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ABSTRACT

The distribution closeness testing (DCT) assesses whether the distance between a
distribution pair is at least e-far. Existing DCT methods mainly measure discrepan-
cies between a distribution pair defined on discrete one-dimensional spaces (e.g.,
using total variation), which limits their applications to complex data (e.g., images).
To extend DCT to more types of data, a natural idea is to introduce maximum mean
discrepancy (MMD), a powerful measurement of the distributional discrepancy
between two complex distributions, into DCT scenarios. However, we find that
MMD’s value can be the same for many pairs of distributions that have different
norms in the same reproducing kernel Hilbert space (RKHS), making MMD less
informative when assessing the closeness levels for multiple distribution pairs. To
mitigate the issue, we design a new measurement of distributional discrepancy,
norm-adaptive MMD (NAMMD), which scales MMD’s value using the RKHS
norms of distributions. Based on the asymptotic distribution of NAMMD, we
finally propose the NAMMD-based DCT to assess the closeness level of a distribu-
tion pair. Theoretically, we prove that NAMMD-based DCT has higher test power
compared to MMD-based DCT, with bounded type-I error, which is also validated
by extensive experiments on many types of data (e.g., synthetic noise, real images).

1 INTRODUCTION

Distribution shift between training and test sets often exists in many real-world scenarios where
machine learning methods are used [1, 2]. According to the classical machine learning theory [3], it is
well-known that such a shift will influence the performance on the test set. In a worst case: having a
very large distributional discrepancy between training and test data, we might have poor performance
on test data for a model trained on the training data [4, 5]. The obtained poor performance can be
explained by many theoretical results [4, 6]. However, we can also observe the other interesting
phenomenon: it is also empirically proved that models trained on a large dataset (e.g., ImageNet [7])
can have good performance on relevant/similar downstream test data (e.g., Pascal VOC [8]) that is
different from training dataset [9]. This means that, even if training and test data are from different
distributions, we can still expect relatively good performance as they might be close to each other.

Therefore, seeing to what statistically significant extent two distributions are close to each other is
important and might help us decide if we really need to adapt a model when we observe upcoming
data that follow a different distribution from training data. Two-sample testing (TST) can naturally
see if training and test data are from the same distribution [10], but it is less useful in the phenomenon
above as we might also have good performance when the training and test data are close to each other.
Fortunately, in theoretical computer science, researchers have proposed distribution closeness testing
(DCT) to see if the distance between a distribution pair is at least e-far, including TST as a specific
case with ¢ = 0 [11-14]. The DCT exactly fits the aim of seeing to what statistically significant
extent two distributions are close to each other, and has been used to evaluate Markov chain mixing
time [15], test language membership [16] and analyze feature combinations [17].

However, existing DCT methods mainly measure closeness using total variation [18-21], and pri-
marily focus on the theoretical analysis of the sample complexity of sub-linear algorithms applied
to discrete one-dimensional distributions defined on a support set only containing finite elements
(e.g., distribution defined on a positive-integer domain {1, 2, ..., n}). This limits their applications to
complex data, which is often used in machine learning tasks (e.g., image classification). Although it
is possible to discretize complex data to a simple support set (then conducting DCT using existing
methods [22]), it is not easy to maintain intrinsic structures and patterns of complex data after the
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Figure 1: MMD is less informative when two distributions are different. All visualizations are presented
with a constant MMD value ||pp — pig||3;,, = 0.15 on the Gaussian kernel with bandwidth 1, extendable
to other kernels of the form: k(z,z’) = ¥(x — x’) < K with K > 0 for a positive-definite ¥(-) and
¥(0) = K (Relevant Limitation Statement regarding kernel forms can be found in F). Subfigures (a) and (b)
depict distributions P and Q with varying norms (||pzp||7,, and ||p2q||%,.), yet they yield the same MMD value
in two subfigures, indicating that MMD is less informative. Subfigure (c) presents the MMD value and the
p-values of its estimator in TST. Subfigure (d) presents the NAMMD value and the p-values of its estimator in
TST. It is evident that NAMMD exhibits a stronger correlation with the p-value compared to MMD. Namely,
larger NAMMOD corresponds to smaller p-value, while MMD keeps the same value when the p-value changes.

discretization [23, 24]. Besides, extending these methods using continuous total variation involves
the estimation of the underlying density functions of the distributions [25, 26], a task that becomes
particularly challenging in high-dimensional settings with limited sample sizes [27].

To extend DCT to more types of data, a natural idea is to introduce maximum mean discrepancy
(MMD), a powerful kernel-based measurement of the distributional discrepancy between two complex
distributions [28, 29], into DCT scenarios. MMD provides a versatile approach across both discrete
and continuous domains, and many approaches have extended it to various scenarios, including mean
embeddings with test locations [30, 31], local difference exploration [32], stochastic process [33],
multiple kernel [34, 35], adversarial learning [36], and domain adaptation [37]. Yet, no one has
explored how to extend DCT to complex data with MMD.

In this paper, however, we find it is not ideal to directly use MMD in DCT, because the MMD is less
informative when comparing the closeness levels of different distribution pairs for a fixed kernel «.
Specifically, the MMD value can be the same for many pairs of distributions that have different norms
in the RKHS H,;, which potentially have different closeness levels. We present an example to analyze
the above issue on a Gaussian kernel in Figure 1. The empirical results show that the MMD estimator
of a distribution pair (IP, Q) with the the same MMD value but larger RKHS norms tend to exhibit
a smaller p-value (as shown in Figure Ic) in assessing the equivalence between two distributions,
i.e., TST, which indicates that P and Q are less likely satisfy the null hypothesis (i.e., P = Q). This
reflects that two distributions P and QQ are more significantly different, i.e., less close to each other!.

To mitigate the above issue, we design a new measurement of distributional discrepancy, norm-
adaptive MMD (NAMMD), which scales MMD’s value using the RKHS norms of distributions.
Specifically, its value is scaled up as the norms of distributions increase, while the MMD value is
held at constant. Combining both of Figure lc and 1d, we can find that our NAMMD exhibits a
stronger correlation with the p-value compared to MMD. Namely, larger NAMMD corresponds to
smaller p-value (Figure 1d), while MMD keeps the same value when the p-value changes (Figure 1c).
Eventually, we propose a new NAMMD-based DCT, which derives its testing threshold from the
analytical and asymptotic null distribution of NAMMD, with a guaranteed bound on type-I error. In
Theorem 9, we prove that, under alternative hypothesis, if MMD-based DCT rejects a null hypothesis
correctly, NAMMD-based DCT also rejects it with high probability; moreover, NAMMD-based DCT
can reject a null hypothesis in cases where MMD-based DCT fails, leading to higher test power. We
also provide an analysis regarding the sample complexity of NAMMD-based DCT (Theorem 7), i.e.,
how many samples we need to correctly reject a null hypothesis with high probability.

In experiments, we validate NAMMD-based DCT on benchmark datasets in comparison with state-
of-the-art methods. Furthermore, considering practical scenarios in testing distribution closeness, we

'See Appendix B, which further explains why the p-values in Figure lc decrease via changes in the standard
deviation of the MMD estimator.
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might use a reference (known) pair of distributions IP; and Q;, with their distance serving as the ¢;
and we then test whether the distance between an unknown distribution pair Py and Q5 exceeds that
between P; and Q;. Given this, we conduct experiments in three practical case studies to demonstrate
the effectiveness of our NAMMD test in evaluating whether a classifier performs relatively similarly
across training and test datasets, compared to a prespecified level, without labels (Section 5.2).

2 PRELIMINARIES

Distribution Closeness Testing (DCT). Denote by IP and Q two unknown Borel probability measures
over an instance space X C R, The DCT assesses whether P and Q are e-far from each other under
a closeness measurement d, where d can be any distance or metric that quantifies the closeness or
difference between probability distributions. For convenience, we assume that d is scaled to [0, 1].
Formally, given d, the goal of DCT is to test between the null and alternative hypotheses as follows

H,:d(P,Q) <e and H;:d(P,Q) > €,
where € € [0,1) is the predetermined closeness parameter.

Maximum Mean Discrepancy (MMD). The MMD [28] is a typical kernel-based distance between
two distributions. Let k : X x X — R be the kernel of a reproducing kernel Hilbert space H,,
with feature map (-, x) € H, and 0 < k(x,y) < K. The kernel mean embeddings [38, 39] of
distributions [P and Q are given as

pp = Bonplr(- )] and pg = Eyeqlr(-y)] .
We now define the MMD of IP and QQ as

MMD?*(P,Q, k) = [[p — poll3,, = llpeli. + lollF. + (e, po)wx
= Elk(z,2') +r(y,y") — 2k(z,y)] € [0,2K],

where z, 2’ ~ P, y,y' ~ Q, and || - ||3,, = (-, )n,. is the inner product in RKHS H,,.

For characteristic kernels, MMD(PP, Q; x) = 0 if and only if P = Q. Hence, MMD can be readily
applied to the two-sample testing, which aims to test whether the two distributions P and QQ are
identical (the null hypothesis) or different from each other (the alternative hypothesis).

3 NAMMD-BASED DISTRIBUTION CLOSENESS TESTING

As discussed in introduction and shown in Figure 1, while MMD can detect whether two distributions
are identical, it is less informative in measuring the closeness between distributions. Specifically,
different pairs of distributions with varying norms in the RKHS can yield the same MMD value,
despite having different levels of closeness, as revealed through the analysis of p-values.

NAMMD and Its Asymptotic Property. To mitigate this issue, we define our NAMMD distance as:

Definition 1. For a kernel  with H,, and 0 < k(x,y) < K, we define the norm-adaptive maximum
mean discrepancy NAMMD) w.r.t. distributions P and Q as follows:

e — moll3,,
4K — ||pell3,. — el

Here, the numerator of NAMMD is MMD? (PP, Q; ), which lies in [0, 2K] for any bounded, shift-
invariant kernel x(x, ') = ¥(x — «’) with ¥(0) = K > 0 and ¥(-) < K (positive-definite). The
denominator is the scaling term 4K — ||up||3, — [|pql|3, . which lies in [2K, 4K]. Consequently,
0 < NAMMD(P,Q; k) < 1, and NAMMD approaches 1 when two distributions PP and Q are
well-separated from each other and both are highly concentrated®.

NAMMD(P, Q; k) = €[0,1]. N

In NAMMD, we essentially capture differences between two distributions using their characteristic
kernel mean embeddings (i.e. pp and pg), which uniquely represent distributions and capture
distinct characteristics for effective comparison [40]. A natural way to measure the difference is

2See Appendix C.1, which provides further details on the conditions under which NAMMD approaches 1.
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by the Euclidean-like distance ||p — pol|3, (i.e., MMD). However, as discussed in Section 1,
MMD can yields same value for many pairs of distributions that have different norms with the same
kernel (which empirically results in different closeness levels). To mitigate the issue, we scale it
using 4K — ||ppll3, — ||qll3, . making NAMMD increase when the norms [|pp||3, and ||pqll3,
increase. Combining both of Figure Ic and 1d, we can find that larger NAMMD corresponds to
smaller p-value, while MMD keeps the same value when the p-value changes. We prove that the
scaling improves our NAMMD’s effectiveness as a closeness measurement for DCT in Theorems 9.

Equivalently, NAMMD can be viewed as MMD scaled by the RKHS variances of distributions
P and Q. Specifically, for a bounded, shift-invariant kernel x(z, ') = ¥(x — ') < K with
K > 0, where ¥(-) is positive definite and ¥(0) = K, the variances take the form Var(P; k) =
Eqpln(@.)] — |z, = K — |pel%, and Var(@;s) = K — [, . Hence, we have
NAMMD(P, Q; k) = MMD(P,Q; x)/(2K + Var(P; k) 4+ Var(Q; k)). Several prior works have
also exploited second-order information in the RKHS: some analyze covariance operators to derive
asymptotic null distributions for two-sample tests [41—44], while others spectrally regularize MMD
to incorporate covariance information [45]. In contrast, our approach focuses on the trace of the
covariance matrix to mitigate the comparability issues of MMD in distribution closeness testing,
while remaining simple and easily estimable from finite sample®.

In practice, P and Q are generally unknown, and we can only observe two i.i.d. samples*
X={z;};2y ~P" and Y = {y;}]-; ~ Q™.
Based on two samples X and Y, we introduce the empirical estimator of our NAMMD as follows

. Sz Hi
NAMMD(X,Y; k) = iz :
21753[4[( - K’(wivmj) - K(yuyj)]
where H; ; = r(x;, x;) + k(¥i,y;) — £(xi, y;) — x(y;, ;). Then, we prove an asymptotic

distribution of NAMMD when two distributions are different in the following theorem.
Lemma 2. [fNAMMD(P, Q; k) = € > 0, we have

Vm(NAMMD(X, Y; 1) — €) % N (0,024) ,

where opg = \/AE[Hy 2Hy 3] — 4(E[H:12])?/(4K — |pell3, — llmoll3,. ). and the expectation
are taken over x1,xs, x3 ~ P and y1,ya, y3 ~ Q3.

We now present the DCT by taking our NAMMD as the closeness measure, along with an appropri-
ately estimated testing threshold from the above analytical and asymptotic distribution.

NAMMD-DCT Testing Procedure. In the following, we instantiate the distribution closeness testing
in Section 2 using NAMMD as the closeness measurement.

Definition 3. Given the closeness parameter € € (0, 1), the goal is to test between hypotheses
H, : NAMMD(P,Q; k) < e and H; : NAMMD(P,Q; k) > €,
with the significance level o € (0,1).

To conduct a hypothesis testing procedure for distribution closeness, we first estimate the testing
threshold 7, under the null hypothesis Hy : NAMMD(P,Q; k) < ¢ at significance level .
The null hypothesis is composite, consisting of the case NAMMD(P, Q; k) = ¢ and the case
NAMMD(P, Q; k) < e. Since the value NAMMD(P, Q; x) is unknown, we set the testing threshold

74 as the estimated (1 — «v)-quantile of the the asymptotic Gaussian distribution of NATV[T&D(X Y5 k)
under the case where NAMMD(P, Q; k) = ¢ (i.e., the least-favorable boundary of the composite null
hypothesis) as shown in Lemma 2. For the asymptotic distribution, the term a]ﬁ,@ is unknown and we
use its estimator

oxy = V((Am = 8)¢1 + 26)/(m — 1)
T (m2—m)TUY AR — R xy) — k(YY)

’Notably, in the scaling term 4K — ||pe|3;, — ||tal|3, » the quantities || pe|3,, and ||pgll3,, are already
computed when evaluating MMD, so the additional computational overhead is negligible in practice.

*Following Liu et al. [29], we assume equal size for two samples to simplify the notation, yet our results can
be easily extended to unequal sample sizes by changing the estimator based on multi-sample U -statistic [46].
See Appendix C.2 for more details.

@
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where (; and (s, are standard variance components of the MMD [47, 48] (See Appendix C.3).
Lemma 4 shows that the estimator 0% ;- converges to o , at a rate of O(1/y/m).

We now have the testing threshold for null hypothesis Hy : NAMMD(P, Q; ) < e with e € (0, 1) as
Fo =€+t oxyNi_o/Vm, 3)
where N7_,, is the (1 — a)-quantile of the standard normal distribution A/(0, 1).

Finally, we have the following testings procedure with testing threshold 7,

WX,Y; k) = IINAMMD(X,Y; k) > 7] . )

Performing DCT in Practice. We have demonstrated the NAMMD-based DCT above, yet it is still
not clear how the e of Definition 3 should be set in practice. Normally, when we want to test the
closeness, we often have a reference pair of distributions IP; and Q; where the closeness between
P, and Q; is acceptable/satisfactory. For example, although ImageNet and Pascal VOC are from
different distributions, the model trained on ImageNet can still have good performance on Pascal
VOC. Thus, we can use the NAMMD’s empirical value between ImageNet and Pascal VOC as the
prespecified € in this case. Then, given two samples X and Y drawn from an unknown pair of
distributions Py and Q2 respectively, we seek to determine whether the distance between Po and Q4
is as close or closer to that between Py and Q, by applying distribution closeness testing. Here,
given the specified ¢, and this DCT problem can be formalized by Definition 3 with hypotheses as

Hj, : NAMMD(Py,Qs; k) <€ and H, : NAMMD (P2, Q2; k) > €.
Finally, we can perform NAMMD testing procedure with samples X and Y.

Relevant Works and Kernel Selection. To support our methodology and provide additional context,
we introduce more relevant works in Appendix C.4, including those involving various testing threshold
estimations, kernel selection approaches, etc. Specifically, for kernel selection in DCT, we select
a fixed global kernel for different distribution pairs, which is essential for effectively comparing
their closeness levels under a unified distance measurement. However, existing kernel selections
are primarily designed for the TST [29, 49], focusing on selecting a kernel that maximizes the
t-statistic in test power estimation to distinguish a fixed distribution pair. In DCT, deriving a test
power estimator with several different distribution pairs remains an open question and we follow the
TST approaches to select a kernel to distinguish between P; and Q; in practice (see Appendix C.5).

Applying NAMMD to Two-Sample Testing. Although the NAMMD is specially designed for DCT,
it is still a statistic to measure the distributional discrepancy between two distributions. Thus, it is
interesting to apply it to two-sample testing (TST) scenarios. In TST, we aim to assess the equivalence
between distributions P and Q, where the null hypothesis assumes P = QQ and is tested against the
alternative hypothesis P # Q. Following MMD-based approaches to TST [49], we use a permutation
test to estimate the test threshold 7, which estimate the null distribution by repeatedly re-computing
estimator with the samples randomly re-assigned to X or Y (see Appendix C.6 for details).

Please note that, although DCT, as a problem setting, can cover TST by setting € to be zero>, it
does not mean that all DCT methods can be directly applied to address the TST. In NAMMD-based
DCT, the asymptotic distribution of the test statistics plays an important role in implementing the
testing procedures. However, the asymptotic distribution of NAMMD when ¢ = 0 differs from that
when € > 0 due to the degeneracy of MMD (the numerator of NAMMD), which makes the null
distribution of MMD is difficult to estimate [50]. Thus, NAMMD-based DCT cannot be directly
used in addressing TST by simply setting ¢ = 0. On the other hand, TST methods often use the
permutation test to implement the testing procedures [29], while the permutation test is not applicable
to DCT scenarios (because two distributions are already different in DCT).

4 THEORETICAL ANALYSIS OF NAMMD-BASED DCT

In this section, we make theoretical investigations regarding NAMMD-based DCT and compare
NAMMD and the MMD in addressing the DCT problem. All the proofs are presented in Appendix D.
We first provide theoretical guarantees for the variance estimation and concentration properties of the
NAMMD estimator. Specifically, for the variance estimator o x y in Eqn. (2), we have

SNAMMD(P, Q; ) = 0 if and only if MMD(P, Q; ) = 0, which in turn implies that P = Q [28].
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Lemma 4. Given samples X and Y with size m, we have that | E[0% y] — O']%,Q| = O0(1/y/m).

We now present the large deviation bound for our NAMMD estimator.
Lemma 5. The following holds over sample X and'Y of size m,

Pr (|NmD(X, Y k) — NAMMD(P, Q; k)| > t) < dexp(—mt2/9) fort > 0.

Lemma 4 establishes the convergence rate of the variance estimator o xy', showing that the estimation
error in expectation decays at the rate O(1/y/m) with sample size m. Lemma 5 presents a large
deviation bound for the NAMMD estimator, indicating that the probability of deviation from its
population value decays exponentially with rate exp(—mt?/9).

Next, we study type-I error control for NAMMD-based DCT.

Theorem 6. Under the null hypothesis Hy : NAMMD (P, Q; k) < € with € € (0, 1), the type-I error
of NAMMD-based DCT is bounded by o, i.e., Pryg, (h(X,Y;k) =1) <«

Theorem 6 shows the validity of the NAMMD-based DCT as type-I error of the proposed test can be
bounded by o. We then analyze the sample complexity regarding NAMMD-based DCT to correctly
reject the null hypothesis with high probability as follows.

Theorem 7. For our NAMMD test, as formalized in Eqn. 4, we correctly reject null hypothesis
H, : NAMMD(P, Q; k) < € € (0,1) with probability at least 1 — v given the sample size

m> (2 « Ni_a + 1/910g 2/v)2 /(NAMMD(P, Q; ) — ¢)2 .

This theorem shows that the ratio 1/(NAMMD(PP, Q; k) — €)? is the main quantity dictating the
sample complexity of our NAMMD test under alternative hypothesis H; : NAMMD(P, Q; k) > e.

Comparison between NAMMD-based DCT and MMD-based DCT. As demonstrated in Section 3,
in practice, we might often need a reference pair to confirm the value of ¢, thus, we first reformalize
the DCT testing procedure with the reference pair, which is shown in the following definition.

Definition 8. Given the reference distributions P; and @Q;, and samples X and Y drawn from
unknown distributions Py and Q3, the goal of DCT is to correctly determine whether the distance
between P, and Q5 is larger than that between Py and Q;. To compare the test power, we perform
NAMMD-based DCT and MMD-based DCT separately, under scenarios where the following two
null hypotheses for NAMMD-based DCT and MMD-based DCT are simultaneously false:

H}Y : NAMMD(Py, Qy, k) < eV and H} - MMD(P,, Qq, k) < €M,
and following alternative hypotheses simultaneously hold true:

HY : NAMMD(Py, Qy, k) > €V and HM : MMD(P,, Qq, k) > €M |
where ¢V = NAMMD(Py, Qq, k) and € = MMD(Py, Qy, %).

Based on the definition, we present theoretical analysis of the advantages of NAMMD-based DCT.

Theorem 9. Under HY : NAMMD(Q2, P2, k) > €V and HM : MMD(Qg, P2, k) > M, and
assuming ||pp, |13, + |po, 13, < lwe, |3, + g, I3, . then the following relation holds with

probability at least 1 — exp (—mA?(4K — ||, |3, — |1, I3, )?/(AK2(1 — A)?)),
VmMMD(X,Y, k) > ™ = /mNAMMD(X,Y,x) > 7 ,

where TM and T are asymptotic (1 — «)-thresholds of the null distributions of \/TTLI\T]\E and

VmNAMMD, respectively. Given oy defined in Eqn. (6) (Appendix D.6.1), it follows that

e, 13, + s l13, — llee 13, — lpe 13,
\/EMMD(]P)M Qh K/) + UMNl—a
Furthermore, the following relation holds with probability ¢ > 1/65 over samples X and Y,
\/ﬁm()(, Y, k) <7M yet \/TTLNWD(X, Y, k) > 7N,
if C1 < m < Cs, where Cy and Cs are dependent on distributions P and Q, and probability <.

A= \/%NAMMD(]PMQM K’) € (0’ 1/2) .
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Table 1: Comparisons of test power (mean=std) on DCT with respect to different total variation values €',
and the bold denotes the highest mean between our NAMMD test and Canonne’s test. The experiments are
conducted on discrete distributions defined over the same support set.

e =0.1 e =0.3 e =05 e =0.7
Canonne’s NAMMD | Canonne’s NAMMD | Canonne’s NAMMD | Canonne’s NAMMD
blob .8564.023 .968+.022 .809+.014 .912+.053 9444013 .960+.020 | .998+.002 .961+.029
higgs .883+.015 .908+.050 .825+.010 .947+.027 .960+.005 .962+.023 .994+.003 .995+.005
hdgm .861+.011 .942+.023 .888+.016 .946+.017 937+.014 .965+.014 987+.004 .989+.004
mnist J15+.021 .931+.024 786+.026 .965+.007 .896+.013 .997+.001 971+.008 1.00+.000
cifar10 .686+.030 .919+.017 7514021 .923+.021 917+.006 .997+.002 981+.004 .999+.001
Average | .8004.020 .934-+.027 .812+.017 .939+.025 .931+.010 .976=+.012 .986+.004 .989+.008

Dataset

This theorem shows that, under the same kernel, if MMD test rejects null hypothesis correctly, our
NAMMD test also rejects null hypothesis with high probability. Furthermore, we present that our
NAMMD test can correctly reject null hypothesis even in cases where the original MMD test fails to do
so. While the theoretical analysis is asymptotic, we complement it with empirical results in Section 5,
which provide supporting evidence for the practical benefits of NAMMD. In Appendix D.6.2, we
further provide detailed explanations regarding the condition ||up, |13, + [|1q, 15, < llme, |13, +

| g, |3, and the constants Cy and C in Theorem 9.

Although Theorem 9 is based on the same kernel for both NAMMD-based DCT and MMD-based
DCT, it can be also useful to analyze the test power of NAMMD-based DCT and MMD-based DCT
when they choose their corresponding optimal kernels. The key insight is that, for the (unknown)
optimal kernel of MMD-based DCT M, the NAMMD-based DCT with xM performs better than
MMD-based DCT with xM. Thus, the NAMMD-based DCT with its (unknown) optimal kernel £
also performs better than MMD-based DCT with M.

5 EXPERIMENTS

We perform DCT and TST on five benchmark datasets used by previous hypothesis testing studies
[29, 32]. Specifically, "blob" and "hdgm" are synthetic Gaussian mixtures with dimensions 2 and
10. The "higgs" are tabular dataset consisting of the 4 dimension ¢-momenta distributions of Higgs-
producing and background processes. "mnist" and "cifar" are image datasets consisting of original and
generative images. We also conduct experiments on practical tasks related to domain adaptation using
ImageNet and its variants, and evaluating adversarial perturbations on CIFAR10. More experiments,
including type-I error for both DCT and TST, can be found in Appendix E.7.

5.1 EXPERIMENTS ON BENCHMARK DATASETS

First, we compare the test power of DCTs using our NAMMD and the statistic based on total variation
introduced by Canonne et al. [51], and the experiments are conducted on discrete distributions with
the same support set containing only finite elements. For each dataset, we randomly draw 50
elements Z = {z1, 2, ..., 250}, and denote by P5¢ the uniform distribution over domain Z. We
further construct distributions Q5o and QZ}) for null and alternative hypotheses respectively, which
satisfies TV (P50, Q50) = €' and TV(Psg, QZh)) = ¢ + 0.2 (Details are provided in Appendix E.1).
In experiments, we draw two i.i.d samples from P5y and @5A0 to evaluate if the distance between Ps
and Q?o is larger than that between Psq and Qs, i.e, €. Table 1 summarizes the average test powers
and standard deviations of NAMMD-based DCT and Canonne’s DCT (Appendix E.1) based on total
variaton. For comparison, we set ¢ € {0.1,0.3,0.5,0.7}°. From Table 1, NAMMD-based DCT
generally performs better than Canonne’s DCT, except on 2-dimensional blob dataset with €’ = 0.7,
where Canonne’s DCT has lower variance and captures fine-grained distributional difference.

Second, we compare NAMMD with more baselines (Appendix E.3) on TST, include: 1) MMDFuse
[35]; 2) MMD-D [29]; 3) MMDAgg [34]; 4) AutoTST [52]; 5) MEwm,sip [32]; 6) ACTT [53].

SNotably, although € increases, the difference between the two total variation values, namely the ground-truth
total variation between P55 and Q?O minus that between P5¢ and Q50, remains fixed at 0.2.
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Figure 2: The comparisons of test power vs sample size for our NAMMDFuse and SOTA two-sample tests.

Table 2: Comparisons of test power (mean=std) on distribution closeness testing with respect to different
NAMMD values, and the bold denotes the highest mean between tests with our NAMMD and original MMD.
Notably, the same selected kernel is applied for both NAMMD and MMD in this table. The experiments are not
limited to discrete distributions defined over the same support set, which is different from those in Table 1.

Dataset e=0.1 e=20.3 e=20.5 e=10.7
MMD NAMMD MMD NAMMD MMD NAMMD MMD NAMMD
blob 9744.009 .978+.008 | .8904+.030 .923+.025 | .9024.032 .924+.021 | .9094.024 .933+.011
higgs 9984.002 .999+.001 | .9384.020 .965+.013 | .9754.012 .993+.003 | .9784+.010 .996-+.002
hdgm 9804.007 .984+.007 | .8834+.027 .921+.021 | .9014+.025 .941+.013 | 1.004.000 1.00-.000
mnist 982+.004 .982+.004 | 961+.006 .974+.004 | 946+.014 983+.005 | .962+.010 .991+.003
cifarl0 | .932+.007 .938+.007 | .968+.019 .994+.003 | .898+.054 .912+.041 | 1.00+.000 1.00-+.000
Average | .973+.006 .9764.005 | .928+.020 .9554+.013 | .924+.027 .9514+.017 | .970+.009 .984+.003

Although we discuss NAMMD with a fixed kernel in this paper, it is compatible with various kernel
selection frameworks as MMD. To illustrate this, we adapt NAMMD with multiple kernels using the
fusion method [35] and refer to it as NAMMDFuse (Appendix E.4). From Figure 2, it is observed that
NAMMDFuse achieves test power that is either higher or comparable to other methods. Besides the
multiple kernel scheme, we also empirically demonstrate that NAMMD can be applied with various
kernels (Gaussian, Laplace, Mahalanobis, and deep kernels) and achieves better performance than
MMD under the same kernel, as shown in Table 8 (Appendix E.7).

Third, to compare our NAMMD and original MMD in DCT, we first select the kernel x based on
the original distribution pair (P, Q) of the dataset, following the TST approach [29]. Based on the
selected kernel x and following the setup in Definition 8, we construct two pairs of distributions: Py
and Q1, and P; and Q3, where NAMMD (1, Q1; k) = € and NAMMD(Qy, P5; k) = € + 0.01, and
MMD(P1,Q1; k) < MMD(Q2, P2; k). The details of construction are provided in Appendix E.2.

For comparison, we set € € {0.1,0.3,0.5,0.7}. We randomly draw two samples from Q5 and P,
evaluate if distance between P, and Q¢ is larger than that between Py and QQ;. Table 2 summarizes
the average test powers and standard deviations of our NAMMD distance and original MMD distance
in DCT for distributions over different domains. It is evident that our NAMMD test achieves better
performances than the original MMD test with respect to different datasets, and this improvement is
achieved through scaling with the norms of mean embeddings of distributions according to Theorem 9.

5.2 PERFORMING DCT IN PRACTICAL TASKS

We present three practical case studies demonstrating the effectiveness of NAMMD-based DCT
test. First, given the pre-trained ResNet50 that performs well on ImageNet, we wish to evaluate its
performance on variants of ImageNet. A natural metric is accuracy margin (Eqn. 13 in Appendix E.6),
defined as the difference in model accuracy between ImageNet and its variant, where a smaller
margin indicates more comparable performance. For variants {ImageNetsk, ImageNetr, ImageNetv2,
ImageNeta}, we compute their accuracy margins as {0.529,0.564,0.751,0.827} with true labels.

"Notably, although € increases, the difference between the two NAMMD values, namely the ground-truth
NAMMD between P and Q2 minus that between P; and 1, remains fixed at 0.01.
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Figure 3: Comparisons in distinguishing the closeness levels between the original and variants of ImageNet.
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Figure 4: Comparison of NAMMD-based DCT and Figure 5: Comparison of the performance of NAMMD-
MMD-based DCT in detecting the confidence margin based DCT and MMD-based DCT in detecting adver-
between ImageNet and ImageNetv2 datasets. sarial perturbations on the cifar10 dataset.

However, obtaining ground truth labels for ImageNet variants is often challenging or expensive. In
such cases, we demonstrate that model performance can be assessed using NAMMD-based DCT
without labels. Following Definition 8, we set ImageNet as IP; and Py, and sequentially set each of its
variants (ImageNeta, ImageNetv2, ImageNetr, and ImageNetsk) as Q. Meanwhile, we sequentially
set each of the variants (ImageNetv2, ImageNetr, ImageNetsk, slightly perturbed ImageNet) as
@1, and performs DCT. Figure 3 shows that NAMMD-based DCT achieves higher test power than
MMD-based DCT, and effectively reflects the closeness relationships indicated by accuracy margin
with limited sample size (much smaller than that of ImageNet and its variants).

For datasets with limited samples, accuracy margin may be dispersed and fail to reliably capture
differences in model performance. Instead, a natural metric is the confidence margin (Eqn. 12 in
Appendix E.6), which measures the absolute difference in the model’s expected prediction confidence
between two distributions and a smaller margin indicate similar model performance. We also validate
that our NAMMD reflects the same closeness relationships as confidence margin. We compute
confidence margin for each class individually between ImageNet and ImageNetv2. Following
Definition 8, we define the classes with average margin 0.186 in ImageNet and ImageNetv2 as IP; and
Q1. We further set P, and Q2 as the classes in ImageNet and ImageNetv2 with margins in {0.154,
0.165, 0.176, 0.186, 0.196, 0.205, 0.214, 0.224, 0.233, 0.241}. We test with sample size 150 and
present the rejection rates and p-values in Figure 4. For margins up to 0.186 (left side of red line),
rejection rates (type-I errors) are bounded given ov = 0.05. Conversely, for margins exceed 0.186
(right side of red line), our NAMMD achieves higher rejection rates (test powers) and lower p-values.

Similarly, we validate that our NAMMD can be used to assess the level of adversarial perturbation
over the cifar10 dataset. Using ResNet18 as the base model, we apply the PGD attack [54] with per-

turbations {i/255} Elﬂ As expected, a larger perturbation generally result in poor model performance
on the perturbed cifar10 dataset, indicating that the perturbed cifar10 is farther from the original
cifar10. Following Definition 8, we define the original cifar10 as P; = P, and the cifar10 dataset with
4/255 perturbation as Q1. We further set Qs as the cifarl0 after applying perturbations {i/255} Elﬂ,
and perform testing with sample size 1500. It is evident that our NAMMD performs better than

MMD and effectively assesses the levels of adversarial perturbations, as shown in Figure 5.

6 CONCLUSION

This work introduces new kernel-based distribution closeness and two-sample testing by proposing
the norm-adaptive MMD (NAMMD) distance, which mitigate the issue that MMD value can be
the same for multiple distribution pairs with different RKHS norms. An intriguing future research
direction is to selecting an optimal global kernel for distribution closeness testing.
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A NOTATIONS

In this section, we summarize important notations in Tables 3 and 4.
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Table 3: Notation (Part 1)

Symbol

Description

* Basic Notations in Setting

X C R?

P, Q, P1, Q1, P2, Q2
P, Qn

K: XXX =R

He

Il Nl

Hp, po

2

p,Q
2

oM

€

Ni—q
B

* Distances
TV (P, Qu)
MMD (P, Q; k)
NAMMD(P, Q; k)

* Hypotheses
Hy, H,
HY, HY
Hy', H
H;, Hj

* Estimations

m

hX,Y; k)
W(X,Y;kK)
NAMMD(X, Y, x)
NAMMD (X, Ve, )
MMD(X, Y, k)

Instance space / domain of data

Borel probability measures on X’

Discrete distributions over domain Z = {z1, 22, ..., 2, } C R4
Positive-definite kernel, with 0 < k(z,z’) < K for any z,x’ € X
Reproducing kernel Hilbert space (RKHS) associated to &

Norm in the RKHS #,.

Kernel mean embeddings of P and Q

Asymptotic variance of \/m Nm/ID(X ,Y; k) under P, Q
Asymptotic variance of \/ﬁl\m(X, Y; k) under P,Q or Py, Q;
Closeness parameter in NAMMD-based DCT with Hy and H;
The standard normal distribution N (0, 1)

The (1 — a)-quantile of A/

The iteration number of permutation test in TST

Total variation distance between IP,, and Q,,
MMD distance between P and Q
NAMMD distance between P and Q

Null and alternative hypotheses of NAMMD-based DCT with a given e

Hypotheses of MMD-based DCT with €V = NAMMD(P;, Qs ; &)
Hypotheses of MMD-based DCT with ¢ = MMD(P;, Q1 ; &)
Null and alternative hypotheses of TST

Sample size

Two independent samples of size m from P, Q or Py, Q5
Permuted two samples

Pairwise function used in the NAMMD estimator

Plug-in estimator of op g via U-statistics

Threshold of NAMMD-based DCT from asymptotic normal estimation

Testing threshold of NAMMD-based TST from permutation test
Decision rule of the NAMMD-based DCT

Decision rule of the NAMMD-based TST

Estimator of NAMMD(P, Q; k) or NAMMD (P2, Qo; k)

Estimator of NAMMD distance based on permuted samples X, and Y

Estimator of MMD(P, Q; k) or MMD(P5, Q2; k)
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Table 4: Notation (Part 2)

Symbol Description

* Key Elements in Theoretical Results

M Asyrﬂ)_to\tic (1 — «)-quantile of the distribution of the MMD estimator
vmMMD(X,Y’; k) under P; and Q1, used in Theorem 9

N Asymptotic. (1 — a)-quantile of the distribution of the NAMMD estimator
vmNAMMD(X,Y; ) under P; and Q, used in Theorem 9

M Closeness parameter for MMD-based DCT with hypotheses H{ and
HM, defined as ¢ = MMD(P;, Qs ; k) and used in Theorem 9

eN Closeness parameter for NAMMD-based DCT with hypotheses HZ' and
HY, defined as ¥ = NAMMD(P;, Qq; ) and used in Theorem 9

Cy, Cy Constants that bound the sample complexity in Theorem 9
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B RELATIONSHIP BETWEEN THE p- VALUE OF THE MMD ESTIMATOR AND
THE RKHS NORMS OF THE DISTRIBUTIONS

As shown in Figure Ic, the empirical results indi-
cate that, for distribution pairs (P, Q) with the same
MMD value (e.g., MMD(P,Q; k) = 0.15), those —=— std of MMD estimator
with larger RKHS norms in H,; tend to yield smaller p-value of MMD estimator
p-values in two-sample testing (TST). A smaller p- 0.3} 10.3
value indicates that P and Q are less likely satisfy
the null hypothesis (i.e., P = Q); and hence, the two
distributions IP and Q are inferred to be more distin-
guishable and therefore less close to each other with
larger RKHS norms (i.e., ||P||3, and [|Q[3, ).

The observed decrease in the p-value of MMD as
the RKHS norms of the distributions increase can
be attributed to a corresponding reduction in the
standard deviation of the MMD estimator, as illus-
trated in Figure 6. This reduction arises from the
increased concentration of the distributions in the 33 05 08
RKHS: as the norms of the distributions grow, their Norms of Distributions
RKHS variances, i.e, Var(P; ) = K — ||up[|7, and
Var(Q; k) = K — ||ugll3, decrease accordingly.
Specifically, a smaller standard deviation implies a
lower likelihood that the MMD estimator under the
null hypothesis (i.e., P = Q, with MMD equal to
zero) falls within the region typically associated with
the alternative hypothesis (i.e., MMD equal to 0.15). Consequently, the p-value, defined as this
probability, decreases as the RKHS norms of the distributions increase.

0.2t 10.2

Standard Deviation
p-value

Figure 6: The relationship between the p-value
and the standard deviation of the MMD estima-
tor in two-sample testing, in connection with the
norms of the underlying distributions in RKHS.

C FURTHER DETAILS ON NAMMD AND THE NAMMD-BASED TEST

C.1 CONDITIONS UNDER WHICH NAMMD APPROACHES TO 1

Recall that the NAMMD is defined as:
e — pall3,
AK = |lpell3,, — lpallf,
peell3,, + llplF, — 2(pe, po)n.
AK — |lpeli3,, — lpolif,
_ EBeawepr(® @) + By y 2[5y, Y)] — 2Eap yolr(z, y')]

B AK — By g nop2 [k(z, 2")] — Ey y~q2 [k(y,y)] ’
where the kernel x(x, ') = ¥(x — ') is positive-definite with ¥'(0) = K and ¥ (x — ') < K for
allz,z’, and K > 0.

The value NAMMD (P, Q; k) — 1 (i.e., maximum) is attained when:

NAMMD(P,Q; k) =

* lpel, = lpali, = K,
* (up, po)n, — 0 (which essentially indicates that the two distributions have disjoint support).

Here, as an example, we consider two Dirac distributions P and () over distinct supports z and w,
respectively, and use a Gaussian kernel with parameter 7. In this case:

lpellz, = lpellf, = ¥(0) = K, and (ue, po)n, = ¥(z —y) = exp(—|lz — yl3/n*) .
Asn — 0, U(x —y) — 0, causing NAMMD(P, Q; k) — 1.

We also present an empirical example for illustration. Specifically, we consider two Gaussian
distributions P = N(—1000, 02) and Q = A/ (1000, 02), and compute NAMMD using a Gaussian
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kernel with bandwidth 1. When ¢ is small, the distributions are both sharply concentrated around
their respective means and have negligible overlap, effectively resulting in near-disjoint support.
This setting closely approximates the idealized condition for maximizing NAMMD (P, Q; ). In the
following experiment, we compare the value of NAMMD(P, Q; ) under varying o to empirically
verify this behavior.

Table 5: Comparison of NAMMD and MMD across o.

o 10° 107! 1072 1073
NAMMD 02679 1—-45x10"2 1-99x107° 1-21x10""

o 1074 107° 10-¢ 1077 1078
NAMMD 1-21x107% 1-64x107"° 1-70x107'? 1-11x107"1 1

When o = 1078, the kernel value k(z,x’) is close to 1 when = and 2’ are drawn from the
same distribution, and close to 0 when they are drawn from different distributions. Consequently,
NAMMD(P, Q; k) approach its maximum value 1.

C.2 EXTENSION TO UNEQUAL SAMPLE SIZES

Recall that

MMD(P, Q; x)
NAMMD(P, Q; ) = 5 —.
4K — [|pell3,, — lrollf,

To estimate NAMMD (P, Q; <) from two samples of unequal sizes,
X = {le},";1 ~P" and Y = {yj}?:l ~ (@" ,

(2

We analyze the behavior of NAMMD estimator by examining its numerator, corresponding to the
MMD statistic, and its denominator, which depends on the RKHS norms of P and Q, separately.
The numerator, MMD(P, Q; ), can be estimated using a U-statistic. When moving from equal to
unequal sample sizes, the estimator changes from a one-sample U -statistic to a two-sample statistic

as follows
Um,n = (m) (n) Z Z h(wia L3 yjayj’) )

1<i<i/'<m 1<5<j'<n

where

h(x1, @25 Y1,Y2) = K(T1, T2) + K(Y1,Y2) — k(T1,Y2) — kT2, Y1)
Despite this modification, both the equal-sample and unequal-sample versions exhibit similar asymp-
totic properties [55]. In particular, when MMD(PP, Q; k) = 0, the statistic converges in distribution
to an (often infinite) weighted sum of x? random variables, where the weights are given by the
eigenvalues of the covariance operator on H,, — H.

On the other hand, the estimator of the denominator term

1 m 1 n
4K — ———— b @ir) = - Y5) s

remains unchanged regardless of whether the sample sizes are equal or unequal, since the RKHS
norms ||pp||3, and ||pgll3, can be estimated independently from each sample.

C.3 DETAILS OF VARIANCE ESTIMATOR

We adhere to the results of empirical variance estimators provided by Sutherland [48]. For simplicity,
we first introduce the uncentred covariance operator as follows:

Cx = Eznplp(z) @ ()],
where (+) is the feature map of the corresponding RKHS ..

19



Under review as a conference paper at ICLR 2026

For simplicity, we define the m x m matrix Kxvy with (Kxv), =K (xi,y;). Let Kxv be Kxy

with diagonals set to zero. In a similar manner, we have Kxx and Kvvy, and KXX and Kyy. Let
1 be the m-vector of all ones. Denote by (m); :=m(m —1)---(m —k + 1).

‘We have that

G = (ux,Cxpx)— (px, mx) + (y, Cypy) — (py, py)

+{py, Cxpy) + (px, Cypx) — (px, py)’ — (py, px)?
—2(ux,Cxpy) +2(ux, px) (x, py) — 2 (py, Cy px) + 2 (py, py) (x, py)

1 . 2 . 2 1 _ 2 . 2 . 2
o [ s 2 7K s 2 s
(m)B F (m)4 F
1 . 2 - 2 1 _ 2 . 2 . 2
s LB = R = o | (1 Rwt) Rt [ 2[Ry
(m)?) F (m)4 F
1 2 2 1 T 2 2
2 2 2 2 9
TE(m 1) [(1TKxxy1)” ~ Ky 1|” ~ 1Kxy 1) + [Kxv |}
2 ~ - N
7271TKxxnyl + {1TKXX:|_1TKXY:|. — 21TKxxKXY:|_:|
m2(m = 1) m{m)s
2 > ~ ~
e 1TRyyKhyl [ITK 11TKLy1 — 21T Kyy K] 1]
m?(m — 1) YYBXY +m(m)3 YY XY vyyKxvy
and
G = ]E[“(whw?)ﬂ_<NX7NX>2+E{’€(ZJ1»3/2)2}

— (uy, py)? + 2K [k(z,)?] — 2 (px, py)’
—4(px,COxpy) +4{px, px) (px, py) — 4 (py, Cy pux) + 4 (py, py) (px, py)

1 . 2 1 . 2 . 2 . 2
~ i R = gy | (T Rsoxt)” = 4R [ 2 Ko
m(m —1) F o (m)y F
1 . 2 1 . 2 . 2 . 2
ot 1K, = gy | (TR t) - [Reva | 2[R
m(m — 1) F o (m)y F
2 2 2 T 2 T 2 2 2
o oo lle = 25— {(1 Kxv1)" - [|[Kxyl|] - [Kxv1| +||KXY||F]
4 . _ ~
Y 1TRyxKxyl+ {1TKXX11TKXY1 — 21TKXXKXY1}
m2(m — 1) m(m)s
4 TR T T TreT T4 T
e 1TRyyKyl [lK 11"K%y1 - 21T KyyK 1].
m2(m —1) YYRxy +m(m)3 YY XY YYRxy

where (-, -) denotes the inner product in RKHS #,.. Here, we denote by
px = pp = Egp[a(-,@)] and py = pg = Eyg[s(-y)] -

Convergence of the estimators. Having established that the estimators are unbiased [48], we
now prove their convergence by analyzing each constituent term separately with bounded kernel
k(- ) < K, as follows.

* The term (pux, C'x px ) is estimated by
1
A= s ZZ Z KX, ;) k(T ) -
P A i)
It is evident that

|A—(px,Cxpx)| < [A=B|+[B— (ux,Cxpx)| ,
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with

B = *ZE mu [K(mi’m)l
S MLCN

As we can see, B is a U-statistic. By the large deviation bound (Theorem 11) for U-statistic, we
have that

B (pux,Cxpx) .
For the term |A — B|, we have that

|A - B|

- 72 n— 1 Z Z "B“mj mi,ﬂ?g) 7Em[’€($l7w)]Emlﬁ(wlam)] )

J# £¢{i.g}
where the term m D0 2ong iy (@i, Tj)k(wi, ) can also be viewed as a U-
statistic, and it follows that
h=Dn=-2 Z Z K(@i, @)k, o) B Eglk(xi, )| Eg k(i x)]
J# £¢{ij}

by the large deviation bound (Theorem 11) for U-statistic.
Combine these results we have that

ZZ Z m'mw] wiuwe) £> <HX7CXIJ’X> .
i A g i)
The term (px, Nx>2 is estimated by

YT em) Y Y sawm)

i A a¢{i,j} b¢{i,ja}
It is evident that

)

lA - <ux,ux>2l < 1A= Bl + B~ (ux, ux)’

- n(n—1) ZZ K(xi, @) By o [K(x, )] .

i jF£e

with

Building on this we can prove that

ZZ Klaizg) Y. Y (@ m) D (ux,px)?

i g ag{i,j} b¢{i,j,a}
using a similar argument as in the convergence proof for the estimator of (p1x, Cx px).
The term (py, Cx pry ) is estimated by
R = D)D) DL RS
i g bE]

It is evident that

A= (py, Cxpy)| <[A= Bl +[B = (uy, Cxpy)l
with

ZE K@i, y)]| Bylr(zi,y)] -

Building on this, we can prove that

TL—]. ZZZ muyj xwy@) p </"’Y7OXAU'Y> )
i g LA
using a similar argument as in the convergence proof for the estimator of (p1x, Cx prx).
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* The term (px,Cxpy) is estimated by

it e DIDIPBLCAILCADE
i g#iL L
It is evident that

with

B= ZE wlv [ (wuy)] .

Building on this, we can prove that

’I’LQ n—l ZZZ m“x] ﬂfz,yz) 10 <HJX;CXHY> y

i jFi L
using a similar argument as in the convergence proof for the estimator of {1 x, Cx px).

* The term (px, px) <uX, ;l,y> is estimated by
s 2= 2 k@ew) D D sl@ny.).

i g L¢{i,j} a
It is evident that

|A— (ux,pmx) (px,py)| <|A—B|+|B—(pux,px) (px, py)|

= ol D) 2 2 @) Bay s y)]

i jFi

with

Building on this we can prove that

ZZ K(x;, ;) Z Z k(@e, ya) = (1x, ux) (Bx, py)

i g (¢{i,j} a
using a similar argument as in the convergence proof for the estimator of (px, Cx px).

* The term (px, py)? is estimated by

A= 22 :):l,yj QZZ wl>y7

VFELG F]
It is evident that

)

A= (x| < 1A= Bl + |B = {ux. v )?

= % Z Z K,(%i, yj)Ea:,y[’%(gm y)] .

Building on this, we can prove that

22 :c,,y] QZZ k(@i y) 5 (px, py)?

i'Fi G #g
using a similar argument as in the convergence proof for the estimator of (g x,Cx px).

with

* The term E |:I<E (x4, 332)2] is estimated by

1 2
m Z Kz, z5)”,
i#]
which can also be viewed as a U-statistic, and it follows that
1 2 P 2
m Zﬁ(mi,xj) S E [Ii (x1,22) } ,

i#]

by the large deviation bound (Theorem 11) for U-statistic.
Based on the convergence of each constituent term, it follows that the estimators of {; and (2 converge

in probability to their respective population quantities ¢; and (s, by an application of the continuous
mapping theorem.
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C.4 RELEVANT WORKS

A well-known class of two-sample testing constructs kernel embeddings for each distribution and
then test the differences between these embeddings [56—59]. Another relevant approach assesses
the differences between distributions with classification performance [60-66, 52, 67]. Kernel-based
MMD has been one of the most important statistic for two-sample testing, which includes popular
classifier-based two-sample testing approaches as a special case [29].

Previous distribution closeness testing approaches primarily focus on theoretical analysis of the
sample complexity of sub-linear algorithms, and these approaches often rely on total variation over
discrete one-dimensional distributions [15, 18—-21]. Other measures of closeness also include /o
distance [68—70], entropy [71], probability difference [11, 72], etc. In comparison, we turn to kernel
methods that have shown effectiveness in non-parametric testing.

Permutation tests are widely used in statistics for testing equality of distributions, providing a finite-
sample guarantee on the type-I error under the null hypothesis that assumes P = Q [73-76]. For
DCT with null hypothesis Hy : NAMMD(P, Q; x) < e and € € (0, 1), the empirical estimator of our
NAMMD distance, i.e., NAMMD(P, Q; k) = ¢, has an asymptotic Gaussian distribution as shown in
Lemma 2. Consequently, the testing threshold can be easily estimated as the (1 — «)-quantile of this
asymptotic Gaussian distribution, following [32, 58, 59].

Some approaches select kernels in a supervised manner using held-out data [31, 49], while others rely
on unsupervised methods, such as the median heuristic [28], or adaptively combine multiple kernels
[34, 35]. Our NAMMD is compatible with these methods; for instance, the kernel can be selected by
maximizing the ¢-statistic for test power estimation derived from Lemma 2 (details are provided in
Appendix C.5). However, these approaches are primarily designed for distinguishing between a fixed
distribution pair in two-sample testing. It remains an open question and an important future work to
select an optimal global kernel for distribution closeness testing with multiple distribution pairs.

C.5 DETAILS OF OPTIMIZATION FOR KERNEL SELECTING

Algorithm 1 Kernel Selection

Input: Two samples X and Y, a kernel &, step size 7, iteration number N
QOutput: Two samples X and Y

1: for{=1,2,--- ,N do
2:  Calculate the estimator NAMMD(X,Y; k) /o x,y according to Eqn. 5
3:  Calculate gradient V - (NA/MT/ID(X, Y; /f)/axy)

4:  Gradient ascend with step size 1 by the Adam method
5: end for

Recall Lemma 2, if NAMMD(P, Q; k) = ¢ with € € (0, 1), we have
Vm(NAMMD(X, Y; k) — €) % N(0,02 ) ,

where op o = \/4E[H, 2H) 3] — 4(E[H: 2])?/(4K — |lpell3, — lligll3,,). and the expectation
are taken over 1, o, 3 ~ P3 and Y1,Y2,Y3 ~ Q?"

We can find the approximate test power by using the asymptotic testing threshold 7Y as follows:
NAMMD(P, Q; k) — 7V
m (P, Qir) — . > —0.

8]

Pr (mNmD(X, Yik) > T;V) ) (

Vmoeg
It is evident that maximizing the test power is equivalent to optimizing the following term
NAMMD(P, Q; k) MMD(P, Q; k)
IPQ  AE[H, oH, 3] — 4(E[H,2])?
Recall that

i#£j i#£j
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with H; ; = k(x;, x;) + (Y5, Y;) — £(x,y;) — £(yi, ;) and
V((Em =8)¢ +265) /(m = 1)
(m? —m)~1 37, AK — k(zi, 25) — 5(Yi, Y5)

where (7 and (5 are standard variance components of the MMD [47, 48]. The details of the (; and (5
are provided in Appendix C.3.

ox)y =

)

We have the empirical ¢-statistic for test power estimation as follows

NAMMD (X, Y’; k) _ MMD(X,Y'; k) )
oxy V(Am =8)¢1 +2G)/(m—1)

It is evident that the ¢-statistic for test power estimation of NAMMD is equal to the ¢-statistic for
test power estimation of MMD [49]. We take gradient method [77] for the optimization of Eqn. 5.
Algorithm 1 presents the detailed description on optimization.

C.6 METHODOLOGY OF NAMMD-BASED TWO-SAMPLE TEST

Although the NAMMD is specially designed for DCT, it is still a statistic to measure the distributional
discrepancy between two distributions. Thus, it is interesting to see how it performs in two-sample
testing (TST) scenarios. In TST, we aim to assess the equivalence between distributions P and Q
with null and alternative hypotheses as follows

H:P=Q and H|:P#Q.
Following MMD-based TST [49], we implement our NAMMD-based TST via a permutation test,

which estimates the null distribution by repeatedly re-computing the estimator with samples ran-
domly reassigned to X or Y. Specifically, denote by B the iteration number of permutation

test. Let IIy, be the set of all possible permutations of {1,...,2m} over the pooled sample
Z=Ax1,...,Cm,Y1,-- -, Ym} = {21,y Zm, Zm+1, .-, Zom }. In b-th iteration (b € [B]), we
generate a permutation @ = (7q, ..., 72;,) € Ila,, and then calculate the empirical estimator of

NAMMD statistic as follows o
Ty = NAMMD (X, Yir, &) ,
where X = {zr,, Zry, oy 2, J and Yoo = {27, 15 Zrpios oo 2o, }-

During such process, we obtain B statistics 11, 75, ..., T's and introduce the testing threshold for the
null hypothesis Hy : NAMMD(P, Q, x) = 0 as follows

B
0T <
&:argmin{z[bB_T]Zl—a} )

b=1
Finally, we have the following test with the testing threshold 7, as follows
W (X,Y,r) = IINAMMD(X, Y, ) > 7] .

D DETAILED PROOFS OF THEORETICAL RESULTS

To begin, we define the concept of the U-statistic, which is a key statistical tool.

Definition 10. [47] Let h(x1,@o, ..., x,) be a symmetric function of r arguments. Suppose we
have a random sample x1, o, . . . , ., from some distribution. The U-statistic is given by:

-1
m

Un = h(xi,, @iy, ..., i, -
() S i)

1<i1 <2< <t <m

Here, (T) is the number of ways to choose r distinct indices from m, i.e., the binomial coefficient,

and the summation is taken over all possible r-tuples from the sample.

We further present the large deviation for U-statistic as follows.

Theorem 11. [78] If the function h is bounded, a < h(x;,, T;,, ..., x;. ) < b, we have
Pr(|U,, — 0] > t) < 2exp (=2|m/r|t?/(b— a)?),

where 8 = Elh(x;,, Tiy, ..., %;,.)]-
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D.1 DETAILED PROOFS OF LEMMA 2

We begin with the empirical estimator of MMD as

2

MMD (X, Y; k) = 1/(m(m — 1)) Y k(xi, ;) + £(yi, y;) — £(@i,y;) — £(yi, ;) -

1#]
Given this, we introduce a useful theorem as follows.
Lemma 12. IfP # Q, a standard central limit theorem holds [47, Section 5.5.1],
2
Jm (MMD (X,Y: k) — MMD?(P, Q; Iﬁ:)) 4N (0,02)
oty = 4E[H 2 Hy 3] — A(E[Hi2])?

where H; j = r(x;, ;) + k(Yi, y;) — 6(x4,Yy;) — k(Yi, ;) and the expectation are taken with

iid. iid.
respect to 1,2, x3 ~ Pandyi,ys,ys ~ Q.

We now present the proofs of Lemma 2 as follows.

Proof. Recall the empirical estimator of our NAMMD distance
Zi# &(xi, @) + K6(Yi, Y5) — £(xi,Y5) — 6(Yi, T5)
2oz AK — k(i @) — K(Yi, ;)
2
mMMD (X,Y; k)
1/(m? —m) Zi;ﬁj AK — k(xi, ;) — £(Yi, Y;)

mNﬂ/IT/ID(X7 Yik) =

As a U-statistic, by the large deviation bound (Theorem 11), it is easy to see that,

1/(m(m = 1)) Y 4K — s(@i, @) — w(yiy;) & 4K = e, — lpali, .
i#]

where %> denotes convergence in probability.

If NAMMD(P, Q; ) = € > 0, we have MMD(P, Q; x) > 0. Furthermore, from Lemma 12, we
have, for P # Q,

Vm (MMD?(X,Y; k) — MMD?(B, Q; x)) % N(0,0%,) .

Then, by applying Slutsky’s theorem [79], we obtain

VmMMMD? (XY k) _ /mMMD*(P,Q; k)
1/ (m(m—1)) 35, AK — s(xi, ;) — 6(yiy;) 4K — [lpell3,, — llpellf,

2
i>/\f<07 SM - 2) :
(4K — [lpell3,, — llmoll3,,)

Recalling the definition of NAMMD, we have

— 0.2
VmNAMMD(X,Y: k) — /mNAMMD?(P, Q: k) -5 A/ (0, M ) ,
(&, Y;r) B Qi) (K s, — Tl

which can be expressed as

vm (NmD(X, Yik) - e) 4N (o, AE[Hy 2 H, 5] — 4(E[H, 2])? >

(4K — [[pell3, — llmall3,)?

This completes the proof. O
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D.2 DETAILED PROOFS OF LEMMA 4

We present the proofs of Lemma 4 as follows.

Proof. For simplicity, we let

A = \/((4771 - 8)(1 + 2(2)/(771 — 1) and A= \/4E[H172H173] — 4(E[H172]>2 y

and
B=(m? *m)’lzﬁlK* k(xi X)) = K(yiy;) and B =4K —||pe|%, — |pol, -
Build on these results, Z;Z can bound the bias as follows:
|Blo% o] — 02| = gz - 2= gz ol e N e
=8| 5| -2 |5

A%2(B— B)(B + B)
B2RB2
<C+E HB _ BH

(B+B)

A2
where C' > 0 is a constant that ensures 2 F250 < (, and it exists since the kernel is bounded. The

second equation is based on the unbiased variance estimator of the U-statistic, i.e. A. Based on the
large deviation bound for B, we have

Pr (’B — B‘ > t) < 2exp (—mt? JAK?)

and
C+E||B-B :C’*/ Pr(|B - B| > t)dt
B8] =cx | Pr(lp-5=1)
§C*/ 2exp (—mt?/AK?)dt
0
o K
:C’*/ 2exp (—u)——=du
NN
2K /T 1
—o i o(gn) -
This completes the proof. O

D.3 DETAILED PROOFS OF LEMMA 5

Proof. Recall our NAMMD distance as follows:

2 2
- MMD* (P, Q;
NAMMDI(E, Q: ) — e 2“@”7{” - 2( ,Q; k) _
AK — [lpeli3,, — lnalls, 4K = llpel3, — leelly,
Given two i.i.d. samples X = {z1,22,....,&n} ~ P and Y = {y1,y2, ..., Ym} ~ Q™, we have
the empirical estimator as follows

Dizg b(@i ) + K(Yi,y5) — k@i, y5) — K(Yi, %)
Zi;&j 4K — K(zi, xj) — K(Yi, Yj)
MMD - (X, Y 5)
1/(m? —m) 3, 4K — k(mi, x;) — £(Yi, Y5)

NAMMD (X,Y;k) =
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We denote by
A = |NAMMD(X,Y;x)— NAMMD(P,Q; )|
—2
_ |MMD (X,Y;s) — MMD*(P,Q; ) + MMD*(P, Q; k) MMD? (P, Q; k)
1/(m? —m) 3, 4K — k(@i, ;) — K(Yi, Yj) AK — |\peli3,, — kol |

Given this, we let

l\m2(X,Y;/<;) — MMD?(P, Q; x)
1/(m2 —m) > 4K — sz, 2;) — (Y, y;)

B=

)

and
MMD?(P, Q; ) MMD? (P, Q; <)

C= -
1/(m? —m) 3, 4K — w(mi, x5) — k(yi,y;) 4K — |[uell3,, — palls,

It is easy to see that A < B + C and we have
Pr(A>t)<Pr(B4+C>t)<Pr(B>b)+Pr(C>c),
forb+ c=twitht > 0and b,c > 0.

Based on the large deviation bound for U-statistic (Theorem 11), we have

Pr(B >b) <Pr (‘mQ(X,Y;m) - MMDQ(P,Q;H)‘ /2K > b) < 2exp (—mb*/4) ,

In a similar manner, we have

Pr(C > ¢)
MMD?* (P, Q; 5)| 3 (k(s, ;) + r(yi, ;) / (m® —m)) — |pell3,, — lluall, |
< Pr 7 >c
- (1/(m? —m) §.4K — k(@i @) = K(Yi, y;)) - (AK = [lpellF, — lmolf,) —
i#]
H(wzaw) H(y“y) MMDZ(]P)vQ?K)
< P J J/ 2 2 >
= r ; m(m — 1) + m(m — 1) ||/J’]P’||’Hh ||”’@||HK 4K2 ZC
< pr ([0 Mz MUY  gl,, | /2K > ¢
- oy m(m—1) m(m-—1) . " -
< 2exp (—mc?)

For simplicity, let b = 2¢/3 and ¢ = t/3, we have
Pr(A>t) < Pr(B=>2t/3)+Pr(C>1t/3)
= dexp(—mt?/9).
This completes the proof. O

D.4 DETAILED PROOFS OF THEOREM 6
We present the proofs of Theorem 6 as follows.
Proof. Under null hypothesis Hy : NAMMD(P, Q; k) < e with € € (0, 1), the type-I error is

Pr(NAMMD(X,Y; k) > 74),

where 7, = € + ox,y N1_o/v/m (as defined in Eqn. (3)) is the (1 — «)-quantile of the asymptotic
Gaussian distribution in Theorem 2 with NAMMD(P, Q; k) = e.
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Recall that o x y is the estimator of o ¢, where

oo VAE[H, 2 H, 3] — 4(E[H, 2])?
P,Q =
AK — |pell3, — leall3,

7

and

b= \(m = 8)G +2G)/(m 1)
7 (m? —m)~1 Zi;ﬁj AK — k(xi, ;) — £(Yi,Y;)
where (; and (s are standard variance components of the MMD [47, 48] (Appendix C.3).

We begin by showing that o x y converges to op . As detailed in Appendix C.3, the terms in the
numerator involving (; and (, converge in probability. We now present the convergence of the
denominator

(m? —m) ™Y 4K — k(@i ;) — (Y, Y;)
i#£]
which can be regarded as a U-statistic, and it follows that
(m?* —m)™" > AK — k(@i x;) — k(yi,y;) > 4K — |pell3, — lpoll3,
i#£j
by the large deviation bound (Theorem 11) for U-statistic.

Hence, by the continuous mapping theorem, we have that

P,
oxX,y —» 0pQ -

Next, we prove asymptotic type-I error control based on the convergence of the variance. The null
hypothesis Hy : NAMMD(P,Q; k) < € with ¢ € (0,1) is composite, covering three cases: 1)
NAMMD(P, Q; k) = €; 2) NAMMD(P, Q; k) = ¢’ € (0,¢€); 3) NAMMD(P, Q; x) = 0. We now
prove that under three cases the type-I error Pr(NAMMD(X,Y; k) > 7,,) are all bounded by .

* Case I: NAMMD(P, Q; k) = e. Since 7, = € + ox,y N1_/+/m corresponds to the (1 — «)-
quantile of the asymptotic Gaussian distribution with NAMMD(P, Q; k) = € from Lemma 2, the
following equality holds asymptotically

Pr(NAMMD(X, Y ; k) > 7a) = av.
* Case 2: NAMMD(P,Q;x) = € € (0,¢). The (1 — «)-quantile of the asymptotic Gaussian

distribution with NAMMD(P, Q; ) = €’ is 7, = € + ox,yN1_a/+/m from Lemma 2. Then,
the following equality holds asymptotically

Pr(NAMMD(X,Y; k) > 7)) = «,
Since € < €, we have 7/, < 7, and

Pr(NAMMD(X,Y; k) > 74) < Pr(NAMMD(X, Y; k) > 7/

) =
Hence, type-I error is bounded by a.
» Case 3: NAMMD(P, Q; k) = 0. According to the Lemma 5, we have that
Pr(NAMMD(X,Y; k) > 7,) < Pr(NAMMD(X,Y; k) > ¢) < 2exp(—me?/9) .
This probability decays exponentially with the sample size m, implying that
Pr(NAMMD(X,Y;k) > 7,) < a,

holds in the asymptotic manner.

This completes the proof. O
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D.5 DETAILED PROOFS OF THEOREM 7

Proof. Under the alternative hypothesis H; : NAMMD(P, Q; k) > € with € € (0,1), , we need to
correctly reject the null hypothesis Hy : NAMMD(P, Q; k) < e. According to Eqn. 3, we set 7, as
the (1 — «)-quantile of the asymptotic null distribution of NAMMD(P, Q; x) = € from Lemma 2 as,

Fo— e+t UX,YNl—a
« \/’I’T/L I
where the empirical estimator of variance is given by
V((dm = 8)¢1 +2¢2)/(m — 1)
(m2 - m)_l Ez;éj 4K — K(wlﬁ wj) - K‘(ywyj) ’

where (; and (, are standard variance components of the MMD [47, 48]. We present the details of
the estimator in Appendix C.3.

oxXy =

It is easy to see that, for k() < K,
(m® —m)™" Y 4K — k@i, z;) — k(i y;) > 2K and ¢ <4K? and ( < 4K,
i#j
Hence, as we can see,

V/(4m —6)/(m — 1)4K>

ox)y

- 2K
< 4K/2K
< 2,
and we have
A< + 2-/\/1704
Ta S € _— .
vm

In a similar manner, to ensure the rejection, we have
2Mi_a
—

To derive the bound, the following holds with at least probability 1 — v,

. log 2
NAMMD(X, Y k) > NAMMD(P, Q; x) — \/M ,
m

9log 2 N
NAMMD (P, Q; ) — y/ 1082/ >6+Nf ,
m m

2
(2 * M _o + \/910g2/v>
> .
" = T (NAMMD(P, Q; ) — ¢)2
This completes the proof. O

NAMMD (X, Y; k) > € +

then, we have

which leads to

D.6 DETAILED PROOFS AND EXPLANATIONS OF THEOREM 9
D.6.1 DETAILED PROOFS OF THEOREM 9

Given Definition 8, we assume P; and Q; are known, and X and Y are two i.i.d. samples drawn
from P5 and Q5. The goals of distribution closeness testing are to correctly reject null hypotheses

with calculated statistics Nlﬁ/[T/ID(X7 Y; k) and l\m(X, Y;k).

For simplicity, we let
NORM(Py1,Qisk) = 4K — ||, |3, — o, [, »
NORM(Py, Qai k) = AK — e, |3, — 1.l -
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and rewrite the empirical estimator with X and Y as follows

@/I(X,Y; k) = 1/(m?* —m) Z4K — Kz, x5) — k(Y y5) -
i#]

Proof. 8

Let 72 and 7V be the true (1 — a)-quantiles of asymptotic null distributions of \/ﬁl\m and
/mNAMMD, respectively. Specifically, from Lemma 12, we have
7o' = V/mMMD(P1, Q1K) + oarNi—a

where
0%y = 4E[Hi o H, 3) — 4(E[H, 5))*, ©)

and H; ; = r(x;, ;) +£(yi, y;) — k(xi, y;) — k(ys, 2;), and the expectation are taken with respect
Lid. iid.
to @1, @2, w3 ~ Prand y1,y2,y5 ~ Qo

In a similar manner, from Lemma 2, we have

N = /mNAMMD(P;,Qy; k) + 0p, 0, N1—a
VmMMMD(Py, Qs ; k) ouNi—a
AK —|lpe 15, — a3, 4K = llpe, |15, — a3,
VmMMD(Py, Qq; k) omNi—a

NORM(P;,Q1;5) | NORM(Py, Qo) '

It is easy to see that \/ﬁm(X, Y: k) > 7M is equivalent to
\/EI\TI\E(X, Y: H) — \/EMMD([PH, Qq; H) > O']\/[Nl_a s @)
and in a similar manner, \/ﬁNm/ID(X Y5 k) > 7V is equivalent to

NORM(PQ, QQ; /i) NORM(]P)Qa Q2; K)

— ﬁm@(, Y:k)—
NORM(X,Y; k) NORM(Py, Qq; &)

VmMMD(Py,Q1; k) > oy Ni—q ,
(8

Hence, to ensure
VmMMD(X,Y;x) > ™ = mNAMMD(X,Y:x)> 7, )
we must verify that, according to Eqn. 7 and 8§,

NORM(PQ, QQ; li)
@/I(X, Y:k)

NORM(PQ, QQ ; Ii)
NORM(Py, Q1; %)

- 1) VmMMD(X,Y; k) > < - 1) VmMMD(Py, Qy; k) .

(10)
Based on Eqn. 7, the inequality in Eqn. 10 can be adjusted to
NORM (P, Qs; ) — NORM(X, Y; k)
NORM(X,Y'; )
NORM(P2, Q2; k) — NORM(Py, Q15 k) VmMMD(Py, Qy; k)
- NORM(]P)l,Ql; KJ) \/mMMD(IP’th;n) +ouNi_o

NORM(IPQ, QQ; KJ) — NORM(Pl, @1; Iﬁ:)

VMMMD (P, Qq; k) + opNi—a

81n this proof, 727 and 72 are the asymptotic (1 — «)-quantile of distributions of the MMD and NAMMD
estimator, under the null hypothesis H3? : MMD(P2, Q2; k) < €™ and HY : NAMMD(P2, Qs; k) < €” for
distribution closeness testing. Here, ¢’ = MMD(P1,Q1; k) and ¢ = NAMMD(P;, Q1; k). The respective
null distributions for MMD and NAMMD are presented in Lemmas 12and 2. In practical, since these null

distributions are normal, we directly estimate the testing thresholds 72/ and 7Y by computing the variances of
the corresponding normal distributions [31, 30, 28, 35].

Z \/ENAMMD(]PH, Ql; H)
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Given this, we have

NORM (P, Q2; k)

NORM(Py, Qg; ) — NORM(P1, Qq; 5)
VmMMD(P1,Qq; k) + opNi—a

> (1- A)NORM(X,Y;x),

where we let, for simplicity

PallH,. Q2 llH,, — PillH, — Q1 llH,,
e, 115, + 2, I e, I3, — o, I3

A= AMMD (Py, Qy;
VmN (1, Qu; %) VMMMD(Py, Q13 %) + opNi—a

Here, by assuming [[zz, |2, + 11, I2,. < e [, + Ial, . we have A € (0,1/2).
As we can see, NORM (P2, Qq; k) > (1 — A)m(X, Y'; k) is equivalent to
(1 — A)NORM(X, Y3 k) — (1 — A)NORM(Py, Qy; ) < A - NORM(Py, Qy; ) ,

which is
NORM(X,Y'; k) — NORM(Py, Qs; k) <

1_ ANORM(]PQ, QQ; Ii) .

Using the large deviation bound as follows
P (@(X, Y; k) — NORM(P2, Qo; k) > t) < exp(—mt®/4K?) ,

with ¢ > 0, the Eqn. 9 holds with probability at least
A 2
1—exp <—m (IANORM(]P’Q7 Qo; KJ)) /4K2> .

This completes the proof of first part.

From Lemma 12, we have the test power of MMD test as follows
2
py = Pr (\/EMMD (X,Y;k) > T;”) ,

with

2 VmMMMD?(Py, Qq; ) — TM
Pr (\/mMMD (X,Y;k) > T(Jy) —@( n (P2, @oi k) — 74 ) -0,
oM

which is equivalent to

> <\/E(MMD2(P27Q2; k) — MMD?(P1,Q1; K)) — UMNl—a> '

oM

The test power of NAMMD test is given by, according to Lemma 2,
pn = Pr (\/%NmD(X,Y; K) > Tév) ,

with

— AMMD(P k) =T
Pr (\/ENAMMD(X,Y;H) zTC{V) _® (mN (P2, Qi %) — 7o ) 50,

OP;,Q2
which is equivalent to
NORM(P3, Qo; k)
NORM(]PH, Ql; Ii)

oM

vm (MMDQ(P% Q2; k) MMD?(Py, Qy; H)) —ouNi—a

o
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For simplicity, we let

4 — Vm(MMD?(Ps, Qo; ) — MMD? (P, Q1; %)) — 01 Ni-a
oM

)

and

B:\/7n<1

NORM(Py, Qs; n)) MMD?(P;, Qy; )

~ NORM(P,Qy; k) oM

Similarly. by assuming |z, |3, + I, I3, < e, By, + lcal, . we have B > 0 with
NORM(Py,Qq; k) > NORM(Py, Qa; k).

As we can see,

1 [AB L,
gsz_pM:Tﬂ/ e t/2qt .
V A

which indicates that the NAMMD-based DCT achieves higher test power than the MMD-based
DCT by a margin of s.

Next, we examine the case where ¢ > 1/65. Considering the following inequality holds

0< VmMMMD?(Py, Qy; k) — M
- oM

<0.7,

which is equivalent to

It follows that

where
m, = ( leozo'M >2
A \MMD?(P3,Q2; ) — MMD?(Py, Q1;) )
. ( (Mo +0.7)ou )2
my = 2 . 2 : '
MMD?(Py, Qy; k) — MMD?(Py, Qy; k)

In a similar manner, let B > 0.05, we have
m=>mpg,

where

NORM (P, Qs; )\ MMD?(Py, Qy:k)\
mp=(20(1— .
NORM(Pl, Ql; ,‘i) oM

By introducing
Ci <m< 0y,
with
C1 = max {mz,mB} and Cy = mX ,

it follows that B > 0.05 and —0.75 < A < 0.70, and the lower bound of the power improvement is
given by

1 0.75 5
CZPN_pMZ\/?/ et /th21/65.
™ J0.7

This completes the proof. O
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D.6.2 DETAILED EXPLANATION ON THE CONDITION AND CONSTANTS IN THEOREM 9
In Theorem, the condition

ez, 3, + it 13, < llees |13, + . 17,

is closely related to the variance of the distributions, as discussed in Section 1. Specifically, the
kernel-based variance is defined as

Var(P; k) = Egpli(z, @)] — ||pell3, = K — llpell3,
where k(x,z') = ¥(x — x') < K with K > 0 for a positive-definite ¥U(-) and ¥(0) = K.
Given the variance term, the condition can be equivalently expressed as
Var(Py; k) + Var(Qq; k) > Var(Py; k) + Var(Qa; k) -

In the NAMMD distance, we incorporate the norms of distributions (i.e., variance information of
distributions), and we analyze its advantages through Theorem 9 using the following example.

Example 1. From Appendix D.6.1, we have that
C1 = max {m;‘,mB} ,
oo ( (Mo +0.7)on >2
? MMD? (Py, Qq; k) — MMD?*(Py,Qy; ) )

with

2
mo — < Nl—aUM )
A7 \ MMD?(P,, Qy; k) — MMD?(Py,Qq; 1))

_ NORM (P2, Q; k) MMD?(Py, Q; k) -
mp = (20 (1 B NORM(Pl, Ql; Ii)) OM >

Consider the reference distribution pair P; = A/(0,1.1) and Q; = N(0, 1.6), and the distribution
pair Po = N(0,0.5) and Q2 = N(0,1.0) for testing. A Gaussian kernel x with bandwidth 1.0 is
employed. Under this setup, it follows that

> exp (—22) exp (—2%/(2 x 0.02))
(2m x 0.02)0-5

1te, |12y, = By [exp(— |z — 2'|3)] = / dz = 04303,

— 00
where we denote z = x — «’ in the evaluation of the integral; similarly, we obtain that

> exp (—2?) exp (—22/(2 x 2))
(2 x 2)0-5

a3, = Eyy~olexp(=lly = ¥'115)] = / dz = 0.3676 ,

— 00
by denoting z = ¢y — ¥y’ in the evaluation of the integral; similarly, we obtain that

> exp (—22) exp (—2%/(2 x 2))
(2 x 2)0-5

(1 1401) 70, = Earcpy o [exp(— |2 —y[2)] = / dz = 0.3953,

— 00

by denoting z = & — ¥’ in the evaluation of the integral. Based on these norms, we can calculate that
MMD?(P;, Qy; x) = 0.0073.

In a similar manner, we have that

HH']P2 H’?—l,, = 057737 HH’Q2 ”%'L» = 044727 <""P25u@2>7{n = 05’ MMD2(P27 QQ; ‘%) =0.0245.
For the variance term o, defined over Py and QQ2, which is difficult to compute analytically, we
approximate its value using empirical estimates obtained from 1,000 runs with 10,000 samples each.

Specifically,
2
oy = 0.0274 .

Finally, we compute m, = 250.5810, mp = 256.6816 and
C1 = 256.6816 and Cy = 509.2431 .
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E DETAILS OF OUR EXPERIMENTS

E.1 DETAILS OF EXPERIMENTS WITH DISTRIBUTIONS OVER IDENTICAL DOMAIN

Data Construction. Let P, = {p1,p2,...,pn} and Q,, = {q1, ¢, ..., ¢» } be two discrete distribu-
tions over the same domain Z = {z1, 22, ..., z,} C R?¥suchthat ), p; = land Y ¢ = L.
We define the total variation [51] of P,, and QQ,, as

1 — 1
TV(P,,Q,) = Ss}gllz (Pn(S) —Qn(9)) = 5 ; Ipi — qi| = §||Pn —Qull €10,1].

As we can see, the corresponding NAMMD distance can be calculated as

e, — 1o, |13,
AK — |lpe, 13, — k. 3,
>0 Pipjk(zi, 25) + €iqjK(2i, 25) — 2pigik(zi, z5)
AK =32, 5 (pipik(zi; 25) + ¢ig;5(2i, 25))

NAMMD(P,,,Q,; k) =

Here, we take the uniform distribution P,, = {1/n,1/n,...,1/n} over sample Z, where p; = 1/n
fori € {1,2,...,n}. We construct discrete distribution Q,,, which is €’ € [0, 1] total variation away
from the uniform distribution P,,, as follows: We initiate the QQ,, = IP,, and randomly split the sample
Z into two parts. In the first part, we increase the sample probability of each element by ¢’ /n; and in
the second part, we decrease the sample probability of each element by €’ /n.

Testing Threshold for Canonne’s test. Under null hypothesis Hj : TV(P,,Q,) = €, we set
testing threshold 7/, as the (1 — «)-quantile of the estimated null distribution of Canonne’s statistic
by resampling method, which repeatedly re-computing the empirical estimator of distance with the
samples randomly drawn from P,, and Q,,.

Specifically, denote by B the iteration number of resampling method. In b-th iteration (b € [B]), we
randomly draw two samples X and X' from P,,, and two samples Y and Y’ from Q,,. The sample
sizes are set to be the same as the size of testing samples. Denote by X; and X the occurrences of z;
in samples X and X' respectively, and let Y; and Y be the occurrences of z; in samples ¥ and Y’
respectively. We then calculate the test statistic based on total variation given in Canonne’s test as

(X - V)P - X - Y
i=1 i

)

with the term

o~

fi = maX{|Xz/ 75/1',/| 7Xz/ +)/;/v1} .

During such process, we obtain B statistics 77, 13, ..., T and set testing threshold as

B
0T} <
T&—argmin{z[bBT]zla} .

T b=1

E.2 DETAILS OF EXPERIMENTS WITH DISTRIBUTIONS OVER DIFFERENT DOMAINS

Algorithm 2 Construction of distribution

Input: Two samples Z and Z’, a kernel &, step size 7
Output: Two samples Z and Z’
1: for NAMMD (P, Q; k) # e do
2:  Calculate the objective value £(Z, Z' | k) according to Eqn. 11
3:  Calculate gradient VL(Z, Z' | k)
4:  Gradient descend with step size 1 by the Adam method
5: end for
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Let P and Q be discrete uniform distributions over Z = {z;}", and Z’ = {2/}, respectively. As
we can see, our NAMMD distance can be calculated as

e — pol3,,
4K — |pell, — lnall3,,
1/m? Y7, 5 k(zi, 2j) + k(2] 2)) — 26(zi, 2))

4K —1/m?37, (k(2i, 25) + k(21 2)))

177y

NAMMD(P,Q; k) =

Notably, NAMMD(P, Q; ) = 0 can be effortlessly achieved by setting Z = Z'.
Here, we learn samples Z and Z’ given NAMMD (P, Q; k) = € as follows
L(Z,Z"| k) = (NAMMD(P, Q; k) — €)* (11)

We take gradient method [77] for the optimization of Eqn. 11. Algorithm 2 presents the detailed
description on optimization. The corresponding calculation of MMD(P, Q; k) is given as follows

MMD(P,Q;r) = [ue — poll3,
= 1/m22/£(zi,zj)+n(z§,z;)—2fe(zi,z;) .
2%

E.3 DETAILS OF STATE-OF-THE-ART TWO-SAMPLE TESTING METHODS

The details of six state-of-the-art two-sample testing methods used in the experiments (which are
summarized in Figure 2) for test power comparison.

* MMDFuse: A fusion of MMD with multiple Gaussian kernels via a soft maximum [35];
* MMD-D: MMD with a learnable Deep kernel [29];
* MMDAgg: MMD with aggregation of multiple Gaussian kernels and multiple testing [34];

AutoTST: Train a binary classifier of AutoML with a statistic about class probabilities [52];
* MEwgpip: Embeddings over multiple test locations and multiple Mahalanobis kernels [32];

* ACTT: MMDAgg with an accelerated optimization via compression [53].

E.4 DETAILS OF OUR NAMMDEFUSE

Following the fusing statistics approach [35], we introduce the NAMMDFuse statistic through
exponentiation of NAMMD with samples X and Y as follows

NAMMD(X, Y’; k)

_ 1
FUSE(X,Y) = 1 log | Epr((x.y)) |oXP

N(X,Y)
where A > 0 and N(X,Y) = ﬁ > i rk(xi, %)% + K(yi,y;)? is permutation invariant.

m((X,Y)) is the prior distribution on the kernel space K. In experiments, we set the prior distribution
m({X,Y’)) and the kernel space K to be the same for MMDFuse.

E.5 DETAILS OF DIFFERENT KERNELS

The details of the various kernels used in the experiments (which are summarized in Table 8) for test
power comparison in two-sample testing, employing the same kernel for NAMMD and MMD.

* Gaussian: G(z,y) = exp(—|jz — y||*/2+?) for v > 0 [80];

* Laplace: L(x,y) = exp(—|lx — yl|1/7) for v > 0 [35];

* Deep: D(z,y) = [(1 — AN)G(¢pw (), ¢ (y)) + A\|G(x,y) for A > 0 and network ¢, [29];
Mahalanobis: M(z, y) = exp (—(z — y)" M (z — y)/2v*) fory > 0and M > 0 [32].
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E.6 DETAILS OF CONFIDENCE AND ACCURACY MARGINS

We can test the confidence margin between source dataset S and target dataset 7" for a model f. Let
f(x) represent the probability assigned by the model f to the true label. We define the confidence

margin as

|Exes[l — f(@)] — Eger[l — f(2)]] . (12)
A smaller margin indicates similar model performance in the source and target dataset.
In a similar manner, we can also define the accuracy margin as follows

|EBaes[f(2; ya)] — Exer[f(z;ya)]l (13)
where f(x;y,) = 1 if the model f correctly predicts the true label y,, and f(x; y..) = 0 otherwise.

We present the confidence and accuracy margins between the original ImageNet and its variants in
Table 6, with the values computed using the pre-trained ResNet50 model.

Table 6: Confidence and accuracy margins between the original ImageNet and its variants.

ImageNetsk  ImageNetr ImageNetv2 ImageNeta
Accuracy Margin 0.529 0.564 0.751 0.827
Confidence Margin 0.504 0.549 0.684 0.764

E.7 ADDITIONAL EXPERIMENTAL RESULTS
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Figure 7: The NAMMD distance between §(zo) and d(z;) with¢ € {1,2,...,9}.

Comparison with Total Variation: Sensitivity to Sample Structure. We demonstrate that our
NAMMD better captures the differences between distributions by exploiting intrinsic structures. For
each dataset, we sample ten elements and randomly selecting one element to serve as the base zy. The
remaining elements are sorted as 21, 2, ..., 29 With |20 — 212 > ||z — 22| > - -+ > ||z0 — 20||%.
For each element z;, we construct the Dirac distribution ,, with support only at element z;, and we
calculate the distance NAMMD(0,, 0., , ). We repeat this 10 times, using a Gaussian kernel with
~ = 1 for blob, higgs, and hdgm, and v = 10 for mnist.

From Figure 7, it is evident that our NAMMD(§,,, 6., ) distance increases as ||zg — z;||? decrease
for all datasets. This is different from previous total variation TV (d,,,d,,) = 1 fori € {1,2,...,9},
which merely measures the difference between probability mass functions of two distributions. In
comparison, our NAMMD distance can effectively capture intrinsic structures and complex patterns

in real-word datasets by leveraging kernel trick.

Comparisons on respectively selected kernels for MMD and NAMMD. Similar to Table 2 (where
the experiments are performed using the same kernel for both MMD and NAMMD), we conduct
experiments with different selected kernels for NAMMD and MMD. For MMD, the kernel selection
remains the same as in the experiments in Table 2, and we denote the kernel for MMD as KM,
However, for NAMMD, we select the kernel xN similar to the experiments in Table 2, but with
an additional regularization term related to the norms of the original distributions in the dataset
(i.e., 4K — ||pueli3, . — llmqll3,, ) during the optimization. Notably, these kernel selection methods
are heuristic for distribution closeness testing, as obtaining a test power estimator for distribution
closeness testing with multiple distribution pairs and selecting an optimal global kernel for distribution
closeness testing based on the estimator remain open questions and poses a significant challenge.
We use x for the construction distribution pairs (P, Q1) and (Po, Q2). Following Definition 8, we
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Table 7: Comparisons of test power (mean-=std) on distribution closeness testing with respect to different
NAMMD values, and the bold denotes the highest mean between tests with our NAMMD and original MMD.
Notably, different selected kernel are applied for NAMMD and MMD respectively in this table.

e=0.1 e=0.3 e=0.5 e=0.7
MMD NAMMD MMD NAMMD MMD NAMMD MMD NAMMD
blob .9394.009 .983+.004 | .968+.007 .991+.002 | .952+.010 .999+.001 9344010 1.00+.000
higgs 9144051 972+.009 | .9344.056 .976+.007 | .967+.021 .994+.002 | .949+.036 .1.00+.000
hdgm 925+.071 .9764+.005 | 9154+.069 978+.004 | 913+.058 .984+.004 | .938+.052 1.004.000
mnist 9514.006 .9624.005 | .955+.032 .961+.021 | .935+.049 .967+.036 9774011 .992+.002
cifarl0 | .976+.012 .987+.006 | .971+.007 .988+.003 | .991+.004 1.00+.000 | 1.00+.000 1.00-.000
Average | .941+.030 .976+.006 | .949+.034 .979+.007 | .952+.028 .989+.009 | .960+.022 .998-+.000

Dataset

perform NAMMD distribution closeness testing with N and MMD distribution closeness testing with
xM respectively. Table 7 summarizes the average test powers and standard deviations of NAMMD
distribution closeness testing and MMD distribution closeness testing. It is evident that our NAMMD
test achieves better performance than the MMD test, and this improvement when using different
selected kernels for NAMMD and MMD can be explained by the analysis for distribution closeness
testing based on Theorem 9.

---- Gaus. Kernel Deep Kerel -+- Lapl. Kernel =~ Maha. Kerel
blob higgs hdgm mnist
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Figure 8: type-I error is controlled around o = 0.05 w.r.t different kernels for our NAMMD test with ¢ = 0.
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Figure 9: The type-I error is controlled around a = 0.05 w.r.t different € € (0, 1) for our NAMMD test.

Type-I error Experiments From Figure 8, it is evident that the type-I error of our NAMMD test
is controlled around v = 0.05 with respect to different kernels and datasets in two-sample testing
(i.e. distribution closeness testing with ¢ = 0) by using permutation tests. In a similar manner,
Figure 9 shows that the type-I error of our NAMMD test is controlled around av = 0.05 with respect
to different ¢ € (0, 1) and datasets in distribution closeness testing, where we derive the testing
threshold based on asymptotic distribution. These results are nicely in accordance with Theorem 6.

Comparisons on various kernels. For further comparison, we evaluate our NAMMD test (with
€ = 0) against the MMD test in terms of test power with the same kernel. We perform this experiments
across four frequently used kernels (Appendix E.5): 1). Gaussian kernel [80]; 2). Laplace kernel
[35]; 3). Deep kernel [29]; 4). Mahalanobis kernel [32]. Following [32, 29], we learn kernels on a
subset of each available dataset for 2000 epochs, and then test on 100 random same size subsets from
remaining dataset. The ratio is set to 1 : 1 for training and test sample sizes. We repeat such process
10 times for each dataset. For our NAMMD test, the null hypothesis is NAMMD(P, Q, ) = 0, and
we apply permutation test.
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Table 8: Comparisons of test power (mean+std) on two-sample testing with the same kernel, and the bold
denotes the highest mean between our NAMMD test and the original MMD test.

Gaus. Kernel Maha. Kernel Deep Kernel Lapl. Kernel
MMD NAMMD MMD NAMMD MMD NAMMD MMD NAMMD
blob .600+.090 .616+.090 | 1.00+.000 1.00+.000 | .8594+.084 .863+.083 | .359+.088 .364+.088
higgs 5634073 .566+.075 | .9044.087 .905+.086 | .7964.091 .797+.091 | .5564.062 .581+.062
hdgm 707+.042 J713+.041 .801+.097 .805+.095 | .3324+.087 .334+.086 | .090+.012 .100+.013
mnist 4054019 411+.020 | .9704+.013 975+.012 | .4624+.100 .467+.098 | .873+.016 .881+.010
cifarl0 | .2194.017 .222+.020 | .9844.007 .987+.006 | .9974+.003 1.00+.000 | .9984.002 1.00+.000
Average | .499+.048 .506+.049 | .932+.041 .934+.040 | .6894+.073 .692+.072 | .575+.036 .5854.035

Dataset

Table 8 summarizes the average of test powers and standard deviations of our NAMMD test and
the MMD test with the same kernel. NAMMD test achieves better performance than original MMD
test as for Gaussian, Laplace, Mahalanobis and Deep kernels. It is because scaling maximum mean
discrepancy with the norms of mean embeddings improves the effectiveness of NAMMD test in
two-sample testing.

Table 9: Comparisons of runtime (seconds) on two-sample testing with permutation test, corresponding to the
experiments shown in Figure 2.

Samp. Size | ACTT AutoTST MEmabid MMD-D MMDAgg MMDFuse NAMMDFuse
50 35918  681.669 45.945 303.413 13.621 9.340 9.602
100 42.035  707.498 53.125 308.542 14.742 11.686 12.107
150 44.429  707.368 82.473 446.897 16.037 13.298 13.744
200 44981  734.686 83.341 448.066 17.031 14.015 14.388
250 45.129  731.910 83.877 451.478 20.730 16.573 16.921
300 46.402  750.984 158.909 747.656 21.316 19.404 19.989
350 46.077  809.401 159.829 743.727 22.301 23.441 23.439
400 46.994  847.017 232.811 1025.473 23.655 27.632 27.845

Runtime comparison. Table 9 present the time costs of the proposed permutation-based method,
NAMMDFuse (which aggregates multiple NAMMD statistics with different kernels, as shown in
Appendix E.4). NAMMDFuse exhibits similar time costs to MMDFuse and is significantly faster
than most baseline methods. Recall that the NAMMD is defined as:

| — NQH%K
4K — |lpel3,, — lmollf,
leell3e, + lkollb, — 2(me, o)n.
AK — [lpellf, — pall3,
By zrnpz[(@, )] + By g2 [k(Y, Y')] — 2Ez~py~oli(®, yY')]
4K — Eg 5/ p2 [K(ZB, :l:’)} - Ey,y/NQ2 [li(y, y/)]

where the kernel x(x, ') = ¥(x — ') is positive-definite with ¥'(0) = K and ¥ (x — ') < K for
all z,2’, and K > 0. Notably, the scaling term of NAMMD, 4K — ||uz||3, — |lpoll3,, . which can
be efficiently computed using intermediate quantities from MMD, thus incurring negligible additional
cost. Overall, the computational overhead introduced by NAMMD is minimal. In the formulation
of NAMMD, all computations in the RKHS can be expressed as inner products, often computed
via pairwise distances. This avoids the need to explicitly compute RKHS embeddings and helps
reduce computational complexity. During the permutation test, we precompute the pairwise inner
products and reuse them by rearranging the indices to obtain permutation results, eliminating the
need to recompute them for each permutation. This strategy can be implemented efficiently.

NAMMD(P, Q; ) =

F LIMITATION STATEMENT

Our analysis in this paper focuses on kernels of the form k(z,2z’) = ¥(z — ') < K with a
positive-definite ¥(-) and ¥(0) = K, including Laplace [35], Mahalanobis [32] and Deep kernels
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[29] (frequently used in kernel-based hypothesis testing). For these kernels, a larger norm of mean
embedding || pp||3, indicates a smaller variance Var(P; k) = K — ||up||3, , which corresponds to a
more tightly concentrated distribution in the RKHS. Leveraging this property, we gain the insight that
two distributions can be separated more effectively at the same MMD distance with larger norms
as discussed in Appendix B. Hence, we scale MMD using 4K — [|up||3, — ||pqll3, . making the
new NAMMD increase with the norms | g (|3, and ||pqll3, . Figure Ic and 1d demonstrate that our
NAMMD exhibits a stronger correlation with the p-value in testing, while MMD is held constant. We
also prove that scaling improves NAMMD'’s effectiveness as a closeness measure in Theorem 9.

However, all these improvements rely on the property that "A larger norm of mean embedding
|pell3, indicates a smaller variance Var(P; k) = K — ||up||3, , which corresponds to a more
tightly concentrated distribution P". The proposed method may not work well for kernels where the
embedding norm of distribution may increases as the data variance increases. For these kernels, the
"less informative" of MMD still arises when assessing the closeness levels for multiple distribution
pairs with the same kernel, i.e., MMD value can be the same for many pairs of distributions that have
different norms in the same RKHS. We will demonstrate this by further considering two other types
of kernels as follows.

Unbounded kernels for bounded data: For polynomial kernels of the form
k(x,x") = (xTx' +¢)?
We define P; = {1,3} and Q; = {i,1} be discrete distributions over vector domains
+0)

{(\/¢,.-,0), (—/c, ..., 0)}, respectlvely Furthermore, we define P, = {2, 1} and Q; = {1,0} be
discrete distributions over domains {(1/c, ..., 0), (—/c, ..., 0) }. It is evident that

1
MMD(P;, Q1; k) = MMD(Ps, Q2; 1) = §(20)d
with different norms for distributions pairs ||, ||5,, + ||HQ1||HK = 3(20)%, and ||pz, |3, +

3., = 3(20)% pe.ll3, =

U);LQQ |c‘1§{” = %(QC) Specifically, we have ||up, ”HN (20)

5 (20)% and [|pq, (13, = (2¢)".

In a similar manner, for matrix products kernels of the form
r(x,x") = (xT Mx' 4 ¢)?

and denote by Mj; the element in the first row and first column of the matrix M. We de-

fine P; = {1,2} and Q; = {3, 4} over vector domains {(v/c/Mi1,...,0), (—/c/Mi1,...,0)},

respectively.  Furthermore, we define P, = {2,1} and Q2 = {1,0} over domains
{(v/¢/Mi1,...,0),(=+/c/Mi1,...,0)}. We obtain the same results as for polynomial kernels.

[l —x"]2
=5-) when

Kernels with a positive limit at infinity: Using the kernel as k(x,x’) = exp(—
[x — x| < K, and otherwise r(x, x’) with positive constants K and c. We define P = {1, 2}
and Q; = {3, 1} over vector domains {(K, ...,0), (4K, ..., 0)}, respectively. Furthermore, we define
Py = {3, 3} and Q2 = {1, 0} over domains {(K, ...,0), (4K, ...,0)}. It is evident that

1
MMD(Py,Qy; k) = MMD(Py, Q2; k) = 5(1*0%
with different norms for pairs ||pp, I, + |, 13, = 252 and ||pe, I3, + lpo.l3, = 25
Specifically, we have [[pe, |13, = >58¢, 1o, |3, = 25 lpell5,, = 3¢ and [|pq. |3, =

For these kernels, the relationship between the norm of mean embedding and the variance of
distribution is not monotonic, where a smaller norm of mean embedding may indicate a smaller
variance or a larger variance, depending on the properties of the data distributions. Hence, when
using these kernels for distribution closeness testing, mitigating the issue (i.e., MMD being the same
for multiple pairs of distributions with different norms in the same RKHS) by incorporating norms of
distributions becomes more challenging, potentially leading to a more complex distance design.

G STATEMENT ON THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were used solely as a general-purpose assistant to polish the writing and improve clarity. They
did not contribute to research ideation, methodology, analysis, or results.
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