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ABSTRACT

Deep feedforward and recurrent networks have achieved impressive results in
many perception and language processing applications. This success is partially
attributed to architectural innovations such as convolutional and long short-term
memory networks. A major reason for these architectural innovations is that they
capture better domain knowledge, and importantly are easier to optimize than
more basic architectures. Recently, more complex architectures such as Neural
Turing Machines and Memory Networks have been proposed for tasks including
question answering and general computation, creating a new set of optimization
challenges. In this paper, we discuss a low-overhead and easy-to-implement tech-
nique of adding gradient noise which we find to be surprisingly effective when
training these very deep architectures. The technique not only helps to avoid
overfitting, but also can result in lower training loss. This method alone allows
a fully-connected 20-layer deep network to be trained with standard gradient de-
scent, even starting from a poor initialization. We see consistent improvements
for many complex models, including a 72% relative reduction in error rate over
a carefully-tuned baseline on a challenging question-answering task, and a dou-
bling of the number of accurate binary multiplication models learned across 7,000
random restarts. We encourage further application of this technique to additional
complex modern architectures.

1 INTRODUCTION

Deep neural networks have shown remarkable success in diverse domains including image recog-
nition (Krizhevsky et al.| [2012)), speech recognition (Hinton et al., 2012) and language processing
applications (Sutskever et al.| 2014} [Bahdanau et al.,[2014). This broad success comes from a con-
fluence of several factors. First, the creation of massive labeled datasets has allowed deep networks
to demonstrate their advantages in expressiveness and scalability. The increase in computing power
has also enabled training of far larger networks with more forgiving optimization dynamics (Choro-
manska et al, 2015). Additionally, architectures such as convolutional networks (LeCun et al.,
1998)) and long short-term memory networks (Hochreiter & Schmidhuber, [1997) have proven to be
easier to optimize than classical feedforward and recurrent models. Finally, the success of deep
networks is also a result of the development of simple and broadly applicable learning techniques
such as dropout (Srivastava et al.| 2014}, ReLUs (Nair & Hinton, 2010), gradient clipping (Pascanu
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et al., 2013} Graves|, 2013)), optimization and weight initialization strategies (Glorot & Bengio,2010;
Sutskever et al., 2013 He et al., 2015)).

Recent work has aimed to push neural network learning into more challenging domains, such as
question answering or program induction. These more complicated problems demand more compli-
cated architectures (e.g.,/Graves et al.[(2014); Sukhbaatar et al.|(2015)) thereby posing new optimiza-
tion challenges. In order to achieve good performance, researchers have reported the necessity of
additional techniques such supervision in intermediate steps (Weston et al., 2014)), warmstarts (Peng
et al.| |2015), random restarts, and the removal of certain activation functions in early stages of train-
ing (Sukhbaatar et al.,|2015)).

A recurring theme in recent works is that commonly-used optimization techniques are not always
sufficient to robustly optimize the models. In this work, we explore a simple technique of adding
annealed Gaussian noise to the gradient, which we find to be surprisingly effective in training deep
neural networks with stochastic gradient descent. While there is a long tradition of adding random
weight noise in classical neural networks, it has been under-explored in the optimization of modern
deep architectures. In contrast to theoretical and empirical results on the regularizing effects of
conventional stochastic gradient descent, we find that in practice the added noise can actually help us
achieve lower training loss by encouraging active exploration of parameter space. This exploration
proves especially necessary and fruitful when optimizing neural network models containing many
layers or complex latent structures.

The main contribution of this work is to demonstrate the broad applicability of this simple method
to the training of many complex modern neural architectures. Furthermore, to the best of our knowl-
edge, our added noise schedule has not been used before in the training of deep networks. We
consistently see improvement from injected gradient noise when optimizing a wide variety of mod-
els, including very deep fully-connected networks, and special-purpose architectures for question
answering and algorithm learning. For example, this method allows us to escape a poor initializa-
tion and successfully train a 20-layer rectifier network on MNIST with standard gradient descent. It
also enables a 72% relative reduction in error in question-answering, and doubles the number of ac-
curate binary multiplication models learned across 7,000 random restarts. We hope that practitioners
will see similar improvements in their own research by adding this simple technique, implementable
in a single line of code, to their repertoire.

2 RELATED WORK

Adding random noise to the weights, gradient, or the hidden units has been a known technique
amongst neural network practitioners for many years (e.g.,|An|(1996))). However, the use of gradient
noise has been rare and its benefits have not been fully documented with modern deep networks.

Weight noise (Steijvers,|1996) and adaptive weight noise (Graves, 201 1;|Blundell et al.,[2015), which
usually maintains a Gaussian variational posterior over network weights, similarly aim to improve
learning by added noise during training. They normally differ slightly from our proposed method in
that the noise is not annealed and at convergence will be non-zero. Additionally, in adaptive weight
noise, an extra set of parameters for the variance must be maintained.

Similarly, the technique of dropout (Srivastava et al., 2014) randomly sets groups of hidden units to
zero at train time to improve generalization in a manner similar to ensembling.

An annealed Gaussian gradient noise schedule was used to train the highly non-convex Stochastic
Neighbor Embedding model in Hinton & Roweis| (2002). The gradient noise schedule that we
found to be most effective is very similar to the Stochastic Gradient Langevin Dynamics algorithm
of [Welling & Teh| (2011)), who use gradients with added noise to accelerate MCMC inference for
logistic regression and independent component analysis models. This use of gradient information
in MCMC sampling for machine learning to allow faster exploration of state space was previously
proposed by Neal| (201 1)).

Various optimization techniques have been proposed to improve the training of neural networks.
Most notable is the use of Momentum (Polyakl 1964} [Sutskever et al.l 2013} |Kingma & Bal, [2014)
or adaptive learning rates (Duchi et al., 2011} Dean et al.| 2012} Zeiler, 2012). These methods are
normally developed to provide good convergence rates for the convex setting, and then heuristically
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applied to nonconvex problems. Injecting noise in the gradient is more suitable for nonconvex
problems. By adding even more stochasticity, this technique allows the model more chances to
escape local minima (see a similar argument in |Bottou| (1992))), or to traverse quickly through the
“transient” plateau phase of early learning (see a similar analysis for momentum in Sutskever et al.
(2013)). This is born out empirically in our observation that adding gradient noise can actually
result in lower training loss. In this sense, we suspect adding gradient noise is similar to simulated
annealing (Kirkpatrick et al., [1983) which exploits random noise to explore complex optimization
landscapes. This can be contrasted with well-known benefits of stochastic gradient descent as a
learning algorithm (Robbins & Monrol [1951; Bousquet & Bottoul 2008), where both theory and
practice have shown that the noise induced by the stochastic process aids generalization by reducing
overfitting.

3 METHOD

We consider a simple technique of adding time-dependent Gaussian noise to the gradient g at every
training step ¢:

gtht'f‘N(O»U?)

Our experiments indicate that adding annealed Gaussian noise by decaying the variance works better
than using fixed Gaussian noise. We use a schedule inspired from |Welling & Teh| (201 1) for most of
our experiments and take:
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with 7 selected from {0.01,0.3,1.0} and v = 0.55. Higher gradient noise at the beginning of
training forces the gradient away from 0 in the early stages.

4 EXPERIMENTS

In the following experiments, we consider a variety of complex neural network architectures: Deep
networks for MNIST digit classification, End-To-End Memory Networks (Sukhbaatar et al., [2015)
and Neural Programmer (Neelakantan et al., 2015)) for question answering, Neural Random Access
Machines (Kurach et al.|[2015) and Neural GPUs (Kaiser & Sutskever, [20135)) for algorithm learning.
The models and results are described as follows.

4.1 DEEP FULLY-CONNECTED NETWORKS

For our first set of experiments, we examine the impact of adding gradient noise when training a
very deep fully-connected network on the MNIST handwritten digit classification dataset (LeCun
et all [1998). Our network is deep: it has 20 hidden layers, with each layer containing 50 hidden
units. We use the ReLU activation function (Nair & Hinton, [2010).

In this experiment, we add gradient noise sampled from a Gaussian distribution with mean 0, and
decaying variance according to the schedule in Equation (I) with » = 0.01. We train with SGD
without momentum, using the fixed learning rates of 0.1 and 0.01. Unless otherwise specified, the
weights of the network are initialized from a Gaussian with mean zero, and standard deviation of
0.1, which we call Simple Init.

The results of our experiment are in Table|l] When trained from Simple Init we can see that adding
noise to the gradient helps in achieving higher average and best accuracy over 20 runs using each
learning rate for a total of 40 runs (Table [T Experiment 1). We note that the average is closer to
50% because the small learning rate of 0.01 usually gives very slow convergence. We also try our
approach on a more shallow network of 5 layers, but adding noise does not improve the training in
that case.

Next, we experiment with clipping the gradients with two threshold values: 100 and 10 (Table
Experiment 2, and 3). Here, we find training with gradient noise is insensitive to the gradient
clipping values. By tuning the clipping threshold, it is possible to get comparable accuracy without
noise for this problem.
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In our fourth experiment (Table[T] Experiment 4), we use the analytically-derived ReLU initializa-
tion technique (which we term Good Init) recently-proposed by He et al.[(2015) and find that adding
gradient noise does not help. Previous work has found that stochastic gradient descent with carefully
tuned initialization, momentum, learning rate, and learning rate decay can optimize such extremely
deep fully-connected ReLU networks (Srivastava et al., 2015). It would be harder to find such a
robust initialization technique for the more complex heterogeneous architectures considered in later
sections. Accordingly, we find in later experiments (e.g., Section d.3)) that random restarts and the
use of a momentum-based optimizer like Adam are not sufficient to achieve the best results in the
absence of added gradient noise.

To test how sensitive the methods are to poor initialization, in addition to the sub-optimal Simple
Init, we run an experiment where all the weights in the neural network are initialized at zero. The
results (Table[I] Experiment 5) show that if we do not add noise to the gradient, the networks fail to
learn. If we add some noise, the networks can learn and reach 94.5% accuracy.

Experiment 1: Simple Init, No Gradient Clipping

| Setting | Best Test Accuracy | Average Test Accuracy |

No Noise 89.9 43.1
With Noise 96.7 52.7
No Noise + Dropout | 11.3 10.8

Experiment 2: Simple Init, Gradient Clipping = 100
No Noise 90.0 46.3
With Noise 96.7 52.3

Experiment 3: Simple Init, Gradient Clipping = 10
No Noise 95.7 51.6
With Noise 97.0 53.6

Experiment 4: Good Init (He et al., 2015) + Gradient Clipping = 10
No Noise 97.4 - 91.7
With Noise 97.2 91.7
Experiment 5: Bad Init (Zero Init) + Gradient Clipping = 10

No Noise 114 10.1
With Noise 94.5 49.7

Table 1: Average and best test accuracy on MNIST over 40 runs.

In summary, these experiments show that if we are careful with initialization and gradient clipping
values, it is possible to train a very deep fully-connected network without adding gradient noise.
However, if the initialization is poor, optimization can be difficult, and adding noise to the gradient
is a good mechanism to overcome the optimization difficulty.

The implication of this set of results is that added gradient noise can be an effective mechanism for
training very complex networks. This is because it is more difficult to initialize the weights properly
for complex networks. In the following, we explore the training of more complex networks such as
End-To-End Memory Networks and Neural Programmer, whose initialization is less well studied.

4.2 END-TO-END MEMORY NETWORKS

We test added gradient noise for training End-To-End Memory Networks (Sukhbaatar et al.l 2015)),
a new approach for Q&A using deep networksm Memory Networks have been demonstrated to
perform well on a relatively challenging toy Q&A problem (Weston et al., 2015]).

!Code available at: https://github.com/facebook/MemNN
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In Memory Networks, the model has access to a context, a question, and is asked to predict an
answer. Internally, the model has an attention mechanism which focuses on the right clue to answer
the question. In the original formulation (Weston et al., 2015)), Memory Networks were provided
with additional supervision as to what pieces of context were necessary to answer the question. This
was replaced in the End-To-End formulation by a latent attention mechanism implemented by a
softmax over contexts. As this greatly complicates the learning problem, the authors implement a
two-stage training procedure: First train the networks with a linear attention, then use those weights
to warmstart the model with softmax attention.

In our experiments with Memory Networks, we use our standard noise schedule, using noise sam-
pled from a Gaussian distribution with mean 0, and decaying variance according to Equation (TJ) with
n = 1.0. This noise is added to the gradient after clipping. We also find for these experiments that
a fixed standard deviation also works, but its value has to be tuned, and works best at 0.001. We set
the number of training epochs to 200 because we would like to understand the behaviors of Memory
Networks near convergence. The rest of the training is identical to the experimental setup proposed
by the original authors. We test this approach with the published two-stage training approach, and
additionally with a one-stage training approach where we train the networks with softmax attention
and without warmstarting. Results are reported in Table [2] We find some fluctuations during each
run of the training, but the reported results reflect the typical gains obtained by adding random noise.

We find that warmstarting does indeed help the networks. In both cases, adding random noise to
the gradient also helps the network both in terms of training errors and validation errors. Added
noise, however, is especially helpful for the training of End-To-End Memory Networks without the
warmstarting stage.

| Setting | No Noise | With Noise |
One-stage training | Training error:  10.5% | Training error:  9.6%
Validation error: 19.5% | Validation error: 16.6%
Two-stage training | Training error:  6.2% | Training error:  5.9%
Validation error: 10.9% | Validation error: 10.8%

Table 2: The effects of adding random noise to the gradient on Neural Programmer. Adding ran-
dom noise to the gradient always helps the model. When the models are applied to these more
complicated tasks than the single column experiment, using dropout and noise together seems to be
beneficial in one case while using only one of them achieves the best result in the other case.

4.3 NEURAL PROGRAMMER

Neural Programmer is a neural network architecture augmented with a small set of built-in arithmetic
and logic operations that learns to induce latent programs. It is proposed for the task of question
answering from tables (Neelakantan et al., 2015)). Examples of operations on a table include the sum
of a set of numbers, or the list of numbers greater than a particular value. Key to Neural Programmer
is the use of “soft selection” to assign a probability distribution over the list of operations. This
probability distribution weighs the result of each operation, and the cost function compares this
weighted result to the ground truth. This soft selection, inspired by the soft attention mechanism
of Bahdanau et al.| (2014), allows for full differentiability of the model. Running the model for
several steps of selection allows the model to induce a complex program by chaining the operations,
one after the other. At convergence, the soft selection tends to become peaky (hard selection).
Figure[I] shows the architecture of Neural Programmer at a high level.

In a synthetic table comprehension task, Neural Programmer takes a question and a table (or
database) as input and the goal is to predict the correct answer. To solve this task, the model has
to induce a program and execute it on the table. A major challenge is that the supervision signal is
in the form of the correct answer and not the program itself. The model runs for a fixed number of
steps, and at each step selects a data segment and an operation to apply to the selected data segment.
Soft selection is performed at training time so that the model is differentiable, while at test time hard
selection is employed. Table 3| shows examples of programs induced by the model.
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Timestep t t=1,2,..,T

Arithmetic and
logic operations

Input —| Soft
p r* Controller St Apply
V“
Data Memory H— Output

Figure 1: Neural Programmer, a neural network with built-in arithmetic and logic operations. At
every time step, the controller selectes an operation and a data segment. Figure reproduced with
permission from Neelakantan et al.|(2015).

Selected | Selected
Op Column

greater 50.32 C and lesser 20.21 E sum H 1 | Greater C
What is the sum of numbers in column H 2 | Lesser E
whose field in column C is greater than 50.32 | 3 And -
and field in Column E is lesser than 20.21. 4 Sum H

Question t

Table 3: Example program induced by the model using 7' = 4 time steps. We show the selected
columns in cases in which the selected operation acts on a particular column.

Similar to the above experiments with Memory Networks, in our experiments with Neural Pro-
grammer, we add noise sampled from a Gaussian distribution with mean 0, and decaying variance
according to Equation (1)) with 7 = 1.0 to the gradient after clipping. The model is optimized with
Adam (Kingma & Ba, |2014), which combines momentum and adaptive learning rates.

For our first experiment, we train Neural Programmer to answer questions involving a single column
of numbers. We use 72 different hyper-parameter configurations with and without adding annealed
random noise to the gradients. We also run each of these experiments for 3 different random ini-
tializations of the model parameters and we find that only 1/216 runs achieve 100% test accuracy
without adding noise while 9/216 runs achieve 100% accuracy when random noise is added. The
9 successful runs consisted of models initialized with all the three different random seeds, demon-
strating robustness to initialization. We find that when using dropout (Srivastava et al., [2014) none
of the 216 runs give 100% accuracy.

We consider a more difficult question answering task where tables have up to five columns contain-
ing numbers. We also experiment on a task containing one column of numbers and another column
of text entries. Table ] shows the performance of adding noise vs. no noise on Neural Programmer.

| Setting | No Noise | With Noise | Dropout | Dropout With Noise |
Five columns | 95.3% 98.7% 97.4% 99.2%
Text entries 97.6% 98.8% 99.1% 97.3%

Table 4: The effects of adding random noise to the gradient on Neural Programmer. Adding ran-
dom noise to the gradient always helps the model. When the models are applied to these more
complicated tasks than the single column experiment, using dropout and noise together seems to be
beneficial in one case while using only one of them achieves the best result in the other case.

Figure 2| shows an example of the effect of adding random noise to the gradients in our experiment
with 5 columns. The differences between the two models are much more pronounced than Table []
indicates because that table reflects the results from the best hyperparameters. Figure [2]indicates a
more typical training run.
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Figure 2: Noise Vs. No Noise in our experiment with 5 columns. The models trained with noise

generalizes almost always better.

In all cases, we see that added gradient noise improves performance of Neural Programmer. Its
performance when combined with or used instead of dropout is mixed depending on the problem,
but the positive results indicate that it is worth attempting on a case-by-case basis.

4.4 NEURAL RANDOM ACCESS MACHINES

‘We now conduct experiments with Neural Random-Access Machines (NRAM) (Kurach et al., 2015)).
NRAM is a model for algorithm learning that can store data, and explicitly manipulate and derefer-
ence pointers. NRAM consists of a neural network controller, memory, registers and a set of built-in
operations. This is similar to the Neural Programmer in that it uses a controller network to com-
pose built-in operations, but both reads and writes to an external memory. An operation can either
read (a subset of) contents from the memory, write content to the memory or perform an arithmetic
operation on either input registers or outputs from other operations. The controller runs for a fixed
number of time steps. At every step, the model selects a circuit” to be executed: both the operations

and its inputs. An example of such circuit is presented in Figure

These selections are made using soft attention (Bahdanau et al., 2014)) making the model end-to-end
differentiable. NRAM uses an LSTM (Hochreiter & Schmidhuber, [1997) controller. FigureE] gives

an overview of the model.

For our experiment, we consider a problem of searching k-th element’s value on a linked list. The
network is given a pointer to the head of the linked list, and has to find the value of the k-th element.
Note that this is highly nontrivial because pointers and their values are stored at random locations in
memory, so the model must learn to traverse a complex graph for k steps.

Because of this complexity, training the NRAM architecture can be unstable, especially when the
number of steps and operations is large. We once again experiment with the decaying noise schedule
from Equation (), setting 7 = 0.3. We run a large grid search over the model hyperparameters (de-
tailed in |[Kurach et al.|(2015))), and use the top 3 for our experiments. For each of these 3 settings, we
try 100 different random initializations and look at the percentage of runs that give 100% accuracy
across each one for training both with and without noise.
As in our experiments with Neural Programmer, we find that gradient clipping is crucial when
training with noise. This is likely because the effect of random noise is washed away when gradients
become too large. For models trained with noise we observed much better reproduce rates, which
are presented in Table Although it is possible to train the model to achieve 100% accuracy without
noise, it is less robust across multiple random restarts, with over 10x as many initializations leading

to a correct answer when using noise.
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binarized

registers

memory tape

Figure 3: One timestep of the NRAM architecture with R = 4 registers and a memory tape. my,
mg and mg are example operations built-in to the model. The operations can read and write from
memory. At every time step, the LSTM controller softly selects the operation and its inputs. Figure
reproduced with permission from Kurach et al.| (2015).

Figure 4: An example circuit generated by NRAM architecutre. The registers are represented by
circles and modules by rectangles. For modules where the order of parameters matter, we label the
edges with p (the address to be read/written) and a (the value to be written - only for write module).
This circuit solves the problem of incrementing given array of elements. Notice that only register r3
is used in the algorithm and the module "min” could be removed. The register r3 is incremented in
every time step. The value of r3 is passed to read and write as the address (p). The value (a) for
write is the output from read module incremented by 1.

| | Hyperparameter-1 | Hyperparameter-2 | Hyperparameter-3 [ Average |
No Noise 1% 0% 3% 1.3%
With Noise 5% 22% 7% 11.3%

Table 5: Comparison of reproducibility on k-th element task. All tests were performed with the
same set of 100 random initializations (seeds).

4.5 CONVOLUTIONAL GATED RECURRENT NETWORKS (NEURAL GPUS)

Convolutional Gated Recurrent Networks (CGRN) or Neural GPUs (Kaiser & Sutskever, |2015)) are
a recently proposed model that is capable of learning arbitrary algorithms. CGRNs use a stack of
convolution layers, unfolded with tied parameters like a recurrent network. The input data (usually a
list of symbols) is first converted to a three dimensional tensor representation containing a sequence
of embedded symbols in the first two dimensions, and zeros padding the next dimension. Then,
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multiple layers of modified convolution kernels are applied at each step. The modified kernel is a
combination of convolution and Gated Recurrent Units (GRU) (Cho et al., 2014). The use of con-
volution kernels allows computation to be applied in parallel across the input data, while the gating
mechanism helps the gradient flow. The additional dimension of the tensor serves as a working
memory while the repeated operations are applied at each layer. The output at the final layer is the
predicted answer.

The key difference between Neural GPUs and other architectures for algorithmic tasks (e.g., Neural
Turing Machines (Graves et al., 2014)) is that instead of using sequential data access, convolution
kernels are applied in parallel across the input, enabling the use of very deep and wide models. The
model is referred to as Neural GPU because the input data is accessed in parallel. Neural GPUs were
shown to outperform previous sequential architectures for algorithm learning on tasks such as binary
addition and multiplication, by being able to generalize from much shorter to longer data cases.

In our experiments, we use Neural GPUs for the task of binary multiplication. The input consists two
concatenated sequences of binary digits separated by an operator token, and the goal is to multiply
the given numbers. During training, the model is trained on 20-digit binary numbers while at test
time, the task is to multiply 200-digit numbers. Once again, we add noise sampled from Gaussian
distribution with mean 0, and decaying variance according to the schedule in Equation with

= 1.0, to the gradient after clipping. The model is optimized using Adam (Kingma & Ba, [2014).

Table [6] gives the results of a large-scale experiment using Neural GPUs with a 7290 grid search.
The experiment shows that models trained with added gradient noise are more robust across many
random initializations and parameter settings. As you can see, adding gradient noise both allows us
to achieve the best performance, with the number of models with < 1% error over twice as large as
without noise. But it also helps throughout, improving the robustness of training, with more models
training to higher error rates as well. This experiment shows that the simple technique of added
gradient noise is effective even in regimes where we can afford a very large numbers of random
restarts.

| Setting | Error < 1% [ Error < 2% [ Error < 3% [ Error < 5% |
No Noise 28 90 172 387
With Noise | 58 159 282 570

Table 6: Comparison of reproducibility on 7290 random restarts. Trained on length 20 and tested on
length 200.

5 CONCLUSION

In this paper, we discussed a set of experiments which show the effectiveness of adding noise to the
gradient. We found that adding noise to the gradient during training helps training and generalization
of complicated neural networks. We suspect that the effects are pronounced for complex models
because they have many local minima.

We believe that this surprisingly simple yet effective idea, essentially a single line of code, should be
in the toolset of neural network practitioners when facing issues with training neural networks. We
also believe that this set of empirical results can give rise to further formal analysis of why adding
noise is so effective for very deep neural networks.
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