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ABSTRACT

Graph Edit Distance (GED) is a fundamental measure for assessing similarity be-
tween graphs, with broad applications across domains such as bioinformatics,
cheminformatics, and social network analysis. Unfortunately, computing exact
GED is NP-hard. Besides a number of approximation algorithms, neural meth-
ods have emerged as a promising solution to this challenge. However, the train-
ing of these neural models requires a large number of ground-truth labels, which
is computationally expensive to obtain due to the NP-hardness, thereby hinder-
ing their scalability. In this work, we introduce a novel framework, TREEGEAR
for learning GED without the need of ground-truth GED labels. Our approach
uses structural supervision from tree edit distances (TED), which can be com-
puted in polynomial time, enabling the model to learn meaningful representations
from approximate signals. Unlike existing approaches that directly regress to
GED, TREEGEAR learns pairwise node mappability scores through node embed-
dings, on which, we apply a neighbor-biased mapper to derive the best possible
edit paths between two graphs. This novel reformulation enables strong out-of-
distribution generalization, interpretability, and better alignment with the proper-
ties of the true GED. Extensive experiments across GED benchmarks demonstrate
that TREEGEAR achieves state-of-the-art results, beating both non-neural and neu-
ral baselines that are trained on 100% ground-truth GED. Moreover, TREEGEAR
is architecture-agnostic and generalizes effectively to unseen graphs, making it
suitable for real-world deployment across diverse graph domains.

1 INTRODUCTION AND RELATED WORKS

Graph Edit Distance (GED) is a fundamental distance metric for graph data with important applica-
tions in cheminformatics (Garcia-Hernandez et al., 2019; Gaüzere et al., 2012), image analysis Liu
et al. (2011); Zhang et al. (2016); Madi et al. (2017), and cybersecurity Bourquin et al. (2013); Zhang
et al. (2014) among others. GED quantifies similarity between graphs and provide fine-grained struc-
tural comparison by modeling the minimal sequence of edit operations, such as node/edge insertion,
deletion, and substitution, required to transform one graph into another. For example, in bioinfor-
matics and cheminformatics, it is used for comparing molecular structures to identify functional
similarities or differences (Ranjan et al., 2022).

Despite its applications, the practical adoption of GED is significantly hindered by its computa-
tional complexity. Computing exact GED is NP-hard, as it involves exploring all possible mappings
between the nodes of two graphs to determine the minimal edit path Bai et al. (2019). It is also
APX-hard Lin (1994), making even polynomial-time approximation algorithms infeasible.

Existing frameworks and their limitations. To address this computational bottleneck, a variety
of heuristics have been proposed, spanning both non-neural and neural approaches. We point to
Blumenthal et al. (2020) for a survey on all non-neural heuristics for GED. While these approaches
are interpretable and provide the edit path associated with the approximated GED, the prediction
accuracy and computational efficiency has been surpassed by the more recent generation of neural
heuristics(Ranjan et al., 2022; Bai et al., 2019; Piao et al., 2023; Zhang et al., 2021; Wang et al.,
2021; Zhuo & Tan, 2022; Jain et al., 2024; Bai et al., 2020; Doan et al., 2021; Li et al., 2019).

Neural heuristics. These models, typically built on top of GNNs, aim to learn meaningful graph
representations that can be used to predict similarity scores or approximate edit paths. While promis-
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ing, neural heuristics are inherently supervised and rely on a large volume of training data anno-
tated with exact GED values, which are themselves NP-hard to compute. This reliance on NP-hard
ground-truth supervision leads to some major limitations.

• Expensive supervision and restriction to small graphs: Since computing the exact GED is
NP-hard, data generation is prohibitively expensive, spanning days or even weeks Ranjan et al.
(2022). Owing to the same reason, existing neural models are typically trained only on small
graphs, leading to poor scalability and degraded performance on larger instances.

• Poor cross-domain generalization: Current GED approximators struggle to generalize beyond
the distribution of graphs seen during training, even within the same domain (such as molecule
graphs). Their performance deteriorates sharply on graphs with larger sizes, higher node degrees,
or more complex structures, forcing models to undergo dataset-specific training for each new
domain. This repeated training pipeline is expensive due to the NP-hardness of solving GED.

• Lack of interpretability: Most neural approaches predict only the GED value without produc-
ing the corresponding edit path. The absence of edit paths limits interpretability in domains where
understanding structural differences is essential, such as analyzing functional roles in protein com-
plexes Singh et al. (2008), performing image alignment Conte et al. (2003), or uncovering gene
regulatory mechanisms Chen et al. (2018). While a few methods (e.g., GEDGNN Piao et al. (2023),
GENN-A∗ Wang et al. (2021)) attempt to provide interpretability, they often sacrifice scalability
or generalizability.

• Lack of fundamental guarantees: Most neural GED approximators produce continuous predic-
tions without guaranteeing that outputs respect core distance properties such as non-negativity,
symmetry, identity of indiscernibles, or integral upper bounds. The absence of such guarantees
undermines reliability in downstream applications like clustering, indexing, and similarity search.

Contributions. We mitigate the outlined gaps through the following core contributions.

• Tree-Based Framework for GED Learning: We introduce a novel label-efficient framework,
TREEGEAR (Tree-based GED Estimation using Alignment and Representation), for learning GED
without relying on ground-truth supervision. TREEGEAR leverages ordered tree edit distance
(TED)—which can be computed in polynomial time—as a structural supervisory signal. By dis-
tilling knowledge from tree representations, our method captures rich structural semantics while
avoiding the prohibitive cost of computing true graph edit distances.

• Fully Label-Free GED Prediction: In contrast to existing neural GED models that require exten-
sive ground-truth annotations, our approach is entirely label-free. TREEGEAR dispenses with any
dependence on GED labels, substantially reducing annotation costs and enabling deployment in
real-world settings where such labels are scarce or infeasible to compute.

• Out-of-Domain Generalization and Interpretability: TREEGEAR generalizes seamlessly
across graph domains without retraining or fine-tuning, scaling effectively to extraordinarily large
graphs where true GED computation is intractable. This is achieved by a novel reframing of the
neural approximation task: instead of directly regressing to the GED, the neural model predicts
a mappability score for each pair of nodes across the two graphs, which quantifies how well the
nodes align in terms of structure and attributes. These pairwise scores are then assembled into a
weighted bipartite graph and bipartite matching on this graph yields the approximate GED and the
corresponding edit path. This restructuring ensures invariance to graph size distributions, guaran-
tees key distance properties (upper-bound validity, non-negativity, symmetry, and identity), and
improves interpretability by explicitly revealing the edit operations implied by the alignment.

• Excellence in Empirical Performance: Our framework is architecture-agnostic and can be in-
tegrated into any GNN-based GED prediction pipeline. Extensive experiments demonstrate that
TREEGEAR consistently outperforms both supervised neural and algorithmic baselines on stan-
dard benchmarks.

2 BACKGROUND AND PROBLEM STATEMENT

Definition 1 (Graph). An undirected graph with labeled nodes is denoted by G(V, E ,L), where
V = {v1, . . . , v|V|} represents the set of nodes, E ⊆ V × V defines the edges, and L : V → Σ is a
function that assigns a label from the set Σ to each node.

In the case of unlabeled graphs, each node is assigned the same default label.

Definition 2 (Node Mapping). Given two graphs G1 and G2 with n nodes each, a node mapping is a
bijection π : V1 → V2, ensuring that every node v ∈ V1 corresponds uniquely to a node π(v) ∈ V2.
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Handling Unequal Graph Sizes: If the number of nodes differs across graphs, say n1 < n2, we
extend the smaller graph G1 by appending n2−n1 isolated nodes referred to as dummy nodes. These
are assigned a distinct label ϵ to indicate their placeholder nature and remain disconnected from the
rest of the graph. Henceforth, we assume all graphs under comparison have the same number of
nodes, achieved by such padding if necessary.
Definition 3 (Edit Distance for a Fixed Node Mapping). Let G1(V1, E1,L1) and G2(V2, E2,L2) be
two graphs, and let π be a bijective mapping between their nodes. The edit distance under π is
computed as:

GEDπ(G1,G2) =
∑

v1∈V1

I (L1(v1) ̸= L2(π(v1)))

+
1

2

∑
v1∈V1

∑
v2∈V1

I (e1(v1, v2) ̸= e2(π(v1), π(v2)))

where:
• ei(u, v) = 1 if edge (u, v) exists in Ei, otherwise 0.
• I(A) is the indicator function that returns 1 if the condition A is true, and 0 otherwise.
Understanding Edit Costs: The first term in the expression penalizes label mismatches. These cap-
ture substitutions when two real nodes have different labels, and account for insertions or deletions
when a dummy node (labeled ϵ) is involved. The second term penalizes structural discrepancies: it
identifies edges that are present in one graph but not in the mapped location of the other graph. The
factor 1

2 prevents double-counting of edge mismatches.
Definition 4 (Graph Edit Distance (GED)). The overall graph edit distance between G1 and G2 is
the minimum edit cost taken over all possible node mappings:

GED(G1,G2) = min
π∈M

GEDπ(G1,G2) (1)

Here,M denotes the set of all bijections between the node sets.
An example of GED computation is shown in Fig. 1.

Figure 1: Example of GED computation. Here, GED = 3.

Computing the GED is computation-
ally intractable for large graphs, as
the number of possible node map-
pings grows factorially with the num-
ber of nodes (|M| = n! where n =
max{|V1|, |V2|}), making the prob-
lem NP-hard and APX-hard.
Definition 5 (Tree Edit Distance (TED)). Tree Edit Distance is a special case of Graph Edit Dis-
tance where both input graphs G1 and G2 are trees and the set of valid edit operations includes node
deletion, node insertion, and node substitution (relabeling) where node deletion involves deleting a
node as well as rewiring all of its children to their grandparent and node insertion is the complement
of deletion. For ordered Tree Edit Distance, left-to-right orders among siblings are pre-defined and
must be respected.

Ordered TED. Ordered TED can be computed in polynomial time Zhang & Shasha (1989); Bille
(2005). For conciseness, we will now refer to ordered TED as TED.

Our Objective. Existing neural approximators pose the GED learning problem as a regression task
over a training set Q, where each instance is of the form ⟨Gi1,Gi2,GED(Gi1,Gi2)⟩, with the ground-
truth GED as the supervision signal He & Singh (2006). This creates a fundamental paradox: in
order to train a model to approximate an NP-hard problem, we first need supervision derived from
solving that very same NP-hard problem—often via exhaustive or costly optimization procedures.
This circular dependency raises a critical question: can we design a neural model to approximate
GED without relying on any supervision derived from NP-hard GED computations?

To mitigate this limitation, we observe that GNNs operate by decomposing input graphs into sets of
computation trees, where each node’s embedding is recursively computed from its neighbors over a
fixed number of message-passing steps. These local computation trees are then aggregated to form
a holistic representation of the graph. This observation motivates a key question: can a GNN be
trained using supervision from TED instead of GED, and still effectively approximate GED?

Training with TED supervision offers a significant advantage: it avoids reliance on ground-truth
GED, thus sidestepping the need for NP-hard supervision. Furthermore, since GNNs already treat
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(a) Training with TED as proxy: For each input graph pair, we extract hybrid trees using a combina-
tion of label propagation and structurally faithful traversal. The TED between the trees is used as a
proxy supervision to train a GNN. The GNN learns node-level representations that capture structural
similarity through TED, bypassing the need for exact GED labels, which are NP-hard to compute.

(b) Inference with Neighbor-biased Mapper (NBM): Given a trained GNN, we extract layer-wise
node embeddings for a test graph pair. These embeddings are used to construct a distance matrix,
which is then passed to the NBM to obtain a node alignment that respects both local similarity and
structural consistency. The alignment is converted into a valid edit path whose cost approximates the
GED. To tighten the upper bound, multiple alignments are generated using an ensemble of models
and layers, and the one with the lowest edit cost is selected.

Figure 2: The main pipeline of TREEGEAR.

graphs as compositions of tree-structured computations, replacing GED with TED as the supervisory
signal is unlikely to constrain the model’s representational power. Empowered with these intuitions,
we now formally state our problem as follows.
Problem 1 (Learning to approximate GED with TED). Let Q be a training dataset where each
instance is of the form ⟨T i

1 , T i
2 , TED(T i

1 , T i
2 )⟩ where T i

1 and T i
2 are trees. From Q, we aim to learn

a GNN model Φ that enables us to approximate GED for any unseen pairs of graph G1 and G2 well.
Mathematically, learn a function f : (G1,G2,Φ) → Z+ that takes as input a graph pair ⟨G1,G2⟩
and model Φ, and outputs a non-negative integral distance that minimizes:

|f(G1,G2,Φ)− GED(G1,G2)| (2)

Note that in our formulation, the GNN Φ does not directly predict the GED. Rather, we aim to pass
the output of Φ through another function f that maps the GNN’s output to our GED prediction.

3 PROPOSED METHODOLOGY: TREEGEAR

TREEGEAR addresses the limitations of existing GED prediction models. To eliminate the need for
costly ground-truth GED labels, TREEGEAR uses a weakly supervised training strategy that lever-
ages tree edit distance (TED) as proxy supervision. Specifically, for each pair of training graphs, we
extract a pair of trees and compute their edit distances which can be computed in polynomial time. At
inference time, we use our trained model to generate node embeddings, and subsequently perform
node alignment using the Neighbor-biased Mapper (NBM). Among all the valid edit paths—one
for every node alignment plan—we obtain the one with the smallest edit costs. The pipeline of
TREEGEAR is shown in Figure 2.

3.1 TRAINING WITH TREE PAIRS: FROM GRAPHS TO TREES

As outlined in our objective our primary objective is to reduce the labeling cost without compromis-
ing the predictive performance of the base GNN-based model for GED prediction. To this end, we
adopt ordered Tree Edit Distance (TED) as a proxy for Graph Edit Distance (GED). This choice is
motivated by two key advantages: (i) ordered TED can be computed efficiently in polynomial time
Zhang & Shasha (1989), and (ii) the message-passing architecture of GNNs inherently decomposes
graphs into computation trees Gupta et al..

For TED to provide a high-quality approximation of GED, it is essential that the selected pair of trees
cover the graph regions where structural differences (i.e., edits) are most likely to occur. Achieving
this requires two conditions: (1) the neighborhoods of the roots from which the trees are expanded
must intersect with these regions of interest, and (2) the extracted trees must preserve the structural
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Figure 3: The tree extraction module in TREEGEAR.

semantics relevant to a GNN’s computation. To meet these requirements, we propose a principled
tree generation strategy that ensures alignment with both the underlying graph structure and the
GNN’s computational view. The pipeline of our tree generation module is illustrated in Figure 3.

3.1.1 ROOT SELECTION AND ALIGNMENT
To identify root nodes for the hybrid trees such that they best capture potential edit regions, we em-
ploy a label propagation strategy inspired by the Weisfeiler-Lehman (WL) test Weisfeiler & Leman
(1968). We use these embeddings to perform soft node alignment between two graphs.

Label propagation update rule. We define the update rule for label propagation at iteration t as:

zit(u) = zit−1(u) +
1

d

∑
v∈N (u)

zit−1(v), ∀i ∈ [1, l] (3)

where: zit(u) ∈ R denotes the i-th dimension of node u’s embedding at iteration t,N (u) is the 1-hop
neighborhood of u, l is the dimensionality of the one-hot encoding of node label L(u), and d ∈ R+

is a discounting factor. This mechanism aggregates label information from the local neighborhood
in a similar way as in the WL hashing, but takes into account the nodes’ appearance order.
Lemma 1. The label propagation update defined in Equation 3 ensures that:

1. For all d, if zT (u) ̸= zT (v) then the rooted T -hop neighborhoods of the nodes u and v are
non-isomorphic.

2. For d > MT where M = maxu∈V deg(u), if zt(u) ̸= zt(v) then zt+1(u) ̸= zt+1(v) ∀t < T .

Proof Sketch. Since the contribution from neighbors is scaled by 1
d , any differences in the multiset of

labels inN (u) andN (v) persist over iterations. The growth rate of d dominates, preserving unique-
ness. A detailed proof using induction is provided in Appendix A.1.1. Note that the magnitude of d
does not necessarily have a perfect correlation with the probability of hash collision.

Root pair selection. We select root pairs (u⋆, v⋆) for a graph pair (G1,G2) via the following proce-
dure in four steps: (i) Embedding computation: We first run the label propagation for T iterations
to compute node embeddings {zT (u)}u∈V1

and {zT (v)}v∈V2
. (ii) Distance matrix: We then con-

struct matrix D ∈ R|V1|×|V2| such that:D(u, v) = ∥zT (u)− zT (v)∥. Next, we perform the optimal
assignment and obtain the final root. (iii) Optimal assignment: We use the Hungarian algorithm to
solve: minπ:V1→V2

∑
u∈V1

D(u, π(u)). (iv) Root extraction: Lastly, we extract the root as follows:

(u⋆, v⋆) = arg min
(u,π(u))

D(u, π(u)) subject to D(u, π(u)) > 0

If all D(u, π(u)) = 0, we pick any (u, π(u)) arbitrarily. The main intuition is that the node pair
(u⋆, v⋆) selected via minimal embedding distance is likely to reside in regions with minimal struc-
tural divergence. Consequently, the rooted neighborhoods around u⋆ and v⋆ are most informative
for approximating the graph edit path.

3.1.2 HYBRID TREE CONSTRUCTION

Here, we describe our hybrid tree construction procedure. Let r ∈ V be the root node selected using
the alignment scheme from Section 3.1.1. Our goal is to construct a rooted tree Tr = (VT , ET ),
which we refer to as a Hybrid Tree. This tree is designed to preserve critical structural information
from the original graph while remaining suitable for efficient computation of TED.

Hybrid Tree. A Hybrid Tree is an acyclic structure derived from G that satisfies the following: (i)
Each original edge in E is included exactly once in ET ; (ii) Duplication of a node occurs only when
revisiting that node would form a chordless cycle; (iii) For any node that is not duplicated, its k-hop
neighborhood in Tr is identical (as a multiset) to that in G.
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Figure 4: A hybrid tree
of a graph. Duplicate
nodes are highlighted.

Algorithm 1 (Appendix A.1.2) outlines how to construct a hybrid tree
from a graph, rooted at a given node. The goal is to approximate the
graph’s structure in a way that preserves its semantics for a GNN. Since
each edge is traversed exactly once, the immediate neighborhood of ev-
ery original (non-duplicating) node is retained, while dummy duplicating
nodes are introduced only when closing cycles. As shown in Fig. 4, this
ensures that the k-hop neighborhood multisets—used by message-passing
GNNs —remain intact for all original nodes. Thus, from a GNN ’s per-
spective, the hybrid tree differs from the original graph only in terms of duplicating nodes.

Lemma 2. In a hybrid tree, the number of duplicating nodes is equal to the number of chordless
cycles in the original graph.

The formal proof is given in A.1.2. On the other hand, for a BFS tree, the k-hop neighborhoods
of all nodes in cycles of length ≤ k + 1 are altered. For a computation tree, none of the nodes
in the graph will preserve their k-hop neighborhoods for any k ≥ 2. Furthermore, if we need to
visit all nodes in the graph at least once and assume nothing about its connectivity, the expected
size of the computation tree is at least:

∑R
i=0 d̄

i = O(d̄R); where R is the graph’s radius (the
minimum eccentricity) and d̄ is the average degree. This large size might make it computationally
expensive and we can no longer take advantage of the efficiency of TED computation. We provide
more details about the different tree types in Appendix A.1.2 and empirically evaluate their impact
on performance in the ablation study (Sec. 4.2).

Comparison of tree structures. Let G have the average degree d̄ and radius R:

• A computation tree of depth R has the size of O(d̄R) due to the recursive addition of neighbors.
• A BFS tree has size O(|V|), but distorts neighborhoods in graphs with cycles.
• A Hybrid Tree has sizeO(|V|+c), where c is the number of chordless cycles in G, and it preserves

neighborhoods for all original (non-duplicated) nodes.

Dataset construction with TED. Given a training graph pair (G1i ,G2i ), we extract their Hybrid
Trees T 1

i and T 2
i , and compute their TED using the Zhang–Shasha algorithm Zhang & Shasha

(1989) with arbitrary orders of siblings. As TED is only used to distantly supervise the GNN, the
choice of sibling orders should have limited impact on the final matching quality, which depends
on the relative ranking of node pairs rather than their precise similarity scores (see 4.2). The proxy
dataset containing tree pairs and corresponding TEDs is: DT =

{(
T 1
i , T 2

i , TED(T 1
i , T 2

i )
)}n

i=1
. To

improve robustness and increase the diversity of node embeddings for use during inference, we train
an ensemble of five GNN models. Each model is trained on a different half-sized subsample of DT .
These embeddings are later used for node alignment and GED estimation in Section 3.2.

3.2 INFERENCE WITH NEIGHBOR-BIASED MAPPER

Let G1 = (V1, E1) and G2 = (V2, E2) be two node-labeled graphs with associated embeddings
{z(u)}u∈V1

and {z(v)}v∈V2
computed by a GNN trained with the TED-based proxy supervision (see

Section 3.1.2). Our goal is to construct a node alignment π : V1 → V2 that facilitates computation
of a GED upper-bound. We describe the neighbor-biased mapper algorithm designed for this task.

3.2.1 THE NEIGHBOR-BIASED MAPPER

The Neighbor-Biased Mapper (NBM) He & Singh (2006) is an iterative alignment algorithm that
performs soft matching based on local embedding similarity and structural coherence. It operates on
the pairwise distance matrix D ∈ R|V1|×|V2|, where D(u, v) := ∥z(u)− z(v)∥2 ∀u, v ∈ V1 × V2.

With the distance matrix, NBM creates a node alignment plan as follows. (i) Pair selection: First,
we identify the closest pair of nodes u, v such that D(u⋆, v⋆) = minx∈V1,y∈V2 D(x, y). (ii) Neigh-
bor biasing: For every pair of neighbors (w1, w2) ∈ N (u⋆)×N (v⋆), we update the distance matrix
by decreasing the corresponding entries:D(w1, w2) ← D(w1, w2) − δ; where δ > 0 is a hyperpa-
rameter controlling the bias strength. (iii) Update: Next, we add (u, v) to the final result and remove
the row of u and the column of v from D. (iv) Repeat: We repeat the process until D is empty.

Interpretation and robustness. The key step here is the neighbor biasing (Step 2), which encour-
ages local structural consistency by promoting the alignment of nodes whose neighbors have already
been aligned. This approximates a greedy solution to a structure-aware node matching problem. Un-

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

like hard alignment approaches, NBM only depends on the relative ordering of pairwise distances
and not their absolute values. Thus, with a suitable δ, if the TED-trained embeddings preserve the
ordering induced by the true GED-optimal mapping, the algorithm yields competitive approxima-
tions even under a scale shift of the node embeddings. We show its empirical evidence in Sec. 4.2.

3.2.2 GED COMPUTATION: EDIT PATH FROM NODE MATCHING
We now describe a procedure to derive an upper-bound edit path from G1 to G2 using π. Our strategy
follows Piao et al. (2023) and leverages the fact that π is derived from node embeddings trained using
TED, as described in Section 3.1. We exploit these embeddings across multiple layers and models
to generate several candidate alignments.

Step 1: Node substitution. For each u ∈ V1, if L1(u) ̸= L2(π(u)), we substitute the label of u
with L2(f(u)). Let cs denote the cost of node substitution.

Step 2: Edge deletion. For each edge (u, v) ∈ E1, if (π(u), π(v)) /∈ E2, we delete edge (u, v). Let
cd denote the cost of edge deletion.

Step 3: Node insertion. Let W = V2 \ f(V1) (assuming that |V1| ≤ |V2|). For each w ∈ W , we
introduce a dummy node w′ ∈ V ′

1 and set L1(w
′) := L2(w). cn denotes the cost of node insertion.

Step 4: Edge insertion. Let πb : V ′
1 → V2 be the extended bijective mapping and π−1

b its inverse.
For each edge (x, y) ∈ E2, if (π−1

b (x), π−1
b (y)) /∈ E ′1, we insert the edge (π−1

b (x), π−1
b (y)) into E ′1.

Let ce denote the cost of edge insertion.

Total edit path cost. The total cost of the edit path Pπ induced by the alignment π is given by (with
I[·] being the indicator function):

Cost(Pπ) = cs
∑
u∈V1

I[L1(u) ̸= L2(π(u))] +
∑

(u,v)∈E1\π−1(E2)

cd +
∑
w∈W

cn +
∑

(x,y)∈E2\πb(E′
1)

ce

Observation 1. The constructed path Pf transforms G1 into a graph G′1 that is isomorphic to G2.
Therefore, GED(G1,G2) ≤ Cost(Pπ) by definition.

Final path selection. Each necessary edit—substitution, insertion, deletion—is explicitly accounted
for based on π, and after applying all edits, πb becomes a graph isomorphism. To reduce variance
and improve approximation quality, we generate a set of candidate alignments {π(j)}mj=1 using:
(i) multiple TED-trained GNN models (3.1.2) and (ii) layer-wise embeddings from each model.
For each alignment π(j), we compute the associated path cost Cost(Pπ(j)) and select the opti-
mal one: π̂ = argminj Cost(Pπ(j)). The resulting path cost provides our final approximation to
GED(G1,G2), completing our weakly supervised GED inference pipeline.

4 EXPERIMENTAL RESULTS

In this section, with extensive experiments, we demonstrate that TREEGEAR achieves competitive or
superior performance compared to models trained with full GED supervision. Our code is available
at: https://anonymous.4open.science/r/ged distill-B177/.gitignore.
Datasets. We use five benchmark datasets to comprehensively evaluate TREEGEAR. A detailed
description of these is included in App. A.2.1. Table 5 in the Appendix provides a summary.

Baselines. We evaluate TREEGEAR against several recent state-of-the-art baselines, includ-
ing GREED Ranjan et al. (2022), GEDGNN Piao et al. (2023), ERIC Zhuo & Tan (2022),
GRAPHEDX Jain et al. (2024), and H2MN Zhang et al. (2021). We exclude older methods such as
SIMGNN, GRAPHOTSIM, GMN, GRAPHSIM, TAGSIM, and GENN-A∗, as they have been consis-
tently outperformed by more recent models like GREED, GRAPHEDX, GEDGNN, and ERIC in prior
benchmarks. Among non-neural baselines, we incorporate the top-performing heuristics identified
in the benchmarking study by Blumenthal et al. (2020)–specifically: LP-GED-F2, COMPACT-MIP,
ADJ-IP, BRANCH-TIGHT, NODE, and IPFP–as well as the more recent GEDGW by Cheng et al.
(2025). For the backbone GNN model to train with TED, we use GREED, though our framework is
compatible with any architecture that produces node embeddings. We evaluate generalizability of
TREEGEAR to other GNNs in Appendix A.3.2.
Metrics. We use the Root Mean Square Error (RMSE) to assess the performance of the meth-
ods. In addition, we include the accuracy score— known as the Exact Match Ratio (EMR)—which
measures the percentage of the perfect matches between the predictions and the true GED values.
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4.1 RESULTS FOR GED PREDICTION Table 1: The RMSE (lower is better) of the methods
on five benchmark datasets. The results from three dif-
ferent training seeds are reported in the format: µ ± σ
(the maximum standard deviation in TREEGEAR is .17
and baselines is .2). The best result for each dataset is
highlighted. Our proposed TREEGEAR achieves best
results in most cases.

AIDS LINUX IMDB code2 molhiv

TREEGEAR 0.43 0.15 1.24 3.67 2.5

N
eu

ra
l

GREED 0.72 0.49 5.24 5.27 2.2
GEDGNN 0.92 0.29 4.43 16.68 1.75
ERIC 1.08 0.30 42.44 17.55 3.56
H2MN 1.14 0.6 57.8 11.96 12.01
GRAPHEDX 0.78 0.27 32.36 21.46 14.14

N
on

-N
eu

ra
l

ADJ-IP 0.85 0.5 42.18 14.94 10.21
Node 2.71 1.24 61.03 8.34 4.97
LP-GED-F2 1.96 0.23 55.26 16.03 12.86
Branch 3.31 2.45 7.36 12.64 9.86
Compact-MIP 2.69 0.44 65.88 19.46 10.88
IPFP 4.18 2.29 69.45 15.19 13.69
GEDGW 1.88 1.87 2.31 5.81 6.31

Our main results on RMSE are shown in
Table 1. Our findings highlight three ma-
jor takeaways: First, TREEGEAR con-
sistently achieves the lowest RMSE on
four out of five datasets. This demon-
strates the effectiveness of TED as a proxy
supervision signal and the robustness of
our inference pipeline. Particularly, on
IMDB, TREEGEAR reduces the RMSE
by more than 75% compared to GREED
(1.24 vs. 5.24), a fully supervised model
and on code2, TREEGEAR outperforms all
baselines, including neural and non-neural
models, by a significant margin. In addi-
tion to RMSE, we evaluate the EMR in
Table 2, which measures the percentage of
predictions that exactly match the ground-
truth GED. TREEGEAR sets a new state-
of-the-art EMR on AIDS (88.8%), LINUX
(99.5%), and IMDB (97.1%). Even on
molhiv, where our RMSE is slightly higher than GREED, TREEGEAR achieves a better EMR (24.7%
vs. 21.1%), indicating stronger top-rank accuracy.

Table 2: The EMR (higher is better) of the neu-
ral methods: Results from three different training
seeds are reported (the maximum standard devia-
tion in TREEGEAR is .7% and baselines is .9%).

AIDS LINUX IMDB code2 molhiv

TREEGEAR 89% ≈100% 97% 16% 25%
GREED 53% 71% 16% 8% 21%
ERIC 58% 79% 17% 9% 23%
GEDGNN 35% 85% 7% 1% 57%

Second, TREEGEAR generalizes well to un-
seen graphs, maintaining strong performance
when trained on one dataset and tested on an-
other (Fig 5a), outperforming GREED by a huge
margin. To further stress-test its scalability,
we evaluate TREEGEAR on the large ogb-ppa
graphs (avg. 2K+ edges), where ground-truth
GED is infeasible, making supervised methods
unusable. However, since TREEGEAR guar-
antees an upperbound, we compare its values
(trained on code2) with non-neural methods. Fig 5b shows that TREEGEAR achieves significantly
tighter upper bounds than algorithmic baselines. Third, TREEGEAR achieves these results without
access to ground-truth GED labels, requiring only TED supervision, which is orders of magnitude
faster to compute (Table 6, Appendix A.3.1). These results demonstrate that TREEGEAR achieves
high accuracy, label efficiency, and broad generalizability. It not only surpasses supervised neural
models with 100% ground-truth labels but also outperforms established algorithmic baselines.

4.2 ABLATION STUDY

(a) Gener. across datasets (b) Upperbound on ogb-ppa

Figure 5: Out-of-distribution generalization. In Fig
5a, for A→B, we train on dataset A but evaluate on
B. TREEGEAR has much better performance than
GREED. In Fig 5b, TREEGEAR trained on code2 yields
the lowest GED upperbounds for ogb-ppa graphs.

Impact of different tree types. To evalu-
ate the effect of different tree construction
strategies on both performance and com-
putational efficiency, we compare the hy-
brid tree design in TREEGEAR with BFS
trees and computation trees of GNNs. As
described in Section 3.1.2, hybrid trees
are designed to preserve the k-hop neigh-
borhood structure of nodes. Table 4 re-
ports the RMSE and average TED compu-
tation time for each tree type across three
datasets. We observe the followings: (i)
Hybrid Trees consistently outperform BFS
trees, particularly on larger graphs such
as those in the code2 dataset. This is at-
tributed to the hybrid tree’s retention of all edges, which ensures structurally faithful GNN message
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Table 4: Comparison of different tree traversals in terms of RMSE and TED computation time. The
results for Computation Tree is not available for code2 because its take huge time to compute the
TED. For the available results, the computation time of TED is measured in ms/tree-pair.

AIDS LINUX code2

RMSE TED time RMSE TED time RMSE TED time

BFS Tree 0.74 3.53 0.285 2.86 3.84 24.78
Computation Tree 0.48 8.52 0.058 9.23 n/a n/a
Hybrid Tree (TREEGEAR) 0.43 3.51 0.151 2.91 3.67 34.00

propagation. (ii) While BFS trees are computationally cheaper due to their smaller size, this comes
at the cost of reduced accuracy. (iii) On the other hand, Computation Trees become impractical
for large graphs due to exponential growth in size (e.g., code2). They only slightly outperform hy-
brid trees (of TREEGEAR) on the LINUX dataset but at a significantly higher computational cost.
Overall, the hybrid tree in TREEGEAR strikes the best balance between scalability and performance.

Table 3: Improvement (in RMSE) of
NBM and Hungarian when switching
from TED-based to ground-truth GED-
based embeddings. TREEGEAR uses
TED and NBM. NBM, producing a
smaller improvement, is more robust to
noise and distribution shifts.

AIDS IMDB code2

TED + NBM 0.43 1.24 3.67
GED + NBM 0.37 0.58 3.42
Improvement 0.06 0.66 0.25

TED + Hungarian 3.61 7.33 20.83
GED + Hungarian 3.26 3.87 18.89
Improvement 0.35 3.46 1.94

Robustness of the NBM component. We evaluate the
robustness of TREEGEAR’s NBM module (Sec. 3.2.1) to
noise and distribution shifts in the learned embeddings by
comparing it against the Hungarian matcher under two
training regimes: node embeddings generated using (i)
TED supervision (default of TREEGEAR), (ii) ground-truth
GED. In Table 3, the performance gain from switching
to GED-trained embeddings is substantially smaller for
NBM than for Hungarian, indicating NBM’s resilience to
nominal embedding discrepancy and better generalization
from weak supervision. Across all datasets, NBM achieves
lower RMSEs and smaller performance shifts. Notably, on
IMDB, the RMSE drop for NBM is only 0.66, compared to
3.46 for Hungarian. This stability stems from NBM’s local
matching strategy, which is less sensitive to global embed-
ding distortions as long as the correct ranking of node pairs
is preserved. These findings support our hypothesis (Sec. 3.2.1) that NBM’s inductive bias enables
high-quality alignments under imperfect supervision. Appendix A.3.3 analyzes how the embedding
budget (number of unique sets) affects the tightness of NBM-derived upperbounds.

4.3 INPUT SIZE VS RMSE

(a) IMDB (b) Code2

Figure 6: RMSE variation by graph size (measured by
number of nodes) on IMDB and code2 datasets.

To further understand the robustness of
TREEGEAR, we analyze how its predic-
tion accuracy varies with the size of the
input graphs. This is particularly rele-
vant given that neural GED models often
exhibit degraded performance on larger
graphs. Figures 6a and 6b show the RMSE
of TREEGEAR across different graph sizes
for the IMDB and Code2 datasets, respec-
tively. In both cases, TREEGEAR main-
tains a consistently lower RMSE relative
to the fully supervised baseline, demonstrating its ability to scale effectively with graph size. We
attribute TREEGEAR’s overall stability to the design of the NBM, which operates predominantly at
the node level. This node-centric design makes the inference process less sensitive to the global size
of the graph, enhancing generalization to larger instances.

5 CONCLUSIONS
We introduced TREEGEAR, a scalable and supervision-efficient framework for learning graph edit
distance (GED) by using tree edit distance (TED) as a proxy. By leveraging polynomial-time TED
computations within a principled training and inference pipeline, TREEGEAR eliminates the need
for costly ground-truth GED labels and addresses a long-standing challenge in neural GED approxi-
mation. Our approach achieves state-of-the-art performance across multiple benchmarks, surpassing
both supervised neural models and classical heuristics, while producing interpretable edit paths and
cross-domain generalization.
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REPRODUCIBILITY STATEMENT

To support reproducibility, we release our code at: https://anonymous.4open.science/r/ged distill-
B177/.gitignore. Besides the setup described in Section 4, additional details on datasets and hyper-
paramter configuration are provided in Appendix A.2. All proofs of theoretical claims are given in
Appendix A.1. In addition, we provide the pseudocodes in Appendix A.1.2.
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Benoit Gaüzere, Luc Brun, and Didier Villemin. Two new graphs kernels in chemoinformatics.
Pattern Recognition Letters, 33(15):2038–2047, 2012.

Mridul Gupta, Sahil Manchanda, HARIPRASAD KODAMANA, and Sayan Ranu. Mirage: Model-
agnostic graph distillation for graph classification. In The Twelfth International Conference on
Learning Representations.

Huahai He and Ambuj K Singh. Closure-tree: An index structure for graph queries. In 22nd
International Conference on Data Engineering (ICDE’06), pp. 38–38. IEEE, 2006.

10

https://anonymous.4open.science/r/ged_distill-B177/.gitignore
https://anonymous.4open.science/r/ged_distill-B177/.gitignore
https://doi.org/10.1093/bioinformatics/bty662


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs, 2021. URL
https://arxiv.org/abs/2005.00687.

Eeshaan Jain, Indradyumna Roy, Saswat Meher, Soumen Chakrabarti, and Abir De. Graph edit
distance with general costs using neural set divergence. In The Thirty-eighth Annual Conference
on Neural Information Processing Systems, 2024.

Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli. Graph matching net-
works for learning the similarity of graph structured objects. In ICML, pp. 3835–3845, 2019.

Chih-Long Lin. Hardness of approximating graph transformation problem. In International Sympo-
sium on Algorithms and Computation, pp. 74–82. Springer, 1994.

Li Liu, Yue Lu, and Ching Y Suen. Retrieval of envelope images using graph matching. In 2011
International Conference on Document Analysis and Recognition, pp. 99–103. IEEE, 2011.

Kamel Madi, Hamida Seba, Hamamache Kheddouci, and Olivier Barge. A graph-based approach
for kite recognition. Pattern Recognition Letters, 87:186–194, 2017.

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. CoRR,
abs/2007.08663, 2020. URL https://arxiv.org/abs/2007.08663.

Chengzhi Piao, Tingyang Xu, Xiangguo Sun, Yu Rong, Kangfei Zhao, and Hong Cheng. Computing
graph edit distance via neural graph matching. Proceedings of the VLDB Endowment, 16(8):
1817–1829, 2023.

Rishabh Ranjan, Siddharth Grover, Sourav Medya, Venkatesan Chakaravarthy, Yogish Sabharwal,
and Sayan Ranu. Greed: A neural framework for learning graph distance functions. Advances in
Neural Information Processing Systems, 35:22518–22530, 2022.

Rohit Singh, Jinbo Xu, and Bonnie Berger. Global alignment of multiple protein interaction net-
works with application to functional orthology detection. Proceedings of the National Academy
of Sciences, 105(35):12763–12768, 2008.

Samidha Verma, Arushi Goyal, Ananya Mathur, Ankit Anand, and Sayan Ranu. Grail: Graph edit
distance and node alignment using llm-generated code. In ICLR 2025 Third Workshop on Deep
Learning for Code, 2025.

Runzhong Wang, Tianqi Zhang, Tianshu Yu, Junchi Yan, and Xiaokang Yang. Combinatorial learn-
ing of graph edit distance via dynamic embedding. In IEEE Conference on Computer Vision and
Pattern Recognition, 2021.

Xiaoli Wang, Xiaofeng Ding, Anthony K. H. Tung, Shanshan Ying, and Hai Jin. An efficient
graph indexing method. In Proceedings of the 2012 IEEE 28th International Conference on Data
Engineering (ICDE ’12), pp. 210–221, USA, 2012. IEEE Computer Society.

Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the algebra
which appears therein. nti, Series, 2(9):12–16, 1968.

Pinar Yanardag and S.V.N. Vishwanathan. Deep graph kernels. In Proceedings of the 21st ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’15), pp.
1365–1374, New York, NY, USA, 2015. Association for Computing Machinery.

Kaizhong Zhang and Dennis Shasha. Simple fast algorithms for the editing distance between trees
and related problems. SIAM journal on computing, 18(6):1245–1262, 1989.

Mu Zhang, Yue Duan, Heng Yin, and Zhiruo Zhao. Semantics-aware android malware classification
using weighted contextual api dependency graphs. In Proceedings of the 2014 ACM SIGSAC
conference on computer and communications security, pp. 1105–1116, 2014.

Yuren Zhang, Xu Yang, Hong Qiao, Zhiyong Liu, Chuankai Liu, and Baofeng Wang. A graph
matching based key point correspondence method for lunar surface images. In 2016 12th World
Congress on Intelligent Control and Automation (WCICA), pp. 1825–1830. IEEE, 2016.

11

https://arxiv.org/abs/2005.00687
https://arxiv.org/abs/2007.08663


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhen Zhang, Jiajun Bu, Martin Ester, Zhao Li, Chengwei Yao, Zhi Yu, and Can Wang. H2mn: Graph
similarity learning with hierarchical hypergraph matching networks. In Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery & Data Mining, KDD ’21, pp. 2274–2284,
New York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450383325. doi:
10.1145/3447548.3467328. URL https://doi.org/10.1145/3447548.3467328.

Wei Zhuo and Guang Tan. Efficient graph similarity computation with alignment regularization.
Advances in Neural Information Processing Systems, 35:30181–30193, 2022.

12

https://doi.org/10.1145/3447548.3467328


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 ADDITIONAL DETAILS OF OUR FRAMEWORK TREEGEAR

A.1.1 LABEL PROPAGATION FOR ROOT SELECTION

Re-stating the details of Lemma 1

(1) [Lemma 1.1] The label propagation update defined in Equation 3 ensures the following: if
the rooted T -hop neighborhoods of the nodes u and v are isomorphic, zT (u) = zT (v). Its
contrapositive also holds: if zT (u) ̸= zT (v), the rooted T -hop neighborhoods of the nodes u
and v are non-isomorphic. This is true for any d used in Equation 3.

(2) [Lemma 1.2] With d > MT where M = maxu∈V deg(u), it’s guaranteed that: if zt(u) ̸= zt(v)
then zt+1(u) ̸= zt+1(v) ∀t < T .

Proof of Lemma 1.1
Definition 6 (Rooted T -hop neighborhood). The T -hop neighborhood rooted at node u is the tuple:
(HT (u), u) where HT (u) is the induced subgraph containing u and the set of neighbors within T
hops from u. V(HT (u)) = {u} ∪

⋃
1≤t≤T Nt(u).

Definition 7 (Rooted T -hop neighborhood isomorphism). (HT (u), u) ∼= (HT (v), v) if there exists
a bijective mapping π such that π(u) = v and under π: HT (u) ∼= HT (v).

It should be noted that the end goal of the label propagation procedure is to select roots for tree
expansion and TED computation. Thus, Definition 7 is important because given two isomorphic
graphs, if the pair of roots are misaligned, the resulting TED can be greater than 0, potentially
misleading the model.

We would like to remind the reader that L : V → Σ is a function that assigns a label from the set of
labels Σ to each node. As an extension, L(S) = {L(u)|u ∈ S} where S is a multiset of nodes in V .

Corollary 1.1 If (HT (u), u) ∼= (HT (v), v), the multisets of the labels of u’s and v’s t-hop neigh-
bors must be equal, i.e. L

(
Nt(u)

)
= L

(
Nt(v)

)
∀t ≤ T , and the labels’ degrees must be equal. A

label’s degree is the degree of the node having that label.

Proof. For every node w ∈ Nt(u) with degree deg(w), there is a simple path P of length t from u
to w in HT (u). Because π(u) = v in the isomorphic mapping between HT (u) and HT (v), there
must be a bijective mapping πp between the two sets of simple paths in HT (u) and HT (v) such
that: L(Pj) = L

(
πp(P )j

)
and deg(Pj) = deg

(
πp(P )j

)
∀j ∈ [1 : t]. Therefore, for every label

L(w) ∈ L
(
Nt(u)

)
, there is a bijectively mapped label of the same degree and value in Nt(v).

Corollary 1.2 If L
(
Nt(u)

)
= L

(
Nt(v)

)
∀t ≤ T , then zT (u) = zT (v) given the update rule

defined in Equation 3.

Proof. zT (u) and zT (v) are vectors. Corollary 1.1 trivially extends to Li(·) where L(·) returns
the one-hot vector representation of each unique label. To prove Corollary 1.2, we show that
ziT (u) = ziT (v) ∀i.

Base case t = 0: Since π(u) = v under the isomorphic mapping, their labels must be
equal: Li(u) = Li(v) ∀i⇔ zi0(u) = zi0(v) ∀i.

Induction hypothesis t = k: Assume that zik(u) = zik(v) ∀i.

Induction step: We want to show that zik+1(u) = zik+1(v) ∀i. Let’s revisit Equation 3:

zik+1(u) = zik(u) +
1

d

∑
w∈N (u)

zik(w)
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Because zik(u) = zik(v), we have:

1

d

∑
w∈N (u)

zik(w)−
1

d

∑
w∈N (v)

zik(w)

=
1

dk+1

∑
w1∈Nk−1(u)

deg(w1)Li(w1) +
1

dk+1

∑
w2∈Nk(u)

L(w2)

− 1

dk+1

∑
w̃1∈Nk−1(v)

deg(w̃1)Li(w̃1)−
1

dk+1

∑
w̃2∈Nk(v)

L(w̃2)

= δz

This is to say that the (new) difference (if any) at the (k+1)th hop can only come from the labels of
the new nodes reachable at k hops away and the degrees of the nodes at (k − 1) hops away. This is
because zit(w2) at k hops away include nodes that are (k− 1) hops away. The number of repetitions
depends on the degree of each node at (k−1) hops away. SinceNk−1(u) = Nk−1(v) andNk(u) =
Nk(v) along with the corresponding degrees, the difference δz = 0, i.e. zik+1(u) = zik+1(v).

Combining Corollary 1.1 and 1.2 proves the first part of Lemma 1.

Proof of Lemma 1.2 To ensure that: if zit(u) < zit(v) then zit+1(u) < zit+1(v) ∀t < T , we must
discount the additive term of the newly reachable neighbors so that their sum cannot exceed the
difference established in the previous iterations. We have:

∆ = zit(v)− zit(u) ≥
1

dt

∆′ =
1

dt+1

( ∑
w∈N (u)

zit(w)−
∑

w̃∈N (v)

zit(w̃)

)
≤ 1

dt+1

∑
w∈Nt(u)

Li(w) ≤
∣∣Nt(u)

∣∣
dt+1

The first inequality holds because the minimum difference between u and v must come from last
iteration. Otherwise, a deficit from earlier iterations has continued to grow larger.

With M = maxu∈V deg(u), we have:

∣∣Nt(u)
∣∣

dt+1 ≤ Mt+1

dt+1 . Therefore, we must make sure that:

∆ > ∆′ ⇔ 1

dt
>

M t+1

dt+1
⇔ d > M t+1

For this to be true for any t < T : d > MT . Since this condition ensures that for all index i: if
zit(u) < zit(v) then zit+1(u) < zit+1(v), it follows that: if zt(u) ̸= zt(v) then zt(u) ̸= zt(v). This
proves the second part of Lemma 1. The implication of this result is that if the multisets of u’s and
v’s neighbors are not equal at any hop, their final embeddings zT (u) and zT (v) are guaranteed to be
different.

Next, we discuss the choice of d when d ≤MT . We have:

ziT (u) = Li(u) +
c1
d

+
c2
d2

+ ...+
cT
dT

where (c1, c2, ..., cT ) are the terms discounted by (d,d2, ...,dT ) respectively. With d = 1, for a
unique combination of (c1, c2, ..., cT ), any permutation of this combination will still yield the same
result of ziT (u). This is not true for d > 1. Therefore, the probability of collision with d > 1
is much lower. However, it is hard to say for example whether d = 2 or d = 3 gives a lower
probability of collision, as this depends on the underlying connectivity and label distribution of the
graph. On the other hand, a very large d may cause numerical errors. In our setup, we choose d = 2
for simplicity.

A.1.2 COMPLEXITY AND COMPARISON OF TREE TYPES

We have described the hybrid tree traversal algorithm in Section 3.1.2. Here, we provide its pseu-
docode in Algorithm 1.
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Algorithm 1 Hybrid Tree Traversal

Require: Graph G = (V, E), Root Node r ∈ V
Ensure: Hybrid Tree T rooted at r, visiting each edge in E exactly once

1: Enqueue(Q, r)
2: while Q is not empty do
3: u← Dequeue(Q)
4: for v in of N (u) do
5: if (u, v) not visited then
6: Add edge (u, v) to T
7: Add v to T
8: (u, v).visited← True
9: Enqueue(Q, v)

10: return T

Definition 8 (Chordless cycle). A chordless cycle C(VC , EC) of a graph G(V, E) is a simple cycle in
which no edge connecting any two vertices of the cycle is not part of the cycle itself. In other words,
∀(u, v) ∈ E , u ∈ VC , v ∈ VC , it must be that: (u, v) ∈ EC .

With this definition, we prove the following lemma.

Lemma 2 In a hybrid tree, the number of duplicating nodes is equal to the number of chordless
cycles in the original graph.

Proof. We first make two observations:

1. Because a hybrid tree visits all edges of the original graph at least once, for every chordless
cycles, all of its edges have been visited. To successfully visit all the edges in a chordless cycle,
at least one node in the cycle must be repeated. Therefore, the number of duplicating nodes ≥
the number of chordless cycles.

2. From Algorithm 1, we only visit an edge if it has not been visited. Hence, the current node
can’t visit its parent. Therefore, if this edge results in one duplicating node, it must form a
chordless cycle which contains the duplicating node. This has to be a new chordless cycle. If
this chordless cycle has been previously created, that would indicate that the current edge has
already been visited, which is contradictory to the design of Algorithm 1. Therefore, for every
duplicating node, there is one chordless cycle, i.e. the number of duplicating nodes≤ the number
of chordless cycles.

With these two observations, we can conclude that the number of duplicating nodes must be equal
to the number of chordless cycles.

Algorithm 2 Computation Tree Expansion

Require: G = (V, E), Initial Root r0 ∈ V
Ensure: T : A computation tree rooted at r0

1: Global Constant: MAX HOPS: Maximum depth of tree

2: function COMPUTATIONTREE(G, r, n hops)
3: Initialize T as an empty tree
4: if n hops > MAX HOPS then
5: return T
6: for u in N (r) do
7: Append COMPUTATIONTREE(G, u, n hops+ 1) to T
8: return T
9: return COMPUTATIONTREE(G, r0, 0)

The growth of Computation Tree. Due to the recursive addition of neighbors with no constraint
on repetitions (see Algorithm 2), the number of nodes in a computation tree can grow exponentially.
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Table 5: Summary of the statistics of the datasets

Dataset Size Avg training |V| Avg training |E| Labels Domain

ogb-molhiv 100k 18.97 23.55 119 Molecules
ogb-code2 100k 23.56 22.55 97 Software
AIDS 285k 8.89 8.8 29 Molecules
LINUX 971k 8.02 7.43 Unlabeled Software
IMDB 288k 14.35 74.67 Unlabeled Movies

In order to visit all the nodes at least once, MAX HOPS ≥ R where R is the radius of the graph
(the minium eccentricity). On average, the number of nodes in the computation tree will be O(d̄R)
where d̄ is the average degree. In the best-case scenario, the nodes are visited in the ascending order
of their degrees. This is because a node of higher degree appearing earlier near the top of the tree
will be repeated more times, spawning more duplicates of its neighbors. This optimistic scenario
provides the lower bound of the number of nodes in a computation tree: maxk{(dk−1)

R−k} where
dk−1 is the (k − 1)th smallest degree. This lower bound can still be large.

A.2 ADDITIONAL DETAILS ON EXPERIMENTAL SETUP

Reproducibility. Our code is available at: https://anonymous.4open.science/r/ged distill-B177/
.gitignore.

A.2.1 DATASETS

We use the following datasets (Table 5 provides a summary). We obtain AIDS, Linux and IMDB
from Morris et al. (2020); Ranjan et al. (2022), the other datasets are from Hu et al. (2021) and
Verma et al. (2025).

• ogb-code2 (code2): This dataset contains a large collection of Abstract Syntax Trees (ASTs) de-
rived from approximately 450,000 Python method definitions. Each graph corresponds to an AST,
with nodes labeled from a fixed set of 97 categories that encapsulate various syntactic elements of
the methods. These graphs are treated as undirected.

• ogb-molhiv (molhiv): The dataset consists of chemical compounds, where each graph represents a
distinct molecule. The graph nodes correspond to atoms and are labeled according to their atomic
numbers, while the edges represent the chemical bonds between atoms.

• AIDS: This dataset comprises graphs derived from the AIDS antiviral screening database, where
each graph models the molecular structure of a chemical compound. The graphs are labeled to
reflect meaningful chemical properties. They are relatively small, with each containing no more
than 10 nodes.

• LINUX: This consists of program dependence graphs in which nodes represent individual state-
ments and edges capture dependencies between them. Similar to the AIDS dataset, graph sizes
are capped at 10 nodes. The dataset is also unlabeled Wang et al. (2012).

• IMDB: This unlabbeled dataset features ego-networks of actors and actresses who have co-starred
in movies Yanardag & Vishwanathan (2015). Each graph represents the network of a single in-
dividual, with nodes corresponding to other actors/actresses and edges indicating shared film ap-
pearances.

A.2.2 DETAILS ON HYPERPARAMETERS

A major advantage of TREEGEAR is that it has only a few hyperparameters. In the construction of
the hybrid trees, we set the maximum hops reachable to be 3 for AIDS and LINUX, 5 for IMDB,
and 10 for code2 and molhiv. This is influenced by the typical size of a graph in each dataset (see
Table 5), rather than by an expensive hyperparameter search. This highlights the robustness of our
method. On the other hand, the boosting factor δ for NBM is only involved during inference. Since
any GED returned by TREEGEAR is an upperbound, we can try different values of and use the one
that yield the minimum upperbound. As a rule of thumb, δ is set to be 0.7 for AIDS and 1.6 for
others. For the hyperparameters of the backbone GNN, we use the default values recommended by
Ranjan et al. (2022).
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A.3 ADDITIONAL EXPERIMENTS

Here we present additional experiments and results. First, we compare the ground-truth computation
time of TREEGEAR and that of the baseline. Second, we report other metrics of interest not shown
in the main paper. Third, we show that TREEGEAR can be integrated with other neural frameworks
for GED prediction. Lastly, we perform a study to demonstrate the effect of the embedding budget
on the performance of NBM.

A.3.1 ADDITIONAL METRICS

We evaluate TREEGEAR in further aspects. First, we show in Table 6 that the TED values requested
by TREEGEAR can be computed efficiently, in contrast to the exponential time spent on calculating
the GED values for other baselines. In terms of other performance metrics, Table 7 demonstrates that
TREEGEAR achieves higher rank correlation (Spearman and Kendall) and competitive or superior
top-k precision (k = 10 and k = 20) compared to the GREED baseline.

Table 6: Ground-truth Computation Time (ms/pair). TREEGEAR is much faster on all datasets.
This is because TREEGEAR only requires TED, which is polynomially computable compared with
the NP-hard GED needed by the baselines. The GED computation time is taken from Ranjan et al.
(2022) and Bommakanti et al. (2024).

AIDS LINUX IMDB code2 molhiv

TREEGEAR (TED) 3.51 2.91 389.81 34.00 17.77

Baselines (GED) 350.08 123.26 4479.47 781.51 13655.75

Table 7: Additional metrics. We report the Spearman’s Rank Correlation Coefficient, Kendall’s
Rank Correlation Coefficient, and precision at top 10 and top 20 (p@10, p@20). TREEGEAR shows
better results than GREED in almost all settings.

Spearman Kendall p@10 p@20

AIDS

TREEGEAR 0.975 ± 0.011 0.959 ± 0.003 1 ± 0 1 ± 0
GREED 0.938 ± 0.001 0.866 ± 0.002 0.8 ± 0 0.75 ± 0

LINUX

TREEGEAR 0.999 ± 0.001 0.998 ± 0.001 1 ± 0 1 ± 0
GREED 0.972 ± 0.003 0.931 ± 0.007 1 ± 0 1 ± 0

IMDB

TREEGEAR 1 ± 0.000 0.998 ± 0.001 1 ± 0 1 ± 0
GREED 0.99 ± 0.001 0.935 ± 0.000 1 ± 0 1 ± 0

code2

TREEGEAR 0.975 ± 0.001 0.889 ± 0.002 0.6 ± 0.1 0.817 ± 0.058
GREED 0.936 ± 0.001 0.801 ± 0.001 0.7 ± 0.0 0.7 ± 0.050

molhiv

TREEGEAR 0.988 ± 0.001 0.932 ± 0.003 0.9 ± 0.000 0.867 ± 0.029
GREED 0.988 ± 0.001 0.933 ± 0.002 0.733 ± 0.058 0.75 ± 0.050

A.3.2 GENERALIZABILITY TO OTHER ARCHITECTURES

We integrate TREEGEAR with other established neural frameworks for GED prediction, namely
GEDGNN Piao et al. (2023), ERIC Zhuo & Tan (2022), and H2MN Zhang et al. (2021). Here
integrating means that we only use these models as base models to train with TED. The TREEGEAR
model and the original model use the same hyperparameteters for fairness. As observed in Table 8,
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(a) AIDS (b) LINUX (c) code2

Figure 7: The effect of the node embeddings budget on the performance of NBM. We vary the
numbers of node embeddings by fixing the number of submodels in the ensemble and changing the
number of embedding layers used (orange line) as well as vice versa (blue line). In all three datasets,
the orange line decreases at a faster rate than the blue line, suggesting the higher importance of the
number of layers used for generating the embeddings.

TREEGEAR shows competitive or better performance than the base model even when TREEGEAR
has no access to the ground-truth GED like the baselines. The result is mixed for H2MN. We believe
that the reason is the very limited number of node-level embeddings provided by this model: H2MN
only has two node-level convolution layers. This prevents the advantage of NBM in taking the
minimum edit path. However, it should be emphasized again that the competitive performance of
TREEGEAR against H2MN is achieved with no ground-truth labels. These results demonstrate the
generalizability and applicability of TREEGEAR.

Table 8: The RMSE of TREEGEAR when integrated with other neural architectures on three
datasets. Integrating means that TREEGEAR only use these models as base models to train with
TED. TREEGEAR without being trained on GED values is better than the neural models which are
trained on actual GED values.

AIDS LINUX code2

TREEGEAR (H2MN as base) 1.568 ± 0.021 0.513 ± 0.027 9.004 ± 0.122
H2MN 1.308 ± 0.021 1.041 ± 0.024 6.537 ± 1.276

TREEGEAR (ERIC as base) 1.431 ± 0.221 0.691 ± 0.066 4.183 ± 0.102
ERIC 2.721 ± 0.000 2.503 ± 0.026 33.633 ± 0.000

TREEGEAR (GEDGNN as base) 3.083 ± 0.118 2.419 ± 0.061 16.519 ± 1.546
GEDGNN 9.208 ± 0.002 5.185 ± 0.000 37.283 ± 0.012

A.3.3 ADDITIONAL ABLATION STUDIES

We investigate the effect of the budget of embeddings on the performance of NBM. In TREEGEAR,
we use two strategies to diversify the set of node embeddings available to NBM: (i) we use the
embeddings output by each layer in the model, (ii) we train multiple submodels with different ini-
tializations on different data subsets. In total, this gives us L× E unique sets of embeddings where
L is the number of layers and E is the size of the ensemble. In Figure 7, we look into the importance
of each of these two factors on the performance of NBM. Specifically, we use all L layers with
different numbers of submodels and all E submodels with an increasing number of layers. While
both diversification strategies help bring down the RMSE, increasing the number of layers used for
taking the embeddings gives more benefit, as the orange line has a steeper slope. This supports the
notion that the limited number of layers in H2MN may have been an issue.
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