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ABSTRACT

Unsupervised learning on imbalanced data is challenging because, when given im-
balanced data, current model is often dominated by the major category and ignores
the categories with small amount of data. We develop a latent variable model that
can cope with imbalanced data by dividing the latent space into a shared space and
a private space. Based on Gaussian Process Latent Variable Models, we propose
a new kernel formulation that enables the separation of latent space and derive an
efficient variational inference method. The performance of our model is demon-
strated with an imbalanced medical image dataset.

1 INTRODUCTION

In many medical applications, e.g. pathology, negatively labelled data is extremely easy to obtain
(e.g. healthy cells). Positive labels, on the other hand, can be harder to acquire (e.g. particular
disease morphologies). These massively unbalanced problems are challenging for most algorithms
because the negative class tends to dominate the objective function and the resulting model performs
poorly. In practice it is often better to throw away much of the negative data and rebalance the data
set.

Unsupervised learning has been attracting a lot of attention as it has the potential to serve as an
underpinning technology for a range of challenges such as generative modeling, missing data im-
putation and coping with multiple data modalities. Unsupervised learning can also be applied to a
wider range of data sets, because it does not rely on having carefully labelled data available.

In this paper we explore the possibility of using a variant unsupervised learning algorithm to solve
the problem of label balance. We build latent variable models that can simultaneously accommo-
date a very large number of negative examples, sharing their characteristics appropriately with the
positive class, while simultaneously allowing the model to characterise the manner in which the
positive class is differently characterised through preserved (or private) latent spaces that are sepa-
rately learned for each class. The resulting model does not suffer from the standard challenges in
this domain. We compare with a variant of the discriminative GP-LVM (the model that underpinned
GaussianFace) and show signficantly improved performance.

Our probabilistic latent variable model divides its latent space into a shared space of all the cate-
gories and a private space for each category (Damianou et al., 2012). The shared space accounts
for capturing the common regularities among categories (e.g. positive and negative class) and the
private space is dedicated to model the variance specific to individual categories. Because the mod-
elling of the private space is category specific, there is no domination of it’s characteristics by the
larger category. Thus the data in each category can be modeled appropriately while the common
regularities are still exploited.
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We implement the idea of shared and private space in the framework of Gaussian Process latent
variable models (GPLVM, Lawrence, 2005) by deriving a particular covariance function (kernel)
that enables such separation. We exploit closed form variational lower bounds of the log marginal
likelihood of the proposed model, which to provide an efficient approximation inference method.

The performance of our model is evaluated with a real image dataset, in which the positive and
negative data are extremely imbalanced. We show our model still can learn from imbalanced data
and perform well in both generative and discriminative tasks.

2 STRUCTURE CONSOLIDATION LATENT VARIABLE MODEL

We assume the dataset is represented as a set of fixed length vectors Y ∈ <N×D, where N is the
number of data points and D is the dimensionality of individual data points. Additionally, a label of
category is associated with each data point, c = (c1, . . . , cN ), ci ∈ {1, . . . , C}, where C indicates
the number of categories in the dataset. We aim at building a probabilistic model p(Y) that is robust
when the numbers of data in different categories are highly imbalanced.

We assume the data associated with a set of latent representations X ∈ <N×Q, where Q is the
dimensionality of the latent space. The latent representations are related to the observed data through
an unknown mapping function f and f follows a prior distribution that is defined as a Gaussian
process,

y = f(x) + ε, f ∼ GP(0, k), (1)

where ε ∈ N (0, σ2I) denotes the observation noise and k is the kernel function. Given the observed
data Y, we wish to obtain a a posterior estimate for both the latent representation X and the un-
known mapping function f(·). In our model we separate the latent space into a shared space with
the dimensionality Qs and a private space with the dimensionality Qp. Therefore, a latent repre-
sentation can be denoted as x = [x>s ,x

>
p ]>,xs ∈ <Qs ,xp ∈ <Qp , where xs and xp are the latent

representations in shared and private space respectively. With the separated latent representation,
we define the kernel function in our model as

k((x, cx), (x′, cx′)) = ks(xs,x
′
s) + kp((xp, cx), (x′p, cx′)), (2)

where ks is the kernel function for the shared space and kp is the kernel function for the private
space. The shared kernel can be any kernel function built on a vector space from the literature.
However, the private kernel is defined to take the following form:

kp((xp, cx), (x′p, cx′)) =

{
k′((xp, cx), (x′p, cx′)), cx = cx′ ,

0, cx 6= cx′ ,
(3)

where k′ is the kernel function chosen to calculate the covariance and cx is the label of cate-
gory for the data point x. We give a unit Gaussian prior distribution to latent representations
x ∼ N (0, I). The log marginal likelihood for the proposed model can be derived as log p(Y) =
log
∫
p(Y|X)p(X)dX. There is no analytical solution for this marginal likelihood. We apply vari-

ational inference and derive a closed form lower bound of the log marginal likelihood, by following
a sparse Gaussian process approximation (Titsias & Lawrence, 2010):

log p(Y) ≥
D∑
d=1

F̃d(q)− KL(q(X)‖p(X)), (4)
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where W = 1
σ2 I − 1

σ4 Ψ1( 1
σ2 Ψ2 + Kuu)−1Ψ>1 , and ψ0, Ψ1, Ψ2 are the expectation of covariance

matrices w.r.t. the variational posterior q(X). In our model, these expectation are derived as

ψ0 =

N∑
n=1

〈
ks(x

(n)
s ,x(n)

s )
〉
q(x

(n)
s )

+
〈
k′(x(n)

p ,x(n)
p )
〉
q(x

(n)
p )

(6)

(Ψ1)nm =
〈
ks(x

(n)
s , z(m)

s )
〉
q(x

(n)
s )

+
〈
kp(x

(n)
p , z(m)

p )
〉
q(x

(n)
p )

(7)

(Ψ2)mm′ =

N∑
n=1

〈
ks(x

(n)
s , z(m)

s )ks(x
(n)
s , z(m

′)
s )

〉
q(x

(n)
s )

+
〈
kp(x

(n)
p , z(m)

p )kp(x
(n)
p , z(m

′)
p )

〉
q(x

(n)
p )

+
〈
ks(x

(n)
s , z(m)

s )
〉
q(x

(n)
s )

〈
kp(x

(n)
p , z(m

′)
p )

〉
q(x

(n)
p )

+
〈
kp(x

(n)
p , z(m)

p )
〉
q(x

(n)
p )

〈
ks(x

(n)
s , z(m

′)
s )

〉
q(x

(n)
s )

(8)

where z is the variational parameter known as inducing inputs.

3 EXPERIMENT

Mitosis detection is a stage in tumour assessment that involves determining whether individual cells
are in mitosis (dividing to reproduce). These cells are rare. We used data from the assessment of mi-
tosis detection algorithm 2013 (AMIDA13, Veta et al., 2015) challenge which is publicly available.
The main goal of the challenge is to find proper mitosis detection methods that can be automatic or
semi-automatic. We use the training set from the challenge, which consists of tissue images of 12
patients and are annotated by human experts. We preprocess the tissue images with the algorithm by
Snell (2013) and focus on the generated candidate image patches. The resulting image set contains
146,562 grey-scale image patches (30 × 30 pixels), of which 550 are positive (mitosis) according
to manual annotation. We randomly take 80% of positive images and 5,000 negative images as the
training data. This gives in total 5,440 images. Some examples of the training data is shown in
Figure 2a. We apply for SCLVM to this dataset and used an exponentiated quadratic kernel for both
the shared and private space and set the dimensionality of both shared and private space to five.

Both the latent representations and kernel parameters are optimized until convergence. The result-
ing latent space is visualized in Figure 1. The positive and negative images present similar struc-
tures in the shared space, which demonstrates the discovered common regularities, and their private
space are significantly different from each other. To demonstrate the ability of SCLVM in balancing
the modeling capabilities between imbalanced categories, we draw samples from the learned latent
space of SCLVM for both positive and negative categories (see Figure 2b). The generated samples
from positive and negative categories are clearly different from each other and they capture some
characteristics of their own categories. We further evaluate the learned latent space by performing
classification on test set (the rest of positive examples plus randomly sampled negative examples,
in total 1000 images). We compare SCLVM with BGPLVM (Titsias & Lawrence, 2010) and DG-
PLVM1 (Urtasun & Darrell, 2007) with ten test sets. We apply weighted SVM with an exponentiated
quadratic kernel on the latent space from the BGPLVM and DGPLVM. The results are shown in Ta-
ble 1. Note that BGPLVM requires an additional classification model to be learned. This does not
provide probabilities over the classes other than in the ad-hoc manner that an SVM will. Similarly
DGPLVM does learn a space that reflects the class information, but it does not provide means to get
the posterior over the classes. Our model is the only one that learns the classification jointly with
the model and provides a principled way of getting probabilities over the classes.

4 CONCLUSION

We presented a probabilistic latent variable model that can cope with imbalanced data. We developed
a kernel that separates the latent space into a shared spare and a private space. An efficient variational
inference method is proposed by deriving a closed form lower bound of marginal likelihood. Beyond

1Due to its complexity O(N3), we only use 1000 images for training (440 positive and 560 negative).
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Figure 1: The visualization of the training data in learned latent spaces. The first figure shows the positive
and negative data in two of the shared dimensions. The second and third figures show the two of the private
dimensions for the negative and positive data respectively. The fourth figure shows the learned latent space
from BGPLVM.

(a) (b)

Figure 2: (a) Some examples in the data sets. (b) Samples generated from the trained SCLVM. In both figures,
the first two rows corresponds to positive images and the last two rows corresponds to negative images.

Table 1: Classification performance.The mean and standard deviation from ten test sets are shown.

SCLVM BGPLVM (SVM) DGPLVM (SVM)
precision 0.426± 0.024 0.306± 0.013 0.242± 0.008

recall 0.555± 0.007 0.827± 0.000 1.000± 0.000
F1 score 0.482± 0.015 0.447± 0.014 0.390± 0.011

the shown example, the ability of jointly modeling multiple data categories and handling imbalanced
datasets can be linked to many other areas such as transfer learning.
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