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ABSTRACT

Graph Edit Distance (GED) is a fundamental measure for assessing similarity be-
tween graphs, with broad applications across domains such as bioinformatics,
cheminformatics, and social network analysis. Unfortunately, computing exact
GED is NP-hard. Besides a number of approximation algorithms, neural meth-
ods have emerged as a promising solution to this challenge. However, the train-
ing of these neural models requires a large number of ground-truth labels, which
is computationally expensive to obtain due to the NP-hardness, thereby hinder-
ing their scalability. In this work, we introduce a novel framework, TREEGEAR
for learning GED without the need of ground-truth GED labels. Our approach
uses structural supervision from tree edit distances (TED), which can be com-
puted in polynomial time, enabling the model to learn meaningful representations
from approximate signals. Unlike existing approaches that directly regress to
GED, TREEGEAR learns pairwise node mappability scores through node embed-
dings, on which, we apply a neighbor-biased mapper to derive the best possible
edit paths between two graphs. This novel reformulation enables strong out-of-
distribution generalization, interpretability, and better alignment with the proper-
ties of the true GED. Extensive experiments across GED benchmarks demonstrate
that TREEGEAR achieves state-of-the-art results, beating both non-neural and neu-
ral baselines that are trained on 100% ground-truth GED. Moreover, TREEGEAR
is architecture-agnostic and generalizes effectively to unseen graphs, making it
suitable for real-world deployment across diverse graph domains.

1 INTRODUCTION AND RELATED WORKS

Graph Edit Distance (GED) is a fundamental distance metric for graph data with important applica-
tions in cheminformatics (Garcia-Hernandez et al.l 2019} |Gatizere et al.,|2012), image analysis |[Liu
et al.|/(2011);Zhang et al.|(2016); Madi et al.| (2017)), and cybersecurity Bourquin et al.|(2013);/Zhang
et al.|(2014)) among others. GED quantifies similarity between graphs and provide fine-grained struc-
tural comparison by modeling the minimal sequence of edit operations, such as node/edge insertion,
deletion, and substitution, required to transform one graph into another. For example, in bioinfor-
matics and cheminformatics, it is used for comparing molecular structures to identify functional
similarities or differences (Ranjan et al.| [2022).

Despite its applications, the practical adoption of GED is significantly hindered by its computa-
tional complexity. Computing exact GED is NP-hard, as it involves exploring all possible mappings
between the nodes of two graphs to determine the minimal edit path Bai et al| (2019). It is also
APX-hard [Lin| (1994)), making even polynomial-time approximation algorithms infeasible.

Existing frameworks and their limitations. To address this computational bottleneck, a variety
of heuristics have been proposed, spanning both non-neural and neural approaches. We point to
Blumenthal et al.|(2020) for a survey on all non-neural heuristics for GED. While these approaches
are interpretable and provide the edit path associated with the approximated GED, the prediction
accuracy and computational efficiency has been surpassed by the more recent generation of neural
heuristics(Ranjan et al., 2022} Bai et al.l 2019; |Piao et al.| |2023}; [Zhang et al., 2021; Wang et al.,
2021;Zhuo & Tan, 2022} Jain et al., 2024; Bai et al., [2020; |Doan et al., 20215 L1 et al., [2019).

Neural heuristics. These models, typically built on top of GNNs, aim to learn meaningful graph
representations that can be used to predict similarity scores or approximate edit paths. While promis-
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ing, neural heuristics are inherently supervised and rely on a large volume of training data anno-
tated with exact GED values, which are themselves NP-hard to compute. This reliance on NP-hard
ground-truth supervision leads to some major limitations.

* Expensive supervision and restriction to small graphs: Since computing the exact GED is
NP-hard, data generation is prohibitively expensive, spanning days or even weeks [Ranjan et al.
(2022). Owing to the same reason, existing neural models are typically trained only on small
graphs, leading to poor scalability and degraded performance on larger instances.

* Poor cross-domain generalization: Current GED approximators struggle to generalize beyond
the distribution of graphs seen during training, even within the same domain (such as molecule
graphs). Their performance deteriorates sharply on graphs with larger sizes, higher node degrees,
or more complex structures, forcing models to undergo dataset-specific training for each new
domain. This repeated training pipeline is expensive due to the NP-hardness of solving GED.

* Lack of interpretability: Most neural approaches predict only the GED value without produc-
ing the corresponding edit path. The absence of edit paths limits interpretability in domains where
understanding structural differences is essential, such as analyzing functional roles in protein com-
plexes Singh et al.| (2008)), performing image alignment |Conte et al.| (2003)), or uncovering gene
regulatory mechanisms|Chen et al.|(2018). While a few methods (e.g., GEDGNN|Piao et al.[(2023)),
GENN-A* [Wang et al.| (2021)) attempt to provide interpretability, they often sacrifice scalability
or generalizability.

* Lack of fundamental guarantees: Most neural GED approximators produce continuous predic-
tions without guaranteeing that outputs respect core distance properties such as non-negativity,
symmetry, identity of indiscernibles, or integral upper bounds. The absence of such guarantees
undermines reliability in downstream applications like clustering, indexing, and similarity search.

Contributions. We mitigate the outlined gaps through the following core contributions.

* Tree-Based Framework for GED Learning: We introduce a novel label-efficient framework,
TREEGEAR (Tree-based GED Estimation using Alignment and Representation), for learning GED
without relying on ground-truth supervision. TREEGEAR leverages ordered tree edit distance
(TED)—which can be computed in polynomial time—as a structural supervisory signal. By dis-
tilling knowledge from tree representations, our method captures rich structural semantics while
avoiding the prohibitive cost of computing true graph edit distances.

* Fully Label-Free GED Prediction: In contrast to existing neural GED models that require exten-
sive ground-truth annotations, our approach is entirely label-free. TREEGEAR dispenses with any
dependence on GED labels, substantially reducing annotation costs and enabling deployment in
real-world settings where such labels are scarce or infeasible to compute.

* Out-of-Domain Generalization and Interpretability: TREEGEAR generalizes seamlessly
across graph domains without retraining or fine-tuning, scaling effectively to extraordinarily large
graphs where true GED computation is intractable. This is achieved by a novel reframing of the
neural approximation task: instead of directly regressing to the GED, the neural model predicts
a mappability score for each pair of nodes across the two graphs, which quantifies how well the
nodes align in terms of structure and attributes. These pairwise scores are then assembled into a
weighted bipartite graph and bipartite matching on this graph yields the approximate GED and the
corresponding edit path. This restructuring ensures invariance to graph size distributions, guaran-
tees key distance properties (upper-bound validity, non-negativity, symmetry, and identity), and
improves interpretability by explicitly revealing the edit operations implied by the alignment.

* Excellence in Empirical Performance: Our framework is architecture-agnostic and can be in-
tegrated into any GNN-based GED prediction pipeline. Extensive experiments demonstrate that
TREEGEAR consistently outperforms both supervised neural and algorithmic baselines on stan-
dard benchmarks.

2 BACKGROUND AND PROBLEM STATEMENT

Definition 1 (Graph). An undirected graph with labeled nodes is denoted by G(V, &, L), where
V = {v1,...,v)y|} represents the set of nodes, E C'V x V defines the edges, and L : V — Y is a
function that assigns a label from the set Y. to each node.

In the case of unlabeled graphs, each node is assigned the same default label.

Definition 2 (Node Mapping). Given two graphs G1 and Go with n nodes each, a node mapping is a
bijection w : Vi — Vs, ensuring that every node v € V), corresponds uniquely to a node w(v) € Vs.
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Handling Unequal Graph Sizes: If the number of nodes differs across graphs, say n; < na, we
extend the smaller graph G; by appending ns —n; isolated nodes referred to as dummy nodes. These
are assigned a distinct label € to indicate their placeholder nature and remain disconnected from the
rest of the graph. Henceforth, we assume all graphs under comparison have the same number of
nodes, achieved by such padding if necessary.

Definition 3 (Edit Distance for a Fixed Node Mapping). Let Gy (V1, &1, L£1) and Go(Va, Es, Lo) be
two graphs, and let m be a bijective mapping between their nodes. The edit distance under m is

computed as. Gev-(61,02) = S L(L1 (1) # La(n(v1))
V1 €V1
+ Z Z I(e1(vi,v2) # ea(m(v1), m(v2)))
1)1 EV1 v2 €V

where:
o e;(u,v) = lifedge (u,v) exists in &;, otherwise 0.
* [(A) is the indicator function that returns 1 if the condition A is true, and 0 otherwise.
Understanding Edit Costs: The first term in the expression penalizes label mismatches. These cap-
ture substitutions when two real nodes have different labels, and account for insertions or deletions
when a dummy node (labeled ¢) is involved. The second term penalizes structural discrepancies: it
identifies edges that are present in one graph but not in the mapped location of the other graph. The
factor % prevents double-counting of edge mismatches.

Definition 4 (Graph Edit Distance (GED)). The overall graph edit distance between Gy and Go is
the minimum edit cost taken over all possible node mappings:

GED(G1,Gs2) = ;1611/\1}[ GED,(G1,G2) (D

Here, M denotes the set of all bijections between the node sets.
An example of GED computation is shown in Fig.[I]

Computing the GED is computation-
Input graph pair

ally intractable for large graphs, as Cost=1 Cost=2
the number of possible node map- k1 ‘gz A Node A Edge&Node
pings grows factorially with the num- @ OamOmC, ‘3 ©  substitution 9 insertion @

ber of nodes (]M| = n! where n =
max{|V1|, [V2|}), making the prob-
lem NP-hard and APX-hard.

Definition 5 (Tree Edit Distance (TED)). Tree Edit Distance is a special case of Graph Edit Dis-
tance where both input graphs G1 and Ga are trees and the set of valid edit operations includes node
deletion, node insertion, and node substitution (relabeling) where node deletion involves deleting a
node as well as rewiring all of its children to their grandparent and node insertion is the complement
of deletion. For ordered Tree Edit Distance, left-to-right orders among siblings are pre-defined and
must be respected.

Figure 1: Example of GED computation. Here, GED = 3.

Ordered TED. Ordered TED can be computed in polynomial time Zhang & Shashal (1989); |Bille
(2005)). For conciseness, we will now refer to ordered TED as TED.

Our Objective. Existing neural approximators pose the GED learning problem as a regression task
over a training set Q, where each instance is of the form (G}, G5, GED(G!, G4)), with the ground-
truth GED as the supervision signal |He & Singh (2006). This creates a fundamental paradox: in
order to train a model to approximate an NP-hard problem, we first need supervision derived from
solving that very same NP-hard problem—often via exhaustive or costly optimization procedures.
This circular dependency raises a critical question: can we design a neural model to approximate
GED without relying on any supervision derived from NP-hard GED computations?

To mitigate this limitation, we observe that GNNs operate by decomposing input graphs into sets of
computation trees, where each node’s embedding is recursively computed from its neighbors over a
fixed number of message-passing steps. These local computation trees are then aggregated to form
a holistic representation of the graph. This observation motivates a key question: can a GNN be
trained using supervision from TED instead of GED, and still effectively approximate GED?

Training with TED supervision offers a significant advantage: it avoids reliance on ground-truth
GED, thus sidestepping the need for NP-hard supervision. Furthermore, since GNNs already treat
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Training Tree Calculate Train GNN on
graphs Extraction [> TED E> TED

(a) Training with TED as proxy: For each input graph pair, we extract hybrid trees using a combina-
tion of label propagation and structurally faithful traversal. The TED between the trees is used as a
proxy supervision to train a GNN. The GNN learns node-level representations that capture structural
similarity through TED, bypassing the need for exact GED labels, which are NP-hard to compute.

Pretrained E,> i> Z;Itr::zz E> NBM Minimum
" . mxn edit path

GNN

Layer-wise
node embeddings

(b) Inference with Neighbor-biased Mapper (NBM): Given a trained GNN, we extract layer-wise
node embeddings for a test graph pair. These embeddings are used to construct a distance matrix,
which is then passed to the NBM to obtain a node alignment that respects both local similarity and
structural consistency. The alignment is converted into a valid edit path whose cost approximates the
GED. To tighten the upper bound, multiple alignments are generated using an ensemble of models
and layers, and the one with the lowest edit cost is selected.

Figure 2: The main pipeline of TREEGEAR.

graphs as compositions of tree-structured computations, replacing GED with TED as the supervisory
signal is unlikely to constrain the model’s representational power. Empowered with these intuitions,
we now formally state our problem as follows.

Problem 1 (Learning to approximate GED with TED). Let () be a training dataset where each
instance is of the form (T}, T, TED(T{, T5)) where T;: and Ty are trees. From Q, we aim to learn
a GNN model ® that enables us to approximate GED for any unseen pairs of graph G1 and G well.
Mathematically, learn a function [ : (G1,Ga, ®) — Z7 that takes as input a graph pair {(G1,Gs)
and model ®, and outputs a non-negative integral distance that minimizes:

|f(g1a927¢) _GED(g1?g2)| (2)

Note that in our formulation, the GNN & does not directly predict the GED. Rather, we aim to pass
the output of ® through another function f that maps the GNN’s output to our GED prediction.

3 PROPOSED METHODOLOGY: TREEGEAR

TREEGEAR addresses the limitations of existing GED prediction models. To eliminate the need for
costly ground-truth GED labels, TREEGEAR uses a weakly supervised training strategy that lever-
ages tree edit distance (TED) as proxy supervision. Specifically, for each pair of training graphs, we
extract a pair of trees and compute their edit distances which can be computed in polynomial time. At
inference time, we use our trained model to generate node embeddings, and subsequently perform
node alignment using the Neighbor-biased Mapper (NBM). Among all the valid edit paths—one
for every node alignment plan—we obtain the one with the smallest edit costs. The pipeline of
TREEGEAR is shown in Figure[2]

3.1 TRAINING WITH TREE PAIRS: FROM GRAPHS TO TREES

As outlined in our objective our primary objective is to reduce the labeling cost without compromis-
ing the predictive performance of the base GNN-based model for GED prediction. To this end, we
adopt ordered Tree Edit Distance (TED) as a proxy for Graph Edit Distance (GED). This choice is
motivated by two key advantages: (i) ordered TED can be computed efficiently in polynomial time
Zhang & Shashal (1989), and (ii) the message-passing architecture of GNNs inherently decomposes
graphs into computation trees |Gupta et al.|

For TED to provide a high-quality approximation of GED, it is essential that the selected pair of trees
cover the graph regions where structural differences (i.e., edits) are most likely to occur. Achieving
this requires two conditions: (1) the neighborhoods of the roots from which the trees are expanded
must intersect with these regions of interest, and (2) the extracted trees must preserve the structural
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Figure 3: The tree extraction module in TREEGEAR.

semantics relevant to a GNN’s computation. To meet these requirements, we propose a principled
tree generation strategy that ensures alignment with both the underlying graph structure and the
GNN’s computational view. The pipeline of our tree generation module is illustrated in Figure 3]

3.1.1 ROOT SELECTION AND ALIGNMENT

To identify root nodes for the hybrid trees such that they best capture potential edit regions, we em-
ploy a label propagation strategy inspired by the Weisfeiler-Lehman (WL) testWeisfeiler & Leman
(1968)). We use these embeddings to perform soft node alignment between two graphs.

Label propagation update rule. We define the update rule for label propagation at iteration ¢ as:

A =z_(uw)+=5 > 2 (v), Vielll] 3)
vEN (u)

where: z}(u) € R denotes the i-th dimension of node u’s embedding at iteration ¢, A (u) is the 1-hop
neighborhood of w, [ is the dimensionality of the one-hot encoding of node label £(u), and d € R
is a discounting factor. This mechanism aggregates label information from the local neighborhood
in a similar way as in the WL hashing, but takes into account the nodes’ appearance order.

Lemma 1. The label propagation update defined in Equation[3|ensures that:

1. For all 4, if zr(u) # zp(v) then the rooted T-hop neighborhoods of the nodes w and v are
non-isomorphic.
2. Ford > MT where M = max,cy deg(u), if z:(u) # 2:(v) then z;1(u) # 241 (v) Vt < T.

Proof Sketch. Since the contribution from neighbors is scaled by é, any differences in the multiset of
labels in A (u) and NV (v) persist over iterations. The growth rate of d dominates, preserving unique-
ness. A detailed proof using induction is provided in Appendix Note that the magnitude of d
does not necessarily have a perfect correlation with the probability of hash collision.

Root pair selection. We select root pairs (u*, v*) for a graph pair (G, G2) via the following proce-
dure in four steps: (i) Embedding computation: We first run the label propagation for 7' iterations
to compute node embeddings {zr(u)}uey, and {z7(v)}yey,. (ii) Distance matrix: We then con-
struct matrix D € RIViI*V2l such that: D(u, v) = ||z7(u) — 27 (v)]|. Next, we perform the optimal
assignment and obtain the final root. (iii) Optimal assignment: We use the Hungarian algorithm to
solve: ming.y, v, Y,y D(u, m(u)). (iv) Root extraction: Lastly, we extract the root as follows:

(u*,v*) = arg (uI.?ri(E)) D(u,m(u)) subjectto D(u,m(u)) >0

If all D(u,7(u)) = 0, we pick any (u, 7(u)) arbitrarily. The main intuition is that the node pair
(u*, v*) selected via minimal embedding distance is likely to reside in regions with minimal struc-
tural divergence. Consequently, the rooted neighborhoods around u* and v* are most informative
for approximating the graph edit path.

3.1.2 HYBRID TREE CONSTRUCTION

Here, we describe our hybrid tree construction procedure. Let € V be the root node selected using
the alignment scheme from Section Our goal is to construct a rooted tree 7, = (Vr, ET),
which we refer to as a Hybrid Tree. This tree is designed to preserve critical structural information
from the original graph while remaining suitable for efficient computation of TED.

Hybrid Tree. A Hybrid Tree is an acyclic structure derived from G that satisfies the following: (i)
Each original edge in £ is included exactly once in £7; (ii) Duplication of a node occurs only when
revisiting that node would form a chordless cycle; (iii) For any node that is not duplicated, its k-hop
neighborhood in 7. is identical (as a multiset) to that in G.
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Algorithm [T] (Appendix [A.T.2) outlines how to construct a hybrid tree @ @
from a graph, rooted at a given node. The goal is to approximate the = 3 3
graph’s structure in a way that preserves its semantics for a GNN. Since

each edge is traversed exactly once, the immediate neighborhood of ev- @ ORUNC)
ery original (non-duplicating) node is retained, while dummy duplicating .
nodes are introduced only when closing cycles. As shown in Fig. [d] this Figure 4: A hybrid tree
ensures that the k-hop neighborhood multisets—used by message-passing ©f @ graph. Duplicate
GNNs —remain intact for all original nodes. Thus, from a GNN s per- nhodes are highlighted.
spective, the hybrid tree differs from the original graph only in terms of duplicating nodes.

Lemma 2. In a hybrid tree, the number of duplicating nodes is equal to the number of chordless
cycles in the original graph.

The formal proof is given in On the other hand, for a BFS tree, the k-hop neighborhoods
of all nodes in cycles of length < k + 1 are altered. For a computation tree, none of the nodes
in the graph will preserve their k-hop neighborhoods for any & > 2. Furthermore, if we need to
visit all nodes in the graph at least once and assume nothing about its connectivity, the expected
size of the computation tree is at least: Zf;o d* = O(d"®); where R is the graph’s radius (the
minimum eccentricity) and d is the average degree. This large size might make it computationally
expensive and we can no longer take advantage of the efficiency of TED computation. We provide
more details about the different tree types in Appendix [A.1.2]and empirically evaluate their impact
on performance in the ablation study (Sec. i.2).

Comparison of tree structures. Let G have the average degree d and radius R:

s A computation tree of depth R has the size of O(d®) due to the recursive addition of neighbors.

* A BFS tree has size O(|V]), but distorts neighborhoods in graphs with cycles.

* A Hybrid Tree has size O(|V|+c), where ¢ is the number of chordless cycles in G, and it preserves
neighborhoods for all original (non-duplicated) nodes.

Dataset construction with TED. Given a training graph pair (G}, G?), we extract their Hybrid
Trees 7;' and 7,2, and compute their TED using the Zhang-Shasha algorithm [Zhang & Shasha
(1989) with arbitrary orders of siblings. As TED is only used to distantly supervise the GNN, the
choice of sibling orders should have limited impact on the final matching quality, which depends
on the relative ranking of node pairs rather than their precise similarity scores (see[d.2). The proxy
dataset containing tree pairs and corresponding TEDs is: D7 = {(7;*, 7.2, TED(T;*, T;%)) }?_1. To
improve robustness and increase the diversity of node embeddings for use during inference, we train
an ensemble of five GNN models. Each model is trained on a different half-sized subsample of D
These embeddings are later used for node alignment and GED estimation in Section [3.2]

3.2 INFERENCE WITH NEIGHBOR-BIASED MAPPER

Let Gi = (V1,&1) and Go = (V5, &) be two node-labeled graphs with associated embeddings
{z(u) }uey, and {z(v)}yey, computed by a GNN trained with the TED-based proxy supervision (see
Section [3.1.2). Our goal is to construct a node alignment 7 : V; — V, that facilitates computation
of a GED upper-bound. We describe the neighbor-biased mapper algorithm designed for this task.

3.2.1 THE NEIGHBOR-BIASED MAPPER

The Neighbor-Biased Mapper (NBM) |He & Singh| (2006) is an iterative alignment algorithm that
performs soft matching based on local embedding similarity and structural coherence. It operates on
the pairwise distance matrix D € RIV1*IV2l where D(u,v) := ||z(u) — 2(v)||]2 Yu,v € Vi X Vs.

With the distance matrix, NBM creates a node alignment plan as follows. (i) Pair selection: First,
we identify the closest pair of nodes u, v such that D(u*,v*) = mingey, yev, D(z,y). (ii) Neigh-
bor biasing: For every pair of neighbors (wq, w2) € N (u*) x N'(v*), we update the distance matrix
by decreasing the corresponding entries: D (w1, ws) < D(wi,ws) — §; where § > 0 is a hyperpa-
rameter controlling the bias strength. (iii) Update: Next, we add (u, v) to the final result and remove
the row of v and the column of v from D. (iv) Repeat: We repeat the process until D is empty.

Interpretation and robustness. The key step here is the neighbor biasing (Step 2), which encour-
ages local structural consistency by promoting the alignment of nodes whose neighbors have already
been aligned. This approximates a greedy solution to a structure-aware node matching problem. Un-
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like hard alignment approaches, NBM only depends on the relative ordering of pairwise distances
and not their absolute values. Thus, with a suitable J, if the TED-trained embeddings preserve the
ordering induced by the true GED-optimal mapping, the algorithm yields competitive approxima-
tions even under a scale shift of the node embeddings. We show its empirical evidence in Sec. .2

3.2.2 GED COMPUTATION: EDIT PATH FROM NODE MATCHING

We now describe a procedure to derive an upper-bound edit path from G; to G5 using . Our strategy
follows|Piao et al.[(2023)) and leverages the fact that 7 is derived from node embeddings trained using
TED, as described in Section We exploit these embeddings across multiple layers and models
to generate several candidate alignments.

Step 1: Node substitution. For each u € Vi, if £1(u) # La(mw(u)), we substitute the label of u
with Lo(f(u)). Let ¢s denote the cost of node substitution.

Step 2: Edge deletion. For each edge (u,v) € &1, if (n(u), m(v)) ¢ E;, we delete edge (u,v). Let
cq denote the cost of edge deletion.

Step 3: Node insertion. Let W = Vs \ f(V;) (assuming that |V;| < |Vs]). For each w € W, we
introduce a dummy node w’ € V] and set £ (w’) := La(w). ¢, denotes the cost of node insertion.

Step 4: Edge insertion. Let 7, : V| — Vs be the extended bijective mapping and 7, L jts inverse.
For each edge (z,y) € &, if (m, '(x), 7, '(y)) ¢ &}, we insert the edge (7, (), 7, '(y)) into &].
Let c. denote the cost of edge insertion.

Total edit path cost. The total cost of the edit path P, induced by the alignment 7 is given by (with
I[-] being the indicator function):

Cost(Pr) = s > T[L1(u) # La(m(u))] + > cat e + > Ce

u€WV1 (u,v)e€\m—1(E) weWw (z,y)€€2\ T (E])

Observation 1. The constructed path Py transforms Gy into a graph G that is isomorphic to Go.
Therefore, GED(G1,Ga) < Cost(P;) by definition.

Final path selection. Each necessary edit—substitution, insertion, deletion—is explicitly accounted
for based on 7, and after applying all edits, 7, becomes a graph isomorphism. To reduce variance
and improve approximation quality, we generate a set of candidate alignments {ﬂ(j)}}”zl using:
(i) multiple TED-trained GNN models and (ii) layer-wise embeddings from each model.
For each alignment 7(7), we compute the associated path cost Cost(P,;)) and select the opti-
mal one: © = arg min; Cost(P, ). The resulting path cost provides our final approximation to
GED(G1, G2), completing our weakly supervised GED inference pipeline.

4 EXPERIMENTAL RESULTS

In this section, with extensive experiments, we demonstrate that TREEGEAR achieves competitive or
superior performance compared to models trained with full GED supervision. Our code is available
at: |https://anonymous.4open.science/r/ged _distill-B177/.gitignore.

Datasets. We use five benchmark datasets to comprehensively evaluate TREEGEAR. A detailed
description of these is included in App. Table[5]in the Appendix provides a summary.

Baselines. We evaluate TREEGEAR against several recent state-of-the-art baselines, includ-
ing GREED |[Ranjan et al.| (2022), GEDGNN Piao et al.| (2023), ERIC [Zhuo & Tan (2022),
GRAPHEDX Jain et al.| (2024), and H2MN [Zhang et al.|(2021)). We exclude older methods such as
SIMGNN, GRAPHOTSIM, GMN, GRAPHSIM, TAGSIM, and GENN-A*, as they have been consis-
tently outperformed by more recent models like GREED, GRAPHEDX, GEDGNN, and ERIC in prior
benchmarks. Among non-neural baselines, we incorporate the top-performing heuristics identified
in the benchmarking study by [Blumenthal et al.| (2020)—specifically: LP-GED-F2, COMPACT-MIP,
ADJ-IP, BRANCH-TIGHT, NODE, and IPFP-as well as the more recent GEDGW by (Cheng et al.
(2025). For the backbone GNN model to train with TED, we use GREED, though our framework is
compatible with any architecture that produces node embeddings. We evaluate generalizability of
TREEGEAR to other GNNs in Appendix[A.3.2]

Metrics. We use the Root Mean Square Error (RMSE) to assess the performance of the meth-
ods. In addition, we include the accuracy score— known as the Exact Match Ratio (EMR)—which
measures the percentage of the perfect matches between the predictions and the true GED values.

7
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4.1

Our main results on RMSE are shown in
Table[I] Our findings highlight three ma-
jor takeaways: First, TREEGEAR con-
sistently achieves the lowest RMSE on
four out of five datasets. This demon-
strates the effectiveness of TED as a proxy
supervision signal and the robustness of
our inference pipeline. Particularly, on
IMDB, TREEGEAR reduces the RMSE
by more than 75% compared to GREED
(1.24 vs. 5.24), a fully supervised model
and on code2, TREEGEAR outperforms all
baselines, including neural and non-neural
models, by a significant margin. In addi-
tion to RMSE, we evaluate the EMR in
Table[2] which measures the percentage of
predictions that exactly match the ground-
truth GED. TREEGEAR sets a new state-
of-the-art EMR on AIDS (88.8%), LINUX
(99.5%), and IMDB (97.1%). Even on

RESULTS FOR GED PREDICTION

Table 1: The RMSE (lower is better) of the methods
on five benchmark datasets. The results from three dif-
ferent training seeds are reported in the format: y + o
(the maximum standard deviation in TREEGEAR is .17
and baselines is .2). The best result for each dataset is
highlighted. Our proposed TREEGEAR achieves best
results in most cases.

| AIDS LINUX IMDB code2 molhiv

TREEGEAR 0.43 0.15 1.24  3.67 2.5
GREED 0.72 0.49 5.24 5.27 2.2

= GEDGNN 0.92 0.29 443 16.68 1.75
§ ERIC 1.08 0.30 4244 17.55 3.56
Z H2MN 1.14 0.6 57.8 11.96  12.01
GRAPHEDX 0.78 0.27  32.36 21.46 14.14
ADJ-IP 0.85 0.5 4218 14.94 10.21

= Node 2.71 1.24  61.03 8.34 4.97
§ LP-GED-F2 1.96 0.23  55.26 16.03 12.86
Z  Branch 3.31 2.45 736 12.64 9.86
£ Compact-MIP | 2.69 044 65.88 19.46  10.88
Z  IPFP 4.18 2.29 69.45 15.19 13.69
GEDGW 1.88 1.87 2.31 5.81 6.31

molhiv, where our RMSE is slightly higher than GREED, TREEGEAR achieves a better EMR (24.7%
vs. 21.1%), indicating stronger top-rank accuracy.

Second, TREEGEAR generalizes well to un-
seen graphs, maintaining strong performance
when trained on one dataset and tested on an-
other (Fig[5a)), outperforming GREED by a huge
margin. To further stress-test its scalability,
we evaluate TREEGEAR on the large ogb-ppa
graphs (avg. 2K+ edges), where ground-truth
GED is infeasible, making supervised methods
unusable. However, since TREEGEAR guar-
antees an upperbound, we compare its values

Table 2: The EMR (higher is better) of the neu-
ral methods: Results from three different training
seeds are reported (the maximum standard devia-
tion in TREEGEAR is .7% and baselines is .9%).

‘ AIDS LINUX IMDB code2 molhiv
TREEGEAR | 89% ~100% 97%  16% 25%
GREED 53% 1% 16% 8% 21%
ERIC 58% 79% 17% 9% 23%
GEDGNN 35% 85% 7% 1% 57%

(trained on code2) with non-neural methods. Fig[5b|shows that TREEGEAR achieves significantly

tighter upper bounds than algorithmic baselines.

Third, TREEGEAR achieves these results without

access to ground-truth GED labels, requiring only TED supervision, which is orders of magnitude
faster to compute (Table [6] Appendix [A.3.1). These results demonstrate that TREEGEAR achieves
high accuracy, label efficiency, and broad generalizability. It not only surpasses supervised neural
models with 100% ground-truth labels but also outperforms established algorithmic baselines.

4.2 ABLATION STUDY

Impact of different tree types. To evalu-
ate the effect of different tree construction
strategies on both performance and com-
putational efficiency, we compare the hy-
brid tree design in TREEGEAR with BFS
trees and computation trees of GNNs. As

RMSE (Log Scale)

>300k
TreeGear

Greed

4000

3000

2000

5.368 5.937

2.411 1000

0.556
0.212

described in Section hybrid trees
are designed to preserve the k-hop neigh-
borhood structure of nodes. Table H] re-
ports the RMSE and average TED compu-

0
molhiv—AIDS code2-LINUX LINUX~IMDB ADJIPLP-GED-F2 NODE  TREEGEAR

(a) Gener. across datasets  (b) Upperbound on ogb-ppa

Figure 5: Out-of-distribution generalization. In Fig

tation time for each tree type across three 53| for A— B, we train on dataset A but evaluate on

datasets. We observe the followings: (i)
Hybrid Trees consistently outperform BFS
trees, particularly on larger graphs such
as those in the code2 dataset. This is at-

B. TREEGEAR has much better performance than
GREED. In Fig[5b| TREEGEAR trained on code?2 yields
the lowest GED upperbounds for ogb-ppa graphs.

tributed to the hybrid tree’s retention of all edges, which ensures structurally faithful GNN message
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Table 4: Comparison of different tree traversals in terms of RMSE and TED computation time. The
results for Computation Tree is not available for code2 because its take huge time to compute the
TED. For the available results, the computation time of TED is measured in ms/tree-pair.

| AIDS LINUX code2

| RMSE TED time | RMSE TED time | RMSE  TED time
BFS Tree 0.74 3.53 | 0.285 2.86 3.84 24.78
Computation Tree 0.48 8.52 | 0.058 9.23 n/a n/a
Hybrid Tree (TREEGEAR) 0.43 3.51 0.151 291 3.67 34.00

propagation. (ii) While BFS trees are computationally cheaper due to their smaller size, this comes
at the cost of reduced accuracy. (iii) On the other hand, Computation Trees become impractical
for large graphs due to exponential growth in size (e.g., code2). They only slightly outperform hy-
brid trees (of TREEGEAR) on the LINUX dataset but at a significantly higher computational cost.
Overall, the hybrid tree in TREEGEAR strikes the best balance between scalability and performance.

Robustness of the NBM component. We evaluate the Table 3: Improvement (in RMSE) of
robustness of TREEGEAR’s NBM module (Sec.[3.2.1) to NBM and Hungarian when switching
noise and distribution shifts in the learned embeddings by ~from TED-based to ground-truth GED-
comparing it against the Hungarian matcher under two based embeddings. TREEGEAR uses
training regimes: node embeddings generated using (i) TED and NBM. NBM, producing a
TED supervision (default of TREEGEAR), (ii) ground-truth  smaller improvement, is more robust to
GED. In Table [3] the performance gain from switching noise and distribution shifts.

to GED-trained embeddings is substantially smaller for

NBM than for Hungarian, indicating NBM’s resilience to AIDS IMDB  code2
nominal embedding discrepancy and better generalization TED + NBM 0.43 124 3.67
from weak supervision. Across all datasets, NBM achieves GED + NBM 0.37 0.58 342
lower RMSEs and smaller performance shifts. Notably, on ~Improvement 006 066 025

IMDB, the RMSE drop for NBM is only 0.66, compared to  TED + Hungarian ~ 3.61 ~ 7.33  20.83
3.46 for Hungarian. This stability stems from NBM’s local GED + Hungarian ~ 3.26 ~ 3.87  18.89
matching strategy, which is less sensitive to global embed- ~mprovement 035 346 194
ding distortions as long as the correct ranking of node pairs

is preserved. These findings support our hypothesis (Sec. [3.2.1)) that NBM’s inductive bias enables
high-quality alignments under imperfect supervision. Appendix [A.3.3]analyzes how the embedding
budget (number of unique sets) affects the tightness of NBM-derived upperbounds.

4.3 INPUT S1ZE VS RMSE

—— TreeGear
Greed

8
7
6
5
4
3

—— TreeGear

To further understand the robustness of 1o G
TREEGEAR, we analyze how its predic-
tion accuracy varies with the size of the
input graphs. This is particularly rele- /\ /

vant given that neural GED models often — JE—

exhibit degraded performance on larger ©.301 (10,201 ' (20,351 (35.52] o231 25,351 (35,451 (45,501
graphs. Figures[6aland[6b|show the RMSE
of TREEGEAR across different graph sizes
for the IMDB and Code?2 datasets, respec-
tively. In both cases, TREEGEAR main-
tains a consistently lower RMSE relative
to the fully supervised baseline, demonstrating its ability to scale effectively with graph size. We
attribute TREEGEAR’s overall stability to the design of the NBM, which operates predominantly at
the node level. This node-centric design makes the inference process less sensitive to the global size
of the graph, enhancing generalization to larger instances.

RMSE
RMSE

8
6
4
2
0

(a) IMDB (b) Code2

Figure 6: RMSE variation by graph size (measured by
number of nodes) on IMDB and code?2 datasets.

5 CONCLUSIONS

We introduced TREEGEAR, a scalable and supervision-efficient framework for learning graph edit
distance (GED) by using tree edit distance (TED) as a proxy. By leveraging polynomial-time TED
computations within a principled training and inference pipeline, TREEGEAR eliminates the need
for costly ground-truth GED labels and addresses a long-standing challenge in neural GED approxi-
mation. Our approach achieves state-of-the-art performance across multiple benchmarks, surpassing
both supervised neural models and classical heuristics, while producing interpretable edit paths and
cross-domain generalization.
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REPRODUCIBILITY STATEMENT

To support reproducibility, we release our code at: https://anonymous.4open.science/r/ged _distill-
B177/.gitignore. Besides the setup described in Section |4} additional details on datasets and hyper-
paramter configuration are provided in Appendix All proofs of theoretical claims are given in
Appendix [A.T] In addition, we provide the pseudocodes in Appendix [A.1.2]
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A APPENDIX

A.1 ADDITIONAL DETAILS OF OUR FRAMEWORK TREEGEAR
A.1.1 LABEL PROPAGATION FOR ROOT SELECTION

Re-stating the details of LemmalT]

(1) [Lemma 1.1] The label propagation update defined in Equation [3] ensures the following: if
the rooted T-hop neighborhoods of the nodes u and v are isomorphic, zp(u) = zp(v). Its
contrapositive also holds: if zp(u) # z7(v), the rooted T-hop neighborhoods of the nodes u
and v are non-isomorphic. This is true for any d used in Equation[3]

(2) [Lemma 1.2] Withd > M7 where M = max,¢y deg(u), it’s guaranteed that: if z; (u) # 2, (v)
then 241 (u) # ze41(v) VE < T.

Proof of Lemma 1.1

Definition 6 (Rooted T-hop neighborhood). The T'-hop neighborhood rooted at node w is the tuple:
(Hr(u),u) where Hp(u) is the induced subgraph containing u and the set of neighbors within T

hops from u. V(Hr (u)) = {u} U, << Ni(w).

Definition 7 (Rooted T-hop neighborhood isomorphism). (Hr(u),u) = (Hr(v),v) if there exists
a bijective mapping 7 such that w(u) = v and under w: Hy(u) & Hr(v).

It should be noted that the end goal of the label propagation procedure is to select roots for tree
expansion and TED computation. Thus, Definition [/|is important because given two isomorphic
graphs, if the pair of roots are misaligned, the resulting TED can be greater than 0, potentially
misleading the model.

We would like to remind the reader that £ : V — X is a function that assigns a label from the set of
labels X to each node. As an extension, £(S) = {£(u)|u € S} where S is a multiset of nodes in V.

Corollary 1.1 If (Hy(u),u) = (Hr(v),v), the multisets of the labels of u’s and v’s t-hop neigh-
bors must be equal, i.e. £L(N;(u)) = L(N;(v)) V¢t < T, and the labels’ degrees must be equal. A
label’s degree is the degree of the node having that label.

Proof. For every node w € N;(u) with degree deg(w), there is a simple path P of length ¢ from u
to w in Hp(u). Because 7(u) = v in the isomorphic mapping between Hp(u) and Hp(v), there
must be a bijective mapping 7, between the two sets of simple paths in Hr(u) and Hz(v) such
that: £(P;) = L(mp(P);) and deg(P;) = deg (my(P);)Vj € [1 : t]. Therefore, for every label
L(w) € L(N;(u)), there is a bijectively mapped label of the same degree and value in N} (v). [

Corollary 1.2 If £L(N;(u)) = L(N;(v)) V¢t < T, then zr(u) = 2r(v) given the update rule
defined in Equation 3]

Proof. zr(u) and zp(v) are vectors. Corollary 1.1 trivially extends to £(-) where £(-) returns
the one-hot vector representation of each unique label. To prove Corollary 1.2, we show that
2 (u) = 2h(v) Vi.

Base case t = 0: Since m(u) = v under the isomorphic mapping, their labels must be
equal: L"(u) = L*(v) Vi & 2z (u) = 24 (v) Vi.

Induction hypothesis t = k: Assume that z} (u) = 2% (v) Vi.

Induction step: We want to show that zj, , | (u) = 2z}, (v) Vi. Let’s revisit Equation

A=A+ Y whw)

13
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Because z} (u) = z} (v), we have:

S w3 Y W)

weN (u) weN (v)

1 ; 1
=g 2. des)li(w)+ gy Y Lw)
w1 ENg—1(u) wa €N (u)

1 i 1 3
W1 ENg_1(v) W2 €N (v)

:5z

This is to say that the (new) difference (if any) at the (k + 1) hop can only come from the labels of
the new nodes reachable at k hops away and the degrees of the nodes at (k — 1) hops away. This is
because z!(ws) at k hops away include nodes that are (k — 1) hops away. The number of repetitions
depends on the degree of each node at (k — 1) hops away. Since NVj_1(u) = Nj—1(v) and Ny (u) =
N (v) along with the corresponding degrees, the difference 8, = 0, i.e. 2z, (u) = 2} (v).

Combining Corollary 1.1 and 1.2 proves the first part of Lemma 1.

Proof of Lemma 1.2  To ensure that: if 2} (u) < z{(v) then 2}, (u) < zj,4(v) V¢t < T, we must
discount the additive term of the newly reachable neighbors so that their sum cannot exceed the
difference established in the previous iterations. We have:

, . 1
A= 5(0) - () >
1 i i~ 1 i V\[t(“)‘
A= Qi+t ( Z z(w) — Z Zt(w)) < g Z Liw) < dt+1
weN (u) weN (v) wEN (u)

The first inequality holds because the minimum difference between u and v must come from last
iteration. Otherwise, a deficit from earlier iterations has continued to grow larger.

‘Nt(u)| < Mttt

With M = max, ¢y deg(u), we have: g1 < ‘ge=r - Therefore, we must make sure that:
1 t+1 641
/

For this to be true for any ¢t < 7: d > M7. Since this condition ensures that for all index 4: if
zi(u) < zj(v) then z{,; (u) < zf,,(v), it follows that: if z;(u) # z;(v) then z;,(u) # 2 (v). This
proves the second part of Lemma 1. The implication of this result is that if the multisets of u’s and
v’s neighbors are not equal at any hop, their final embeddings zr(u) and z7(v) are guaranteed to be
different.

Next, we discuss the choice of d when d < M. We have:

; ; c c c
2h(u) = L"(u) + Hl + diQ +..+ d%

where (cy, ¢, ..., cr) are the terms discounted by (d, d?,...,d”) respectively. With d = 1, for a
unique combination of (¢, ¢a, ..., ¢r), any permutation of this combination will still yield the same
result of z%(u). This is not true for d > 1. Therefore, the probability of collision with d > 1
is much lower. However, it is hard to say for example whether d = 2 or d = 3 gives a lower
probability of collision, as this depends on the underlying connectivity and label distribution of the
graph. On the other hand, a very large d may cause numerical errors. In our setup, we choose d = 2
for simplicity.

A.1.2 COMPLEXITY AND COMPARISON OF TREE TYPES

We have described the hybrid tree traversal algorithm in Section [3.1.2] Here, we provide its pseu-
docode in Algorithm

14
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Algorithm 1 Hybrid Tree Traversal

Require: Graph G = (V, &), Root Node r € V
Ensure: Hybrid Tree 7 rooted at r, visiting each edge in £ exactly once

1:
2:
3:

AN AR

9:
10:

Enqueue(Q, 1)
while () is not empty do

u <— Dequeue(Q)
for v in of N'(u) do
if (u,v) not visited then
Add edge (u,v) to T
Addvto T
(u,v).visited < True
Enqueue(Q, v)
return 7

Definition 8 (Chordless cycle). A chordless cycle C(Ve¢, &) of a graph G(V, £) is a simple cycle in
which no edge connecting any two vertices of the cycle is not part of the cycle itself. In other words,
Y(u,v) € E,u € Ve, v € Ve, it must be that: (u,v) € .

With this definition, we prove the following lemma.

Lemma 2] In a hybrid tree, the number of duplicating nodes is equal to the number of chordless
cycles in the original graph.

Proof. We first make two observations:

1.

Because a hybrid tree visits all edges of the original graph at least once, for every chordless
cycles, all of its edges have been visited. To successfully visit all the edges in a chordless cycle,
at least one node in the cycle must be repeated. Therefore, the number of duplicating nodes >
the number of chordless cycles.

. From Algorithm [I} we only visit an edge if it has not been visited. Hence, the current node

can’t visit its parent. Therefore, if this edge results in one duplicating node, it must form a
chordless cycle which contains the duplicating node. This has to be a new chordless cycle. If
this chordless cycle has been previously created, that would indicate that the current edge has
already been visited, which is contradictory to the design of Algorithm|l} Therefore, for every
duplicating node, there is one chordless cycle, i.e. the number of duplicating nodes < the number
of chordless cycles.

With these two observations, we can conclude that the number of duplicating nodes must be equal
to the number of chordless cycles. O

Algorithm 2 Computation Tree Expansion

Require: G = (V, E), Initial Root 7y € V
Ensure: 7: A computation tree rooted at

1:

2:
3:

4
5:
6:
7
8
9:

Global Constant: MAX_HOPS: Maximum depth of tree

function COMPUTATIONTREE(G, r, n_hops)
Initialize 7 as an empty tree
if n_hops > MAX_HOPS then
return 7
for v in N'(r) do
Append COMPUTATIONTREE(G, u, n_hops + 1) to T
return 7

return COMPUTATIONTREE(G, 7, 0)

The growth of Computation Tree. Due to the recursive addition of neighbors with no constraint

on

repetitions (see Algorithm[2), the number of nodes in a computation tree can grow exponentially.
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Table 5: Summary of the statistics of the datasets

Dataset Size  Avg training |V| Avg training |£] Labels Domain
ogb-molhiv 100k 18.97 23.55 119 Molecules
ogb-code2 100k 23.56 22.55 97 Software
AIDS 285k 8.89 8.8 29 Molecules
LINUX 971k 8.02 7.43 Unlabeled  Software
IMDB 288k 14.35 74.67 Unlabeled Movies

In order to visit all the nodes at least once, MAX_HOPS > R where R is the radius of the graph
(the minium eccentricity). On average, the number of nodes in the computation tree will be O(d*?)
where d is the average degree. In the best-case scenario, the nodes are visited in the ascending order
of their degrees. This is because a node of higher degree appearing earlier near the top of the tree
will be repeated more times, spawning more duplicates of its neighbors. This optimistic scenario
provides the lower bound of the number of nodes in a computation tree: maxy{(dy_1)®~*} where
dy_1 is the (k — 1) smallest degree. This lower bound can still be large.

A.2 ADDITIONAL DETAILS ON EXPERIMENTAL SETUP

Reproducibility. Our code is available at: |https://anonymous.4open.science/r/ged distill-B177/
.gitignore!.

A.2.1 DATASETS

We use the following datasets (Table [5] provides a summary). We obtain AIDS, Linux and IMDB
from Morris et al.| (2020); Ranjan et al.| (2022)), the other datasets are from Hu et al.| (2021) and
Verma et al.|(2025)).

* ogb-code2 (code2): This dataset contains a large collection of Abstract Syntax Trees (ASTs) de-
rived from approximately 450,000 Python method definitions. Each graph corresponds to an AST,
with nodes labeled from a fixed set of 97 categories that encapsulate various syntactic elements of
the methods. These graphs are treated as undirected.

* ogb-molhiv (molhiv): The dataset consists of chemical compounds, where each graph represents a
distinct molecule. The graph nodes correspond to atoms and are labeled according to their atomic
numbers, while the edges represent the chemical bonds between atoms.

* AIDS: This dataset comprises graphs derived from the AIDS antiviral screening database, where
each graph models the molecular structure of a chemical compound. The graphs are labeled to
reflect meaningful chemical properties. They are relatively small, with each containing no more
than 10 nodes.

* LINUX: This consists of program dependence graphs in which nodes represent individual state-
ments and edges capture dependencies between them. Similar to the AIDS dataset, graph sizes
are capped at 10 nodes. The dataset is also unlabeled [Wang et al.|(2012)).

* IMDB: This unlabbeled dataset features ego-networks of actors and actresses who have co-starred
in movies |Yanardag & Vishwanathan| (2015)). Each graph represents the network of a single in-
dividual, with nodes corresponding to other actors/actresses and edges indicating shared film ap-
pearances.

A.2.2 DETAILS ON HYPERPARAMETERS

A major advantage of TREEGEAR is that it has only a few hyperparameters. In the construction of
the hybrid trees, we set the maximum hops reachable to be 3 for AIDS and LINUX, 5 for IMDB,
and 10 for code2 and molhiv. This is influenced by the typical size of a graph in each dataset (see
Table [3)), rather than by an expensive hyperparameter search. This highlights the robustness of our
method. On the other hand, the boosting factor § for NBM is only involved during inference. Since
any GED returned by TREEGEAR is an upperbound, we can try different values of and use the one
that yield the minimum upperbound. As a rule of thumb, 4 is set to be 0.7 for AIDS and 1.6 for
others. For the hyperparameters of the backbone GNN, we use the default values recommended by
Ranjan et al.| (2022).
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A.3 ADDITIONAL EXPERIMENTS

Here we present additional experiments and results. First, we compare the ground-truth computation
time of TREEGEAR and that of the baseline. Second, we report other metrics of interest not shown
in the main paper. Third, we show that TREEGEAR can be integrated with other neural frameworks
for GED prediction. Lastly, we perform a study to demonstrate the effect of the embedding budget
on the performance of NBM.

A.3.1 ADDITIONAL METRICS

We evaluate TREEGEAR in further aspects. First, we show in Table 6] that the TED values requested
by TREEGEAR can be computed efficiently, in contrast to the exponential time spent on calculating
the GED values for other baselines. In terms of other performance metrics, Table[7|demonstrates that
TREEGEAR achieves higher rank correlation (Spearman and Kendall) and competitive or superior
top-k precision (kK = 10 and k£ = 20) compared to the GREED baseline.

Table 6: Ground-truth Computation Time (ms/pair). TREEGEAR is much faster on all datasets.
This is because TREEGEAR only requires TED, which is polynomially computable compared with
the NP-hard GED needed by the baselines. The GED computation time is taken from |[Ranjan et al.
(2022) and [Bommakanti et al.| (2024]).

\ AIDS LINUX IMDB  code2 molhiv
TREEGEAR (TED) \ 3.51 2.91 389.81 34.00 17.77
Baselines (GED) \ 350.08  123.26 4479.47 781.51 13655.75

Table 7: Additional metrics. We report the Spearman’s Rank Correlation Coefficient, Kendall’s
Rank Correlation Coefficient, and precision at top 10 and top 20 (p@10, p@20). TREEGEAR shows
better results than GREED in almost all settings.

|  Spearman Kendall p@10 p@20
AIDS
TREEGEAR | 0.975 £+ 0.011 0.959 + 0.003 1£0 1£0
GREED 0.938 +0.001  0.866 + 0.002 08+0 0.75+0
LINUX
TREEGEAR | 0.999 £ 0.001 0.998 & 0.001 1£0 1£0
GREED 0.972 +0.003 0.931 £+ 0.007 1£0 1£0
IMDB
TREEGEAR 1£0.000 0.998 &+ 0.001 1£0 1+£0
GREED 0.99 £ 0.001  0.935 £ 0.000 1£0 1£0
code2
TREEGEAR | 0.975 4+ 0.001 0.889 + 0.002 0.6 0.1 0.817 + 0.058
GREED 0.936 + 0.001 0.801 £ 0.001 0.7 £ 0.0 0.7 + 0.050
molhiv
TREEGEAR | 0.988 4 0.001 0.932 4+ 0.003 0.9 £ 0.000 0.867 &+ 0.029
GREED 0.988 + 0.001 0.933 £0.002 0.733 £0.058  0.75 + 0.050

A.3.2 GENERALIZABILITY TO OTHER ARCHITECTURES

We integrate TREEGEAR with other established neural frameworks for GED prediction, namely
GEDGNN [Piao et al.| (2023)), ERIC [Zhuo & Tan| (2022)), and H2MN [Zhang et al.|(2021). Here
integrating means that we only use these models as base models to train with TED. The TREEGEAR
model and the original model use the same hyperparameteters for fairness. As observed in Table (]
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Figure 7: The effect of the node embeddings budget on the performance of NBM. We vary the
numbers of node embeddings by fixing the number of submodels in the ensemble and changing the
number of embedding layers used (orange line) as well as vice versa (blue line). In all three datasets,
the orange line decreases at a faster rate than the blue line, suggesting the higher importance of the
number of layers used for generating the embeddings.

TREEGEAR shows competitive or better performance than the base model even when TREEGEAR
has no access to the ground-truth GED like the baselines. The result is mixed for H2ZMN. We believe
that the reason is the very limited number of node-level embeddings provided by this model: H2MN
only has two node-level convolution layers. This prevents the advantage of NBM in taking the
minimum edit path. However, it should be emphasized again that the competitive performance of
TREEGEAR against H2MN is achieved with no ground-truth labels. These results demonstrate the
generalizability and applicability of TREEGEAR.

Table 8: The RMSE of TREEGEAR when integrated with other neural architectures on three
datasets. Integrating means that TREEGEAR only use these models as base models to train with
TED. TREEGEAR without being trained on GED values is better than the neural models which are
trained on actual GED values.

AIDS LINUX code2

1.568 £0.021 = 0.513 £0.027  9.004 £+ 0.122
1.308 £ 0.021 1.041 +£0.024  6.537 £ 1.276

\
TREEGEAR (H2MN as base) ‘
TREEGEAR (ERIC as base) ‘ 1.431 £ 0.221 0.691 + 0.066 4.183 +0.102

H2MN

ERIC 2721 £0.000 2.503 +0.026  33.633 £ 0.000

3.083 £0.118 2.419 £+ 0.061 16.519 £ 1.546
9.208 £0.002 5.185+£0.000 37.283 £0.012

TREEGEAR (GEDGNN as base)
GEDGNN

A.3.3 ADDITIONAL ABLATION STUDIES

We investigate the effect of the budget of embeddings on the performance of NBM. In TREEGEAR,
we use two strategies to diversify the set of node embeddings available to NBM: (i) we use the
embeddings output by each layer in the model, (ii) we train multiple submodels with different ini-
tializations on different data subsets. In total, this gives us L X F unique sets of embeddings where
L is the number of layers and E is the size of the ensemble. In Figure[7] we look into the importance
of each of these two factors on the performance of NBM. Specifically, we use all L layers with
different numbers of submodels and all £ submodels with an increasing number of layers. While
both diversification strategies help bring down the RMSE, increasing the number of layers used for
taking the embeddings gives more benefit, as the orange line has a steeper slope. This supports the
notion that the limited number of layers in H2MN may have been an issue.
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