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Abstract

Membership inference attacks (MIAs) aim to determine whether a specific ex-1

ample was used to train a given language model. While prior work has explored2

prompt-based attacks such as ReCALL, these methods rely heavily on the assump-3

tion that using known non-members as prompts reliably suppresses the model’s4

responses to non-member queries. We propose EM-MIA, a new membership5

inference approach that iteratively refines prefix effectiveness and membership6

scores using an expectation-maximization strategy without requiring labeled non-7

member examples. To support controlled evaluation, we introduce OLMoMIA, a8

benchmark that enables analysis of MIA robustness under systematically varied9

distributional overlap and difficulty. Experiments on WikiMIA and OLMoMIA10

show that EM-MIA outperforms existing baselines, particularly in settings with11

clear distributional separability. We highlight scenarios where EM-MIA succeeds12

in practical settings with partial distributional overlap, while failure cases expose13

fundamental limitations of current MIA methods under near-identical conditions.14

We will release our code and evaluation pipeline upon publication to encourage15

reproducible and robust MIA research.16

1 Introduction17

As large language models (LLMs) [1, 2] scale in capability, concerns have grown over the provenance18

and transparency of their training data [3, 4]. Uncertainty about data exposure raises legal and ethical19

risks, including privacy breaches [5, 6], copyright violations [7], and leakage of sensitive content [8].20

Membership inference attacks (MIAs) provide a concrete lens on this problem by testing whether a21

given example was seen during training [9, 10]. They enable auditing for data contamination [11, 12,22

13] and compliance with data usage policies [14, 15]. Yet, MIAs for LLMs remain difficult due to vast23

corpora and the subtle boundary between memorization and generalization in natural language [16].24

Prompt-based MIA techniques such as ReCALL [17] assume that known non-members can serve25

as effective prompts for distinguishing members from non-members. However, we find that the26

effectiveness of such prompts is highly inconsistent and difficult to predict, motivating the need for a27

more adaptive approach that can account for variability in prompt effectiveness.28

To address the limitations of approaches that rely on arbitrarily or randomly chosen prompts, we29

propose EM-MIA, a novel membership inference method that jointly refines prefix effectiveness30

and membership scores via expectation-maximization. Rather than relying on labeled non-members31

or assuming the quality of predefined prompts, EM-MIA iteratively estimates which prefixes are32

informative and which examples are likely members, enabling unsupervised bootstrapping of both33

prompt selection and membership scoring. This yields greater robustness across diverse settings,34

especially when prompt assumptions fail or non-member data is unavailable.35
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To support more controlled and reproducible evaluation, we also introduce OLMoMIA, a benchmark36

built from the pre-training corpus and checkpoints of the OLMo open-source LLM series [18].37

Unlike existing benchmarks such as WikiMIA [19] and MIMIR [16], which provide limited control38

over the similarity between member and non-member examples, OLMoMIA allows researchers39

to systematically vary distributional overlap and assess how different methods perform across a40

range of difficulty levels. By partitioning the data based on semantic similarity and membership41

status with respect to the pre-training data, OLMoMIA supports fine-grained analysis of robustness,42

generalization, and failure modes in both easy and near-indistinguishable settings. Its design enables43

rigorous comparison of inference strategies under controlled conditions, and we will release both the44

benchmark and its generation pipeline to support scalable and reproducible MIA research.45

Experiments show that EM-MIA outperforms existing MIA methods on WikiMIA across models of46

varying sizes and achieves robust results on OLMoMIA under systematically controlled difficulty47

conditions. In particular, EM-MIA demonstrates strong performance without access to labeled48

non-member data and maintains robustness to prompt variability, highlighting its practical value49

in realistic gray-box scenarios. At the same time, our results expose the inherent difficulty of50

membership inference when member and non-member distributions are nearly identical, which51

poses a significant challenge for all existing methods, including ours. These findings underscore52

the importance of evaluating MIA methods across a range of separability conditions and offer new53

insight into the limits and opportunities of prompt-based membership inference.54

2 EM-MIA: Joint Estimation via EM55

We consider membership inference in a gray-box setting, where the attacker has access to a language56

modelM and can queryM to obtain token-level probabilities or log-likelihoods. Given an input57

x ∈ Dtest, the goal is to predict a binary membership label indicating whether x was included in the58

pretraining corpus Dtrain ofM.59

We provide the assumptions and limitations of ReCaLL in Appendix B, and present the motivation60

for EM-MIA through an analysis of its sensitivity to prefix choice in Appendix C. To address the61

practical setting where neither labeled non-members nor reliable prompt effectiveness can be assumed,62

we propose EM-MIA, a fully unsupervised method that jointly estimates prefix effectiveness and63

membership likelihood using an expectation-maximization (EM) procedure.64

Let f(x) denote the membership score for each test example x ∈ Dtest, and r(p) denote the65

effectiveness score of a prefix p. The key insight is that membership scores and prefix scores66

can reinforce each other: better membership estimates allow more accurate estimation of prefix67

effectiveness, and more reliable prefixes lead to improved membership predictions. This mutual68

dependency motivates an iterative procedure in which each set of scores is refined based on the other.69

Algorithm 1 EM-MIA
Input: Target LLMM, Test dataset Dtest

Output: Membership scores f(x) for x ∈ Dtest

1: Initialize f(x) with an existing off-the-shelf MIA method
2: repeat
3: Update prefix scores r(p) = S(ReCaLLp, f,Dtest) for p ∈
Dtest

4: Update membership scores f(x) = −r(x) for x ∈ Dtest

5: until Convergence (no significant difference in f )

Algorithm 1 outlines the overall procedure of EM-MIA. We initialize membership scores using70

any existing off-the-shelf MIA method such as Loss [20] or Min-K%++ [21] (Line 1). We then71

alternate between two updates: (1) estimating prefix scores r(p) based on current membership scores72

f(x) (Line 3), and (2) updating f(x) using the refined r(p) (Line 4). This process continues until73

convergence (Line 5). Because EM-MIA is a general framework, initialization, score update rules (see74

Appendix D), stopping criteria, and datasets (see Appendix E) can be adapted to different applications.75

Discussion on computational costs can be found in Appendix F.76
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3 OLMoMIA: New MIA Benchmark77

To enable controlled and reproducible evaluation of MIA methods under varying difficulty levels, we78

introduce OLMoMIA, a new benchmark constructed from the training data and checkpoints of the79

OLMo-7B model [18], which was pre-trained on the Dolma dataset [22]. Unlike existing benchmarks80

such as WikiMIA [19], which rely on time-based heuristics, or MIMIR [16], which draws member and81

non-member examples from randomly partitioned subsets of the same data distribution, OLMoMIA82

allows systematic control over the distributional overlap between members and non-members. This83

allows evaluation under more realistic and ambiguous conditions, where membership inference is84

inherently more difficult. Details on benchmark construction are described in Appendix G.85

4 Experiments and Results86

We evaluate EM-MIA (whose configurations are described in Appendix H) and compare it with87

baseline methods (described in Appendix I and Appendix J) on WikiMIA and OLMoMIA using AUC-88

ROC as a main evaluation metric. We also report TPR@1%FPR results in Appendix O. WikiMIA [19]89

provides length-based splits of 32, 64, and 128, and we follow prior work [17, 21] in using Mamba90

1.4B [23], Pythia 6.9B [24], GPT-NeoX 20B [25], LLaMA 13B/30B [26], and OPT 66B [27] as91

target models. For OLMoMIA, we use all six controlled difficulty settings of Easy, Medium, Hard,92

Random, Mix-1, and Mix-2, and evaluate using OLMo-7B checkpoints after 100k, 200k, 300k, and93

400k training steps. Ablation study on different initializations and scoring functions can be found in94

Section N.95

Method Mamba-1.4B Pythia-6.9B LLaMA-13B NeoX-20B LLaMA-30B OPT-66B Average

32 64 128 32 64 128 32 64 128 32 64 128 32 64 128 32 64 128 32 64 128

Loss 61.0 58.2 63.3 63.8 60.8 65.1 67.5 63.6 67.7 69.1 66.6 70.8 69.4 66.1 70.3 65.7 62.3 65.5 66.1 62.9 67.1
Ref 60.3 59.7 59.7 63.2 62.3 63.0 64.0 62.5 64.1 68.2 67.8 68.9 65.1 64.8 66.8 63.9 62.9 62.7 64.1 63.3 64.2
Zlib 61.9 60.4 65.6 64.3 62.6 67.6 67.8 65.3 69.7 69.3 68.1 72.4 69.8 67.4 71.8 65.8 63.9 67.4 66.5 64.6 69.1
Min-K% 63.3 61.7 66.7 66.3 65.0 69.5 66.8 66.0 71.5 72.1 72.1 75.7 69.3 68.4 73.7 67.5 66.5 70.6 67.5 66.6 71.3
Min-K%++ 66.4 67.2 67.7 70.2 71.8 69.8 84.4 84.3 83.8 75.1 76.4 75.5 84.3 84.2 82.8 69.7 69.8 71.1 75.0 75.6 75.1

Avg 70.2 68.3 65.6 69.3 68.2 66.7 77.2 77.3 74.6 71.4 72.0 68.7 79.8 81.0 79.6 64.6 65.6 60.0 72.1 72.1 69.2
AvgP 64.0 61.8 56.7 62.1 61.0 59.0 63.1 60.3 56.4 63.9 61.8 61.1 60.3 60.0 55.4 86.9 94.3 95.1 66.7 66.5 63.9
RandM 25.4 25.1 26.2 24.9 26.2 24.6 21.0 14.9 68.6 25.3 28.3 29.8 14.0 15.1 70.4 33.9 40.9 42.9 24.1 25.1 43.8
Rand 72.7 78.2 64.2 67.0 73.4 68.7 73.9 75.4 68.5 68.2 74.5 67.5 66.9 71.7 70.2 64.5 67.8 58.6 68.9 73.5 66.3
RandNM 90.7 90.6 88.4 87.3 90.0 88.9 92.1 93.4 68.8 85.9 89.9 86.3 90.6 92.1 71.8 78.7 77.6 67.8 87.5 88.9 78.7
TopPref 90.6 91.2 88.0 91.3 92.9 90.1 93.5 94.2 71.8 88.4 92.0 90.2 92.9 93.8 74.8 83.6 79.6 72.1 90.0 90.6 81.2
ReCaLL [17] 90.2 91.4 91.2 91.6 93.0 92.6 92.2 95.2 92.5 90.5 93.2 91.7 90.7 94.9 91.2 85.1 79.9 81.0 90.1 91.3 90.0

EM-MIA 97.1 97.6 96.8 97.5 97.5 96.4 98.1 98.8 97.0 96.1 97.6 96.3 98.5 98.8 98.5 99.0 99.0 96.7 97.7 98.2 96.9

Table 1: AUC-ROC results on WikiMIA.

WikiMIA Table 1 and Table 3 show results on WikiMIA, using AUC-ROC and TPR@1%FPR as96

evaluation metrics, respectively. EM-MIA achieves state-of-the-art performance across all models97

and length splits, significantly outperforming all baselines, including ReCaLL, even without access98

to labeled non-member examples. In all cases, EM-MIA exceeds 96% AUC-ROC. For the largest99

model, OPT-66B, it reaches over 99% AUC-ROC for length 32 and 64, whereas ReCaLL falls below100

86%.101

All non-ReCaLL baselines remain below 76% AUC-ROC on average. The performance order among102

ReCaLL-based variants is consistent: RandM < Avg, AvgP < Rand < RandNM < TopPref . This103

pattern confirms that ReCaLL is highly sensitive to the choice of prefix. Particularly, the significant104

performance gap between Rand and RandNM highlights ReCaLL’s reliance on the availability of105

given non-members. Importantly, Rand, which uses no test labels, performs worse than Min-K%++106

on average, indicating that ReCaLL alone is insufficient under a fully unsupervised setting.107

RandNM is similar to the original ReCaLL [17] in most cases except for the OPT-66B model and108

LLaMA models with sequence length 128, probably because n = 12 is not optimal for these cases.109

TopPref consistently outperforms RandNM, demonstrating that prefix quality varies and that random110
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prefix selection is suboptimal. This opens the door to prefix optimization [28, 29, 30], though finding111

high-quality prefixes without supervision remains challenging. Our method approximates prefix112

quality without labels and uses it to improve membership prediction.113

Method Easy Medium Hard Random Mix-1 Mix-2

64 128 64 128 64 128 64 128 64 128 64 128

Loss 32.5 63.3 58.9 49.0 43.3 51.5 51.2 52.3 65.7 49.0 30.8 54.7
Ref 56.8 26.8 61.4 47.2 49.1 50.7 49.7 49.9 59.9 49.7 38.9 50.9
Zlib 24.0 51.8 44.8 50.7 40.5 51.1 52.3 50.5 63.2 47.2 31.5 54.3
Min-K% 32.4 50.0 54.0 51.9 43.0 51.2 51.7 51.0 60.8 50.4 34.9 51.7
Min-K%++ 45.2 59.4 56.4 45.7 46.4 51.4 51.0 51.9 57.9 50.0 39.8 53.2

Avg 61.9 53.9 52.3 57.0 47.6 51.5 50.3 48.6 63.3 56.4 35.5 44.4
AvgP 79.2 39.9 53.9 61.7 50.2 51.4 49.0 50.1 55.7 63.0 42.7 41.8
RandM 32.3 22.7 39.2 30.3 45.8 50.5 48.1 48.2 49.7 48.0 29.1 28.7
Rand 63.7 46.3 56.0 59.4 48.9 52.1 49.7 49.1 60.6 68.0 38.0 38.6
RandNM 87.1 75.5 71.8 81.2 50.5 53.2 50.4 50.0 66.5 73.7 49.1 48.0
TopPref 88.9 88.5 79.7 64.4 55.7 54.5 52.3 52.7 79.9 80.2 55.3 62.1

EM-MIA 99.8 97.4 98.3 99.8 47.2 50.2 51.4 50.9 88.3 80.8 88.4 77.1

Table 2: AUC-ROC results on OLMoMIA.

OLMoMIA Table 2 and Table 4 show results on OLMoMIA, using AUC-ROC and TPR@1%FPR114

as evaluation metrics respectively. EM-MIA performs nearly perfectly on Easy and Medium, similar115

to its performance on WikiMIA. We did not observe consistent differences across checkpoints, despite116

the expectation that earlier training data would be harder to detect. Therefore, we report averages117

across four OLMo checkpoints. In contrast, it performs close to random guessing on Hard and118

Random similar to MIMIR, where member and non-member distributions heavily overlap and all119

methods are not sufficiently better than random guessing. On Mix-1 and Mix-2, EM-MIA achieves120

reasonable scores, though not as high as in easier settings. In all but the hardest scenarios, EM-MIA121

significantly outperforms all baselines.122

None of the baselines without ReCaLL-based approaches are successful in all settings, which implies123

that OLMoMIA is a challenging benchmark. The relative order between ReCaLL-based baselines124

is again consistent: RandM < Avg, AvgP, Rand < RandNM < TopPref , although none of the fully125

unsupervised variants are successful overall.126

Interestingly, RandNM works reasonably well on Mix-1 but does not work well on Mix-2. This is127

likely because non-members from Mix-1 are from the same cluster while non-members from Mix-1128

are randomly sampled from the entire distribution. TopPref again outperforms RandNM, reinforcing129

that not all non-members are equally effective as prompts.130

5 Conclusion131

We propose EM-MIA, a membership inference method for large language models that jointly esti-132

mates membership scores and prompt effectiveness through an expectation-maximization procedure.133

Unlike prior work that relies on labeled non-members or assumes prompt quality in advance, EM-MIA134

operates in a fully unsupervised gray-box setting, making it suitable for more realistic deployment135

scenarios. Our method outperforms ReCaLL, even without its strong assumptions, and achieves136

state-of-the-art results on WikiMIA. EM-MIA is modular and flexible, allowing different initialization137

strategies, scoring rules, and convergence criteria depending on the application context.138

To support more rigorous and controlled evaluation, we introduce OLMoMIA, a new benchmark139

built from the OLMo pretraining pipeline that allows fine-grained control over distributional overlap140

between members and non-members. Through comprehensive experiments, we show that EM-MIA141

is robust across a wide range of difficulty settings, while also identifying scenarios where all existing142

methods struggle, particularly when member and non-member distributions are nearly identical.143

Our findings highlight the importance of evaluating MIA methods under diverse and ambiguous144

conditions, and suggest that future progress will require methods that adapt to both prompt variability145

and fine-grained data overlap.146
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[5] Robin Staab, Mark Vero, Mislav Balunović, and Martin Vechev. Beyond memorization:164

Violating privacy via inference with large language models. arXiv preprint arXiv:2310.07298,165

2023.166

[6] Nikhil Kandpal, Krishna Pillutla, Alina Oprea, Peter Kairouz, Christopher A Choquette-167

Choo, and Zheng Xu. User inference attacks on large language models. arXiv preprint168

arXiv:2310.09266, 2023.169

[7] Matthieu Meeus, Igor Shilov, Manuel Faysse, and Yves-Alexandre de Montjoye. Copyright170

traps for large language models. arXiv preprint arXiv:2402.09363, 2024.171

[8] Kent K Chang, Mackenzie Cramer, Sandeep Soni, and David Bamman. Speak, memory: An172

archaeology of books known to chatgpt/gpt-4. arXiv preprint arXiv:2305.00118, 2023.173

[9] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference174

attacks against machine learning models. In 2017 IEEE symposium on security and privacy175

(SP), pages 3–18. IEEE, 2017.176

[10] Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and Florian Tramer.177

Membership inference attacks from first principles. In 2022 IEEE Symposium on Security and178

Privacy (SP), pages 1897–1914. IEEE, 2022.179

[11] Inbal Magar and Roy Schwartz. Data contamination: From memorization to exploitation. arXiv180

preprint arXiv:2203.08242, 2022.181

[12] Oscar Sainz, Jon Ander Campos, Iker García-Ferrero, Julen Etxaniz, Oier Lopez de Lacalle,182

and Eneko Agirre. Nlp evaluation in trouble: On the need to measure llm data contamination183

for each benchmark. arXiv preprint arXiv:2310.18018, 2023.184

[13] Oscar Sainz, Iker García-Ferrero, Alon Jacovi, Jon Ander Campos, Yanai Elazar, Eneko Agirre,185

Yoav Goldberg, Wei-Lin Chen, Jenny Chim, Leshem Choshen, et al. Data contamination report186

from the 2024 conda shared task. arXiv preprint arXiv:2407.21530, 2024.187

[14] Paul Voigt and Axel Von dem Bussche. The eu general data protection regulation (gdpr). A188

Practical Guide, 1st Ed., Cham: Springer International Publishing, 10(3152676):10–5555,189

2017.190

[15] California State Legislature. California consumer privacy act (ccpa). https://oag.ca.gov/191

privacy/ccpa, 2018.192

5

https://oag.ca.gov/privacy/ccpa
https://oag.ca.gov/privacy/ccpa
https://oag.ca.gov/privacy/ccpa


[16] Michael Duan, Anshuman Suri, Niloofar Mireshghallah, Sewon Min, Weijia Shi, Luke Zettle-193

moyer, Yulia Tsvetkov, Yejin Choi, David Evans, and Hannaneh Hajishirzi. Do membership194

inference attacks work on large language models? In Conference on Language Modeling195

(COLM), 2024.196

[17] Roy Xie, Junlin Wang, Ruomin Huang, Minxing Zhang, Rong Ge, Jian Pei, Neil Zhenqiang197

Gong, and Bhuwan Dhingra. Recall: Membership inference via relative conditional log-198

likelihoods. arXiv preprint arXiv:2406.15968, 2024.199

[18] Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord,200

Ananya Harsh Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, et al. Olmo: Accelerating201

the science of language models. arXiv preprint arXiv:2402.00838, 2024.202

[19] Weijia Shi, Anirudh Ajith, Mengzhou Xia, Yangsibo Huang, Daogao Liu, Terra Blevins, Danqi203

Chen, and Luke Zettlemoyer. Detecting pretraining data from large language models. arXiv204

preprint arXiv:2310.16789, 2023.205

[20] Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Privacy risk in machine206

learning: Analyzing the connection to overfitting. In 2018 IEEE 31st computer security207

foundations symposium (CSF), pages 268–282. IEEE, 2018.208

[21] Jingyang Zhang, Jingwei Sun, Eric Yeats, Yang Ouyang, Martin Kuo, Jianyi Zhang, Hao Yang,209

and Hai Li. Min-k%++: Improved baseline for detecting pre-training data from large language210

models. arXiv preprint arXiv:2404.02936, 2024.211

[22] Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell212

Authur, Ben Bogin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar, et al. Dolma: An213

open corpus of three trillion tokens for language model pretraining research. arXiv preprint214

arXiv:2402.00159, 2024.215

[23] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces.216

arXiv preprint arXiv:2312.00752, 2023.217

[24] Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien,218

Eric Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward219

Raff, et al. Pythia: A suite for analyzing large language models across training and scaling. In220

International Conference on Machine Learning, pages 2397–2430. PMLR, 2023.221

[25] Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding,222

Horace He, Connor Leahy, Kyle McDonell, Jason Phang, et al. Gpt-neox-20b: An open-source223

autoregressive language model. arXiv preprint arXiv:2204.06745, 2022.224

[26] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-225

thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open226

and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.227

[27] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen,228

Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained229

transformer language models. arXiv preprint arXiv:2205.01068, 2022.230

[28] Taylor Shin, Yasaman Razeghi, Robert L Logan IV, Eric Wallace, and Sameer Singh. Auto-231

prompt: Eliciting knowledge from language models with automatically generated prompts.232

arXiv preprint arXiv:2010.15980, 2020.233

[29] Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan Wang, Han Guo, Tianmin Shu, Meng234

Song, Eric P Xing, and Zhiting Hu. Rlprompt: Optimizing discrete text prompts with reinforce-235

ment learning. arXiv preprint arXiv:2205.12548, 2022.236

[30] Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang237

Bian, and Yujiu Yang. Connecting large language models with evolutionary algorithms yields238

powerful prompt optimizers. arXiv preprint arXiv:2309.08532, 2023.239

6



[31] Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas Eck, Chris240

Callison-Burch, and Nicholas Carlini. Deduplicating training data makes language models241

better. arXiv preprint arXiv:2107.06499, 2021.242

[32] Nikhil Kandpal, Eric Wallace, and Colin Raffel. Deduplicating training data mitigates privacy243

risks in language models. In International Conference on Machine Learning, pages 10697–244

10707. PMLR, 2022.245

[33] Kushal Tirumala, Daniel Simig, Armen Aghajanyan, and Ari Morcos. D4: Improving llm246

pretraining via document de-duplication and diversification. Advances in Neural Information247

Processing Systems, 36, 2024.248

[34] Igor Shilov, Matthieu Meeus, and Yves-Alexandre de Montjoye. Mosaic memory: Fuzzy249

duplication in copyright traps for large language models. arXiv preprint arXiv:2405.15523,250

2024.251

[35] Justus Mattern, Fatemehsadat Mireshghallah, Zhijing Jin, Bernhard Schölkopf, Mrinmaya252

Sachan, and Taylor Berg-Kirkpatrick. Membership inference attacks against language models253

via neighbourhood comparison. arXiv preprint arXiv:2305.18462, 2023.254

[36] Hamid Mozaffari and Virendra J Marathe. Semantic membership inference attack against large255

language models. arXiv preprint arXiv:2406.10218, 2024.256

[37] Jiayuan Ye, Aadyaa Maddi, Sasi Kumar Murakonda, Vincent Bindschaedler, and Reza Shokri.257

Enhanced membership inference attacks against machine learning models. In Proceedings of the258

2022 ACM SIGSAC Conference on Computer and Communications Security, pages 3093–3106,259

2022.260

[38] Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Kather-261

ine Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training262

data from large language models. In 30th USENIX Security Symposium (USENIX Security 21),263

pages 2633–2650, 2021.264

[39] Matthieu Meeus, Shubham Jain, Marek Rei, and Yves-Alexandre de Montjoye. Did the neurons265

read your book? document-level membership inference for large language models. In 33rd266

USENIX Security Symposium (USENIX Security 24), pages 2369–2385, 2024.267

[40] Debeshee Das, Jie Zhang, and Florian Tramèr. Blind baselines beat membership inference268

attacks for foundation models. arXiv preprint arXiv:2406.16201, 2024.269

[41] Matthieu Meeus, Shubham Jain, Marek Rei, and Yves-Alexandre de Montjoye. Inherent270

challenges of post-hoc membership inference for large language models. arXiv preprint271

arXiv:2406.17975, 2024.272

[42] Pratyush Maini, Hengrui Jia, Nicolas Papernot, and Adam Dziedzic. Llm dataset inference: Did273

you train on my dataset? arXiv preprint arXiv:2406.06443, 2024.274

[43] Cédric Eichler, Nathan Champeil, Nicolas Anciaux, Alexandra Bensamoun, Heber Hwang275

Arcolezi, and José Maria De Fuentes. Nob-mias: Non-biased membership inference at-276

tacks assessment on large language models with ex-post dataset construction. arXiv preprint277

arXiv:2408.05968, 2024.278

[44] Pablo Villalobos, Jaime Sevilla, Lennart Heim, Tamay Besiroglu, Marius Hobbhahn, and Anson279

Ho. Will we run out of data? an analysis of the limits of scaling datasets in machine learning.280

arXiv preprint arXiv:2211.04325, 2022.281

[45] Niklas Muennighoff, Alexander Rush, Boaz Barak, Teven Le Scao, Nouamane Tazi, Aleksandra282

Piktus, Sampo Pyysalo, Thomas Wolf, and Colin A Raffel. Scaling data-constrained language283

models. Advances in Neural Information Processing Systems, 36, 2024.284

[46] Maurice G Kendall. A new measure of rank correlation. Biometrika, 30(1-2):81–93, 1938.285

[47] Charles Spearman. The proof and measurement of association between two things. The286

American Journal of Psychology, 1961.287

7



[48] Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason288

Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse289

text for language modeling. arXiv preprint arXiv:2101.00027, 2020.290

[49] Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan Raiman, Mohammad Shoeybi, Bryan291

Catanzaro, and Wei Ping. Nv-embed: Improved techniques for training llms as generalist292

embedding models. arXiv preprint arXiv:2405.17428, 2024.293

[50] Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and Nils Reimers. Mteb: Massive text294

embedding benchmark. arXiv preprint arXiv:2210.07316, 2022.295

[51] Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory,296

28(2):129–137, 1982.297

[52] Jonathan Tow. Stablelm alpha v2 models, 2023.298

[53] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,299

Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to300

follow instructions with human feedback. Advances in neural information processing systems,301

35:27730–27744, 2022.302

[54] Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan303

Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned304

language models. Journal of Machine Learning Research, 25(70):1–53, 2024.305

[55] Congzheng Song and Vitaly Shmatikov. Auditing data provenance in text-generation models.306

In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery307

& Data Mining, pages 196–206, 2019.308

[56] Abhyuday Jagannatha, Bhanu Pratap Singh Rawat, and Hong Yu. Membership inference attack309

susceptibility of clinical language models. arXiv preprint arXiv:2104.08305, 2021.310

[57] Saeed Mahloujifar, Huseyin A Inan, Melissa Chase, Esha Ghosh, and Marcello Hasegawa.311

Membership inference on word embedding and beyond. arXiv preprint arXiv:2106.11384,312

2021.313

[58] Virat Shejwalkar, Huseyin A Inan, Amir Houmansadr, and Robert Sim. Membership inference314

attacks against nlp classification models. In NeurIPS 2021 Workshop Privacy in Machine315

Learning, 2021.316

[59] Fatemehsadat Mireshghallah, Kartik Goyal, Archit Uniyal, Taylor Berg-Kirkpatrick, and Reza317

Shokri. Quantifying privacy risks of masked language models using membership inference318

attacks. arXiv preprint arXiv:2203.03929, 2022.319

[60] Shangqing Tu, Kejian Zhu, Yushi Bai, Zijun Yao, Lei Hou, and Juanzi Li. Dice: Detecting320

in-distribution contamination in llm’s fine-tuning phase for math reasoning. arXiv preprint321

arXiv:2406.04197, 2024.322

[61] Qizhang Feng, Siva Rajesh Kasa, Hyokun Yun, Choon Hui Teo, and Sravan Babu Bodapati.323

Exposing privacy gaps: Membership inference attack on preference data for llm alignment.324

arXiv preprint arXiv:2407.06443, 2024.325

[62] Yihong Dong, Xue Jiang, Huanyu Liu, Zhi Jin, and Ge Li. Generalization or memorization:326

Data contamination and trustworthy evaluation for large language models. arXiv preprint327

arXiv:2402.15938, 2024.328

[63] Baohang Zhou, Zezhong Wang, Lingzhi Wang, Hongru Wang, Ying Zhang, Kehui Song, Xuhui329

Sui, and Kam-Fai Wong. Dpdllm: A black-box framework for detecting pre-training data from330

large language models. In Findings of the Association for Computational Linguistics ACL 2024,331

pages 644–653, 2024.332

[64] Masahiro Kaneko, Youmi Ma, Yuki Wata, and Naoaki Okazaki. Sampling-based pseudo-333

likelihood for membership inference attacks. arXiv preprint arXiv:2404.11262, 2024.334

8



A Related Work335

Membership Inference on LLMs. Membership inference on LLMs presents unique challenges.336

First, LLMs are trained on massive corpora, and individual examples are typically seen only once or a337

few times [31], leaving minimal memorization footprint. Second, defining membership is inherently338

ambiguous in natural language, in that texts often repeat or partially overlap even after rigorous339

decontamination [32, 33], and paraphrased or semantically similar content can blur membership340

boundaries [34, 35, 36]. Traditional MIA methods often rely on training shadow models using labeled341

data from a similar distribution [9], but this is impractical in LLM settings due to limited access to342

comparable data and training specifications.343

In contrast, MIA methods for LLMs typically use the model’s loss (e.g., negative log-likelihood) as344

a membership score, under the assumption that models tend to memorize or overfit their training345

data [20, 10]. Building on this idea, several techniques calibrate membership scores based on input346

difficulty [37], using reference models [10], compression-based heuristics [38], or nearest neighbors347

in embedding space [35]. Other methods focus on low-likelihood tokens [19] or compute calibrated348

token-level ratios [21].349

ReCALL [17] proposes a different strategy by using known non-member examples as prompts350

to condition the model’s response. It assumes that such prompts suppress memorization signals,351

enabling members to stand out by their elevated likelihood under the same prompt. However, this352

assumption is brittle, as prompt effectiveness varies significantly across examples, and a fixed prompt353

often fails to generalize across models or domains. We address this limitation by proposing a fully354

unsupervised method that jointly estimates prompt effectiveness and membership likelihood, without355

relying on labeled non-members or fixed prompting strategies.356

Evaluation Benchmarks. Robust evaluation of MIA methods for LLMs remains challenging357

because existing benchmarks rarely provide both reliable membership labels and controllable distri-358

butional settings. Most benchmarks fall into one of two categories. Some, such as WikiMIA [19, 39],359

determine membership based on document timestamps and model release dates. This approach360

risks conflating membership inference with distribution shift detection [40, 41, 42]. Others, such361

as MIMIR [16], use random splits to ensure that member and non-member distributions are nearly362

identical. In such cases, no existing method performs significantly better than random guessing.363

These limitations make it difficult to understand how well a method generalizes across different data364

conditions. Pre-training corpora are typically drawn from diverse sources, while inference-time inputs365

may come from entirely different domains. Effective evaluation therefore requires testing under a366

range of membership separability conditions. However, constructing such benchmarks is practically367

difficult, especially given the lack of true non-member data and the challenge of controlling test368

distributions. There is a clear need for evaluation setups that reflect varied, realistic scenarios while369

maintaining access to reliable ground-truth labels [41, 43].370

B Assumptions and Limitations of ReCaLL371

ReCaLL [17] is a prompt-based membership inference method that computes the ratio between the372

conditional and unconditional log-likelihoods of a target example x under M. Given a prefix p,373

the ReCaLL score is defined as ReCaLLp(x;M) = LL(x | p;M)/LL(x;M), where LL denotes374

the average log-likelihood over tokens, and p = p1 ⊕ · · · ⊕ pn is a concatenation of non-member375

examples pi. The intuition is that conditioning on non-members tends to reduce the likelihood of376

members more than that of non-members, making the ratio indicative for membership prediction.377

ReCaLL demonstrates strong empirical performance, achieving over 90% AUC-ROC on378

WikiMIA [19] and outperforming prior methods such as Min-K%++ [21]. However, this performance379

depends on strong assumptions and lacks theoretical justification. In its original implementation,380

ReCaLL constructs prefixes by randomly selecting non-members from the test set, assuming that381

(1) ground-truth non-members are available at inference time, and (2) all non-members are equally382

effective as prompts.383

In practice, such assumptions rarely hold so labeled non-members are often unavailable, especially384

when the training and test data distributions substantially overlap [44, 45]. Even synthetic prefixes385

generated using GPT-4, as explored in [17], rely on seed non-members drawn from the test distribution.386
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Figure 1: Distribution of prefix scores (measured by AUC-ROC in the oracle setting) for members
and non-members on WikiMIA [19] (length 128) using Pythia-6.9B [24].

This reliance on known non-members gives ReCaLL an unfair advantage over methods that operate387

without access to test labels.388

Ablation studies in [17] further show that ReCaLL’s performance degrades when the prefix and389

test inputs differ in distribution, and that different random samples yield significant variance in390

accuracy. These findings suggest that non-members vary widely in their effectiveness as prompts,391

and that ReCaLL does not generalize reliably across domains or distribution shifts. These limitations392

motivate the need for a more flexible and fully unsupervised approach that does not depend on labeled393

non-members or assume prompt effectiveness in advance.394

C Observation on Sensitivity to Prefix Choice395

We empirically examine how ReCaLL’s performance varies with the choice of prefix, particularly396

when labeled non-members are unavailable. To this end, we define a prefix score r(p) as the397

effectiveness of a prefix p in distinguishing members from non-members when used in ReCaLL.398

In an oracle setting with access to ground-truth membership labels, we compute r(p) as the AUC-399

ROC of ReCaLLp(x) over a test set Dtest, using each x ∈ Dtest as a standalone prefix. This allows400

us to empirically measure the effectiveness of each test example when used as a prefix.401

Figure 1 shows that non-member prefixes generally lead to strong ReCaLL performance, with AUC-402

ROC often exceeding 0.7. In contrast, member prefixes perform poorly, with scores clustering near403

0.5 (i.e., random guessing). Additional comparisons using alternative metrics for prefix scoring are404

included in Appendix L. These results highlight two limitations of current ReCaLL-based methods:405

(1) Even among non-members, prefix effectiveness varies widely; (2) In realistic scenarios, ground-406

truth labels needed to evaluate or filter prefixes are unavailable.407

These findings underscore the need for an approach that can identify effective prefixes and infer408

membership without access to labels. We address this challenge in the following section by proposing409

a fully unsupervised method that jointly estimates membership likelihood and prefix effectiveness410

through iterative refinement.411

D Score Update Rules412

Updating Prefix Scores. AUC-ROC is an effective function S for evaluating a prefix p in the413

oracle setting given ground truth labels. Since ground-truth labels are not available, we generate414

pseudo-labels using a threshold τ over current membership scores f(x) and use them to calculate415

prefix scores: AUC-ROC({(ReCaLLp(x),1f(x)>τ ) | x ∈ Dtest}). We typically set τ to the median416

of f(x), assuming a balanced dataset. Alternatively, instead of relying on hard thresholds, we can417

measure rank alignment between ReCaLLp(x) and f(x) using the average absolute rank difference418

or rank correlation coefficients such as Kendall’s tau [46] or Spearman’s rho [47].419
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Updating Membership Scores. A negative prefix score−r(x) is a simple yet effective membership420

score. Alternatively, one could construct a prefix p = p1 ⊕ · · · ⊕ pn using top-k examples ranked421

by r(x), and compute f(x) = ReCaLLp(x) using this prefix. The ordering of pi within p is also422

a design choice. Placing stronger prefixes closer to x may amplify their influence due to LLMs’423

attention bias toward recent tokens.424

E Using External Data425

We may extend the test dataset Dtest by utilizing external data to provide additional signals. Suppose426

we have a dataset of known members (Dm), a dataset of known non-members (Dnm), and a dataset427

of instances without any membership information (Dunk). For example, Dm could be old Wikipedia428

documents, sharing the common assumption that LLMs are usually trained with Wikipedia. As429

discussed above, we target the case of Dnm = ϕ, or at least Dnm ∩ Dtest = ϕ. However, we can430

construct it with completely unnatural texts (e.g., “*b9qx84;5zln"). Dunk is desirably drawn from431

the same distribution of Dtest but could be from any corpus when we do not know the test dataset432

distribution. Finally, we can incorporate all available data for better prediction of membership scores433

and prefix scores: Dtest ← Dtest ∪ Dm ∪ Dnm ∪ Dunk.434

F Computational Costs435

MIAs for LLMs only do inference without any additional training, so they are usually not too436

expensive. Therefore, MIA accuracy is typically prioritized over computational costs as long as it437

is reasonably feasible. Nevertheless, maintaining MIAs’ computational costs within a reasonable438

range is important. Computations on all our experiments with the used datasets (WikiMIA and439

OLMoMIA) were manageable even in an academic setting. We compare computational complexity440

between EM-MIA and other baselines (mainly, ReCaLL) and describe how computational costs of441

EM-MIA can be further reduced below.442

EM-MIA is a general framework in that the update rules for prefix scores and membership scores443

can be designed differently (as described in §2), and they determine the trade-off between MIA444

accuracy and computational costs. For the design choice described in Algorithm 1 that was used445

in our experiments, EM-MIA requires a pairwise computation LLp(x) for all pairs (x, p) once,446

where x, p ∈ Dtest. These values are reused to calculate the prefix scores in each iteration without447

recomputation. The iterative process does not require additional LLM inferences. The time complexity448

of EM-MIA is O(D2L2), where D = |Dtest| and L is an average token length of each data on Dtest,449

by assuming LLM inference cost is quadratic to the input sequence length due to the Transformer450

architecture. In this case, EM-MIA does not have other tuning hyperparameters, while Min-K% and451

Min-K%++ have K and or ReCaLL has n. This is more reasonable since validation data to tune them452

is not given.453

Of course, the baselines other than ReCaLL (Loss, Ref, Zlib, Min-K%, and Min-K%++) only454

compute a log-likelihood of each target text without computing a conditional log-likelihood with455

a prefix, so they are the most efficient: O(DL2) time complexity. Since ReCaLL uses a long456

prefix consisting of n non-member data points, its time complexity is O(D(nL)2) = O(n2DL2).457

According to the ReCaLL paper, they sweep n from 1 to 12 to find the best n, which means458

O((12 + 22 + · · · + n2)DL2) = O(n3DL2). Also, in some cases (Figure 3 and Table 7 in their459

paper), they used n = 28 to achieve a better result. In theory, it may seem EM-MIA does not460

scale well with respect to D. Nevertheless, the amount of computation and time for EM-MIA with461

D ∼ 1000 is not significantly larger than ReCaLL, considering the n factor.462

Moreover, ReCaLL requires O(n2) times larger memory than others including EM-MIA, so it may463

not be feasible for hardware with a small memory. In this sense, EM-MIA is more parallelizable,464

and we make EM-MIA faster with batching. Lastly, there is room to improve the time complexity of465

our method. We have not explored this yet, but for example, we may compute ReCaLL scores on466

a subset of the test dataset to calculate prefix scores as an approximation of our algorithm. We left467

improving the efficiency of EM-MIA as future work.468
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Figure 2: The basic setup of OLMoMIA benchmark. The horizontal line indicates a training step.
For any intermediate checkpoint at a specific step, we can consider training data before and after that
step as members and non-members, respectively.

G Details on OLMoMIA Benchmark Construction469

Membership Label Assignment. Figure 2 illustrates the benchmark setup. OLMo provides470

intermediate model checkpoints and a detailed index mapping training steps to data examples,471

offering a rare opportunity to precisely define membership. We use four OLMo-7B checkpoints saved472

at 100k, 200k, 300k, and 400k training steps, where one full epoch consists of just over 450k steps.473

We define member examples as those seen before step 100k and non-members as those introduced474

between steps 400k and 500k. This setup reflects a practical incremental training scenario. Some475

ambiguity in membership may remain despite deduplication, as discussed in Section A.476

Dataset Sampling with Varying Difficulty We construct six dataset variants to simulate different477

levels of distributional overlap. The basic Random setting samples member and non-member examples478

uniformly from their respective intervals. This is analogous to MIMIR [16], which is known to be479

more challenging than WikiMIA due to minimal distributional differences between members and480

non-members [48].481

To introduce controlled variation in difficulty, we first embed the candidate examples using NV-482

Embed-v2 [49], the top-performing model on the MTEB leaderboard [50] as of August 2024. We483

then perform K-means clustering [51] separately on member and non-member embeddings with484

K = 50. To ensure diversity within clusters, we apply greedy deduplication by removing examples485

that are too similar (cosine distance below 0.6) to other points in the same cluster.486

Based on these clusters, we define three difficulty-controlled variants: Easy selects the most dissimilar487

member and non-member clusters and samples examples furthest from the opposing group; Hard488

selects the most similar clusters and samples examples closest to the opposing group; Medium selects489

clusters with median inter-cluster distance and samples randomly from each.490

We additionally define two hybrid settings: Mix-1 combines members from Random and non-members491

from Hard, simulating tightly clustered test-time distributions; Mix-2 does the reverse, combining492

members from Hard and non-members from Random. Together, these configurations span a broad493

range of separability conditions, providing a robust testbed for evaluating MIA methods. Formal494

definitions of each construction step are included in Appendix M.495

Dataset Specifications. Each difficulty variant includes two subsets with maximum sequence496

lengths of 64 and 128 tokens. Each subset contains 500 members and 500 non-members, for a total497

of 1,000 examples per dataset.498

H EM-MIA Configurations for Experiments499

As described in Section 2, EM-MIA is a general framework where each component can be tuned500

for improvement, but we use the following options as defaults based on results from preliminary501

experiments. Overall, Min-K%++ performs best among baselines without ReCaLL-based approaches,502

so we use it as a default choice for initialization. Alternatively, we may use ReCaLL-based methods503

that do not rely on any labels like Avg, AvgP, or Rand. For the update rule for prefix scores, we504

use AUC-ROC as a default scoring function S. For the update rule for membership scores, we use505

negative prefix scores as new membership scores. For the stopping criterion, we repeat ten iterations506

and stop without thresholding by the score difference since we observed that membership scores and507

prefix scores converge quickly after a few iterations. We also observed that EM-MIA is not sensitive508

to the choice of the initialization method and the scoring function S and converges to similar results.509
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I Baselines510

We compare EM-MIA against the following baselines: Loss [20], Ref [10], Zlib [38], Min-K% [19],511

and Min-K%++ [21]. We use Pythia-70m for WikiMIA and StableLM-Base-Alpha-3B-v2 model [52]512

for OLMoMIA as the reference model of the Ref method, following [19] and [16]. We use K = 20513

for Min-K% and Min-K%++. Among the commonly used baselines, we omit Neighbor [35] because514

it is not the best in most cases though it requires LLM inference multiple times for neighborhood515

texts, so it is much more expensive.516

J ReCaLL-based Baselines517

We include several variants of ReCaLL that differ in how the prefix p = p1 ⊕ · · · ⊕ pn is constructed:518

Rand, RandM, RandNM, and TopPref. Rand randomly selects any data from Dtest. RandM ran-519

domly selects member data from Dtest. RandNM randomly selects non-member data from Dtest.520

TopPref selects data from Dtest with the highest prefix scores calculated with ground truth labels the521

same as §C.522

Among these, only Randis fully unsupervised; the others either partially or fully rely on labels in the523

test dataset, making them unsuitable for realistic scenarios. For all methods using a random selection524

(Rand, RandM, and, RandNM), we execute five times with different random seeds and report the525

average. We fix n = 12 since it provides a reasonable performance while not too expensive. We526

report the results from the original ReCaLL paper but explain why this is not a fair comparison in527

Appendix K.528

We also evaluate two unsupervised averaging variants. Avg and AvgP average ReCaLL529

scores over all data points in Dtest: Avg(x) = 1
|Dtest|

∑
p∈Dtest

ReCaLLp(x) and AvgP(p) =530

1
|Dtest|

∑
x∈Dtest

ReCaLLp(x). The intuition is averaging will smooth out ReCaLL scores with531

a non-discriminative prefix while keeping ReCaLL scores with a discriminative prefix without exactly532

knowing discriminative prefixes.533

K Comparison with ReCaLL534

As explained in §B, the original ReCaLL [17] uses labeled data from the test dataset, which is unfair535

to compare with the above baselines and ours. More precisely, pi in the prefix p = p1⊕ p2⊕· · ·⊕ pn536

are known non-members from the test set Dtest, and they are excluded from the test dataset for537

evaluation, i.e.,Dtest
′ = Dtest\{p1, p2, · · · , pn}. However, we measure the performance of ReCaLL538

with different prefix selection methods to understand how ReCaLL is sensitive to the prefix choice539

and use it as a reference instead of a direct fair comparison.540

Since changing the test dataset every time for different prefixes does not make sense and makes the541

comparison even more complicated, we keep them in the test dataset. A language model tends to542

repeat, so LL(pi|p;M) ≃ 0. Because LL(pi|p;M) ≪ 0, ReCaLLp(pi;M) ≃ 0. It is likely to543

ReCaLLp(pi;M) ≪ ReCaLLp(x;M) for x ∈ Dtest \ {p1, p2, · · · , pn}, meaning that ReCaLL544

will classify pi as a non-member. The effect would be marginal if |Dtest| ≫ n. Otherwise, we should545

consider this when we read numbers in the result table.546

The original ReCaLL [17] is similar to RandNM, except they report the best score after trying all547

different n values, which is again unfair. The number of shots n is an important hyper-parameter548

determining performance. A larger n generally leads to a better MIA performance but increases549

computational cost with a longer p.550

L Metrics for Prefix Scores551

Figure 3 shows ROC curves when negative prefix scores, computed using different metrics, are used552

directly as membership scores. We compare prefix scoring metrics including AUC-ROC, Accuracy,553

and TPR@k%FPR for k ∈ {0.1, 1, 5, 10, 20}. Among them, using AUC-ROC to compute prefix554

scores yields the best result, achieving 98.6% AUC-ROC for membership inference.555
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Figure 3: ROC curves for MIA using the negative prefix score as the membership score, evaluated
with different metrics for prefix scores in the oracle setting on WikiMIA [19] (length 128) using
Pythia-6.9B [24].

Figure 4: Performance of EM-MIA for each iteration with varying baselines for initialization and
scoring functions S on WikiMIA [19] (length 128) using Pythia-6.9B [24].

M Formulation of OLMoMIA Settings556

After the filtering of removing close points, let member clusters as Cm
i for i ∈ [1,K] and non-557

member clusters as Cnm
j for j ∈ [1,K]. These clusters satisfy d(x, y) > 0.6 for all x, y ∈ Cm

i and558

d(x, y) > 0.6 for all x, y ∈ Cnm
j . The following equations formalize how we construct different559

settings of OLMoMIA:560

• Random: Drandom = Dm
random ∪ Dnm

random561

• Easy: Deasy = Dm
easy ∪ Dnm

easy, where ieasy, jeasy = argmax(i,j) Ex∈Ci,y∈Cjd(x, y), Dm
easy =562

arg topkx Ey∈Cnm
jeasy

d(x, y), and Dnm
easy = arg topky Ex∈Cimeasy

d(x, y)563

• Hard: Dhard = Dm
hard∪Dnm

hard, where ihard, jhard = argmin(i,j) Ex∈Ci,y∈Cj
d(x, y),Dm

hard =564

arg topkx−Ey∈Cnm
jhard

d(x, y), and Dnm
hard = arg topky −Ex∈Cim

hard
d(x, y)565

• Medium: Dmedium = Dm
medium ∪ Dnm

medium, where imedium, jmedium =566

median(i,j) Ex∈Ci,y∈Cj
d(x, y), Dm

medium ⊂ Cm
imedium

, and Dnm
medium ⊂ Cnm

jmedium
567

• Mix-1: Dmix−1 = Dm
random ∪ Dnm

hard568

• Mix-2: Dmix−2 = Dm
hard ∪ Dnm

random569

N Ablation Study on Initializations and Scoring Functions570

Figure 4 displays the ablation study of EM-MIA with different combinations of the initialization571

(Loss, Ref, Zlib, Min-K%, and Min-K%++) and the scoring function S (AUC-ROC, RankDist,572

and Kendall-Tau) using the WikiMIA dataset with a length of 128 and Pythia-6.9B model. Each573
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curve indicates the change of AUC-ROC calculated from the estimates of membership scores at574

each iteration during the expectation-maximization algorithm. In most combinations, the algorithm575

converges to a similar accuracy after 4-5 iterations. In this figure, there is only one case in which576

AUC-ROC decreases quickly and reaches a value close to 0. It is difficult to know when this happens,577

but it predicts members and non-members oppositely, meaning that using negative membership scores578

gives a good AUC-ROC.579

O TPR@1%FPR Results580

Method Mamba-1.4B Pythia-6.9B LLaMA-13B NeoX-20B LLaMA-30B OPT-66B Average

32 64 128 32 64 128 32 64 128 32 64 128 32 64 128 32 64 128 32 64 128

Loss 4.7 2.1 1.4 6.2 2.8 3.6 4.7 4.2 7.9 10.3 3.5 4.3 4.1 5.3 7.2 6.5 3.5 3.6 6.1 3.6 4.7
Ref 0.5 0.7 0.7 1.6 1.1 1.4 2.3 3.9 2.9 3.1 2.5 1.4 1.3 2.5 3.6 1.8 1.8 0.7 1.8 2.1 1.8
Zlib 4.1 4.9 7.2 4.9 6.0 11.5 5.7 8.1 12.9 9.3 6.3 5.0 4.9 9.5 10.1 5.7 7.0 11.5 5.8 7.0 9.7
Min-K% 7.0 4.2 5.8 8.8 3.9 7.2 5.2 6.0 15.1 10.6 3.9 7.2 4.7 7.0 5.8 9.0 7.7 8.6 7.5 5.5 8.3
Min-K%++ 4.1 7.0 1.4 5.9 10.6 10.1 10.3 12.0 25.2 6.2 9.5 1.4 8.3 6.7 9.4 3.6 12.0 13.7 6.4 9.6 10.2

Avg 3.9 0.4 5.0 8.0 1.1 7.9 3.1 7.0 6.5 6.2 2.1 8.6 2.8 6.7 8.6 2.6 2.1 4.3 4.4 3.2 6.8
AvgP 0.5 0.4 0.7 1.8 0.4 0.0 0.0 0.7 0.0 1.3 0.7 0.0 0.0 0.0 2.9 2.1 12.3 24.5 0.9 2.4 4.7
RandM 0.8 0.1 0.6 0.9 0.0 1.9 0.2 0.4 7.6 0.5 0.3 1.6 0.4 0.6 8.1 0.7 0.1 0.9 0.6 0.2 3.4
Rand 3.7 3.9 2.4 2.3 3.2 7.6 1.6 2.7 7.3 4.4 5.0 4.7 1.6 3.2 7.9 2.1 3.2 3.2 2.6 3.5 5.5
RandNM 19.2 8.3 15.4 12.6 10.5 18.7 18.5 17.2 7.5 12.9 11.6 12.5 13.8 18.7 8.1 5.0 5.0 6.6 13.7 11.9 11.5
TopPref 12.7 4.2 25.2 16.0 1.4 29.5 14.2 9.2 7.9 13.4 13.7 20.9 27.1 29.9 8.6 3.9 5.6 9.4 14.6 10.7 16.9
ReCaLL [17] 11.2 11.0 4.0 28.5 20.7 33.3 13.3 30.1 26.3 25.3 6.9 30.3 18.4 18.3 1.0 8.3 5.3 6.1 17.5 15.4 16.9

EM-MIA 54.0 47.9 51.8 50.4 56.0 47.5 66.4 75.7 58.3 51.4 64.1 59.0 61.5 66.2 71.9 83.5 73.2 39.6 61.2 63.8 54.7

Table 3: TPR@1%FPR results on WikiMIA benchmark. The second block (grey) is ReCaLL-based
baselines. RandM, RandNM, ReCaLL, and TopPref use labels in the test dataset, so comparing them
with others is unfair. We report their scores for reference. We borrow the original ReCaLL results
from [17] which is also unfair to be compared with ours and other baselines.

Method Easy Medium Hard Random Mix-1 Mix-2

64 128 64 128 64 128 64 128 64 128 64 128

Loss 2.8 12.8 7.2 1.4 0.1 1.2 1.3 0.7 7.2 1.7 0.0 0.7
Ref 6.2 4.0 4.9 0.6 1.0 0.9 1.2 1.2 8.4 0.5 0.2 1.6
Zlib 2.0 9.8 6.7 1.1 0.2 1.6 0.9 0.7 6.4 1.7 0.0 0.7
Min-K% 1.3 6.5 5.8 1.4 0.1 1.3 1.1 0.7 6.1 2.0 0.0 0.7
Min-K%++ 1.4 8.0 5.0 0.7 0.4 1.0 1.0 0.4 5.0 0.9 0.0 0.5

Avg 4.1 11.5 4.0 1.7 0.2 2.2 1.2 0.6 6.1 2.2 0.0 0.9
AvgP 11.7 0.1 2.6 7.2 0.7 1.6 0.7 1.4 4.8 12.1 0.1 0.0
RandM 3.0 4.9 2.4 1.1 0.4 2.2 0.9 0.8 7.6 1.3 0.0 0.4
Rand 4.3 7.8 3.7 1.7 0.4 2.7 1.0 0.8 10.6 3.0 0.0 0.7
RandNM 16.9 14.2 5.2 1.8 0.3 1.9 1.0 0.8 9.2 2.9 0.0 1.1
TopPref 22.0 16.6 6.3 1.9 0.4 2.2 1.1 1.4 8.1 5.1 0.0 0.5

EM-MIA 95.0 52.1 79.8 96.7 1.8 1.0 1.1 1.4 12.2 3.8 14.8 4.3

Table 4: TPR@1%FPR results on OLMoMIA benchmark. The second block (grey) is ReCaLL-based
baselines. RandM, RandNM, ReCaLL, and TopPref use labels in the test dataset, so comparing them
with others is unfair. We report their scores for reference.

TPR@low FPR is a useful MIA evaluation metric [10] in addition to AUC-ROC, especially when581

developing a new MIA and comparing it with other MIAs. Due to the space limitation in the main582

text, we put TPR@low FPR here: Table 3 for WikiMIA and Table 4 for OLMoMIA.583

P Limitations584

Our paper focuses on detecting LLMs’ pre-training data with the gray-box access, where computing585

the probability of a text from output logits is possible. However, many proprietary LLMs are usually586

further fine-tuned [53, 54], and they only provide generation outputs, which is the black-box setting.587

We left the extension of our approach to MIAs for fine-tuned LLMs [55, 56, 57, 58, 59, 60, 61] or588

LLMs with black-box access [62, 63, 64] as future work.589
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NeurIPS Paper Checklist590

1. Claims591

Question: Do the main claims made in the abstract and introduction accurately reflect the592

paper’s contributions and scope?593

Answer: [Yes]594

Justification: The abstract and introduction state the core contributions of EM-MIA, the595

setting and assumptions, and the scope of evaluation, and these match the algorithms and596

experiments reported in the paper.597

2. Limitations598

Question: Does the paper discuss the limitations of the work performed by the authors?599

Answer: [Yes]600

Justification: We include a Limitations section.601

3. Theory assumptions and proofs602

Question: For each theoretical result, does the paper provide the full set of assumptions and603

a complete (and correct) proof?604

Answer: [NA]605

Justification: The paper focuses on an algorithmic framework and empirical evaluation606

without formal theorems.607

4. Experimental result reproducibility608

Question: Does the paper fully disclose all the information needed to reproduce the main ex-609

perimental results of the paper to the extent that it affects the main claims and/or conclusions610

of the paper (regardless of whether the code and data are provided or not)?611

Answer: [Yes]612

Justification: We document datasets, preprocessing, model versions, metrics, and all hy-613

perparameters needed to reproduce the main tables. Step-by-step procedures and ablation614

settings are also provided in detail.615

5. Open access to data and code616

Question: Does the paper provide open access to the data and code, with sufficient instruc-617

tions to faithfully reproduce the main experimental results, as described in supplemental618

material?619

Answer: [No]620

Justification: We will release a public repository upon acceptance. Instructions include the621

exact commands, environment, and data access notes.622

6. Experimental setting/details623

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-624

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the625

results?626

Answer: [Yes]627

Justification: We specify evaluation setups and model configurations.628

7. Experiment statistical significance629

Question: Does the paper report error bars suitably and correctly defined or other appropriate630

information about the statistical significance of the experiments?631

Answer: [No]632

Justification: [NA]633

8. Experiments compute resources634

Question: For each experiment, does the paper provide sufficient information on the com-635

puter resources (type of compute workers, memory, time of execution) needed to reproduce636

the experiments?637
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Answer: [No]638

Justification: We provide complexity analysis.639

9. Code of ethics640

Question: Does the research conducted in the paper conform, in every respect, with the641

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?642

Answer: [Yes]643

Justification: We followed the NeurIPS Code of Ethics, used publicly available or licensed644

datasets, and adhered to model provider terms for API use. Anonymity is preserved for645

submission materials.646

10. Broader impacts647

Question: Does the paper discuss both potential positive societal impacts and negative648

societal impacts of the work performed?649

Answer: [Yes]650

Justification: Our work is beneficial to the trustworthy evaluation of large language models.651

11. Safeguards652

Question: Does the paper describe safeguards that have been put in place for responsible653

release of data or models that have a high risk for misuse (e.g., pretrained language models,654

image generators, or scraped datasets)?655

Answer: [NA]656

Justification: We do not release high-risk generative models or scraped datasets. We release657

evaluation code and configurations only, which do not require additional access controls658

beyond standard licenses.659

12. Licenses for existing assets660

Question: Are the creators or original owners of assets (e.g., code, data, models), used in661

the paper, properly credited and are the license and terms of use explicitly mentioned and662

properly respected?663

Answer: [Yes]664

Justification: We cite all datasets, models, and codebases.665

13. New assets666

Question: Are new assets introduced in the paper well documented and is the documentation667

provided alongside the assets?668

Answer: [No]669

Justification: We will release a public repository upon acceptance. Instructions include the670

exact commands, environment, and data access notes.671

14. Crowdsourcing and research with human subjects672

Question: For crowdsourcing experiments and research with human subjects, does the paper673

include the full text of instructions given to participants and screenshots, if applicable, as674

well as details about compensation (if any)?675

Answer: [NA]676

Justification: The study does not involve crowdsourcing or human-subject experiments. No677

participant instructions or compensation details are applicable.678

15. Institutional review board (IRB) approvals or equivalent for research with human679

subjects680

Question: Does the paper describe potential risks incurred by study participants, whether681

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)682

approvals (or an equivalent approval/review based on the requirements of your country or683

institution) were obtained?684

Answer: [NA]685
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Justification: The study does not involve human-subject research. IRB approval is therefore686

not applicable.687

16. Declaration of LLM usage688

Question: Does the paper describe the usage of LLMs if it is an important, original, or689

non-standard component of the core methods in this research? Note that if the LLM is used690

only for writing, editing, or formatting purposes and does not impact the core methodology,691

scientific rigorousness, or originality of the research, declaration is not required.692

Answer: [NA] .693

Justification: The LLM is used only for writing, editing, or formatting purposes and does694

not impact the core methodology, scientific rigorousness, or originality of the research.695
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