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Abstract

Saliency maps are popular tools for explaining the decisions of convolutional
neural networks (CNNs) for image classification. Typically, for each image of
interest, a single saliency map is produced, which assigns weights to pixels based
on their importance to the classification. We argue that a single saliency map
provides an incomplete understanding since there are often many other maps that
can explain a classification equally well. In this paper, we propose to utilize a
beam search algorithm to systematically search for multiple explanations for each
image. Results show that there are indeed multiple relatively localized explanations
for many images. However, naively showing multiple explanations to users can
be overwhelming and does not reveal their common and distinct structures. We
introduce structured attention graphs (SAGs), which compactly represent sets of
attention maps for an image by visualizing how different combinations of image
regions impact the confidence of a classifier. An approach to computing a compact
and representative SAG for visualization is proposed via diverse sampling. We
conduct a user study comparing the use of SAGs to traditional saliency maps for
answering comparative counterfactual questions about image classifications. Our
results show that user accuracy is increased significantly when presented with
SAGs compared to standard saliency map baselines.

1 Introduction

With the emergence of convolutional neural networks (CNNs) as the most successful learning
paradigm for image classification, the need for human understandable explanations of their decisions
has gained prominence. Explanations lead to a deeper user understanding and trust of the neural
network models, which is crucial for their deployment in safety-critical applications. They can also
help identify potential causes of misclassification. An important goal of explanation is for the users
to gain a mental model of the CNNs, so that the users can understand and predict the behavior of the
classifier[17] in cases that have not been seen. A better mental model would lead to appropriate trust
and better safeguards of the deep networks in the deployment process.

A popular line of research towards this goal has been to display attention maps, sometimes called
saliency maps or heatmaps. Most approaches assign weights to image regions based on the importance
of that region to the classification decision, which is then visualized to the user. This approach
implicitly assumes that a single saliency map with region-specific weights is sufficient for the human
to construct a reasonable mental model of the classification decision for the particular image.

We argue that this is not always the case. Fig. 1(d-f) show three localized attention maps highlighting
different regions. Each of these images, if given as input to the CNN, results in a very confident
prediction of the correct category. However, this information is not apparent from a single saliency
map as produced by current methods (Fig. 1(b-c)). This raises several questions: How many images
have small localized explanations (i.e., attention maps) that lead to high confidence predictions? Are
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(a) Original
Image

(b) Grad-CAM
heatmap

(c) I-GOS
heatmap

(d) Region 1
(98% confidence)

(e) Region 2
(97% confidence)

(f) Region 3
(93% confidence)

Figure 1: An image (a) predicted as Goldfinch with two saliency maps (b) and (c) obtained from
different approaches as explanations for the classifier’s (VGGNet [27]) prediction. Each of these
saliency maps creates a narrow understanding of the classifier. In (d), (e) and (f), we present three
diverse regions of the image that might not be deemed important by the singleton saliency maps (b)
and (c), and yet are classified as the target class with high confidence by the same classifier

Figure 2: Example of a SAG. For the goldfinch image on the left, a SAG on the right is structured as
a directed acyclic graph with each root node representing a minimal region of the image sufficient
to achieve a high confidence for the classifier’s prediction. Each child node is obtained by deleting
a patch (denoted by red contour) from the parent, causing a drop in the classifier’s confidence. A
significant drop in confidence implies the removed patch was of high importance to the classifier.
More examples of SAGs are provided in the appendix

there multiple distinct high confidence explanations for each image, and if so, how to find them?
How can we efficiently visualize multiple explanations to users to yield deeper insights?

The first goal of this paper is to systematically evaluate the sizes and numbers of high-confidence
local attention maps of CNN image classifications. For this purpose, rather than adopting commonly
used gradient-based optimization approaches, we employ discrete search algorithms to find multiple
high-confidence attention maps that are distinct in their coverage.

The existence of multiple attention maps shows that CNN decisions may be more comprehensively
explained with a logical structure in the form of disjunctions of conjunctions of features represented
by local regions instead of a singleton saliency map. However, a significant challenge in utilizing this
as an explanation is to come up with a proper visualization to help users gain a more comprehensive
mental model of the CNN. This leads us to our second contribution of the paper, Structured Attention
Graphs (SAGs) 1 , which are directed acyclic graphs over attention maps of different image regions.
The maps are connected based on containment relationships between the regions, and each map is
accompanied with the prediction confidence of the classification based on the map (see Fig. 2 for an
example). We propose a diverse sampling approach to select a compact and diverse set of maps for
SAG construction and visualization.

This new SAG visualization allows users to efficiently view information from a diverse set of maps,
which serves as a novel type of explanation for CNN decisions. In particular, SAGs provide insight
by decomposing local maps into sub-regions and making the common and distinct structures across
maps explicit. For example, observing that the removal of a particular patch leads to a huge drop in
the confidence suggests that the patch might be important in that context.

1Source code for generating SAGs: https://github.com/viv92/structured-attention-graphs
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Our visualization can also be viewed as representing a (probabilistic) Monotone Disjunctive Normal
Form (MDNF) Boolean expression, where propositional symbols correspond to primitive image
regions we call ‘patches’. Each MDNF expression is a disjunction of conjunctions, where any one of
the conjunctions (e.g., one of the regions in Fig. 1) is sufficient for a high confident classification.
Following [13], we call these minimal sufficient explanations (MSEs). Each conjunction is true only
when all the patches that correspond to its symbols are present in the image.

We conducted a large-scale user study (100 participants total) to compare SAGs to two saliency map
methods. We wondered if participants can answer challenging counterfactual questions with the help
of explanations , e.g., how a CNN model classifies an image if parts of the image are occluded . In
our user study, participants were provided two different occluded versions of the image (i.e., different
parts of the image are occluded ) and asked to choose one that they think would be classified more
positively. Results show that when presented with SAG, participants correctly answer significantly
more of these questions compared to the baselines, which suggests that SAGs help them build better
mental models of the behavior of the classifier on different subimages.

In summary, our contributions are as follows:
• With a beam search algorithm, we conducted a systematic study of the sizes and numbers of

attention maps that yield high confidence classifications of a CNN (VGGNet [27]) on ImageNet
[7]. We showed that the proposed beam search algorithm significantly outperforms Grad-CAM
and I-GOS in its capability to locate small attention maps to explain CNN decisions.

• We introduce Structured Attention Graphs (SAGs) as a novel representation to visualize image
classifications by convolutional neural networks.

• We conducted a user study demonstrating the effectiveness of SAGs in helping users gain a deeper
understanding of CNN’s decision making.

2 Related Work

Much recent work on interpretability of CNNs is based on different ways to generate saliency maps
depicting the importance of different regions to the classification decisions. These include gradient-
based methods that compute the gradient of the outputs of different units with respect to pixel inputs
[31, 26, 28, 25, 29, 2, 25, 32, 24], perturbation-based methods, which perturb parts of the input to
see which ones are most important to preserve the final decision [5, 9], and concept-based methods,
which analyze the alignment between individual hidden neurons and a set of semantic concepts
[3, 14, 33]. Importantly, they all generate a single saliency map for the image and have been found to
be brittle and unreliable [15, 10].

Another popular approach is LIME [21], which constructs simplified interpretable local classifiers
consistent with the black-box classifier in the neighborhood of a single example. However, the local
classifier learns a single linear function, which is sufficient to correctly classify the image but does
not guarantee consistency with the classifier on its sub-images. More recently, Anchors [22] learns
multiple if-then-rules that represent sufficient conditions for classifications. However, this work
did not emphasize image classification and did not systematically study the prevalence of multiple
explanations for the decisions of CNNs. The if-then-rules in Anchors can be thought of as represented
by the root nodes in our SAG. SAGs differ from them by sampling a diverse set for visualization,
as well as by additionally representing the relationships between different subregions in the image
and their impact on the classification scores of the CNN. The ablation study of Section 5.3 shows
that SAGs enable users to better understand the importance of different patches on the classification
compared to Anchors-like rules represented by their root nodes.

Some prior work identifies explanations in terms of minimal necessary features [8] and minimal
sufficient features [5]. Other work generates counterfactuals that are coherent with the underlying data
distribution and provides feasible paths to the target counterfactual class based on density weighted
metrics [19]. In contrast, our work yields multiple explanations in terms of minimal sufficient features
and visualizes the score changes when some features are absent – simultaneously answering multiple
counterfactual questions.

Network distillation methods that compile a neural network into a boolean circuit [4] or a decision
tree [16] often yield uninterpretable structures due to their size or complexity. Our work balances the
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information gain from explanations with the interpretability of explanations by providing a small set
of diverse explanations structured as a graph over attention maps.

3 Investigating Image Explanations

In this section, we provide a comprehensive study of the number of different explanations of the
images as well as their sizes. As the number of explanations might be combinatorial, we limit
the search space by subdividing each image into 49 = 7 ⇥ 7 patches, which corresponds to the
resolution utilized in Grad-CAM [24]. Instead of using a heatmap algorithm, we propose to utilize
search algorithms to check the CNN (VGGNet [27]) predictions on many combinations of patches in
order to determine whether they are able to explain the prediction of the CNN by being a minimum
sufficient explanation, defined as having a high prediction confidence from a minimal combination of
patches w.r.t. using the full image. The rationale is that if the CNN is capable of achieving the same
confidence from a subimage, then the rest of the image may not add substantially to the classification
decision. This corresponds to common metrics used in evaluating explanations [23, 18, 20], which
usually score saliency maps based on whether they could use a small highlighted part of the image to
achieve similar classification accuracy as using the full image. This experiment allows us to examine
multiple interesting aspects, such as the minimal number of patches needed to explain each image,
as well as the number of diverse explanations by exploring different combinations of patches. The
ImageNet validation dataset of 50, 000 images is used for our analysis.

Formally, we assume a black-box classifier f that maps X ! [0, 1]C , where X is an instance space
and C is a set of classes. If x 2 X is an instance, we use fc(x) to denote the output class-conditional
probability on class c 2 C. The predicted class-conditional probability is referred as confidence
of the classification in the rest of the paper. In this paper we assume X is a set of images. Each
image x 2 X can be seen as a set of pixels and is divided into r2 non-overlapping primitive regions
pi called ‘patches,’ i.e., x = [r2

i=1pi, where pi \ pj = ; if i 6= j. For any image x 2 X , we let
f⇤(x) = argmaxc fc(x) and call f⇤(x) the target class of x. We associate the part of the image
in each patch with a propositional symbol or a literal. A conjunction N of a set of literals is the
image region that corresponds to their union. The confidence of a conjunction is the output of the
classifier f applied to it, denoted by fc(N). We determine this by running the classifier on a perturbed
image where the pixels in x \N are either set to zeros or to a highly blurred version of the original
image. The latter method is widely used in saliency map visualization methods to remove information
without creating additional spurious boundaries that can distort the classifier predictions [9, 18, 20].

A minimal sufficient explanation (MSE) of an image x as class c w.r.t. f is defined as a minimal
conjunction/region that achieves a high prediction confidence (fc(Ni) > Phfc(x)) w.r.t. using the
entire image, where we set Ph = 0.9 as a- sufficiently high fraction in our experiments. That is, if we
provide the classifier with only the region represented by the MSE , it will yield a confidence at that
is at least 90% of the confidence for the original (unoccluded) image x as input. Often we will be
most interested in MSEs for c = f⇤(x).

3.1 Finding MSEs via Search

A central claim of the paper we purport to prove is that the MSEs are not unique, and can be found by
systematic search in the space of subregions of the image. The search objective is to find the minimal
sufficient explanations Ni that score higher than a threshold where no proper sub-regions exceed the
threshold, i.e., find all Ni such that:

fc(Ni) � Phfc(x), max
nj⇢Ni

fc(nj) < Phfc(x) (1)

for some high probability threshold Ph.

But such a combinatorial search is too expensive to be feasible if we treat each image pixel as a
patch. Hence we divide the image into a coarser set of non-overlapping patches. One could utilize a
superpixel tessellation of an image to form the set of coarser patches. We adopt a simpler approach:
we downsample the image into a low resolution r ⇥ r image. Each pixel in the downsampled image
corresponds to a coarser patch in the original image. Hence a search on the downsampled image is
computationally less expensive. We set the hyperparameter r = 7 in all our experiments. Further, to
use an attention map M as a heuristic for search on the downsampled image, we perform average
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Figure 3: Percentage of images explained by
different number of patches.

Overlap = 0
Method Mean Variance Mode
CombS 1.56 0.69 1

BeamS-3 1.72 0.98 1
BeamS-15 1.87 1.01 2

Overlap = 1
Method Mean Variance Mode
CombS 3.16 5.82 1

BeamS-3 4.18 7.24 2
BeamS-15 4.51 7.22 3

Table 1: Number of diverse MSEs obtained by
allowing for different degrees of overlap.

pooling on M w.r.t. each patch pj . This gives us an attention value M(pj) for each patch, hence
constituting a coarser attention map. Once the attention map is generated in low resolution, we use
bilinear upsampling to upsample it to the original image resolution to be used as a mask. Bilinear
upsampling creates a slightly rounded region for each patch which avoids sharp corners that could be
erroneously picked up by CNNs as features.

We analyze two different search methods for finding the MSEs:

Restricted Combinatorial Search: Combinatorial search constrains the size of the MSE to k patches
and finds the MSEs Nk by searching for all combinations (conjunctions) of k patches that satisfy
the criterion in Equation 1. However, such a combinatorial search over the entire downsampled
image will be of the order

�r2
k

�
, which is computationally expensive. Hence, we first prune the search

space by selecting the m most relevant patches, where the relevance of each patch pj is given by
an attention map as M(pj), and then carry out a combinatorial search. We set m = 10 and vary
0 < k < m as hyperparameters. These hyperparameter choices allow the combinatorial search to
complete in reasonable time.

Beam Search: Beam search searches for a set of at most w MSEs S = {N1, N2, ..., Nw} by
maintaining a set of w distinct conjunctions of patches Si = {N i

1, N
i
2, ..., N

i
w} as states at the

ith iteration. It adds a patch to each conjunction to obtain a new set of w distinct conjunctions
Si+1 = {N i+1

1 , N i+1
2 , ..., N i+1

w } as successor states for the next iteration, until they satisfy the
criterion in equation 1 to yield the set S. This is similar to the traditional beam search with beam
width w, but we leverage the attention map M for generating the successor states. More concretely,
the search is initialized by selecting the highest weighted w patches from the attention map as the
set of initial w states S0 = {N0

1 , N
0
2 , ..., N

0
w}. At any iteration i, for each state N i

j 2 Si, we
generate q candidate successor states {Qi

j1, Q
i
j2, ..., Q

i
jq} by adding the q highest weighted patches

in the attention map that are not already in N i
j . By doing this for each of the w states in Si, we

generate a set of w ⇥ q candidate successor states. We obtain the classification score for each
candidate successor state fc(Qi

jx) and select the highest scoring w states as the successor states
Si+1 = {N i+1

1 , N i+1
2 , ..., N i+1

w }. We chose q = 15 as a hyperparameter. This choice of value for
the hyperparameter allows the beam search to complete in reasonable time.

3.2 Size of Minimal Sufficient Explanations

Each search method yields a set of MSEs constituting multiple minimal regions of an image sufficient
for the black-box classifier to correctly classify the image with a high confidence. We measure the
size of these minimal regions in terms of the number of patches they are composed of.

Fig. 3 shows these plots for different search methods on the VGG network. Results on ResNet-50
are shown in the appendix. For each chosen size k, we plot the cumulative number of images whose
MSE has a size  k. We see that 80% images of the ImageNet validation dataset have at least one
MSE comprising of 10 or less patches. This implies that 80% images of the dataset can be confidently
classified by the CNN using a region of the image comprising of just 20% of the area of the original
image, showing that in most cases CNNs are able to make decisions based on local information
instead of looking at the entire image. The remaining 20% of the images in the dataset have MSEs that
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Overlap = 0 Overlap = 1

Method
# of diverse

MSEs 1 2 3 4 5 1 2 3 4 5

CombS 87% 9% 2% 0% 0% 79% 5% 4% 2% 2%
BeamS-3 84% 11% 2% 0% 0% 65% 15% 6% 3% 2%

BeamS-15 79% 15% 2% 1% 0% 59% 16% 8% 5% 2%

Table 2: Percentage of images versus number of diverse MSEs obtained by allowing for different
degrees of overlap.

fall in the range of 11-49 patches (20% - 100% of the original image). Besides, one can see that many
more images can be explained via the beam search approach w.r.t. conventional heatmap generation
approaches, because the search algorithm evaluated combinations more comprehensively than these
heatmap approaches and is less likely to include irrelevant regions. For example, at 10 patches, beam
search with all beam sizes can explain about 80% of ImageNet images, whereas Grad-CAM and
I-GOS can only explain about 50%. Although beam search as an saliency map method is limited
to a low resolution whereas some other saliency map algorithms can generate heatmaps at a higher
resolution, this result shows that the beam search algorithm is more effective than traditional saliency
map approaches at a low resolution.

3.3 Number of Diverse MSEs

Given the set of MSEs obtained via different search methods, we also analyze the number of diverse
MSEs that exist for an image. Two MSEs of the same image are considered to be diverse if they have
less than two patches in common. Table 1 provides the statistics on the number of diverse MSEs
obtained by allowing for different degrees of overlap across the employed search methods. We see
that images tend to have multiple MSEs sufficient for confident classification, with ⇡ 2 explanations
per image if we do not allow any overlap, and ⇡ 5 explanations per image if we allow a 1-patch
overlap. Table 2 provides the percentage of images having a particular number of diverse MSEs. This
result confirms our hypothesis that in many images CNNs have more than one way to classify each
single image. In those cases, explanations based on a single saliency map pose an incomplete picture
of the decision-making of the CNN classifier.

4 Structured Attention Graphs

From the previous section, we learned about the prevalence of multiple explanations. How can we
then, effectively present them to human users so that they can better build mental models of the
behavior of image classifiers?

This section introduces structured attention graphs (SAGs), a new way to compactly represent sets of
attention maps for an image by visualizing how different combinations of image regions impact the
confidence of a classifier. Fig. 2 shows an example. A SAG is a directed acyclic graph whose nodes
correspond to sets of image patches and edges represent subset relationships between sets defined by
the removal of a single patch. The root nodes of SAG correspond to sets of patches that represent
minimal sufficient explanations (MSEs) as defined in the previous section. Typically, the score of the
root node Ni is higher than all its children nj ⇢ Ni. The size of the drop in the score may correspond
to the importance of the removed patch Ni \ nj . Under the reasonable assumption that the function
f is monotonic with the set of pixels covered by the region, the explanation problem generalizes
learning Monotone DNF (MDNF) boolean expressions from membership (yes/no) queries, where
each disjunction corresponds to a root node of the SAG, which in turn represents a conjunction of
primitive patches. Information-theoretic bounds imply that the general class of MDNF expressions
is not learnable with polynomial number of membership queries although some special cases are
learnable [1]. The next two subsections describe how a SAG is constructed.

4.1 Finding Diverse MSEs

We first find multiple candidate MSEs Ñcandidates = {Ñ1, ..., Ñt}, for some t > 1 through search.
We observe that the obtained set Ñcandidates often has a large number of similar MSEs that share
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Figure 4: Illustration of the steps for generating a SAG (on top middle) from a given image (on top
left).

a number of literals. To minimize the cognitive burden on the user and efficiently communicate
relevant information with a small number of MSEs, we heuristically prune the above set to select
a small diverse subset. Note that we prefer a diverse subset (based on dispersion metrics) over a
representative subset (based on coverage metrics). This choice was based on the observation that
even a redundant subset of candidates Ñredundant ⇢ Ñcandidates can achieve high coverage when the
exhaustive set Ñcandidates has high redundancy. But Ñredundant has lower information compared to a
diverse subset of candidates Ñdiverse ⇢ Ñcandidates obtained by optimizing a dispersion metric.

More concretely, we want to find an information-rich diverse solution set Ñdiverse ⇢ Ñcandidates of a
desired size c such that |Ñi \ Ñj | is minimized for all Ñi, Ñj 2 Ñdiverse where i 6= j. We note that
Ñdiverse can be obtained by solving the following subset selection problem:

Ñdiverse = argmin
X✓Ñcandidates,|X|=c

 (X),

where  (X) = max
Ñi,Ñj 6=i2X

|Ñi \ Ñj |

For any subset X of the candidate set,  (X) is the cardinality of the largest pairwise intersection
over all member sets of X . Ñdiverse is the subset with minimum value for  (X) among all the subsets
X of a fixed cardinality c. Minimizing  (X) is equivalent to maximizing a dispersion function,
for which a greedy algorithm obtains a solution up to a provable approximation factor [6]. The
algorithm initializes Ñdiverse to the empty set, and at each step adds a new set y 2 Ñcandidates to it which
minimizes maxz2Ñdiverse

|y \ z|. The constant c is set to 3 in order to show the users a sufficiently
diverse and yet not overwhelming number of candidates in the SAG.

4.2 Patch Deletion to Build the SAG

After we have obtained the diverse set of candidates Ñdiverse, it is straightforward to build the SAG.
Each element of Ñdiverse forms a root node for the SAG. Child nodes are recursively generated by
deleting one patch at a time from a parent node (equivalent to obtaining leave-one-out subsets of a
parent set). We calculate the confidence of each node by a forward pass of the image represented
by the node through the deep network. Since nodes with low probability represent less useful sets
of patches, we do not expand nodes with probability less than a threshold Pl as a measure to avoid
visual clutter in the SAG. Pl is set to 40% as a sufficiently low value.

A flowchart illustrating the steps involved to generate a SAG for a given image input is shown in
Fig.4. All the SAGs presented in the paper explain the predictions of VGGNet [27] as the classifier.
Results on ResNet-50, as well as details regarding the computation costs for generating SAGs are
provided in the appendix.
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(a) Before explanation shown (b) After explanation shown (c) Clicking on one of the options
Figure 5: An example question used in the user study: (a) first, two options presented without a SAG
explanation; (b) then, the same two options presented but now with a SAG explanation; (c) same as
(b), but when a participant clicks on one of the options, related parts in the SAG are highlighted.

5 User Study

We conducted a user study to evaluate the effectiveness of our proposed SAG visualization.2 User
studies have been a popular method to evaluate explanations. For instance, Grad-CAM [24] con-
ducted a user study to evaluate faithfulness and user trust on their saliency maps, and LIME [21]
asked participants to predict generalizability of their method by showing their explanations to the
participants. This section describes the design of our study and its results.

5.1 Study Design and Procedure

We measured human understanding of classifiers indirectly with predictive power, defined as the
capability of predicting fc(N) given a new set of patches N ⇢ x that has not been shown. This
can be thought of as answering counterfactual questions – “how will the classification score change
if parts of the image are occluded?” Since humans do not excel in predicting numerical values,
we focus on answering comparative queries, which predict the TRUE/FALSE value of the query:
I(fc(N1) > fc(N2)), with I being the indicator function. In other words, participants were provided
with two new sets of patches that have not been shown in the SAG presented to them and were asked
to predict which of the two options would receive a higher confidence score for the class predicted by
the classifier on the original image. Using this measure, we compared SAG with two state-of-the-art
saliency map approaches I-GOS [20] and Grad-CAM [24].

We recruited 60 participants comprising of graduate and undergraduate students in engineering
students at our university (37 males, 23 females, age: 18-30 years). Participants were randomly
divided into three groups with each using one of the three saliency map approaches (i.e., between-
subjects study design). They were first shown a tutorial informing them about the basics of image
classification and saliency map explanations. Then they were directed to the task that involved
answering 10 sets of questions. Each set involved an image from ImageNet. These 10 images are
sampled from a subset of ImageNet comprising of 10 classes. Each question set composed of two
sections. First, participants were shown a reference image with its classification but no explanation.
Then they were asked to select one of the two different perturbed versions of the reference image
with different regions of the image occluded , based on which they think would be more likely to
be classified as the same class as the original image (shown in Fig. 5(a)). They were also asked to
provide a confidence rating about how sure they were about their response. In the second section, the

2The user study has been approved by IRB, followed the informed consent procedure and involved no more
than minimal risk to the participants.
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(a) Number of correct responses (b) Participant confidence (c) Time taken by participants

Figure 6: User study results comparing SAG to I-GOS and Grad-CAM. Dashed yellow lines in the
box plots denote mean values.

participants were shown the same reference image, but now with a saliency map or SAG additionally.
They were asked the same question to choose one of the two options, but this time under the premise
of an explanation. Along with a SAG representation, they can click on an option to highlight the
corresponding SAG nodes that have overlapping patches with the selected option and also highlight
their outgoing edges (as shown in Fig. 5(c)). Each participant was paid $10 for their participation.

The metrics obtained from the user study include the number of correct responses among the 10
questions (i.e., score) for each participant, the confidence score for each of their response (i.e., 100
being completely confident; 0 being not at all), and the time taken to answer each response.

5.2 Results

Fig. 6 shows the results comparing the metrics across the three conditions. Fig. 6(a) indicates that
participants got more answers correct when they were provided with SAG explanations (Mean=8.6,
SD=1.698) than when they were provided with I-GOS (Mean=5.4, SD=1.188) or Grad-CAM
(Mean=5.3, SD=1.031) explanations. The differences between SAG and each of the two other
methods are statistically significant (p <0.0001 in Mann-Whitney U tests for both3).

Fig. 6(b) shows the participants’ levels of confidence for correct and incorrect answers across all three
conditions after being provided with the explanations. The plots show that their confidence levels
are almost the same for both correct and incorrect responses in the cases of I-GOS and Grad-CAM.
However, for the case of SAG, participants have lower confidence for incorrect responses and higher
confidence for correct responses. Interestingly, the variance in confidence for incorrect answers is
very low for the participants working with SAG explanations. The increased confidence for correct
responses and reduced confidence for incorrect responses implies that SAG explanations allow users
to “know what they know” and when to trust their mental models. The indifference in confidence for
correctness in I-GOS and Grad-CAM may imply that participants lack a realistic assessment of the
correctness of their mental models.

Fig. 6(c) shows that SAG explanations required more effort for participants to interpret explanations.
This is expected because SAGs convey more information compared to other saliency maps. However,
we believe that the benefits of gaining the right mental models and “appropriate trust” justify the
longer time users need to digest the explanations.

5.3 Ablation Study

The two major components of the SAG condition used in the study are the graph-based attention
map visualization and the user interaction for highlighting relevant parts in the visualization. As an
ablation study, we include two ablated versions of SAGs: (1) SAG/I, which is a SAG without the
click interaction, comprising only of the graph visualization and (2) SAG/G, which is a SAG without
the graph visualization, comprising only of the root nodes and the interaction. These root nodes of
the SAG are similar in spirit to the if-then rules of Anchors [22] and serve as an additional baseline.

3To check the normality of each variable, we first ran Shapiro-Wilk tests, and the results indicated that some
of the variables are not normally distributed. Thus we used the Mann-Whitney U tests which are often used for
comparing the means of two variables that are not necessarily normally distributed [30].
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(a) Number of correct responses (b) Participant confidence (c) Time taken by participants

Figure 7: Ablation study results comparing SAG to SAG/I and SAG/G.

To evaluate how participants would work with SAG/I and SAG/G, we additionally recruited 40
new participants (30 males, 10 females, age: 18-30 years) from the same recruitment effort as for
earlier experiments and split them into two groups, with each group evaluating an ablated version of
SAGs via the aforementioned study procedure. The results of the ablation study are shown in Fig. 7.
The participants received significantly lower scores when the user interaction (SAG/I) or the graph
structure (SAG/G) are removed (p <0.0001 in Mann-Whitney U tests for both; data distribution
shown in Fig. 7a). This implies that both the interaction for highlighting and the graph structure
are critical components of SAGs. The correlations of high confidence with correctness and low
confidence with incorrectness are maintained across the ablated versions (as in Fig. 7b). Participants
spent a longer time to interpret a SAG when they were not provided with the interaction feature,
while interpreting just the root nodes took a shorter time (as in Fig. 7c). It is also worth noting that
the differences between SAG without the interactive feature (SAG/I) and each of the two baseline
methods (i.e., Grad-CAM and I-GOS) are also statistically significant (p =0.0004 and p =0.0012,
respectively), showing the effectiveness of presenting multiple explanations using the graph structure.
More data for all the 100 participants involved in the studies is provided in the appendix.

6 Conclusions and Future Work

In this paper, we set out to examine the number of possible explanations for the decision-making of
an image classifier. Through search methods, especially beam search, we have located an average of
2 explanations per image assuming no overlap and 5 explanations per image assuming an overlap
of at most 1 patch (about 2% of the area of the image). Moreover, we have found that 80% of the
images in ImageNet has an explanation of at most 20% of the area of the image, and it is shown that
beam search is more efficient than other saliency map approaches such as GradCAM and I-GOS in
locating compact explanations at a low resolution.

Based on these findings, we presented a new visual representation, SAG, that explicitly shows
multiple explanations of an image. It effectively shows how different parts of an image contribute to
the confidence of an image classifier’s decision. We conducted a large-scale human-subject study (i.e.,
100 participants), and participants were able to answer counterfactual-style questions significantly
more accurately with SAGs than with the baseline methods.

There are many interesting future research directions. One weakness of our approach is that it
takes more time for people to digest SAGs than the existing methods. This could be mitigated via
more advanced interfaces that allow users to interactively steer and probe the system to gain useful
insights [12]. Another direction is to generalize our approach to multiple images and apply our
methodology to other modalities such as language and videos.

Acknowledgements

This work was supported by DARPA #N66001-17-2-4030 and NSF #1941892. Any opinions,
findings, conclusions, or recommendations expressed are the authors’ and do not reflect the views of
the sponsors.

10



References

[1] Hasan Abasi, Nader H. Bshouty, and Hanna Mazzawi. 2014. On Exact Learning Monotone
DNF from Membership Queries. In International Conference on Algorithmic Learning Theory.
111–124.

[2] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus Robert
Müller, and Wojciech Samek. 2015. On pixel-wise explanations for non-linear classifier
decisions by layer-wise relevance propagation. PLoS One 10 (July 2015).

[3] David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. 2017. Network
Dissection: Quantifying Interpretability of Deep Visual Representations. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 6541–6549.

[4] Arthur Choi, Weijia Shi, Andy Shih, and Adnan Darwiche. 2017. Compiling neural networks
into tractable Boolean circuits. intelligence (2017).

[5] Piotr Dabkowski and Yarin Gal. 2017. Real Time Image Saliency for Black Box Classifiers. In
Advances in Neural Information Processing Systems (NIPS), Vol. 30.

[6] Anirban Dasgupta, Ravi Kumar, and Sujith Ravi. 2013. Summarization through submodularity
and dispersion. In Proceedings of the 51st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). 1014–1022.

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet: A
large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and
Pattern Recognition. IEEE, 248–255.

[8] Amit Dhurandhar, Pin-Yu Chen, Ronny Luss, Chun-Chen Tu, Paishun Ting, Karthikeyan
Shanmugam, and Payel Das. 2018. Explanations based on the missing: Towards contrastive
explanations with pertinent negatives. In Advances in Neural Information Processing Systems
(NIPS), Vol. 31. 592–603.

[9] R. C. Fong and A. Vedaldi. 2017. Interpretable Explanations of Black Boxes by Meaningful
Perturbation. In 2017 IEEE International Conference on Computer Vision (ICCV). 3449–3457.

[10] Amirata Ghorbani, Abubakar Abid, and James Zou. 2019. Interpretation of neural networks is
fragile. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. 3681–3688.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition. 770–778.

[12] Fred Hohman, Minsuk Kahng, Robert Pienta, and Duen Horng Chau. 2019. Visual analytics in
deep learning: An interrogative survey for the next frontiers. IEEE Transactions on Visualization
and Computer Graphics 25, 8 (2019), 2674–2693.

[13] Omar Zia Khan, Pascal Poupart, and James P. Black. 2009. Minimal Sufficient Explanations for
Factored Markov Decision Processes. In Proceedings of the 19th International Conference on
Automated Planning and Scheduling (ICAPS). AAAI.

[14] Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas, and
Rory Sayres. 2018. Interpretability beyond feature attribution: Quantitative testing with concept
activation vectors (TCAV). In Proceedings of the 35th International Conference on Machine
Learning (ICML). PMLR, 2668–2677.

[15] Pieter-Jan Kindermans, Sara Hooker, Julius Adebayo, Maximilian Alber, Kristof T Schütt, Sven
Dähne, Dumitru Erhan, and Been Kim. 2017. The (un)reliability of saliency methods. arXiv
preprint arXiv:1711.00867 (2017).

[16] Xuan Liu, Xiaoguang Wang, and Stan Matwin. 2018. Improving the interpretability of deep
neural networks with knowledge distillation. In 2018 IEEE International Conference on Data
Mining Workshops (ICDMW). IEEE, 905–912.

11



[17] Sina Mohseni, Niloofar Zarei, and Eric D Ragan. 2021. A multidisciplinary survey and frame-
work for design and evaluation of explainable AI systems. ACM Transactions on Interactive
Intelligent Systems (TiiS) 11, 3-4 (2021), 1–45.

[18] Vitali Petsiuk, Abir Das, and Kate Saenko. 2018. RISE: Randomized Input Sampling for
Explanation of Black-box Models. In Proceedings of the British Machine Vision Conference
(BMVC).

[19] Rafael Poyiadzi, Kacper Sokol, Raul Santos-Rodriguez, Tijl De Bie, and Peter Flach. 2020.
FACE: Feasible and actionable counterfactual explanations. In Proceedings of the AAAI/ACM
Conference on AI, Ethics, and Society. 344–350.

[20] Zhongang Qi, Saeed Khorram, and Li Fuxin. 2020. Visualizing Deep Networks by Optimizing
with Integrated Gradients.. In Proceedings of the AAAI Conference on Artificial Intelligence.

[21] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. Why should I trust you?:
Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining. ACM, 1135–1144.

[22] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. 2018. Anchors: High-Precision
Model-Agnostic Explanations. In Proceedings of the 32nd AAAI Conference on Artificial
Intelligence. AAAI Press, 1527–1535.

[23] Wojciech Samek, Alexander Binder, Grégoire Montavon, Sebastian Lapuschkin, and Klaus-
Robert Müller. 2016. Evaluating the visualization of what a deep neural network has learned.
IEEE transactions on neural networks and learning systems 28, 11 (2016), 2660–2673.

[24] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. 2017. Grad-CAM:
Visual Explanations from Deep Networks via Gradient-Based Localization. In 2017 IEEE
International Conference on Computer Vision (ICCV). 618–626.

[25] Avanti Shrikumar, Peyton Greenside, Anna Shcherbina, and Anshul Kundaje. 2016. Not Just a
Black Box: Learning Important Features Through Propagating Activation Differences. arXiv
preprint arXiv:1605.01713 (2016).

[26] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. 2014. Deep Inside Convolutional
Networks: Visualising Image Classification Models and Saliency Maps. ICLR Workshop
(2014).

[27] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[28] J.T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller. 2015. Striving for Simplicity:
The All Convolutional Net. In ICLR Workshop.

[29] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017. Axiomatic Attribution for Deep
Networks. In Proceedings of the 34th International Conference on Machine Learning (ICML).
PMLR, 3319–3328.

[30] Jacob O Wobbrock and Matthew Kay. 2016. Nonparametric statistics in human–computer
interaction. In Modern Statistical Methods for HCI. Springer, 135–170.

[31] Matthew D. Zeiler and Rob Fergus. 2014. Visualizing and Understanding Convolutional
Networks. In European Conference on Computer Vision (ECCV). Springer, 818–833.

[32] Jianming Zhang, Zhe Lin, Jonathan Brandt, Xiaohui Shen, and Stan Sclaroff. 2016. Top-down
Neural Attention by Excitation Backprop. In European Conference on Computer Vision (ECCV).
Springer, 543–559.

[33] Bolei Zhou, Yiyou Sun, David Bau, and Antonio Torralba. 2018. Interpretable Basis Decompo-
sition for Visual Explanation. In Proceedings of the European Conference on Computer Vision
(ECCV). 122–138.

12


