverages separate
codebooks for hands and objects, and jointly predicts motion and text. Physics-based approaches
[7, 78] generate grasping motions through reinforcement learning in simulated environments. Despite
their differences, all these methods ignore the body context, resulting in floating hand motions.

Whole-body interaction. Although there are several whole-body manipulation datasets [56, 13, 24,
23,76, 37, 34], only a few works consider body and hand interaction simultaneously. [57, 66] assume
the object is static and only synthesize approaching and grasp motion. IMoS [14] demonstrates
full-body manipulation with given finger motion; it generates body motion auto-regressively and
optimizes object trajectories by assuming a static hand-object contact frame. TOHO [30] synthesizes
whole-body interactions using implicit representations [ 18], relying on the same contact assumption
to recover object motion. DiffGrasp [83] generates whole-body motion conditioned on given object
trajectories using diffusion models, and introduces hand-object guidance to improve interaction
quality. Wu et.al. [67] employs LLM [41] to analyze the scene and plan motions for grasping
and relocating rigid objects. Other works [64, 65, 75] employ physics-based tracking to mimic
manipulation behaviors. [3, 36, 31] explores humanoid grasping, but the generated motions remain
unnatural and do not involve complex manipulation. Most of the above methods focus exclusively on
rigid object interaction and do not address articulated objects. Compared to rigid object interaction,
articulated object manipulation is more complex, as it often requires placing the fingers at specific
regions to actuate the articulation.
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Figure 2: Pipeline overview. (a) Given the initial human pose, object pose, and text, we first generate
the articulated object trajectory and the corresponding end-effector trajectories via two conditional
diffusion models. (b) We then optimize the latent noise inputs of three decoupled diffusion models
by propagating gradients through the kinematic chain, guided by end-effector tracking, penetration,
and regularization losses. Finally, we forward the optimized noise through the diffusion models to
synthesize coherent whole-body motion aligned with the generated object motion.

3 Preliminary

In this section, we define the input and output in this paper. Given the initial pose of a human and an
articulated object, along with a textual instruction, our goal is to generate a full sequence including
the whole-body human motion (body and fingers) and the articulated object motion over time.

Object representations. The objects from the ARCTIC [13] dataset are two-part articulated objects
with 7 degrees of freedom. We use S, = {T,, R,, a} to indicate the object pose, where the object
state S, € R consists of object translation T, € R3, object rotation R,, € R?, and the angle of the
rotational joint a € R' between the two parts of the object.

Motion representations. We use SMPL-X [44], which is a parametric human body model to
represent the whole body, including the face and fingers. SMPL-X is a differentiable function that
takes input shape, pose, and expression parameters and outputs a 3D mesh with 10, 475 vertices and
20, 908 triangles. The vertices are posed with linear blend skinning with a rigged skeleton which is
learned from the data. As we focus on the body motion with two hands, we remove the face related
parameters. ® = {0,t} is the pose parameters to drive the SMPL-X model, where 8 € R52%3
represents joint angles and t € R3 is the root translation.

Text descriptions. In the ARCTIC [13] and the GRAB [56] dataset, each sequence is annotated with
an action label. Following previous work [14, 6], we construct the text description using the template
“A person <action> the <object>.”. For example, “A person uses the box.”.

4 Method

The overview of our pipeline is shown in Figure 2. We first generate the motion of the articulated
object (Section 4.1), then predict the end-effector trajectories (Section 4.2), and finally synthesize the
whole-body motion by optimizing the noise of decoupled diffusion models (Section 4.3).



4.1 Object motion generation

Given the initial object pose and the textual instruction, we train a diffusion model [60] to generate
the object future trajectory. The input includes the CLIP [50] feature of the text, the initial object
pose, and the object geometry embedding. We represent the object geometry using the normalized
part-based BPS descriptor [81], which will be formally defined in Section 4.2 and Figure 3. The
output is a sequence of object states over time.

4.2 End-effector trajectory generation

Given the generated object trajectory, we extract its geometry representation and combine it with the
trajectory itself and the textual instruction as input to a diffusion model that predicts end-effector
trajectories. Instead of directly predicting 3D joint coordinates [28], we design a distance-based
representation that encodes end-effector positions in the same space as the object geometry.

Unified BPS-based representation for object and end-effectors. We first present the object
geometry representation. Following previous work [81], we adopt the normalized part BPS [49] to
represent the object geometry. Specifically, the object mesh is first normalized to the unit scale by
dividing all vertex coordinates by the maximum distance from the object origin to any vertex. Then a
pre-defined fixed set of basis points P € R¥*3, shared across all objects, are uniformly sampled
within the unit sphere centered at the object origin. The BPS representation is computed as the
distances from each basis point to the nearest vertex on each of the two rigid object parts, resulting in
an object geometry vector O € RX*2,

We then introduce end-effector BPS, a distance-based representation tailored for encoding the
positions of end-effectors in the object coordinate system. The end-effectors include both wrists and
fingertips, comprising a total of 12 joints (2 wrists and 10 fingertips). As shown in figure 3, at each
frame, for each of the 12 end-effectors, we compute a K -dimensional vector of Euclidean distances
to the basis points. We use the same pre-defined set of basis points P € R >3 in object geometry
representation [81]. This results in a (12 x K')-dimensional end-effector BPS vector per frame. The
diffusion model outputs a sequence of end-effector BPS over time, along with binary contact labels
for each fingertip, indicating whether it is close to the object surface.

Given the generated end-effector BPS sequence, we

recover the end-effector trajectories by solving a sim-

ple optimization problem. For each end-effector at

each frame, we minimize the following loss to infer e _ale
its 3D position: ' q'm
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where p. is the optimized 3D position and d; is the effector BPS. (a) is the object BPS [81]. (b)
predicted distance to the j-th basis point P;. By is the proposed end-effector BPS represen-
sharing the basis point set with the object BPS rep- tation. Gray points denote the basis points;
resentation, our method provides a consistent spatial pink/yellow are two object parts; blue indi-
reference frame that facilitates geometric alignment ~cates a fingertip. Only one end-effector and
between end-effectors and object parts. 64 basis points are visualized for simplicity.

RoPE-based object motion encoding. To better encode the object trajectory, we adapt the idea of
CaPE [26], which encodes relative camera pose information via RoPE [55]. In our case, each object
pose is also represented as a 4 x 4 transformation matrix. Inspired by CaPE [26], we use the object
pose to transform the query and key features in each attention layer. This enables the model to encode
the relative object motion within a local temporal window, providing temporally-aware conditioning
for the generation. We refer readers to the supplementary material for more details.

4.3 Whole-body motion generation

The goal of this stage is to generate coherent whole-body motion that aligns with the predicted
end-effector trajectories and articulated object motion. Rather than directly predicting whole-body



poses conditioned on end-effectors [28], we adopt an optimization-based approach inspired by DNO
[25]. Specifically, we optimize the noise input to the diffusion models (Figure 2 (b)), and then
forward the optimized noise through the diffusion models to generate the final motion. To further
improve motion quality, we decouple the body into three components: body, left hand, and right
hand, and train separate diffusion models for each. This decoupled design enables us to train each
module using individual data, such as training the hand models using the ARCTIC [13] and GRAB
[56], and the body-only model without hands on the AMASS [38]. Such specialization improves
generalization by allowing novel combinations of finger and body motion to be synthesized. Moreover,
this formulation facilitates gradient flow through the kinematic chain during optimization, which
improves coordination between the body and hands.

Decoupled motion diffusion model. We adopt a decoupled human representation for whole-body
motion, dividing the human pose into three components: body, left hand, and right hand. Formally,
for each frame i, the whole-body pose ©; is represented as:

X = {Xp, Xin, Xrh }, 3)

xp = {r", 7%, 1Y, 7% 0}, “4)
xin = {0}, (5

Xrh = {0rn}, (6)

where z;, denotes the body component, including root velocities 7%, 7* € R (projected on the XZ-
plane), root height 7¥ € R, angular velocity 7* € R, and body joint rotations 8;, € R®*/», while
0y, € R6*/in and @,;, € RS>/ represent the left and right hand joint rotations, respectively. All
joint rotations are encoded using the 6D representation [88], with J, = 22, Jj, = J,.;, = 15 joints
for the body and each hand. We train three separate diffusion models, M, M;;, and M1, to model
the motion manifolds of the body and hands individually.

Optimization over diffusion noise. Given the trained diffusion models for body, left hand, and right
hand, we optimize the noise vectors z = {2y, z;5,, Z, } to generate whole-body motion as shown in
Figure 2 (b). Let f(z) denote the process that maps the input noise to global joint positions through
diffusion models and forward kinematics:

f(z) = FK(My(z), Mun(2in), Myn(2zrn)), 7

where FXC(-) converts root translation and local joint rotations into global joint positions. We
formulate motion generation as minimizing a loss £ over the diffusion noise:

z" = argminl(f(z)). 8)

The overall loss function consists of three components with different weights Ace, Apen, and Ayqq:
L= >\ee£ee + )\penﬁpen + )\regﬁrega (9)
where Lee, Lpen, and L, are the end-effector tracking, penetration, and regularization losses.

We encourage the generated global fingertip positions P to follow the predicted trajectories py from
the previous stage. We also constrain the relative fingertip positions to the wrist joints:

Lee = [[ps — Pyl + 1P} — PFl1, (10)
where p’; and p denote the relative fingertip positions with respect to the wrist.
To reduce hand-object interpenetration, we penalize fingertip joints that fall inside the object mesh:
Lpen = Z ||min (SDF(J7) — 0.01,0.00) ||, (11)
J
where SDF (J7) is the signed distance at the j-th hand joint, assuming 1cm finger thickness.
We add a regularization term to discourage foot floating and foot sliding:
Lyeg = |[min (J¥) — 0.02[|; + Liege. || TE — IL_ ||} + Leigne- || I7 =I5, - (12)

where JY denotes the height of all joints in the body, and J and J7 denote the 3D positions of the
left and right foot joints at frame ¢, respectively. The binary indicators 1 denote whether the left or
right foot is in contact with the ground, based on a height threshold of 0.02 meters.



We adopt DDIM [52] sampling to efficiently generate motion sequences during optimization following
DNO [25]. The loss is computed on the final output, and gradients are propagated back through
the DDIM solver to update the noise. After optimization, we pass the optimized noise into the
decoupled diffusion models to generate the final whole-body motion. Combined with the previously
generated object trajectory, this yields a complete human-object manipulation sequence. This noise-
space optimization avoids high-dimensional pose regression, reduces artifacts, and produces natural
whole-body motions aligned with the object manipulation process.

5 Experiments

5.1 Implementation details

We adopt a transformer-based diffusion architecture similar to MDM [60] for all models in our
framework. During inference, we perform noise optimization using DDIM [52] with 7'=10 for 800
steps and a cosine-decayed learning rate, following the DNO [25] strategy. All experiments are
conducted on a single NVIDIA A100 GPU. More training details are in the supplementary material.

5.2 Dataset and evaluation metrics

Dataset. We evaluate on ARCTIC [13] for articulated object manipulation and on GRAB [56]
for rigid object interaction. ARCTIC contains around 2 hours of motion data featuring 10 subjects
interacting with 11 articulated objects, including complex motions such as bimanual grasps and
in-hand manipulation. Following the protocol in [81], we randomly sample 4 sequences per object
category to construct the test set. The GRAB dataset covers about 4 hours of interaction from 10
subjects with 51 rigid objects, focusing primarily on grasping and simple lifting actions. Similar to
[14], we use data from the last subject as the test set. For training object motion and end-effector
trajectories generation, ARCTIC is used for articulated objects, and GRAB is used for rigid objects.
The body motion model is trained on ARCTIC, GRAB, and AMASS [38], while the two hand motion
models are trained on ARCTIC and GRAB.

Evaluation metrics. Similar to [8, 6], we evaluate the motion quality using the following metrics:
(1) Frechet Inception Distance (FID) measures the feature-level distance between generated and
real motions, using a motion feature extractor trained on the dataset following [15]. (2) R-Precision
quantifies the alignment between generated motion and the corresponding textual prompt, measured
using Top-3 accuracy. (3) Diversity reflects the variation among generated motion samples. (4) Foot
skating indicates motion realism by detecting undesired foot sliding, following the computation in
[32, 47]. We additionally report physical realism metrics following [8]: (5) Interpenetration volume
(IV) computes the number of hand vertices that penetrate the object mesh. (6) Interpenetration
depth (ID) measures the maximum penetration depth of hand vertices into the object. (7) Contact
ratio (CR) is defined as the average proportion of hand vertices within 5 mm of the object surface.
We also conduct a user study involving 16 participants to evaluate the generated motion sequences.

5.3 Comparison with baselines

Baselines. As there is no existing method that jointly generates body, hand, and articulated object
motion, we adapt several representative methods to our task: IMoS [14], MDM [60], OMOMO
[28], Text2HOI [6], and CHOIS [29]. IMoS is a CVAE-based [51] auto-regressive model, while
MDM is a full-sequence diffusion-based [20] model. Text2HOI is originally designed for hand-object
interaction with multiple diffusion models for iterative refinement. CHOIS is a diffusion-based model
that incorporates contact guidance during inference. We extend them to jointly generate whole-body
motion and object motion. OMOMO first generates wrist motion and then synthesizes body motion.
We extend it to a three-stage model: first generating object motion, then predicting fingertip and wrist
trajectories, and finally producing whole-body motion. OMOMO+DNO further extends OMOMO by
using its diffusion model as a latent prior and applying DNO [25] to refine the generated results.

Quantitative results. We report quantitative results on ARCTIC and GRAB in Table 1 and
Table 3, and user study results in Table 2. Our method achieves the best performance on nearly all
metrics across both datasets. While it ranks slightly lower in diversity, it significantly outperforms all



Table 1: Comparison on the ARCTIC [13] dataset. The right arrow — means the closer to real
motion the better. IV, ID, and CR denote interpenetration volume, interpenetration depth, and contact
ratio. The best and second-best results are highlighted green and yellow, respectively.

Methods FID| R-Precision] Diversity— Foot skating] IV] ID) CR?T
Real - 0.531 8.664 0.002 4.68 11.47 0.085
IMosS [14] 6.686 0.305 6.144 1.469 14.28 13.24 0.010
MDM [60] 3.972 0.209 8.167 0.027 16.90 15.85 0.033
Text2HOI [6] 6.654 0.234 5.923 0.028 12.72  17.14 0.010
OMOMO [28] 3.710 0.406 6.110 0.028 13.77 15.16 0.061
OMOMO + DNO [25] 2.873 0.391 7.004 0.022 8.95 13.30 0.075
CHOIS [29] 3.758 0.367 7.423 0.023 17.19 15.84 0.030
Ours 2.283 0.477 7.208 0.002 5.25 12.87 0.086

Table 2: User study on the ARCTIC [13] dataset.

Metrics Ours CHOIS [29] OMOMO [28] Text2HOI [6]
Best Motion Realism Rate 1 88.7% 1.1% 9.9% 0.3%
Best Physical Plausibility Rate T 87.3% 1.4% 10.2% 1.1%

baselines in the user study, indicating superior perceptual quality and physical plausibility. To assess
the physical feasibility of our method, we conduct a mimic-based evaluation following [46, 64], where
a humanoid policy is trained to reproduce the generated motions in the IsaacGym [39] simulator. We
use eight generated sequences (each 10 seconds long) involving boxes and microwaves, and measure
the tracking duration—the time (in seconds) during which both object and joint position errors remain
below a 10 cm threshold. Results in Table 4 show that our motions lead to longer tracking durations
compared to OMOMO, demonstrating improved physical plausibility and better compatibility with
downstream humanoid execution. In addition, to evaluate the generalization capability of our method,
we conduct an additional experiment on the ARCTIC dataset by holding out the box object for testing
and training on the remaining objects. As shown in Table 5, our method achieves a substantially
lower FID compared to the baseline, demonstrating better object-level generalization.

Qualitative results. As demonstrated in Figure 4, our method achieves significantly better
hand-object contact compared to baselines. We provide more results in the supplementary material.

5.4 Ablation study

We ablate key components of our framework to understand their impact on overall performance: (a)
A single model to jointly predict object motion and end-effector trajectories. (b) Predicting relative
coordinate of end-effectors to the object center without end-effector BPS. (c) Using object velocity
and rotational velocity as the trajectory input without RoPE-based representation. (d) Removing the
optimization process and using a conditional diffusion model with fingertip trajectories as input. (e)
Using a single diffusion model for the entire body without the decoupled body-hand representation.
(f) Excluding the AMASS [38] dataset during training the body motion model. (g) replacing the
end-effector representation with a distance field [77], where the trajectory is encoded as a fixed grid
of distances in the object’s local coordinate frame, while keeping the object geometry encoded using

Table 3: Comparison on the GRAB [56] dataset.

Methods FID]  R-PrecisionfT Diversity— Foot skating| IV{ 1D} CR?T
Real — 0.727 15.045 0.010 5.84 13.41 0.049
IMoS [14] 52.290 0.180 8.374 0.152 11.57 20.35 0.000
MDM [60] 26.734 0.289 8.627 0.109 12.96 16.03 0.001
Text2HOI [6]  30.101 0.320 10.302 0.086 12,52 14.55 0.000
OMOMO [28] 25.017 0.391 9.294 0.094 11.03 14.03 0.004
CHOIS [29] 25.835 0.320 9.887 0.055 9.31 14.37 0.002
Ours 21.544 0.438 9.387 0.046 4.93 10.23 0.040




Table 4: Physical feasibility evaluation on the ARCTIC [13] dataset.
Metrics OMOMO [28] Ours
Tracking Duration 1 4.75 8.75

Table 5: Comparison on the ARCTIC [13] dataset with held-out box object.

Methods FID]  R-PrecisionfT Diversity— Foot skating] IV] ID] CRt
OMOMO [28] 44.009 0.547 6.234 0.028 26.92 8.23 0.116
Ours 16.091 0.547 4.964 0.002 26.24 8.56 0.128

BPS. (h) conditioning the hand motion diffusion model on object trajectories. As shown in Table 6,
each component contributes to the performance improvement.

5.5 More discussions

Generalization to different object geometry. To further validate generalization to unseen object
geometries of the same category, we train the object motion and end-effector trajectory models on
the hand-only dataset [85], using 7 training and 3 testing objects. Despite the dataset containing
only hand motion, our method successfully generates whole-body motion, as shown in Figure 5.
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Deployment on simulated humanoids As shown in Figure 6, our generated whole-body motion
can serve as a reference for controlling humanoids in physics-based simulators. We apply physical
motion tracking methods [46, 35, 64] to track the synthesized motions. The humanoid is able to
physically interact with objects and perform coordinated manipulation behaviors in the simulated
environment.

Inference speed We report the inference time of each module in our pipeline, measured on a
single NVIDIA A100 GPU for generating a 300-frame motion sequence. The object motion model

Table 6: Ablation study on the ARCTIC [13] dataset.

Methods FID| R-Precision? Diversity— Foot skating| IV{ 1D CRT
Real - 0.531 8.664 0.002 4.68 11.47 0.085
(a) w/o separate models  3.790 0.438 6.939 0.002 8.21 13.16 0.103
(b) w/o end-effector BPS  4.069 0.453 6.888 0.002 8.09 13.54 0.093
(c) w/o RoPE motion 2.714 0.469 7.021 0.002 6.12 12.66 0.093
(d) w/o optimization 4.883 0.414 6.406 0.030 16.39 16.13  0.095
(e) w/o decoupled 2.699 0.438 7.142 0.008 12.45 16.29 0.082
(f) w/o AMASS 3.305 0.453 6.859 0.003 546 13.04 0.089
(g) w/ SDF 2.350 0.422 7.064 0.003 6.69 13.97 0.086
(h) w/ extra condition 2.998 0.453 7.212 0.002 8.95 13.30 0.075
Ours 2.283 0.477 7.208 0.002 5.25 12.87 0.086
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Figure 4: Qualitative comparison. Given the text “A person uses the ketchup.”, our method generates
the whole-body motion with better hand-object contact compared to baselines.

Figure 6: Deployment on simulated humanoids. We apply existing motion tracking techniques
to deploy the generated motion to a simulated humanoid. The articulated object is physically
manipulated by the humanoid within the physics simulator [39].

requires approximately 0.52 seconds, the end-effector model takes about 3.66 seconds, and the whole-
body motion optimization, which involves iterative diffusion sampling and gradient-based updates,
takes around 16.9 minutes. Most of the computation time is spent on the whole-body optimization
stage. Although slower than feed-forward approaches such as CHOIS [29], this optimization process
produces motions with substantially higher quality and physical plausibility.

Limitations. First, the optimization process is slower than other generative methods [60], limiting
real-time applications. Second, due to the limited object diversity in existing datasets [13], the
model struggles to generalize to novel object categories. Third, our framework only focuses on
single-object manipulation; extending it to handle multiple interacting objects or multi-step sequential
interactions remains an open direction. Finally, enabling both the body and fingers to reason about
and avoid obstacles in complex scenes, such as surrounding geometry or other objects, is still a
difficult problem.

6 Conclusion

In this paper, we present a coordinated diffusion noise optimization framework for synthesizing whole-
body manipulation of articulated objects. By optimizing over the noise space of separately trained
diffusion models for the body, left hand, and right hand, our method enables natural coordination
between the body and hands. We introduce a unified distance-based representation built on basis
point sets to generate end-effector trajectories, facilitating precise hand-object interactions. Extensive
experiments demonstrate that our approach achieves state-of-the-art performance in motion quality
and physical plausibility. It also supports various capabilities such as object pose control, simultaneous
manipulation and locomotion, and whole-body motion generation from hand-only data.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: To jointly generate body, hand, and articulated object motion, we introduce
a coordinated diffusion noise optimization framework equipped with a unified BPS-based
representation. We conduct experiments on public datasets and show various results.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitation is discussed in the Section 5.5.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: We do not include theoretical results in this paper.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We describe our method in detail and we will release the code and models.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

18



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: Our code will be released. While the code is not included in the submission,
the implementation details are provided in the supplementary material.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experimental details are provided in Section 5.1. More details are provided in
the supplementary material.

Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We report our results by averaging over 10 runs.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The compute resources are provided in the supplementary material.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We follow the NeurIPS Code of Ethics.
Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: The broader impacts are discussed in the supplementary material.
Guidelines:
» The answer NA means that there is no societal impact of the work performed.
* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations

(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We do not release models that have a high risk.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: We do not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not introduce new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper

include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]
Justification: The user study instructions are provided in the supplementary material.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: We conducted a user study in which participants were asked to compare and
rate generated motion sequences. The study posed minimal risk and no personal information
was collected.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We do not use LLMs in our method.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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