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ABSTRACT

Effective infrastructure management, particularly bridge maintenance, is critical
for public safety and economic benefits. Reinforcement Learning (RL) offers a
promising paradigm for optimizing maintenance policies. Real-world applica-
tions often involve multiple decision-makers, rely on pre-collected offline data,
and necessitate strict adherence to operational constraints. Existing RL bench-
marks and methodologies frequently fall short in simultaneously addressing these
multi-agent, offline, and constrained aspects within a practical domain. To bridge
this gap, we introduce BridgeBench, a novel offline constrained multi-agent RL
benchmark for bridge maintenance. It provides a realistic and challenging envi-
ronment for evaluating algorithms designed for complex infrastructure manage-
ment tasks. We integrate various state-of-the-art single-agent and multi-agent
offline constrained RL algorithms on this platform, providing insights into their
performance and limitations. Our work aims to accelerate research in applying
advanced RL techniques to critical real-world infrastructure challenges, fostering
the development of more robust, safe, and cost-effective maintenance strategies.

1 INTRODUCTION

The maintenance and management of critical infrastructure, such as bridges, are paramount for pub-
lic safety, economic stability, and the longevity of transportation networks (Wu et al., 2021a). As
infrastructure ages globally, the challenge of efficiently allocating limited resources for inspection,
repair, and replacement becomes increasingly complex (Orcesi & Frangopol, 2011; Kim & Fran-
gopol, 2018). Suboptimal maintenance strategies can lead to catastrophic failures and significant
economic disruption, especially given persistent budget limitations (Bukhsh et al., 2020; Wu et al.,
2021b), underscoring the urgent need for advanced decision-making tools.

Traditional approaches to infrastructure management often rely on heuristic rules or simplified opti-
mization models, which may struggle to adapt to dynamic conditions or handle large-scale systems.
For example, classical optimization methods like dynamic programming face scalability issues when
applied to large networks (Kuhn, 2010; Medury & Madanat, 2014). Heuristic algorithms, while ef-
ficient, often result in problem-specific models that lack universal applicability (Shen et al., 2023).
Similarly, multi-criteria decision-making (MCDM) models are limited by their strong subjectivity,
as they depend heavily on expert knowledge (Tan et al., 2021). These limitations highlight a crit-
ical gap and motivate the exploration of more robust and data-driven approaches for infrastructure
management. Reinforcement Learning (RL) has emerged as a powerful paradigm for sequential
decision-making, offering the potential to learn optimal policies directly from data, thereby mitigat-
ing decision subjectivity and accumulating valuable experience for long-term benefits (You et al.,
2019; Khalatbarisoltani et al., 2019).

Recent studies have successfully applied RL to optimize maintenance strategies for infrastructure
networks, with some works framing the problem from a centralized perspective (Lei et al., 2022;
Chen et al., 2024) and others from a decentralized, multi-agent viewpoint (Zhang et al., 2024; Zhou
et al., 2022). However, these pioneering efforts primarily rely on online learning, which assumes
an agent can safely and freely interact with the environment. Applying RL to real-world infrastruc-
ture management under this assumption presents significant hurdles that existing benchmarks and
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methodologies rarely address simultaneously. Specifically, three critical aspects are inherent in
complex real-world problems: offline learning, where direct online experimentation with critical
infrastructure is infeasible, costly, or unsafe, necessitating learning from pre-existing static datasets;
hard constraints, where maintenance decisions are invariably subject to strict operational con-
straints and finite budgets that cannot be violated; and multi-agent coordination, where a network
of assets may require coordinated decision-making to manage shared resources and system-level ob-
jectives. Additionally, infrastructure networks present unique characteristics where individual assets
can be managed either collectively through coordinated decision-making or independently through
decomposed budget allocation strategies.

Despite significant advancements in offline reinforcement learning (ORL) (Fu et al., 2020; Gulcehre
et al., 2021) and constrained reinforcement learning (CRL) (Ray et al., 2019; Ji et al., 2023; Liu
et al., 2024), there is a notable absence of benchmarks that integrate these dimensions within a
realistic, high-stakes domain involving complex network structures. Similarly, the emerging field of
offline multi-agent reinforcement learning (MARL) has produced valuable benchmarks (Formanek
et al., 2023), but these often focus on coordination tasks without incorporating the hard, system-level
budgetary constraints that are central to our problem. Existing platforms in the RL and infrastructure
communities often fall short because they are evaluated in domains like robotics that do not capture
the resource competition dynamics of a large-scale asset network, focus on online interaction, lack
hard budgetary constraints, or are designed for scenarios that do not capture the unique challenges
of infrastructure management.

To bridge this critical gap, we introduce a novel benchmark for Offline Constrained Multi-agent
Reinforcement Learning tailored for infrastructure management, specifically focusing on bridge
maintenance networks. It is constructed using the National Bridge Inventory (NBI) dataset, a com-
prehensive, real-world repository of bridge inspection and maintenance records from the U.S. De-
partment of Transportation (Contreras-Nieto et al., 2019; Bu et al., 2015). NBI is uniquely suited as
a foundation due to its vast scale, containing decades of longitudinal data, and its richness, detailing
structural ratings, traffic loads, and historical maintenance actions for thousands of assets.

However, transforming raw historical records into a functional RL benchmark requires a principled
modeling pipeline. First, the core of the problem is formalized as a Markov Decision Process
(MDP), which abstracts raw observations into a structured state-action space and designing a
utility function to navigate the trade-off between structural integrity and cost. To enable the
evaluation of long-term policies offline, a data-driven world model is constructed to simulate
the environment’s stochastic dynamics. Finally, to embed the problem within a realistic multi-
agent and constrained setting, we partitioned the assets into regional networks and inferred
their operational budget constraints from historical expenditure data. This frames the challenge
as a system of agents competing for limited resources, mirroring the complexities of real-world
infrastructure management.

Our work reveals that while optimization-based RL, such as Multitask CPQ, can discover novel
and highly effective policies (achieving a 38.03% health gain over historical data), it also highlights
the central challenge for real-world deployment: reconciling this immense potential with strict op-
erational constraints. We establish that imitation learning provides a robust safety baseline (4.77%
gain with high fidelity), serving as a pragmatic starting point. Ultimately, this benchmark quantifies
the crucial trade-off between policy optimization and constraint adherence, thereby motivating and
enabling the development of a new generation of constraint-aware RL algorithms poised to unlock
superior performance in safety-critical systems.

2 RELATED WORK

Our work is positioned at the intersection of infrastructure management, offline reinforcement learn-
ing, and multi-agent systems. This section reviews the most relevant literature and situates our
contribution within this context.

Reinforcement Learning for Bridge Maintenance The optimization of bridge maintenance strate-
gies represents a critical sequential decision-making problem, traditionally modeled using Markov
Decision Processes (MDPs) (Matos et al., 2019; Anwar et al., 2020; Tao et al., 2021). While classical
methods like dynamic programming are effective for single assets, they face significant scalability
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challenges at the network level, especially under strict budget constraints (Sutton & Barto, 2018).
This limitation has motivated the exploration of Reinforcement Learning (RL) as a more adaptive
and scalable paradigm. A growing body of research demonstrates the potential of RL in this do-
main, with some studies framing the problem under a single, centralized agent (Lei et al., 2022;
Chen et al., 2024) and others adopting a decentralized multi-agent (MARL) perspective (Zhang
et al., 2024; Zhou et al., 2022). However, a critical barrier to real-world deployment remains: these
pioneering works predominantly rely on online learning, which assumes an agent can safely and
freely interact with the environment—an assumption that is untenable for high-stakes infrastructure
management.

Positioning within RL Benchmarks To situate our contribution within the broader RL landscape,
we compare NBI-Benchmark against several influential benchmarks in offline and safe RL. As
shown in Table 1, existing platforms, while foundational for the community, each lack at least one
of the critical dimensions required for our target problem.

Table 1: Comparison of Offline and Constrained RL Datasets/Benchmarks.

Feature / Dataset BridgeBench (Ours) DSRL Safety-Gym D4RL
Offline Dataset ✔ ✔ ✗ ✔
Multi-Agent Support ✔ ✗ ✗ ✗
Real-World Data ✔ Hybrid ✗ ✗
Native Constraint Labels ✔ ✔ ✔ ✗

For example, D4RL (Fu et al., 2020), a cornerstone of offline RL research, lacks native cost or con-
straint labels, making it unsuitable for studying constrained optimization. The DSRL benchmark
(Ji et al., 2023) improves on this by providing offline datasets with explicit constraint information.
However, it is designed for single-agent scenarios and is based on hybrid or simulated robotics data.
Conversely, Safety-Gym (Ray et al., 2019) is built for evaluating constrained agents but operates
in an online setting. A common thread is that these influential benchmarks are grounded in do-
mains like robotics or games, which do not capture the unique dynamics of real-world infrastructure
deterioration and resource competition. Our NBI-Benchmark is the first to integrate all four fea-
tures, providing a unique and necessary testbed for developing practical algorithms for large-scale,
real-world systems.

Benchmarks in Other Infrastructure Domains Within the broader infrastructure space, several
valuable tools have emerged. General-purpose simulation frameworks like InfraLib (Thangeda et al.,
2024) provide tools to generate synthetic data from user-defined models. In other sectors, CityLearn
(Vázquez-Canteli et al., 2019) provides a popular environment for building energy management,
Grid2Op (Marot et al., 2020) offers a sophisticated platform for power grid operations, and Con-
tainerGym (Friedrich et al., 2023) has been introduced for industrial resource allocation. However,
these invaluable platforms differ from our work in two fundamental ways: 1) they are primarily de-
signed for online interaction or generate data from a simulator, rather than providing a large-scale,
pre-collected dataset of historical observations; and 2) their constraints often focus on operational
goals (e.g., maintaining grid stability or adhering to packing logic) rather than the hard, long-term
budgetary limits common in civil engineering. To the best of our knowledge, no publicly available
benchmark for network-level bridge maintenance is specifically structured for offline, constrained,
multi-agent reinforcement learning. Our work directly addresses this multifaceted gap.

3 PROBLEM FORMULATION AND BENCHMARK DESIGN

This section establishes the study’s theoretical and practical foundations. First, we model the prob-
lem as a Multi-Agent Constrained Markov Decision Process (MA-CMDP). Second, we construct a
large-scale benchmark from National Bridge Inventory (NBI) data for training and evaluating offline
RL agents within this framework.
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3.1 MULTI-AGENT CONSTRAINED MDP FORMULATION

We model the bridge maintenance problem as a Multi-Agent Constrained Markov Decision Process
(MA-CMDP), defined by the tuple (N ,S,A, P,R,C, γ,W, B). The agents N is a set of N agents
where each agent i ∈ N corresponds to a bridge in the network. The global state space S has
st = [s1t , s

2
t , . . . , s

N
t , bt] consisting of individual bridge states sit and remaining budget bt, where

each bridge state sit includes structural rating, bridge age, physical attributes (length, width, struc-
tural type), traffic load, and environmental factors derived from NBI records. Each agent selects from
the action space A with four discrete maintenance actions: a = 0 (No Action), a = 1 (Minor Re-
pair), a = 2 (Major Repair), and a = 3 (Replacement), forming joint action at = [a1t , a

2
t , . . . , a

N
t ].

The transition function P (st+1|st,at) captures stochastic bridge deterioration and maintenance out-
comes, estimated from historical NBI data transitions.

The reward function R(st,at, st+1) provides a scalar feedback signal that balances immediate health
improvements against maintenance costs. The cost function C(st,at) represents the total monetary
cost of joint maintenance actions, derived from NBI cost records. The connectivity matrix W ∈
RN×N captures spatial relationships between bridges based on geographical proximity. The budget
constraint B is the total budget limit that constrains cumulative maintenance expenditure.

The optimization objective seeks a policy π : S → A that maximizes expected cumulative reward
subject to budget constraints:

max
π

Eπ

[
T∑

t=0

γtR(st,at, st+1)

]
s.t. Eπ

[
T∑

t=0

C(st,at)

]
≤ B

This formulation supports both multi-agent approaches for resource competition and coordination,
and single-agent approaches where budget allocation decomposes the network problem into individ-
ual subproblems. The multi-agent view suits the distributed nature of infrastructure management,
where decision-makers compete for limited resources. Due to safety and cost, direct experimenta-
tion on critical infrastructure is infeasible, necessitating offline learning. Hard budget constraints
reflect strict public sector budgets where overspending is intolerable.

3.2 BENCHMARK CONSTRUCTION WITH NBI DATA

The construction of our benchmark dataset follows a structured pipeline, as illustrated in Figure
1, designed to transform raw National Bridge Inventory (NBI) records into a format suitable for
reinforcement learning. We utilize highway bridge data from California spanning 1992 to 2023 to
ensure data homogeneity and sufficient sample size.

Figure 1: The pipeline for constructing the benchmark
dataset from raw NBI data. The process includes data pre-
processing, MDP formulation, regional partitioning, and
yields the final dataset and an empirical transition matrix.

Data Preprocessing and MDP For-
mulation. The process begins with
raw data extraction and a rigorous
preprocessing stage. We then for-
mulate the core components of the
Markov Decision Process (MDP).
The bridge’s health state is catego-
rized into four distinct levels based
on structural evaluation scores: Good
(rating ≥ 7), Fair (5 ≤ rating < 7),
Poor (3 ≤ rating < 5), and Critical
(rating < 3). The action space is de-
fined by mapping NBI’s work codes
to four categories: No Action, Minor
Repair, Major Repair, and Replace-
ment, with empirically derived aver-
age costs of $0, $71.56, $1,643.31,
and $2,433.53, respectively. The reward function is designed to balance health improvement against
cost-effectiveness:

R(st, at, st+1) = ∆Health − β · cost(at) + Bonus/Penalty

4
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where ∆Health represents the change in health state. The function penalizes action costs, weighted
by a parameter β, and includes bonus or penalty terms to encourage proactive maintenance on high-
health bridges and discourage neglect of critical ones. The detailed construction of these terms and
the parameter selection for β are provided in Appendix B.

Multi-Agent Environment and Dataset Construction. To create meaningful multi-agent scenar-
ios, we partition the statewide dataset into 400 geographically coherent regions using a spatial clus-
tering algorithm. For each region, a static connectivity matrix W is constructed to capture inter-
bridge relationships. From the time-series data of each region, we generate multiple episodes using
a sliding window approach. This process culminates in a benchmark dataset of 2000 episodes. Each
episode is stored as a collection of NumPy arrays, containing observations (with a feature dimen-
sion of 5), actions, and rewards for all agents over a 25-step horizon, alongside the region’s static
connectivity matrix. Finally, global normalization is applied across all features. The specifics of the
regional partitioning, dataset generation, and final data structure are further elaborated in Appendix
B.

Empirical Transition Matrix Estimation. In parallel with the main dataset construction, we es-
timate an empirical state transition matrix, P (st+1|st, at), by aggregating observed year-over-year
health state changes for each action type across the entire dataset. This matrix quantifies the av-
erage system dynamics, providing a valuable resource for model-based reinforcement learning ap-
proaches. The detailed methodology for its construction and the resulting transition matrices are
presented in Appendix B.

4 EVALUATED ALGORITHMS AND EXPERIMENTAL SETUP

Our reliance on a fixed historical dataset necessitates an offline reinforcement learning approach.
The evaluated algorithms were specifically chosen to explore solutions along two primary axes of
our benchmark’s challenges: the management of explicit budget constraints and the decentralized,
multi-agent nature of the problem. Details for each algorithm are provided in Appendix A.

4.1 ALGORITHM OVERVIEW

To address the challenges outlined above, our selected algorithms are categorized into two main
groups. First, we include single-agent algorithms that explicitly handle constraints. These
methods, such as the value-based multitask CPQ and the imitation-learning-based CDT and
multitask bc, treat the problem as a centralized decision-making task under strict budgetary
limits and serve to benchmark performance when global optimization is attempted.

Second, to reflect the operational reality of distributed management, we evaluate a range of multi-
agent algorithms. This includes fundamental baselines like a Random policy and discrete bc
(Behavior Cloning) to establish lower and expert-imitation performance bounds, respectively. Fur-
thermore, we incorporate state-of-the-art offline MARL methods to assess the potential for learn-
ing policies that improve upon historical data, including IQL-CQL for independent learning and
QMIX-CQL for centralized training with coordination.

Table 2 provides a systematic comparison of their key features.

4.2 EVALUATION METRICS

A set of evaluation metrics is designed to capture the performance and effectiveness from multiple
perspectives.

Health Improvement. In reality, the overall health of a bridge network deteriorates annually. The
goal of a maintenance strategy is to mitigate this degradation. Using the state transition matrix
previously defined, we calculate the average health change per bridge under the algorithm’s policy.
This change is then compared against two baselines: the outcome of doing nothing (no maintenance)
and the outcome following historical maintenance actions. These comparisons correspond to the
”Improve vs None” and ”Improve vs History” values in our results table, quantifying how much
better the algorithm performs relative to these benchmarks.
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Table 2: Algorithm Feature Comparison

Algorithm Core Features Advanced/Specific Features
Explicit

Constraint
Handling

Single-Agent Multi-Agent Centralized
Training
(MARL)

Behavior
Cloning

Value-
Based

Single-Agent Algorithms
multitask CPQ ✔ ✔ ✗ N/A ✗ ✔
CDT ✔ ✔ ✗ N/A ✔ ✗
multitask bc ✔ ✔ ✗ N/A ✔ ✗

Multi-Agent Algorithms
Random ✗ ✗ ✔ N/A ✗ ✗
discrete bc ✗ ✗ ✔ ✗ ✔ ✗
IQL-CQL ✗ ✗ ✔ ✗ ✗ ✔
QMIX-CQL ✗ ✗ ✔ ✔ ✗ ✔

Budget Ratio. As the name suggests, this metric is the ratio of the total cost incurred by the algo-
rithm to the total available budget, indicating the proportion of the budget that was utilized.

Behavioral Similarity. This metric measures the proportion of an algorithm’s actions that are iden-
tical to the actions taken in the historical data, reflecting the degree to which the algorithm mimics
past human expert decisions.

Violation Rate. This is the proportion of individual actions for which the cost exceeds the allocated
budget for that specific decision. It measures the algorithm’s ability to adhere to financial constraints
on a per-action basis.

Health Gain per $1M. This metric evaluates the cost-efficiency. It is calculated as the aver-
age health improvement per bridge, divided by the average cost per bridge, and then scaled by
$1,000,000. It represents the health gain achieved for every million dollars invested. In our evalua-
tion tables, a higher value for ”Health Gain per $1M” signifies a more efficient.

5 RESULTS AND ANALYSIS

This section presents a multi-faceted evaluation of the trained algorithms, designed to assess their
effectiveness, efficiency, and robustness. Our experimental framework is extensive: we evaluate
8 core algorithms under two primary evaluation paradigms. The first is a static assessment on a
held-out test set. The second is a dynamic, 100-year longitudinal simulation that further examines
algorithm behavior across 5 distinct budget scaling factors (0.25× to 4.0×) and 9 different budget
allocation strategies. To ensure statistical robustness, each unique experimental configuration was
repeated with multiple random seeds.

5.1 QUANTITATIVE PERFORMANCE ON THE TEST SET

To establish a baseline understanding of each algorithm’s capabilities, we first evaluate their perfor-
mance on a held-out test set. This static evaluation is crucial for revealing the inherent trade-offs
between maximizing health outcomes and adhering to budgetary constraints, as captured by the
metrics in Table 3 and visualized in Appendix C.

The results reveal a critical constraint-performance paradox: algorithms achieving the highest per-
formance gains consistently exhibit the poorest constraint adherence. Multitask CPQ dominates
the upper-left corner with exceptional health improvements (54.02% over no-action, 38.03% over
historical baseline) and remarkable efficiency (12.88 health units per $1M), yet suffers from a severe
71.8% violation rate that renders it impractical for deployment.

In contrast, discrete BC and IQL-CQL algorithms demonstrate different compromises.
discrete bc 50 achieves a competitive health improvement (4.77% over historical baseline)
with a reasonable budget ratio (1.018×) and the highest behavioral similarity score (0.945).

6
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Table 3: Algorithm Performance Comparison

Algorithm Budget
Ratio

Improve
vs None

Improve
vs History

Behavioral
Similarity

Violation
Rate

Health Gain
per $1M

Single-Agent Algorithms
multitask bc 1.638 ± 0.09 -5.16 ± 4.24 -41.52 ± 5.70 0.673 ± 0.01 0.020 ± 0.00 -1.1446
cdt 0.419 ± 0.06 19.81 ± 3.42 -7.23 ± 4.60 0.851 ± 0.01 0.064 ± 0.01 5.2475
multitask cpq 0.283 ± 0.05 54.02 ± 0.91 38.03 ± 1.22 0.146 ± 0.01 0.718 ± 0.00 12.8769
Multi-Agent Algorithms
iqlcql marl no bud 0.136 ± 0.04 13.23 ± 4.43 -16.84 ± 5.96 0.868 ± 0.00 0.014 ± 0.00 1.7547
iqlcql marl 0.897 ± 0.07 23.57 ± 2.62 -2.95 ± 3.52 0.942 ± 0.00 0.086 ± 0.00 6.4346
discrete bc 50 1.018 ± 0.04 29.31 ± 2.60 4.77 ± 3.49 0.945 ± 0.00 0.087 ± 0.00 7.7829
qmix cql 1.625 ± 0.15 20.91 ± 6.59 -6.52 ± 8.87 0.675 ± 0.02 0.232 ± 0.01 3.2430
random marl 4.112 ± 0.63 4.23 ± 0.61 -28.91 ± 0.82 0.249 ± 0.00 0.539 ± 0.00 0.8531

iqlcql marl, while showing a slight performance degradation against the historical baseline
(-2.95%), maintains a strict budget ratio (0.897×) and high behavioral similarity (0.942). These
results indicate that imitation-based methods can strongly align with expert decision patterns while
maintaining moderate violation rates (8.6–8.7%).

Multi-agent algorithms generally achieve superior behavioral similarity, with discrete BC variants
and IQL-CQL showing the highest scores, indicating better capture of expert decision patterns. The
efficiency ranking clearly emerges as: CPQ ≫ multi-agent BC > IQL-CQL > CDT > QMIX-CQL
≫ random > zero improvement > single-agent BC.

5.2 ACTION SELECTION ANALYSIS

For a deeper insight into algorithmic behavior, we analyze action selection under two different eval-
uation settings. It is important that during training, we do not apply any explicit constraints on the
agents’ action outputs; the algorithms learn purely from the provided data. For the evaluation, how-
ever, we compare two scenarios: an unrestricted setting, where agents freely choose actions based
on their learned policies, and a budget-restricted setting, where we enforce a hard constraint. In
this latter case, shown on the right side of Figure 2, agents are only permitted to select actions with a
cost less than the remaining budget. This comparison reveals how budget constraints fundamentally
alter behavior and provides insights into the mechanisms behind constraint adherence.

Figure 2: Action distribution under unrestricted (left) and budget-restricted (right) conditions. Most
algorithms align with the dataset’s bias toward Action 0 (85.0%), except CPQ which shows a learned
preference for Action 1.

7
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Most algorithms align closely with the historical dataset’s bias toward Action 0 (85.0%), with multi-
agent BC algorithms exhibiting nearly identical action distributions. The notable exception is mul-
titask CPQ, which demonstrates a learned preference for low-cost Action 1 (77.7%) under unre-
stricted conditions, diverging significantly from dataset patterns. This preference for Action 1 may
precisely explain CPQ’s exceptional efficiency, as it discovered a cost-effective strategy underuti-
lized in the original dataset.

A clear pattern emerges: algorithms with higher violation rates exhibit greater behavioral changes
when budget constraints are imposed. CPQ and QMIX-CQL, which have high violation rates,
show dramatic shifts in action selection under restrictions. Conversely, single-agent BC algorithms
demonstrate minimal changes between unrestricted and restricted conditions, indicating effective
constraint adherence and consistent policy behavior.

5.3 100-YEAR LONG-TERM SIMULATION ANALYSIS

While static evaluation provides a snapshot of performance, critical questions remain: How do these
policies perform over an extended operational horizon? How sensitive are they to changes in budget
availability and allocation? To answer these, we designed a 100-year longitudinal simulation. The
simulation is initialized using data from a specific geographic region in our test set, with the crucial
modification that all bridges are set to their maximum health state. This allows us to observe the
full life-cycle performance. The simulation progresses annually, with bridge health evolving ac-
cording to our pre-defined state transition matrix. For years extending beyond the original dataset’s
timeframe, a bridge’s age increments naturally and its health state changes, while other static obser-
vational features are held constant.

Long-term Performance Comparison. To establish a baseline for long-term behavior, we first
analyze performance under the original historical budget allocation strategy and a standard 1.0×
budget ratio. In this default setting, we observe substantial disparities over the 100-year simulation
(Figure 3). multitask cpq maintains its exceptional performance, achieving both the highest
health gains and superior cost efficiency. In contrast, moderate performers on the test set like cdt
and qmix cql exhibit high expenditure with poor cost efficiency. This counterintuitive pattern
primarily stems from the distribution shift between the simulation environment (which starts with
healthy bridges) and the training data, challenging the algorithms’ ability to generalize to out-of-
distribution states.

Figure 3: 100-year simulation comparison under original budget allocation (1.0× scaling). Shows
health evolution, budget expenditure, total costs, and efficiency metrics across algorithms.
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Budget Sensitivity Analysis. Examining algorithm response to five budget scaling factors (0.25×
to 4.0×) reveals two distinct behavioral categories (Figure 4). Budget-sensitive algorithms (e.g.,
discrete bc, iqlcql marl) immediately select higher-cost actions when constraints are re-
laxed, showing a learned association between budget and action choice. However, their ef-
ficiency often decreases due to diminishing returns. Budget-insensitive algorithms (e.g., cdt,
multitask cpq) exhibit more irregular patterns, as their optimization objectives (like achieving
a target return) may not prioritize spending the entire budget.

Impact of Budget Allocation Strategy. Our analysis of nine different allocation strategies reveals
remarkable consistency: the original dataset’s allocation strategy emerges as a well-balanced ap-
proach. While more targeted strategies (e.g., uniform top-10% allocation) achieve higher efficiency
through lower expenditure, the reduced investment leads to suboptimal long-term health outcomes.
This validates the underlying rationality of the historical resource distribution patterns. Detailed
strategy comparisons are provided in Appendix C.

Figure 4: Budget scaling sensitivity for discrete BC (representative of budget-sensitive algorithms).
Other algorithms show varying degrees of sensitivity, with detailed analysis in Appendix C.

6 DISCUSSION AND CONCLUSION

This work establishes the first comprehensive benchmark for multi-agent offline constrained rein-
forcement learning in large-scale infrastructure maintenance. Our findings reveal a fundamental
”constraint-performance paradox” that highlights a critical gap between the theoretical potential of
optimization algorithms and the pragmatic demands of real-world deployment. Algorithms that
achieve the highest performance gains do so by violating operational constraints, while those that
adhere to constraints offer more modest, yet reliable, improvements.

A central insight is that optimization-based methods like multitask CPQ can discover novel,
highly efficient maintenance strategies. Specifically, its preference for frequent, low-cost preven-
tative actions (a 38.03% health improvement) demonstrates RL’s capacity to uncover policies that
diverge from and potentially improve upon established human practice. However, this unconstrained
optimization leads to a 71.8% budget violation rate, rendering the policy operationally infeasible.
In contrast, imitation-based methods such as discrete bc provide a pragmatic and safe path for
near-term deployment. By closely mimicking expert decisions, they not only achieve a respectable
4.77% health gain but also inherit the implicit risk management and budget adherence of the histor-
ical data, making them a reliable starting point.

Our 100-year simulations further underscore these challenges, revealing that even effective policies
may lead to unsustainable expenditure over a century-long horizon. This is compounded by distri-
bution shift, where policies falter when faced with conditions not seen in the training data, such as
a network of initially healthy bridges. Ultimately, BridgeBench formalizes the trade-off between
pure optimization and practical, constraint-bound deployment. The path forward requires moving
beyond both unconstrained optimization and pure imitation. This benchmark thus serves as both a
foundation and a challenge to the research community: to develop a new generation of algorithms
that are inherently constraint-aware, robust to long-term dynamics, and can reconcile the discov-
ery of novel, high-performance policies with the strict operational realities of the real world. More
detailed discussion is provided in Appendix E.
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