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Abstract

Logic Synthesis (LS) aims to generate an optimized logic circuit satisfying a given
functionality, which generally consists of circuit translation and optimization. It is
a challenging and fundamental combinatorial optimization problem in integrated
circuit design. Traditional LS approaches rely on manually designed heuristics to
tackle the LS task, while machine learning recently offers a promising approach to-
wards next-generation logic synthesis by neural circuit generation and optimization.
In this paper, we first revisit the application of differentiable neural architecture
search (DNAS) methods to circuit generation and found from extensive exper-
iments that existing DNAS methods struggle to exactly generate circuits, scale
poorly to large circuits, and exhibit high sensitivity to hyper-parameters. Then
we provide three major insights for these challenges from extensive empirical
analysis: 1) DNAS tends to overfit to too many skip-connections, consequently
wasting a significant portion of the network’s expressive capabilities; 2) DNAS
suffers from the structure bias between the network architecture and the circuit
inherent structure, leading to inefficient search; 3) the learning difficulty of different
input-output examples varies significantly, leading to severely imbalanced learning.
To address these challenges in a systematic way, we propose a novel regularized
triangle-shaped circuit network generation framework, which leverages our key
insights for completely accurate and scalable circuit generation. Furthermore,
we propose an evolutionary algorithm assisted by reinforcement learning agent
restarting technique for efficient and effective neural circuit optimization. Extensive
experiments on four different circuit benchmarks demonstrate that our method can
precisely generate circuits with up to 1200 nodes. Moreover, our synthesized cir-
cuits significantly outperform the state-of-the-art results from several competitive
winners in IWLS 2022 and 2023 competitions.

1 Introduction
Complex integrated circuits (ICs) can have billions of transistors, making purely human-based
design impossible [1]. To tackle this problem, the IC industry relies on electronic design automation
(EDA) tools [2] that progressively transform a high-level hardware design into a layout ready for IC
fabrication. Logic synthesis (LS) is a fundamental step in EDA which aims to transform a behavioral-
level description of a design into an optimized gate-level circuit to minimize its delay and area. As
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LS is the first step in EDA tool-chains that yields the final IC layout, the quality of its output highly
impacts the area, power, and performance of the final ICs [3, 4].

LS is a challenging NP-hard combinatorial optimization problem. Commercial and academic LS
tools use sophisticated human-designed heuristics to approximately solve this task, often obtaining
sub-optimal solutions. The synthesis of high-level designs to circuits is typically done as a direct
translation of hardware description language code coupled with post-processing optimization. Recent
works [5–7] have shown that there exists room for fusing these two steps with neural compiler
architectures. Therefore, leveraging machine learning for direct neural circuit generation and
optimization emerges as a significant direction towards next-generation LS.

In this paper, we first revisit the application of differentiable neural architecture search (DNAS)
methods to synthesize circuits from input-output examples [5, 8, 7], which seems to offer a promising
avenue towards neural circuit generation. Unfortunately, we found from extensive experiments
that the existing method not only struggles to generate circuits precisely, particularly in large-scale
circuits but also exhibits high sensitivity to hyperparameters. Through comprehensive empirical
analysis, we summarize three key insights for these challenges. 1) DNAS suffers from the curse of
skip-connections, tending to learn to too many skip-connections, which results in low utilization of
the large network. 2) there is a discrepancy between DNAS and the inherent structure of circuits,
leading to redundant search space and inefficient search. 3) the learning difficulties vary greatly
across different input-output examples, resulting in a severe imbalance during the training process.

To address these challenges in a systematic way, we propose a novel regularized triangle-shaped
circuit network generation framework, namely T-Net, which leverages our key insights for completely
accurate and scalable circuit generation. To further enhance our T-Net for logic synthesis, we
propose an evolutionary algorithm assisted by reinforcement learning agent restarting technique for
further efficient and effective neural circuit optimization. The efficient search and scalable circuit
generation of our T-Net come from the following aspects. 1) Multi-Label Transformation of
Training Data. To enhance the scalability, T-Net proposes to partition the input-output examples into
several sub-datasets based on the Shannon decomposition theorem and merge these sub-datasets to
transform the original single-label data into multi-label data with significantly reduced input data.
Jointly learning circuit structures of transformed input-output examples also exploits inherent circuit
functionality symmetry for logic sharing and reducing generated circuit size. 2) Triangle-Shaped
Network Architecture. Based on the key observation that the circuit structure generally follows a
triangle-shape, T-Net designs a Triangle-shaped network architecture, which significantly reduces
the search space, instead of common square-shaped architectures. 3) Regularized Training Loss.
To mitigate overfitting to many skip-connections, T-Net proposes an inner-architecture regularized
loss to suppress excessive skip-connections. Moreover, T-Net further proposes a hardness-aware loss
function to actively optimize hard input-output examples.

We conducted extensive experiments on 18 circuits from four benchmarks. For circuit generation, our
T-Net accurately generates large circuits with up to 1200 nodes, surpassing the state-of-the-art (SOTA)
DNAS methods[5, 9], while also producing much smaller circuits compared to traditional methods[10,
11]. Based on our generated compact circuits, our evolutionary algorithm further optimizes circuits,
significantly outperforming not only traditional methods, but also SOTA approaches from several
competitive winners in IWLS 2022 and 2023 competitions.

We summarize our major contributions as follows. 1) An extensive analysis of the challenges inherent
in applying Differentiable Neural Architecture Search (DNAS) for neural circuit generation was
conducted, leading to three key underlying insights. 2) Leveraging these key insights, we developed
T-Net, a neural circuit generation framework enabling efficient search and scalable generation. 3)
Experiments on 18 circuits show that our approach achieves a significant 68% improvement in circuit
area over the traditional method, and a remarkable 5.36% improvement compared to the SOTA
approach employed by the winners of the IWLS 2023 competition.

2 Related Work
Machine Learning in Logic Synthesis In recent years, integrating machine learning (ML) into
chip design workflows has garnered significant attention [1, 12–14]. The investigation spans two
main areas: ML embedded in LS and end-to-end LS using ML techniques. ML embedded in
LS involves incorporating ML into specific LS stages to enhance efficiency and quality. Notable
efforts include using ML to tune optimization flows[15–17], predict metrics [14], and improve
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decision-making[18, 19] in LS methods. ML for end-to-end LS includes research exploring replacing
traditional LS stages with ML[1]. Approaches range from language-based circuit description[20, 21]
to circuit generation through searches [5, 7]. Notable methods include integrating real-valued logic
with continuous parameterization and using differentiable neural architecture search (DNAS)[6].
Despite the promising advancements, existing end-to-end methods face challenges in scaling to large
circuits and are sensitive to hyperparameters. In this paper, we rethink the traditional DNAS methods
for LS and propose a novel regularized triangle-shaped circuit generation framework.

IWLS Contest The International Workshop on Logic & Synthesis (IWLS) [8] annually hosts a
contest, with themes in 2022 and 2023 [22] focusing on LS from input-output examples (i.e., truth
tables), scored based on circuit sizes (i.e., node number). Participated teams mainly employ traditional
methods [10, 11, 23–26] for circuit synthesis. In 2023, Google DeepMind introduced a DNAS-based
method [27], achieving first place. We replicated it as a baseline, conducting a detailed analysis and
enhancing the DNAS-based generation method. For circuit optimization, various operator sequence
optimization approaches have been proposed [28, 29]. The 2022 champion EPFL team utilized
Bayesian optimization methods within an EA framework [30]. In contrast, we employed RL methods
with strong search capabilities and introduced a restart strategy to mitigate local optima.

3 Background
Logic Synthesis (LS) from IO Examples In recent years, a promising direction that synthesizing
circuits from IO examples has received increasing attention [27, 31, 32, 5, 7]. Specifically, researchers
aims to use machine learning to generate a circuit given a truth table that describes the functionality
of the circuit. Note that each line in the truth table is an input-output pair, which means that given
the input to the circuit it will produce the corresponding output. For machine learning (ML) domain,
researchers formulate the truth table as a training dataset consisting of many input-output pairs, and
aim to use a ML model to generate circuits that completely fits the dataset.

Circuit Graph Representation Boolean Networks are widely-used discrete mathematical models
with applications in various fields [33]. In these networks, nodes represent Boolean functions, and
edges illustrate connections between them. Boolean functions map from an n-dimensional space
Bn to a 1-dimensional space B, where B = {0, 1}. In the LS stage, circuits are often depicted as
And-Inverter Graphs (AIG), offering a concise representation of Boolean Networks. AIGs consist
of constant, primary inputs (PIs), primary outputs (POs), and two-input And nodes. Inverter edges
signify an inversion signal. The size of a circuit denotes the number of And nodes in the AIG, while
the depth (level) signifies the longest path from a PI to a PO.

Traditional DNAS for LS from IO Examples Recent works [5, 7] propose to leverage DNAS
methods for generating circuit graphs from IO examples, which shows a promising direction towards
next-generation logic synthesis. Specifically, they formulate a neural network as a circuit graph
(i.e., AIG), where each neuron represents a logic gate (And gate) and connections between neurons
represent wires connecting these logic gates. For a parameterized neural network, the neurons are
fixed as logic gates, and the connections between neurons are parameterized as learnable parameters.
To enable differentiable training via gradient descent, they introduce continuous relaxation into
discrete components in the neural network. First, the logical operations of logic gates (neurons)
are translated into their differentiable counterparts. For instance, aAND b is relaxed to a · b, and
NOT a is relaxed to 1− a [6]. Second, discrete network connections are parameterized, employing
Gumbel-softmax [34] during forward propagation to continuousize and sample the connections
between nodes, thus enabling optimization through gradient descent to find high-quality solutions.

4 Rethinking DNAS for Neural Circuit Generation
In this section, we first present motivating challenges in using DNAS for neural circuit synthesis from
input-output examples in Section 4.1. Then, we present a deep understanding of these challenges in
Section 4.2. We provide the detailed experimental setup in AppendixB.3.

4.1 Motivating Challenges

We present two fundamental challenges in neural circuit generation of existing DNAS[5]. First,
DNAS struggles to generate circuits exactly from input-output examples, especially for large-scale
circuits. Second, DNAS exhibits high sensitivity to hyperparameters.
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Figure 1: (a) DNAS struggles to accurately generate circuits, especially larger ones. (b) The depth of
an output node of the circuit in the circuit. DNAS only connects to very shallow layers, while our
method learns deeper layers. (c) The visualization of the converged DNAS network. The dark nodes
represent the used circuit nodes, indicating very low utilization of deep-layer nodes. (d) The circuits
generated by SOP show that the average number of nodes per layer forms a triangular pattern.

Generating Exact Circuits is Challenging To evaluate whether DNAS can generate circuits exactly,
we evaluate the DNAS method as described in Appendix B.1 and C on the input-output examples
from circuits in two benchmarks. Figure 1(a) shows that out of the 16 circuits, 14 can not be generated
correctly. Therefore, it is extremely challenging for DNAS to generate functionally correct circuits.

Moreover, Figure 1(a) illustrates the relationship between circuit accuracy and circuit scale. The
metric for circuit scale is quantified by the number of AIG nodes obtained through the traditional
synthesis method. The results reveal nearly 20% degradation in circuit accuracy as the circuit scale
increases. This demonstrates the challenge that DNAS confronts in generating accurate circuits as
the circuit scale grows, highlighting the poor scalability of the DNAS method.

Sensitivity to Hyperparameters We evaluate robustness of DNAS in circuit generation using various
initializations. Results showed up to a 14.5% accuracy variation depending on the random seed,
highlighting the challenge of obtaining stable results with DNAS. More details in Appendix C.2.

4.2 A Deep Understanding of These Challenges

To elucidate the underlying causes of these challenges, we undertook comprehensive analytical
experiments, which yielded the following three key insights. Firstly, DNAS suffers from the curse
of skip-connections, tending to learn too many skip-connections, which results in low utilization
of large initialization networks. Secondly, there is a discrepancy between DNAS and the inherent
structure of circuits, leading to an inadequate exploration of the search space. Lastly, the varying
learning difficulties among input-output examples cause an imbalance in the training process.

The Curse of Skip-Connection We observed that existing methods exhibit low utilization of the
network when searching within a large network. This is attributed to the fact that connections can
span across layers, bypassing certain nodes and excluding them from the final circuit. To investigate
this, we analyzed how the skip connections evolve during training. The output nodes of a circuit are
selected within the network through a set of learnable connection parameters. To study the cross-layer
connection phenomenon of the outputs, we observe the depth of the output nodes within the network.
Figure 1(b) shows the fluctuation in the depth of an output node during training. It is evident that
the depth of the circuit output node undergoes a rapid decline to nearly 0, followed by a gradual
rise and eventual stabilization at a shallow depth of 5. This observation implies that only a fraction
of the network layers, specifically about a quarter, are effectively utilized in the circuit. The skip
connections within the circuit span a considerable depth, significantly constraining the upper limit of
the network’s expressive capacity. As a point of contrast, our approach connects this output to layer
15, allowing for the full utilization of nodes.

Existing methods underutilize large networks because connections can span across layers, bypassing
certain nodes and excluding them from the final circuit. To investigate this, we analyzed how skip
connections evolve during training. We observed the depth of output nodes within the network to
study cross-layer connections. Figure 1(b) depicts the depth fluctuation of an output node during
training. The output node’s depth initially drops sharply to almost 0, then gradually rises and stabilizes
at a shallow depth of 5. This indicates that only about a quarter of the network layers are effectively
utilized. Our approach connects this output to layer 15, enabling full node utilization.

To further illustrate the circuit structure searched by DNAS, we visualized the positions of circuit
nodes within the network in Figure 1(c). Notably, this circuit has multi-outputs, resulting in layer
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Figure 2: Framework of the Regularized Triangle-Shaped Circuit Network (T-Net). Our proposed
T-Net consists of three key modules: 1) Multi-label transformation of training data to decrease
generation difficulty. 2) A Triangle-shaped network architecture, designed to align with the structural
biases inherent in logic circuits. 3) Regularized training loss for efficient search and exact generation.

configurations distinct from those in the single-output case shown in Figure 1(b). It can be observed
that only a subset of bottom-layer nodes is integrated into the circuit, with about two-thirds of the
nodes being left idle due to skip connections. This visual representation demonstrates that excessively
distant skip connections diminish node utilization and the expressive capacity of the network.

We have noted that DNAS shows restricted exploration of the network during training. Specifically, a
node is classified as explored if it is included in the discretized circuit at any point during training,
and exploration is defined as the ratio of explored nodes to total nodes in the network. It is evident
that exploration is more extensive in shallower layers, decreasing as the layers deepen, as illustrated
in Appendix C. This finding prompts us to investigate whether structural bias within the circuit
architecture is responsible for imbalanced exploration. Furthermore, we observed that the skip-layer
count of the output bits is highly influenced by the hyperparameter random initialization, exhibiting
significant fluctuations. This sensitivity highlights that the accuracy of circuit generation is extremely
responsive to hyperparameters. During the training process, the occurrence of extensive skip-layer
phenomena is attributed to the fact that choosing skip-connection leads to most rapid error decay
during optimization. The network tends to learn skip-connection rather than traversing through more
nodes. This is known as the curse of skip-connections, as mentioned in [35, 36].

The Structure Bias of Circuits To further investigate the structural bias in circuit design, we examine
the structure of circuits generated by traditional methods. Utilizing Sum-of-Products (SOP) in
ABC to synthesis circuits, we analyze and quantify the node distribution across different layers.
Figure 1(d) presents the average node count distribution per layer in circuits. This reveals a distinct
structural pattern: the circuits are wider in the bottom layers and become narrower in the deeper
layers, suggesting inherent structural preferences in circuit designs. This is inconsistent with the
commonly used rectangular network shape. Utilizing a rectangular network to learn circuit structures
may result in a vast, redundant search space in the deep layers, leading to optimization difficulties.
Consequently, this can lead to sensitivity to hyperparameters and lower accuracy.

Learning Difficulties of Different Input-Output Examples We have observed that the learning
difficulty varies among different output bits and input combinations. The training loss of different
output bits shows different convergence speeds, indicating variations in difficulty. For inputs, the
convergence speeds for different input samples on the same output bit exhibit substantial variations,
challenging the assumption of independent and identically distributed (IID) samples. Detailed
experimental results are in Appendix C.2.

5 A Regularized Triangle-Shaped Circuit Network Generation Framework

To address the aforementioned challenges, we have developed a novel Regularized Triangle-Shaped
Circuit Network Generation Framework, namely T-Net. Our method comprises three modules: a
multi-label transformation of training data, a triangle-shaped network architecture, and regularized
training loss for efficient search and exact generation. Moreover, we propose an evolutionary
algorithm assisted by a reinforcement learning agent restarting technique for efficient and effective
neural circuit optimization. We defer more implementation details to Appendix D.
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5.1 Multi-Label Transformation of Training Data

To address the scalability challenge posed by the exponential growth of truth tables with increasing
input bit widths, we propose a novel approach: the multi-label transformation of training data,
leveraging the Shannon decomposition theorem [37]. The Shannon decomposition theorem states
that any boolean function (truth table) can be decomposed into two sub-functions (sub-tables) by
selecting a decomposing variable. Formally, the theorem is expressed as:

f(X1, . . . , Xn) = Xi · f1|Xi=1 + (!Xi) · f2|Xi=0, (1)

where f denotes the original boolean function, Xi denotes the selected variable, f1|Xi=1 and f2|Xi=0

denote the decomposed sub-functions. Based on the key observation that the truth table exhibits
a duality of Boolean functions, we first partition a large truth table into two smaller sub-tables by
selecting a variable and fixing its value as 0 and 1, respectively.

After partitioning the truth table, a natural approach is to learn each sub-table separately. However,
since the decomposed sub-tables share many logical nodes, individual learning prevents the active
learning of these shared logical nodes. To overcome this challenge, we propose a multi-label data
merge mechanism, which merges the two sub-tables into a multi-output table. This results in doubling
the output number while halving the input number.

By recursively applying this partition-and-merge transformation, we can transform any large truth
table into another truth table with significantly reduced input numbers and increased output numbers.
Note that the input size significantly impacts the difficulty of neural circuit generation. Consequently,
this transformation strategy provides two major advantages: 1) It enhances the scalability of our
T-Net, enabling it to learn from truth tables with large input bit widths. 2) It significantly accelerates
the learning process, as the learning difficulty of sub-tables is considerably reduced.

5.2 Triangle-Shaped Network Architecture

Model Structure Our network is structured as a neural network, where the neurons represent two-
input NAND gates. During training, the neurons remain fixed while their connections are learned.
An And-Inverter Graph (AIG) is a logic circuit composed of NAND gates and wires connecting the
gates. By transforming the neurons and connections in the neural network into logic gates and wires,
the neural network can be converted into an AIG circuit. Inspired by [5, 7], our basic differentiable
circuit neural network structure is as follows. The network has depth L and width K, indicating that
it consists of L layers, each comprising K nodes. In this notation, l = 0 corresponds to the input
of the circuit and l = L+ 1 are the outputs. It is crucial to emphasize that the nodes in the output
layer (L+ 1) are not considered gates; instead, they select the node within the network implementing
the output signal. The network’s inputs and outputs mirror the signals of a logical circuit, consisting
of 0s and 1s. Our nodes has two inputs and one output as NAND gate. We denote the output of the
kth neuron in the lth layer by ol,k. We denote the p-th input of the neuron (NAND gate) ol,k by il,kp ,
where p ∈ {0, 1}. During the training phase, the discrete logic circuit undergoes a relaxation and
continuousization process in two aspects. Firstly, the logical operations of logic gates are translated
into their differentiable counterparts. For instance, aNAND b is relaxed to 1 − (a · b) [6]. Next,
discrete network connections are parameterized, employing Gumbel-softmax [34] during forward
propagation to continuousize and sample the connections between nodes, thus enabling optimization
through gradient descent. Note that each neuron ol,k has two inputs il,k0 and il,k1 , and can be connected
to any neuron with layer number smaller than l as its input neuron. We parameterize the connections
of each neuron ol,k by a tensor of learnable parameters θl,k ∈ R2×(l−1)×K . Each parameter in the
tensor θl,kp,i,j represents the probability of connecting the jth neuron in the ith layer to the pth input
of current neuron ol,k. The computation of the pth input value for the neuron ol,k takes the form of

il,kp :=

l−1∑
i=0

K∑
j=1

oi,j
[
softmax

(
θl,k

)]
p,i,j

, p = 0, 1 (2)

ol,k := 1−Π1
p=0i

l,k
p (3)

During evaluation, each node’s input selects only one connection based on the parameters, using
maximization instead of softmax during forward calculation2, restoring discrete logic operations.

Triangle-Shape To fit the circuit bias on structure, we propose a Triangle-shaped network structure.
Due to the inherent structural preference of logic circuits for a wider base and deeper top, the

6



commonly used rectangular network architecture is not well-suited for them. We employ a triangular
structure that widens at the bottom layers to enhance expressive capability, thereby better fitting
the foundational aspects of logic circuits. At the deep layers, the structure is narrower and deeper,
which ensures adequate expressive power while reducing redundant nodes. This streamlined search
space simplifies optimization, making it more manageable and efficient. Importantly, the last layer’s
width doesn’t limit output diversity since any node can serve as an output. Our experiments confirm
accurate generation even for circuits with many outputs (see Appendix E.4).

5.3 Regularized Training Loss towards Efficient Search and Exact Generation

Regularized Skip-Connection Note that for each node in the T-Net, it maintains a learnable prob-
ability distribution over all nodes in the T-Net whose layer number is smaller than this node. As
shown in Figure 1(b), this distribution often overfits to shallow-layer nodes, causing too many skip
connections. To prevent this, a natural solution is to enforce connections only to nodes in the previous
layer. However, this significantly limits the search space, reducing expressive power (as demonstrated
in the DNAS with no skip-connection in Table 1). To address this challenge, we propose a weighted
regularization on the learnable probability distribution to softly suppress the probability of connecting
to distant nodes across layers, while promoting connections to closer nodes. This approach avoids
overfitting to excessive skip connections. Due to limited space, we defer the specifics of the weighting
implementation to Appendix D.2.

Boolean Hardness-Aware Loss To alleviate the problem of extreme imbalance between positive
and negative samples in the later stages of training, we introduce a Boolean Hardness-Aware Loss
inspired by [38]. By weighting loss differently for various samples, these components help maintain
training speed in the later stages. We also employed a temperature coefficient decay mechanism to
reduce the discrepancy between continuous computation during training and discrete testing.

5.4 Neural Circuit Optimization
In this section, we introduce a novel optimization framework combined with our generation methods
for a comprehensive logic synthesis approach. To optimize circuits, we use circuit equivalent
transformations called operators, whose order and parameters significantly affect results. The goal is
to find an optimal operator sequence that minimizes the circuit’s size. Our method is an evolutionary
algorithm optimization framework assisted by reinforcement learning with a restart strategy. The
framework and more details can be seen in Appendix D.5

Reinforcement Learning for Operator Sequence Optimization Inspired by [39], our environment
consists of the circuit, the logic synthesis tool ABC[40], and nine logic optimization operators. The
agent receives the circuit state from the environment and outputs the next action, which includes an
operator and its parameters. This operator is then applied to the circuit, resulting in the next circuit
state. Ultimately, the RL model learns the optimal sequence of operators for the circuit, which is then
used to optimize the circuit and hand it over to the EA.

RL Agent Restart Strategy. After a period of training, the agent parameters may converge and
performance may settle into local optima. To address this, we restart the network parameters after a
certain training period. Specifically, we reinitialize the agent parameters and recommence training
using the optimal circuit while retaining the agent’s encoder parameters. This helps escape from local
optima and allows continued exploration of the search space for superior solutions. Retaining the
encoder parameters preserves learned experiences, guiding subsequent training iterations.

Evolutionary Algorithm Optimization Framework. To better escape local optima, our optimization
approach incorporates an Evolutionary Algorithm (EA) framework. The initial population consists
of diverse circuits generated by our T-Net. To ensure that the generated circuits closely match
functionality constraints with truth tables, we implement a legalization step to ensure functional
compliance, as detailed in Appendix D.6. Subsequently, the EA iteratively optimizes circuits by
the RL model and maintains an elite circuit population. Finally, the optimal circuit is selected as
the output. Compared with only picking one optimal solution when restarting, EA can increase the
diversity of the circuit and expand the search scope. A detailed procedure is in the Appendix D.5.

6 Experiments
Our experiments have four main parts. 1) Evaluate our generation and optimization approach on four
open-source circuit benchmarks. 2) The scalability of our generation method. 3) Perform carefully
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Table 1: Generation accuracy results. Impr. is the percentage decrease in wrong bits.
Benchmark Basic DNAS DNAS Skip Darts- T-Net (Ours)

Size Circuit PI PO Acc.(%)↑ Wrongs↓ Acc.(%)↑ Wrongs↓ Acc.(%)↑ Wrongs↓ Acc.(%)↑ Wrongs↓ Impr.(%) ↑

Small

Espresso3 5 28 99.21 7 99.77 2 91.74 74 100 0 100
Espresso4 16 1 70.99 19008 100 0 77.44 14784 100 0 100
Espresso7 8 63 97.83 349 90.30 1564 97.16 458 100 0 100
LogicNets1 12 3 96.78 395 92.80 885 96.23 463 100 0 100
Random1 10 1 64.06 368 98.73 13 64.64 362 100 0 100
Arithmetic2 8 7 81.47 332 99.22 14 75.61 437 100 0 100

Large

Espresso8 14 8 84.13 20797 86.86 17223 97.66 3056 100 0 100
Espresso9 14 14 93.82 14167 81.36 42756 97.29 6196 99.99 12 99.97
LogicNets4 12 3 79.17 2560 87.79 1500 83.77 1994 99.99 1 99.93
LogicNets6 12 3 65.34 4259 83.26 2057 96.05 485 100 0 100

Average 82.51 3974.33 91.99 3995.11 86.31 1938.00 99.99 1.89 99.91

Table 2: Generation size results. Init Node is generated by SOP or our T-Net and Opt Node is
optimized by resyn2. Impr. represents the percentage decrease in nodes achieved by our approach.

Benchmark SOP+resyn2 Ours+resyn2
Size Circuit PI PO Init Node ↓ Opt Node ↓ Init Node ↓ Impr.(%)↑ Opt Node ↓ Impr.(%)↑

Small

Espresso3 5 28 205 149 155 24.39 136 8.72
Espresso4 16 1 129 66 37 71.32 27 59.09
Espresso7 8 63 482 296 334 30.71 275 7.09
LogicNets1 12 3 194 160 160 17.53 140 12.50
Random1 10 1 168 116 117 30.36 105 9.48
Arithmetic2 8 7 316 268 254 19.62 236 11.94

Large

Espresso8 14 8 1159 965 207 82.14 151 84.35
Espresso9 14 14 1224 989 544 55.56 450 54.50
LogicNets4 12 3 808 670 636 21.29 601 10.30
LogicNets6 12 3 966 796 374 61.28 350 56.03

Average 459.39 366.39 262.78 33.42 230.06 23.72

designed ablation studies to provide further insight into the DNAS-based circuit generation approach.
4) Verify the robustness of our approach through a sensitivity analysis.

Benchmarks We evaluate our approach using circuits from four benchmarks: Espresso[41],
LogicNets[42], Random, and Arithmetic. Random circuits are random and decomposable Boolean
functions, while Arithmetic circuits involve arithmetic functions with permuted inputs and dropped
outputs. We selected 18 circuits (8 circuits are in Appendix E and the average are calculated by all 18
circuits), with inputs ranging from 7 to 16 and outputs from 1 to 63. Circuit sizes, based on node
count synthesized through the SOP method, range from 100 to 1200. The circuits are divided into
small (12 circuits, node count < 500) and large (6 circuits, node count > 500) datasets, highlighting
synthesis challenges, especially for the large circuits.

Experimental Setup For circuit generation, we implemented our T-Net as in Section 5. We train
our model on all input-output pairs of each circuit and evaluate their Boolean correctness. For
circuit optimization, we use the RL model inspired by [39] and our EA framework. We conduct
the LS operator sequence by open-source logic synthesis tool ABC[40]. Implementation details,
hyperparameters, and hardware specifications can be found in Appendix E.

Baselines We compare our T-Net with the following generation approaches: 1) Basic DNAS: Based
on [6], it learns connections but lacks skip-layer connectivity. 2) DNAS Skip: Proposed by Belcak
et al.[5] and used by Google DeepMind in IWLS 2023[22]. We re-implemented this method with
Gumbel-Softmax as Google did not open-source their code. 3) Darts-: An improvement on DNAS
that addresses skip-connection issues in traditional NAS task[9]. We adapted it for circuit neural
networks. 4) SOP (Sum-of-Products): A traditional LS method. We used resyn2[43] to optimize
circuits synthesized by SOP and our T-Net, showing our method’s superior initial solutions. On
the other hand, the baselines for optimization include: 1) SOP with resyn2: Traditional LS method
with the resyn2 operator. 2) IWLS Competition Results: We compare with the top three teams
from 2022[31] and 2023[27]. These teams mostly used extensive traditional methods, while EPFL
employing Bayesian optimization[30] and Google using the DNAS circuit generation method[7].

Evaluation Metrics We evaluate the accuracy and the size of the generated circuits and optimized
circuits. 1) Accuracy: The ratio of correctly predicted output bits to the total number of output bits.
Importantly, achieving 100% accuracy in the generated logic circuit stands as a fundamental criterion
in the task of logic circuit synthesis. 2) Wrong Bits: The number of incorrectly predicted output bits,
used to highlight accuracy differences in large-scale circuits. 3) Circuit Node/Size: The number of
nodes in the generated AIG circuit, with fewer nodes being better for minimizing chip area.
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Table 3: Optimization results. The term ’Impr.’ is defined as the percentage decrease in the number
of nodes achieved by our approach, relative to the traditional configuration.

Benchmark Tradition 2022 Teams 2023 Teams Ours
Size Circuit PI PO SOP+resyn2 TUW UCB EPFL(AI) NBU EPFL(AI) TUW Google(AI) Opt Node ↓ Impr.(%)↑

Espresso3 5 28 149 77 88 79 83 81 70 72 69 53.69
Espresso4 16 1 66 25 25 25 25 25 25 25 25 62.12
Espresso7 8 63 296 147 151 152 146 148 138 141 139 53.04
LogicNets1 12 3 160 69 70 72 65 62 60 61 55 65.63
Random1 10 1 116 39 62 44 41 41 40 38 37 68.10

Small

Arithmetic2 8 7 268 156 164 170 152 149 128 115 105 60.82

Espresso8 14 8 965 68 69 68 68 68 68 68 68 92.95
Espresso9 14 14 989 202 208 220 220 216 191 181 153 84.53
LogicNets4 12 3 670 340 240 246 285 241 206 167 154 77.01Large

LogicNets6 12 3 796 390 281 208 152 166 106 89 90 88.69

Average 380.29 132.78 118.33 112.28 124.11 113.89 94.39 88.06 83.33 68.70

6.1 Comparative Evaluation

Generation Evaluation We evaluate generation accuracy and wrong bits across four datasets. The
results in Table 1 show that T-Net significantly outperforms all baselines, achieving 100% accuracy on
most circuits and at least 99.9% on all. T-Net shows an average accuracy improvement of 17.48% over
Basic DNAS and 8% over DNAS Skip. Our approach for circuit neural networks also significantly
outperforms general DNAS improvement methods like Darts-. Regarding wrong bits, even with
similar accuracy, T-Net shows significantly fewer errors. For instance, in Espresso9, our method
reduces wrong bits by 42,000. These results demonstrate the superiority of our approach.

In addition, we evaluate the generation circuit size and the optimized size after applying traditional
operators. The results in Table 2 show that our method significantly outperforms the SOP method in
initial node count, with an average improvement of 33.42%. Furthermore, circuits with fewer initial
nodes also exhibit better optimization outcomes, with our method showing an average improvement
of 23.72% in optimized nodes compared to traditional methods. Notably, for circuits with initial node
improvements over 82%, we achieve up to 84.35% improvement in optimized nodes. These results
highlight the effectiveness and superiority of our approach.

Optimization Evaluation We evaluate our proposed optimization framework, as shown in Table 3. By
integrating our circuit generation method, we significantly reduced circuit size by 68.70% compared
to the traditional SOP+resyn2 method, demonstrating our optimization approach’s effectiveness.
Additionally, our average size outperformed the 2022 first-place team, EPFL, by 25.78%, and the
2023 first-place team, Google, by 5.36%, significantly ahead of other teams. This highlights the
superiority of our generation method and optimization framework in better circuit synthesis.

6.2 Scalability

Table 4: Scalability results of transformed
truth table on large circuits.

Circuit Method Nodes↓ Time(h)↓ Acc(%)↑ Wrs.↓

LogicNets6
Default 613 29 99.60 49

Decomp. 374 14 100 0
Impv. 39% 41% 0.4 100%

Espresso9
Default 699 26 99.97 61

Decomp. 610 16 99.99 6
Impv. 13% 38% 0.02 90%

To validate our multi-label transformation’s effective-
ness in improving accuracy, efficiency, and reducing
circuit node count, we tested large circuits from the
LogicNets and Espresso datasets. We use SOP to
quickly test the truth table transformation method
with different bits and select the bits with the small-
est size. For LogicNets6, we decomposed it into four
parts using two inputs. For Espresso9, we split the
truth table into two parts.

The experimental results in Table 4 show a 90% re-
duction in wrong bits and an average 26% decrease in nodes after transformation. For LogicNets6, the
method reduced generation time by 41%. These results confirm the efficiency of our decomposition
method for large circuits. By isolating complex variables, we mitigate circuit generation complexity,
enhancing scalability. Despite doubling the number of output bits, our T-Net maintains high accuracy,
indicating its robustness to increased output bits.

6.3 Ablation Study

In this section, we conducted an ablation study on four circuits to understand the contributions of each
T-Net component. Our T-Net adds three modules to DNAS: regularized skip-connection, boolean
hardness-aware loss, and T-Net, abbreviated in Table 5 as con., loss, and T, which leads to three main
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Table 5: Ablation results on four benchmarks of circuit.
Method Small: Espresso5 (8 PI/4 PO) Large: LogicNets2 (12 PI/3 PO) Small: Arithmetic2 (8 PI/7 PO) Large: Random1 (10 PI/1 PO)

Acc.(%)↑ Wrongs↓ Nodes Lev Acc.(%)↑ Wrongs ↓ Nodes Lev Acc.(%)↑ Wrongs ↓ Nodes Lev Acc.(%)↑ Wrongs ↓ Nodes Lev

SOP NA NA 172 13 NA NA 292 17 NA NA 316 12 NA NA 168 19
baseline 93.94 277 145 17 79.40 2526 2 1 94.97 90 193 13 98.73 13 141 16
+con. 98.24 18 184 19 99.91 10 241 17 99.33 12 276 14 99.40 6 127 20
+con.+loss 100 0 172 18 100 0 281 21 100 0 263 15 100 0 155 20
+con.+loss+T 100 0 112 14 100 0 273 18 100 0 254 15 100 0 114 20

conclusions. 1) Compared to the baseline, the con. significantly enhances accuracy, highlighting
the effectiveness of the regularized skip-connection module in mitigating skip-layer degradation
and improving network expressiveness. 2) The con.+loss approach nearly doubles the reduction in
wrong bits compared to +con., showing that the boolean hardness-aware loss function significantly
boosts accuracy for challenging instances. 3) con.+loss+T improves both accuracy and node count,
indicating that T-Net reduces training difficulty and enhances circuit generation effectiveness.

6.4 Sensitivity Analysis

We validate the sensitivity of our method to hyperparameters from two perspectives: random initial-
ization and the initial size of the network. Experiments show that our approach uniformly maintained
100% accuracy across various random initialization and network initial sizes, underscoring its robust-
ness to these fluctuations. Please see Appendix E.3 for details.

7 Conclusion

We rethink existing DNAS methods and empirically show three fundamental challenges pertaining to
existing methods: 1) DNAS tends to overfit to too many skip-connection; 2) DNAS suffers from the
structure bias between the network and the circuit’s inherent structure, leading to inefficient search; 3)
imbalanced learning across different input-output examples. Based on these insightful observations,
we propose a noval neural logic gate network search framework, which has a Triangle-shaped
structure, regularized skip-connection, and boolean hardness aware loss function. Experiments on
four circuit benchmarks demonstrate that our method can precisely generate circuits with large AIG
sizes. Moreover, our generated circuits have a significant 68% improvement in area surpassing the
performance of the traditional method.
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A Related Work
As chip complexity has grown exponentially with the development of semiconductor technology,
using machine learning (ML) to assist the automated chip design workflow has been an active topic of
significant interest in recent years [1, 12, 44, 45]. The chip design workflow consists of many stages
[1], such as high-level synthesis [46–48], logic synthesis [49–51], placement [45, 52, 53], design
space exploration [54–57], etc. Our paper specifically targets ML applications in logic synthesis (LS),
a pivotal area within Electronic Design Automation (EDA). We categorize this domain into two key
segments: ML embedded in logic synthesis and ML for end-to-end logic synthesis.

A.1 Machine Learning Embedded in Logic Synthesis
Machine Learning Embedded in Logic Synthesis refers to incorporating ML into a specific stage
of LS, aiming to enhance the efficiency of LS and achieve improved Quality of Results (QoR).
For example, [15] use machine learning to tune the optimization flow of LS operators; [14] use
machine learning to predict key metrics after physical design and leverage the prediction to guide LS
optimization; [18] use machine learning to improve decision-making in traditional LS methods. [17]
apply machine learning to commonly used LS operators and significantly improve the efficiency of
these operators. These embedded machine learning methods have significantly contributed to the
advancement of LS.

A.2 Machine Learning for End-to-end Logic Synthesis
Logic circuit synthesis is the process of producing a logic circuit that satisfies a given specification
and is a classical problem in computer science [5]. In contrast to embedded methods that utilize
machine learning to optimize specific stages within Logic Synthesis (LS), recent works propose
employing machine learning to replace traditional logic synthesis stages, thereby achieving end-to-
end logic synthesis. In the realm of logic circuit generation, scholarly efforts diverge into two primary
approaches. Works like those of [20] and [21] explore this field through the lens of the languages
employed to describe logic circuits. In contrast, other studies concentrate on the generation of logic
circuits by conducting searches focused on the circuit structure itself. Notably, [6] integrates real-
valued logic with continuous parameterization to create a differentiable logic gate network, enabling
efficient training and rapid inference, crucial for end-to-end synthesis. [5] proposes a novel approach
to directly search exact logic circuits by leveraging differentiable neural architecture search methods,
offering significant potential in logic circuit synthesis. However, existing end-to-end methods show
limitations in scaling to large circuits and sensitivity to hyperparameters. Based on these observations,
we rethink the differentiable neural architecture search and propose a novel differentiable neural
logic gate network search framework. An appealing feature of our method is that it is functionally
complete and has low redundancy and high expressiveness.

A.3 IWLS Contest
International Workshop on Logic & Synthesis (IWLS) is a global conference on logic synthesis that
hosts a contest annually[8, 22]. The themes for the contests in 2022 [31] and 2023[27] were circuit
synthesis from truth tables, scored based on the number of nodes, with fewer being better. This is the
same setting our paper focuses on. The approaches of the participating teams are mostly based on
traditional logic synthesis methods, involving both generation and optimization steps. The generation
phase encompasses basic operators such as SOP [10, 11] and others, BDD-based methods[23–25],
as well as methods utilizing mutual information [26], among others. Meanwhile, in 2023, Google
DeepMind adopted a deep learning-based generation approach[7, 27]. They introduced a DNAS-
based method to generate circuits, which, after three weeks of subsequent optimization, achieved first
place in 2023. Since Google has not formally published their approach, we replicated it as a baseline
for our study. We deeply analyzed and improved upon the DNAS-based generation method.

Optimizing circuits involves employing a series of circuit optimization operators. Given that the
sequence of operator executions and their parameter configurations significantly impact the final
quality of results, the primary task is to find the optimal operator sequence for a circuit. UCB team
proposed new optimization scripts[28], while the TUW team introduced windowing methods to
enhance the efficiency of SAT optimization methods[29]. The 2022 champion EPFL team utilized
Bayesian optimization methods[30] with EA framework to optimize the operator sequence. Although
both EPFL and we have employed the EA framework, what sets us apart is our utilization of RL
methods with strong search capabilities and the introduction of a restart strategy to mitigate the
impact of local optima. We achieved a 25% and 5% improvement over the results of the winners in
the 2022 and 2023 competitions, respectively, through our comprehensive circuit synthesis approach.
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A.4 Reinforcement Learning (RL)
In general, standard RL fall into two categories: model-free RL [58–62] and model-based RL [63, 64].
In recent years, RL has achieved great success in many important real-world decision-making tasks
[65, 66, 56, 67–69]. In this paper, we propose an evolutionary RL method for circuit optimization.

Machine Learning for Combinatorial Optimization Circuit generation and optimization is also
essentially a combinatorial optimization problem. The use of machine learning to tackle combinatorial
optimization problems has been an active topic of significant interest in recent years [70–76].

B Background
B.1 Logic Synthesis (LS)
The increasing complexity in modern chip design workflow demands innovations in Electronic Design
Automation (EDA) to keep scalability without compromising Quality-of-Results (QoR). Multiple
EDA tools are incorporated into the chip design workflow to synthesize, simulate, test, and verify
different circuit designs efficiently and reliably [77]. Being at the top of most EDA tools, LS aims to
transform a behavioral description of a design into an optimized gate-level circuit implementation.
In general, LS consists of translation, circuit optimization, and technology mapping [78]. In the
translation phase, a given boolean function, represented by a truth table, is transformed into a well-
structured circuit. Then, in the circuit optimization phase, lots of logic optimization operators [79–81]
are applied to an input circuit to optimize the circuit. Finally, in the technology mapping phase, the
optimized logic circuit is mapped to an available technology library, e.g., a standard-cell netlist [82] or
k-input lookup-tables [83]. In this paper, we propose a novel differentiable neural logic gate network
search framework to synthesize logic circuits from input-output examples. This framework has the
potential to replace the traditional phases of translation and circuit optimization, which introduces
innovation to the realm of LS.

B.2 Circuit Representation
Boolean Networks are well-studied discrete mathematical models with broad applications in chem-
istry, biology, circuit design, formal verification, etc. [33] A Boolean network is a directed acyclic
graph (DAG), where nodes correspond to Boolean functions and directed edges correspond to wires
connecting these functions. A Boolean function f is a mapping from an n-dimensional space Bn

to a 1-dimensional space B, i.e. f : Bn → B, where B = {0, 1} denotes the Boolean domain. In
the LS stage, a circuit is usually represented as And-Inverter Graphs (AIG), which is a concise and
uniform representation of Boolean Networks. An AIG contains four types of nodes: the constant,
primary inputs (PIs), primary outputs (POs), and two-input And (And2) nodes. Graph edges may
be complemented, indicating a complemented signal. Given a node in AIG, its fanins are nodes
connected by incoming edges of this node, and its fanouts are nodes connected by outgoing edges of
this node. Each node has at most two incoming edges. The PIs are nodes without fanin, and the POs
are nodes without fanout. The size of a circuit denotes the number of nodes in the AIG. The depth
(level) of a circuit denotes the maximal length of a path from a PI to a PO in the AIG. The size and
depth of a circuit are proxy metrics for the area and delay of the circuit, respectively.

B.3 DNAS for Logic Synthesis
Differential Neural Network Architecture Search (DNAS) can be effectively applied for logic synthe-
sis, where logic modules like AND gates are used as nodes, and connections between these nodes
are optimized via gradient descent. The network’s inputs and outputs mirror the signals of a logical
circuit, consisting of 0s and 1s. During the training phase, the discrete logic circuit undergoes a
relaxation and continuousization process in two aspects. First, the logical operations of logic gates
are translated into their differentiable counterparts. For instance, aAND b is relaxed to a · b, and
NOT a is relaxed to 1 − a [6]. Next, discrete network connections are parameterized, employing
Gumbel-softmax [34] during forward propagation to continuousize and sample the connections
between nodes, thus enabling optimization through gradient descent to find high-quality solutions. In
the evaluation stage, for each input of every logic module, only a single connection is chosen based
on the parameters, and discrete logic operations are reinstated.

The DNAS method, as analyzed in Section 4, utilizes AND-NOT gates as nodes. The network’s
structure is defined by its depth L and width K, signifying L layers with K nodes each. Here, L = 0
represents the circuit’s input. It’s important to note that the nodes in the output layer (L + 1) are
not gates and are excluded from the network count. They possess a singular input, selecting which
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node in the network represents the output signal. Let gl,k denote the kth node in the lth layer, where
1 ≤ l ≤ L and 1 ≤ k ≤ K. Let inl,k

p be the pth input of the node gl,k, and outl,k be its output. The
method to compute the value of the pth input for gl,k during training is as follows:

inl,k
p :=

l−1∑
i=0

K∑
j=1

outi,j softmax
(
ck,m,p

)
i,j

(4)

There are two common modeling forms for the connections: direct and direct-or-negation. Since
the AND-NOT gate is sufficient to express all logical functions, learning the connections alone can
fully represent the functionality of a circuit. However, this may require specific combinations of
connections, which can be more easily accomplished using the NOT operation. Therefore, another
modeling method allows edges to choose between negation or direct connection. In the motivation
section of our paper, we utilize the direct connection as referenced in [5], while in our T-Net, we
adopt the direct-or-negation connection.

C Motivation
C.1 Settings
Width and Depth of Networks. In DNAS, the method for setting the initial size of the network is as
follows. Assuming that a circuit synthesized by SOP has N nodes and L levels, the network width
is set to 5× ⌈N/(5L)⌉, which is the average number of nodes per layer rounded up to the nearest
multiple of five. The network depth is set to 5 × ⌊2L/5⌋, which is twice the value of L, rounded
down to the nearest multiple of five. In our T-Net, we set the total depth as DNAS, while the bottom
block depth is 5 or 10 layers. We set the total nodes as same as the DNAS, and the upper block width
smaller than the bottom. The network size of the two circuits in Section 4 are shown in Table 6.

Table 6: Network Size of the two circuits evaluated in motivation.
Circuit SOP DNAS T-Net

Node Lev Width Depth Width up Width down Depth up Depth down

Small: Espresso7 (8 PI/63 PO) 482 11 45 20 15 135 15 5
Small: LogicNets1 (12 PI/3 PO) 194 18 15 35 10 25 25 10

Training setting Both the training and validation datasets use the complete set of input-output
combinations, meaning that if the input bit size is K, there are a total of 2K input combinations. The
batch size for the network is uniformly set to 210. The number of training iterations is 100 thousand,
and we report the optimal results evaluated during the training process.

C.2 Motivation Experiment
Hyperparameter Sensitivity Analysis To verify the stability of generated circuits with different
random initializations, we conduct tests using various random initializations. Specifically, we utilized
four different seeds to evaluate two circuits from each of the datasets Espresso and LogicNets. Figure
5(a) illustrates the average accuracy and the fluctuation range of accuracy for these two circuits. The
fluctuation range reached 14.5% accuracy, indicating that the accuracy of generated circuits is highly
sensitive to random initialization, making it challenging to consistently produce stable results with
DNAS.

The Curse of Skip-Connection We conduct a motivation experiment on the LogicNets circuit. As
shown in Figure 3(b), the LogicNets circuit exhibits the same experimental phenomenon as the
Espresso circuit in Section 4.2, where the output nodes are located in the shallow layers of the
network, and skip connections bypass the majority of the nodes.

We also visualized the positions of circuit nodes of LogicNets within the network in Figure 3(c).
Notably, this circuit has three outputs, resulting in layer configurations distinct from those in the
single-output case shown in Figure 3(b). It can be observed that only a subset of bottom-layer nodes
is integrated into the circuit, with over two-thirds of the nodes being left idle due to skip connections.
This visual representation demonstrates that excessively distant skip connections diminish node
utilization and the expressive capacity of the network.

Figure 4 illustrates the exploration degree of each network layer after convergence. A node is thus
deemed ’explored’ if it forms part of the discretized circuit at any stage during the training. The
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Figure 3: (a) Average accuracy and error bar of two circuits with four different initializations. (b) The
depth for an output for another circuit. The curves labeled DNAS and T-Net in the graph represent
the depth of the same output. Comparing network depth, it is evident that DNAS is only connected
to very shallow layers, highlighting the curse of skip-connection. In contrast, our method learns
deeper layers during subsequent training. (c) Network visualization of a Logicnet circuit after DNAS
convergence. Dark nodes are circuit nodes.
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Figure 4: We present the exploration of two circuits. The height of the empty bars illustrates the total
number of nodes in each layer, with the solid bars indicating the number of nodes that have been
explored.

exploration degree is indicative of the number of nodes investigated within each layer. Observations
reveal a higher exploration degree in the shallower layers, which progressively diminishes in the
deeper layers. This pattern leads us to ponder whether a structural bias in circuit architecture
contributes to the reduced exploration in the deeper layers of circuits.

Learning Difficulties of Different Input-Output Examples We have observed that the difficulty of
learning varies among different output bits and input combinations.

To investigate variations in difficulty among different output bits, we analyzed training loss curves for
various output bits within the same circuit. Using Mean Squared Error (MSE) loss, we visualized
loss curves for three representative output bits from two circuits. From Figure 5(a) and (b), it’s
evident that the convergence speed of loss varies among different output bits—some converge quickly,
while others exhibit slower descent. The distinct Boolean functions represented by different output
bits naturally lead to varying levels of difficulty. Hence, during network training, addressing the
challenges posed by harder-to-learn output bits is crucial.

Simultaneously, to investigate the learning difficulty among different input samples, we examined
the convergence speeds for different inputs on the same output bit. Specifically, we recorded the
iteration numbers at which the accuracy for each input sample reached 100 during a low iteration
training process, representing the convergence time for each sample. Figure 5 (c) and (d) displays the
distribution of convergence iterations for input-output examples involving three output bits. It can be
observed that the convergence speed varies among different input samples. While the majority of
samples converge within 10 thousand iterations, a small subset fails to converge correctly even after
100 thousand iterations. This observation underscores substantial variations in learning difficulty
among various input-output pairings, challenging the conventional machine learning assumption
of samples being independent and identically distributed (IID). This occurs because different input
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Figure 5: (a) and (b) Loss of different output in the same circuit. The convergence speed of loss
varies among different outputs. (c) and (d) Distribution of convergence iterations for input-output
examples. Different examples have different converge speeds. The bar between 10 thousand and Inf
means these instances do not converge in 10 thousand iterations.

combinations of a circuit are interrelated, corresponding to parts of varying difficulty within the
logical function.

D Implementation of Our Approach
D.1 Implementation of T-Net
In our specific implementation, we adopted a simple two-block structure, consisting of a wide and
shallow bottom rectangular block and a narrow and deep upper rectangular block. The size of the
network is determined in relation to the scale of the circuit. The initial setting is based on a traditional
square network. Assuming that a circuit synthesized by SOP has N nodes and L levels, the network
width is set to 5 × ⌈N/(5L)⌉, which is the average number of nodes per layer rounded up to the
nearest multiple of five. The network depth is set to 5 × ⌊2L/5⌋, which is twice the value of L,
rounded down to the nearest multiple of five. In our T-Net, we maintain the total depth as in DNAS,
with the bottom block having a depth of 5 or 10 layers. The total number of nodes is kept the same
as in the traditional rectangular network, but the width of the upper block is smaller than that of the
bottom.

D.2 Regularized Skip-Connection
For the node gl,k, its input computation with regulation is as follows:

inl,k
p :=

l−1∑
i=0

 Ki∑
j=1

outi,j softmax
(
unitl,k,p,i

)
j

 softmax
(
layerl,k,p ·weightl

)
i

(5)

weightl having dimensions 1× l, is non-learnable and solely varies with l. It functions similarly to
a soft gating layer, with its values linearly increasing from 0.1 to 1 as per the formula:

(
weightl

)
i
=


1− 0.9

i

l − 1
0 < i ≤ 4

0.1 + 0.9
i

l − 1
4 < i ≤ l − 1

(6)

In the network’s shallower layers, we configure the weight to preferentially form connections to the
input layer. This design aims to augment the diversity of logical expression sub-formulas. Conversely,
in the network’s deeper layers, the weights are adjusted to favor connections with the more advanced
nodes, thereby increasing the complexity of the logical expressions.

D.3 Boolean Hardness-Aware Loss
Our hardness-aware loss has two parts, input-output loss and wrong-rate loss.

First, we use input-output loss to enhance the hard input-output examples from individuals. Specifi-
cally, we add a weight wio to each input-output loss.

wio = eα(|f(in)−out|−δ) (7)
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with f(in) be the output by the net, out be the label of output, α and δ be hyperperameter. The
|f(in)− out| represents the difference between the network output and the label, where a larger
value indicates a more challenging sample. δ controls the boundary for challenging samples, while α
regulates the extent of reinforcement .

Second, we use wrong-rate loss to enhance the hard input-output examples from global. wwr =
β

1−acc. with 1− acc being the wrong rate of the current network, which is updated every iteration. As
wwr increases with the increase in accuracy, it dynamically maintains the loss at a similar magnitude,
ensuring that the training speed does not decrease due to a low error rate. Then the loss function is

L(f(in), out) = wwrwioLMSE(f(in), out) (8)

D.4 Temperature coefficient decay mechanism
We employ a decaying τ parameter. Due to the disparity between softmax calculations during
training and the discretization during testing, there can be instances of accurate training but erroneous
input-output combinations during testing. This phenomenon can be alleviated by reducing the
hyperparameter τ in softmax. As τ increases, softmax approaches one-hot encoding, reducing the
disparity between training and testing. However, a significant increase in τ may lead to highly
discrete network parameters, making training extremely challenging. Therefore, it is crucial to set an
appropriate size for τ . We design a decay mechanism for τ , continuously decreasing it as accuracy
improves, ensuring a trade-off between training effectiveness and speed.

D.5 Optimization
Action Space We use RL agent to search optimal operator sequence. As shown in Table 7, the action
space has 9 operators and their corresponding 16 parameters. For each parameter of an operator, its
range is denoted as [a, b] in the table, showing that the parameter can be any integer between a and b
(inclusively).

State Representation. The state in the environment has three parts: a set of metrics that depict the
current circuit design, the raw AIG graph, and the historical actions. The first part is a feature vector
consisting of the following values at step t: Number of logic gates and logic depth. The current
length of the operator sequence. For each step, we record the selected operator and parameters as a
normalized vector and form the historical action vector.

Table 7: The action space in our environment, with parameter name ‘-x’ and the range of the
continuous parameter [a, b].

Operator Parameter

&st N/A
&blut -m -r -a -C[1,8]
&b -s -d
&dsdb -C[8,400]
&sopb -C[8,400]
&if -g -C[8,400]
&dc2 -l
&dch -x -W[8,512] -C[1000,10000] -S[5000,50000]
&transtoch -M [1:4] -R[1:200]

Evolutionary Algorithm Framework Our Evolutionary Algorithm (EA) Framework involves
several key steps as shown in Figure 6. Firstly, the exploration space can be defined as circuits of
different structures with the same logical functionality. The initial population size is denoted as P ,
comprising diverse circuits generated by our T-Net. These P circuits, serving as the initial solutions
for the RL model, undergo a period of training. Following this training phase, each circuit yields
Q = M/Poptimized circuits. Here, mutation is defined as circuit optimization. It is important to
note that the optimized circuits resulting from different initial circuits are collectively input into the
model without differentiation. Subsequently, the M optimized circuits are sorted based on their node
count, and the top-performing P circuits are selected as the next generation. This iterative process
continues, evolving the population until the optimal circuit is identified as the final result. Compared
with only picking one optimal solution when restarting, EA can increase the diversity of the circuit
and expand the search scope.

D.6 Legalization
For circuits that are not generated with complete precision, we adopt a legalization approach to correct
the few erroneous bits in the logic expression. Here, bit refers to a combination of a set of inputs and
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Figure 6: Framework of the evolutionary algorithm assisted by RL agent restarting technique for
circuit optimization.

Table 8: Generation accuracy results. Impr. is the percentage decrease in wrong bits.
Benchmark Basic DNAS DNAS Skip Darts- T-Net (Ours)

Size Circuit PI PO Acc.(%)↑ Wrongs↓ Acc.(%)↑ Wrongs↓ Acc.(%)↑ Wrongs↓ Acc.(%)↑ Wrongs↓ Impr.(%) ↑

Small

Espresso1 10 4 98.43 64 79.95 821 97.83 89 100 0 100
Espresso2 7 3 66.67 128 100 0 70.31 114 100 0 100
Espresso5 8 4 72.95 277 97.65 24 72.75 279 100 0 100
Espresso6 9 5 78.67 546 97.85 55 80.47 500 100 0 100
LogicNets2 12 3 85.73 1754 85.92 1730 84.91 1854 100 0 100
Arithmetic1 12 3 79.56 2880 98.73 156 88.61 1400 100 0 100

Large LogicNets3 12 3 90.17 1207 90.09 1218 88.53 1409 99.9 12 99.01
LogicNets5 12 3 80.14 2440 84.59 1894 92.54 930 99.93 9 99.52

Average 82.51 3974.33 91.99 3995.11 86.31 1938.00 99.99 1.89 99.91

a single output. Specifically, we represent the input combinations using the method of minterms, and
then integrate them into the output bit. For example, if the circuit has three inputs a, b and c, and the
output for the input combination 101 should be 1, then the subtree ab′c is combined with the original
output node through an OR operation, forming a new output node. This legalization process can
complete cases that are only a few bits short. However, this approach involves a significant amount of
redundancy and is not suitable for situations where there are many errors.

E Experiment
E.1 Setting
Hyperparameter The batch size is set to 1024, with the learning rate set at 0.02. The temperature
coefficient τ starts at 1 and decays to 0.5 when the accuracy approaches 100%. The training process
lasts for 100 thousand iterations, and the model with the highest evaluation score is selected as the
final result. We use Sum Squared Errors instead of the common Mean Squared Errors(MSE) to ensure
that the loss does not become too small in later stages. In Equation 7, the hyperparameter α is set to
2, and δ is set to 0.3. In wwr, β is set to 10.

The size of the circuit generation network varies according to the circuit. For DNAS, the network
size is determined in relation to the scale of the circuit. Assuming that a circuit synthesized by SOP
has N nodes and L levels, the network width is set to 5× ⌈N/(5L)⌉, which is the average number of
nodes per layer rounded up to the nearest multiple of five. The network depth is set to 5× ⌊2L/5⌋,
which is twice the value of L, rounded down to the nearest multiple of five. In our T-Net, we maintain
the total depth as in DNAS, with the bottom block having a depth of 5 or 10 layers. The total number
of nodes is kept the same as in the traditional rectangular network, but the width of the upper block is
smaller than that of the bottom.

We train our method with ADAM [84] using the PyTorch.

Hardware specification Our experiments were conducted on a Linux-based system powered by a
3.60 GHz Intel Xeon Gold 6246R CPU and NVIDIA RTX 2080 GPU.

E.2 Main Evaluation

The other 8 circuits mentioned in the main evaluation are shown in Table 8, 9 and 10.
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Table 9: Generation size results. Init Node is generated by SOP or our T-Net and Opt Node is
optimized by resyn2. Impr. represents the percentage decrease in nodes achieved by our approach.

Benchmark SOP+resyn2 Ours+resyn2
Size Circuit PI PO Init Node ↓ Opt Node ↓ Init Node ↓ Impr.(%)↑ Opt Node ↓ Impr.(%)↑

Small

Espresso1 10 4 172 130 139 19.19 123 5.38
Espresso2 7 3 116 85 90 22.41 70 17.65
Espresso5 8 4 172 120 105 38.95 96 20.00
Espresso6 9 5 187 133 140 25.13 121 9.02
LogicNets2 12 3 292 257 254 13.01 219 14.79
Arithmetic1 12 3 139 107 128 7.91 116 -8.41

Large LogicNets3 12 3 599 490 445 25.71 376 23.27
LogicNets5 12 3 941 798 611 35.07 549 31.20

Average 459.39 366.39 262.78 33.42 230.06 23.72

Table 10: Optimization results. The default results are synthesized by the traditional SOP method.
We use optimization operators to synthesize the circuits as the Opt Node shows. The term ’Impr.’ is
defined as the percentage decrease in the number of nodes achieved by our approach, relative to the
default configuration.

Benchmark Tradition 2022 Teams 2023 Teams Ours
Size Circuit PI PO SOP+resyn2 TUW UCB EPFL(AI) NBU EPFL(AI) TUW Google(AI) Opt Node ↓ Impr.(%)↑

Espresso1 10 4 130 58 64 59 67 56 52 51 47 63.85
Espresso2 7 3 85 28 35 28 28 28 28 28 28 67.06
Espresso5 8 4 120 37 47 37 37 37 37 37 37 69.17
Espresso6 9 5 133 46 58 48 46 46 46 44 46 65.41
LogicNets2 12 3 257 134 134 138 133 129 118 112 108 57.98

Small

Arithmetic2 8 7 268 156 164 170 152 149 128 115 105 60.82

LogicNets3 12 3 490 153 144 142 157 140 138 128 123 74.90Large LogicNets5 12 3 798 354 215 212 463 355 187 172 165 79.32

Average 380.29 132.78 118.33 112.28 124.11 113.89 94.39 88.06 83.33 68.70

E.3 Sensitivity Analysis
We validate the sensitivity of our method to hyperparameters from two perspectives: random initial-
ization and the initial size of the network.

Random initialization. we executed repeated experiments with a diverse set of random initializations.
This entailed testing a single circuit from each of the four circuit categories using three distinct random
initializations. As Table 11 elucidates, our method uniformly maintained 100% accuracy across
various random initializations, underscoring its robustness to these fluctuations. Furthermore, the
disparity in circuit depth synthesized under different random initializations remained below 20%,
showcasing our method’s remarkable stability in network depth. This consistent performance helps
prevent the descent into local optima, often characterized by an excessive number of cross-layer
connections.

Network initial size. We evaluate one circuit with different network initial sizes. Specifically, we
change the depth and width of the two network blocks up and down. Table 12 demonstrates that
our method consistently generates accurate circuits across a range of network initial sizes, thereby
evidencing the robustness of our approach to variations in network size.

Table 11: Sensitivity analysis on different initialization.
Method Small: Espresso5 (8 PI/4 PO) Small: LogicNets2 (12 PI/3 PO) Small: Arithmetic2 (8 PI/7 PO) Large: Random1 (10 PI/1 PO)

Acc(%)↑ Nodes↓ Lev Acc.(%)↑ Nodes Lev Acc(%)↑ Nodes↓ Lev Acc(%)↑ Nodes↓ Lev

SOP NA 172 13 NA 292 17 NA 316 12 NA 168 19
T-Net Init1 100 117 14 100 258 20 100 269 13 100 126 15
T-Net Init2 100 176 18 100 267 20 100 258 13 100 150 18
T-Net Init3 100 108 17 100 281 23 100 287 15 100 139 15

Network Depth. Deeper networks are not always better. We demonstrate in the following table the
experimental results of a circuit at different network depths. As can be seen from Table 13, when the
network is too shallow, it lacks sufficient expressive capacity, thus failing to generate exact circuits;
conversely, when the network is too deep, it tends to produce relatively redundant circuits. Therefore,
the depth of the network should be as shallow as possible while having enough expressive power to
minimize the size of the generated circuit. In our experiments, we rounded down the depth of the
SOP circuit to 5 as the network depth.
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Table 12: Sensitivity analysis on different ini-
tial network sizes.

Small: LogicNets2 (12 PI/3 PO)

Width up Width down Depth up Depth down Accuracy

10 40

20 10 100
15 10 100
25 10 100
20 5 100
20 15 100

5 40

20 10

100
15 40 100
10 30 100
10 50 100

Table 13: Sensitivity analysis on different net-
work depth.

Small: LogicNets2 (12 PI/3 PO)

Method Network Depth Acc.(%) Node Level

Default (SOP) N/A N/A 292 17

T-Net

15 99.05 184 13
20 99.86 213 16
25 100 253 17
30 100 258 20
35 100 321 20

E.4 Other Experiments
Triangle shape is adaptable to circuits with more POs. The output layer of the network is a
selection layer, allowing any node within the network to be chosen as an output. Consequently, the
number of nodes in the final gate layer does not limit the choices for outputs. We conducted an
experiment to demonstrate this. For two circuits with extreme multiple POs, we use T-Net and a
rectangular network with the same base width as T-Net to generate circuits. As shown in Table 14,
even when the width of the upper layers of the network is much smaller than the number of outputs,
it is still able to generate circuits exactly with fewer nodes compared to a rectangular network.

Table 14: Analysis T-Net on circuits with extreme multiple POs.
Circuit Espresso3 (PI 5/ PO 28) Espresso7 (PI 8/ PO 63)

Network Width Acc.(%) Node Network Width Acc.(%) Node

Rectangular Net 50 100 206 135 100 411
T-Net 20 up/ 50 down 100 174 15 up/ 135 down 100 377

F Limitation
Our approach for circuit generation and optimization relies on GPU for training, while the majority
of existing logic synthesis tools operate in CPU environments. Consequently, our method may not be
well-suited for deployment in CPU environments.

G Broader Impact
Academic Impact This paper provides a thorough analysis of the application of differentiable
neural architecture search (DNAS) methods to circuit generation. The insights may have positive
implications for future work utilizing DNAS for circuit generation.

Social Impact This paper explores the optimization of logic circuits. By employing ML methods for
circuit generation and optimization, it becomes feasible to enhance chip design quality and reduce
costs in comparison to manual design processes.

H Licence
We include the following licenses for the code, benchmarks we used in this paper.

Benchmarks: Espresso[41]: Copyright, LogicNets[42]: Licence, Random and Arithmatic[31]:
Licence. Code: DNAS[6]:Licence.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: This paper find the limitations in existing DNAS for circuit generation and pro-
poses a novel circuit network to generate circuit accurately. With proposed EA optimization
method, our synthesised circuits outperform the winner in IWLS 2023 competition.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of our T-Net are detailed in Section F.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
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only tested on a few datasets or with a few runs. In general, empirical results often
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used reliably to provide closed captions for online lectures because it fails to handle
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address problems of privacy and fairness.
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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a complete (and correct) proof?
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Justification: The paper does not include theoretical results.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The implementation of our approach are detailed in Section 5 and Section D.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: The code and dataset will be publicly accessible.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The details about experiment setting are in Section E
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The std. of our results are in Section E.3
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The details about hardware specification are in Section E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed and conformed with the Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The details of broader impacts are included in Section G

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our model and data are focus on DNAS and truth table, with almost no risk of
misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Licenses are in Section H.
Guidelines:

• The answer NA means that the paper does not use existing assets.A
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The details of the model are detailed in this paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
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