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Abstract

Image deblurring in a photon-limited condition is ubiquitous in a variety of low-1

light applications such as photography, microscopy and astronomy. However,2

presence of photon shot noise due to low-illumination and/or short exposure time3

makes the deblurring task substantially more challenging . This paper presents4

an algorithm unrolling approach for the photon-limited deblurring problem that5

unrolls a Plug-and-Play algorithm using a fixed-iteration network. By modifying6

the typical two-variable splitting to a three-variable splitting, our unrolled network7

is differentiable and can be trained end-to-end. We demonstrate the usage of our8

algorithm on real photon-limited image data.9

1 Introduction10

Non-blind image deblurring is a restoration problem where the aim is to obtain a clean image from11

an image corrupted by spatially invariant blur due to motion, camera shake or defocus. Traditionally,12

the problem is formulated as follows: y = Hx+ n, where the x is the clean image to be recovered13

from the corrupted image y, H represents the blur operation in matrix form, and n is the additive14

i.i.d Gaussian noise. Non-blind deblurring methods assume that the blur kernel H is known.15

An overwhelming majority of current solutions [8, 10, 5, 13, 3, 4] are able to deblur images under16

the presence of i.i.d Gaussian noise. However, in low-illumination settings, the images captured17

by the sensor are corrupted with Poisson shot noise and often these solutions fail to adequately18

recover the clean image. We refer to this situation as the photon limited setting i.e. when the number19

of photon arriving at the image sensor during the exposure time is small compared to that of a20

well-illuminated or photon-abundant scene. In this paper, we address the problem of non-blind21

deblurring in photon-limited scenes.22

1.1 Problem Formulation23

Assume the clean image x to be normalized from [0, 1] and monochrome which is blurred by a24

motion kernel H. The signal-dependent shot noise is represented using the term photon level α and25

hence the sensor output is given by26

y = Poisson(α ·Hx), (1)

where Poisson(u) represents an instance of Poisson random vector with mean equal to u. Therefore,27

the likelihood of the blurred and noisy image y given the clean signal x is as follows:28

p(y|x;α) =
N∏
j=1

(αHx)
yj

j e
−(αHx)j

yj !
, where(·)j represents the jth entry of the vector (2)
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Figure 1: Proposed unrolled Plug-and-Play for deblurring. For conventional PnP, one of the
update requires a convex optimization solver, making it infeasible for end-to-end training. Through
the alternate formulation of the problem, each sub-module in an iteration is in closed form and more
importantly, differentiable.

1.2 Contributions and scope29

In this paper, we formulate photon-limited image deblurring problem as a Poisson inverse problem.30

Classical methods for the poisson inverse problem [9, 14, 12] are available but they don’t tap into31

the power of convolutional neural networks. We approach Poisson deblurring by unrolling the32

Plug-and-Play algorithm [16, 2] using a fixed-iteration unrolled network. Compared to prior work33

such as [15] which requires an inner iteration solver, our three-operator splitting strategy makes all the34

sub-problems differentiable. This allows us to train the unfolded network end-to-end, as illustrated in35

Figure 1.36

2 Method37

In this paper, we present a unrolled iterative method as a solution for the Poisson deblurring problem38

as formulated in Section 1.1. First, the cost function corresponding to the MAP estimate of the clean39

image x given a Poisson log-likelihood and a prior p(x) is formulated40

x∗ = argmin
x

[
α1THx− yT log(αHx)− log p(x)

]
, where 1 represents the all-ones vector (3)

The cost function shown above can solved using the Plug-and-Play framework where we first convert41

the unconstrained optimization problem to a constrained one by performing variable splitting x = z42

i.e.43

{x∗, z∗} = argmin
x,z

[
− yT log(αHx) + α1THx+ log p(z)

]
subject to x = z (4)

The constrained optimization problem above is solved by using the ADMM method. For fixed44

iteration unrolling, Plug-and-Play framework in the conventional form is not feasible. To unroll45

the ADMM algorithm in [16, 2], all the iterative updates need to be differentiable. This allows46

for end-to-end training of all the parameters of the fixed iteration network via backpropagation.47

For the Poisson inverse problem, the data-subproblem is another iterative method [15] and hence48

differentiating through it is fundamentally inefficient.49

Since the current framework doesn’t allow for iterative unrolling, we use an alternate formulation50

[6, 7] of the PnP-framework. Through this reformulation of Plug-and-Play, we are able to derive a51

series of iterative updates where each step can be implemented as a single-step and differentiable52

computation. Specifically, in addition to splitting the variable as x = z, we introduce a third variable53

v corresponding to blurred image Hx and hence the constraint Hx = v.54

{x∗, z∗,v∗} = argmin
x,z,v

[
− yT log(αv) + α1Tv + log p(z)

]
subject to x = z,Hx = v (5)
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(a) Experimental setup, well illuminated scene (b) Real capture

Figure 2: Experimental Setup For evaluation of the proposed method on real images, we collect
noisy and blurred images using a DSLR as shown in the setup shown above.
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Figure 3: Quantitative evaluation. Comparison of PSNR and SSIM of the different methods on
Levin et. al. dataset [11].

After forming the corresponding the augmented Lagrangian [1], we arrive at the following iterative55

updates:56

xk+1 = (I+ (ρ2/ρ1)H
TH)−1(x̃k0 + (ρ2/ρ1)H

T x̃k1), (6)

zk+1 = Dσ(z̃
k), (7)

vk+1 =
(ρ2ṽ

k − α) +
√
(ρ2ṽk − α)2 + 4ρ2y

2ρ2
, (8)

uk+1
1 = uk1 + xk+1 − zk+1, (9)

uk+1
2 = uk2 +Hxk+1 − vk+1, (10)

where x̃k0
def
= zk+1 − uk1 , x̃k1

def
= vk+1 − uk2 , vk def

= Hxk + uk2 , z̃k
def
= xk + uk1 . With an end-to-end57

trainable iterative process, we can now describe the unfolded iterative network. The Plug-and-Play58

updates described above are now unfolded for K = 8 iterations and the entire differentiable pipeline59

is trained in a supervised manner such that the final output i.e. xK−1 matches the clean image x60

using multi-scale `1 loss.61

To initialize x0, we use the Wiener filtering step as follows (not to be confused with [3]). The62

parameters used in updates (6), (8) - ρk1 , ρ
k
2 for k = 1, 2, 3, ..,K are changed for each iteration and63

determined in one-shot by the blurring kernel h and photon level α using a fully convolutional layer64

followed by a fully connected layer. For the denoiser in (7), we use the architecture provided in [18]65

which introduces skip connections in a U-Net architecture known as ResUNet.66

3 Experiments67

For quantitative evaluation of our method, we test our method along with other contemporary68

deblurring approaches on the Levin et. al [11] dataset which provides 32 images generated by blurring69
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4 different clean images by 8 different motion kernels and the blurred images are synthetically70

corrupted with shot noise at photon levels α = 5, 10, 20, 40. We compare our method with the71

following deblurring methods - RGDN [8], PURE-LET [12], Deep-Wiener [3], and DPIR [17].72

To demonstrate that the proposed scheme is able to deblur images real images in low-light, we capture73

blurred images taken in low light (estimated photon level α ≈ 20). A kernel is also captured by74

placing a point source in the the scene. The reconstruction results are shown and compared to other75

deblurring methods in Figure 4 and Figure 5.76

Figure 4: Proposed method on real data. (Top) Noisy and blurred image captured using Canon
EOS Rebel T6i camera. (Bottom) Reconstruction using our method. For a qualitative comparison of
other deblurring approaches on these images, refer to Figure 5.

Raw Image RGDN [8] PURE-LET [12] DPIR [17] Wiener-Net [3] Ours

Figure 5: Qualitative Comparison on real data. We look at zoomed in regions of the reconstructed
images from Figure 4 using competing methods. From visual inspection one can see that our method
is able to recover finer details compared to other methods.

4 Conclusion77

In this paper, we present an unrolled algorithm for the photon-limited deblurring problem. An78

alternate three-operator splitting strategy was used to the Plug-and-Play framework to obtain a series79

of iterative steps which could be trained end-to-end. We demonstrated that the proposed method was80

able to recover deblurred images from both real and synthetic data.81
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