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Abstract

Existing dense retrieval models struggle with reasoning-intensive retrieval
task as they fail to capture implicit relevance that requires reasoning be-
yond surface-level semantic information. To address these challenges, we
propose Scenario-Profiled Indexing with Knowledge Expansion (SPIKE),
a dense retrieval framework that explicitly indexes implicit relevance by
decomposing documents into scenario-based retrieval units. SPIKE orga-
nizes documents into scenario, which encapsulates the reasoning process
necessary to uncover implicit relationships between hypothetical informa-
tion needs and document content. SPIKE constructs a scenario-augmented
dataset using a powerful teacher large language model (LLM), then dis-
tills these reasoning capabilities into a smaller, efficient scenario generator.
During inference, SPIKE incorporates scenario-level relevance alongside
document-level relevance, enabling reasoning-aware retrieval. Extensive
experiments demonstrate that SPIKE consistently enhances retrieval per-
formance across various query types and dense retrievers. It also enhances
the retrieval experience for users through scenario and offers valuable con-
textual information for LLMs in retrieval-augmented generation (RAG).

1 Introduction

Information retrieval (IR) systems are essential for helping users find relevant infor-
mation within the overwhelming volume of available data. Over the years, dense re-
trieval (Karpukhin et al., 2020; Khattab & Zaharia, 2020) has emerged as a dominant ap-
proach. It employs pre-trained language models (PLMs) to encode queries and documents
into shared vector spaces, enabling a deeper understanding of their semantic relationships.
Despite these advancements, there remain fundamental challenges in IR.

One of the most significant challenges is that dense retrieval struggles to capture deeper
implicit relevance beyond surface-level semantic. Recently, BRIGHT (Su et al., 2024), a
benchmark for reasoning-intensive retrieval tasks, has been proposed. Unlike traditional
IR benchmarks such as BEIR (Thakur et al., 2021) and MTEB (Muennighoff et al., 2022), it
requires intensive reasoning to uncover implicit relevance between a query and relevant
documents, which cannot be captured through simple keyword or surface-level semantic
information. For example, in Figure 1 (Upper), Q1 asks about the impact on Open Market
Operations (OMOs) on money supply, whereas its relevant document D1 doesn’t explicitly
address about it. Instead, it discusses OMOs’ influence on the Liquidity Coverage Ratio
(LCR), which in turn affects money supply. To uncover implicit relevance (OMO → LCR →
Money Supply), it is necessary to reason from the LCR-related information of D1, which
discusses regulatory policies and financial mechanisms. However, existing dense retrievers
lack the capability to perform reasoning, and thus fail to uncover such implicit relationships.
As a result, they struggle with reasoning-intensive retrieval task. (Su et al., 2024).

This limitation becomes even more pronounced when they handle query-document pairs
of significantly different formats, such as code and natural language. As shown in Figure 1
(Lower), D2 provides the necessary information for Q2 only in the form of code examples
(e.g., “pd.concat([df1, df2, df3])”). In such cases, bridging the semantic gap between the
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D2:Combine DataFrame objects ...
>>> df1 = pd.DataFrame([['a', 1], ['b', 2]], 

...  columns=['letter', 'number'])

>>> df1 

     letter  number 

0      a       1 

1      b       2 

>>> df3 = pd.DataFrame([['c',3,'cat'], ...                    
columns=['letter', 'number', 'animal']) 

>>> pd.concat([df1,df2,df3]) 

    letter  number animal

0      a       1     NaN

1      b       2     NaN

0      c       3     cat

1      d       4     dog

D1:Open market operations (OMOs)
Open market operations (OMOs) are 
monetary policy operations in which the 
central bank exchanges reserves for 
assets with the private sector ....

Once the LCR is introduced, this prope-
rty no longer holds. The structure of an 
OMO determines how it affects ... 

Usage Scenario 1

Usage Scenario 3 Usage Scenario 4

User wants to find about 
monetary policy

User wants to merge 
multiple(>2) dataframe

User wants to handle 
overlapping columns

This document deals with 
OMO, one of the monetary 
policies, and ...

Example shows how to 
merge more than two 
DataFrames at once ...

pd.concat() automatically 
aligns columns by name, and 
where a column is missing ...

Usage Scenario 2

... impact a bank's ability to 
meet liquidity obligations ... 
affects the money supply.

A User wants to understand 
the impact of the LCR ...

Q1: Is there anything
stupid about the below 
argument that fed open 
market operations don't 
affect the money supply? 

Fed buys or sells treasury 
bonds they are not chang-
ing the broader stock of 
highly liquid assets ...

Q2: below list str
columns need to be 
merged with the below 
dataframe object

I want to merge all the 
columns with server and 
ip in the df_res. But i am 
getting issue as below:

columns=["server","ip"]
dataframes=[df1,df2,df3]

Can only merge Series or 
DataFrame objects, <class- 
'list'> was passed.

Reasoning

&


Reframe

Reasoning

&


Reframe

need to know OMO’s impact on money supply

need to merge multiple dataframes at once

       doesn’t explicitly

address “money supply”

       doesn’t explicitly

address “merge multiple 

dataframes at once”

Successfully uncover implicit relevance

Successfully uncover implicit relevance

Figure 1: Existing retrieval methods fail to capture implicit relevance which requires in-
tensive reasoning, as they encode document into single vector without any reasoning. In
contrast, SPIKE introduces scenario, explicitly modeling how a document establishes rele-
vance to potential information needs.

natural language query and the code-based document requires reasoning over specific parts
of the code to uncover implicit relevance. However, existing dense retrieval models are
unable to effectively address this discrepancy because they are primarily trained on natural
language query-document pairs (Reimers & Gurevych, 2019; Xiao et al., 2023; Meng et al.,
2024), making them ill-suited for bridging the gap between them.

In this work, we propose Scenario-Profiled Indexing with Knowledge Expansion (SPIKE),
a dense retrieval framework that explicitly indexes potential implicit relevance within docu-
ments. The key idea of SPIKE is to reframe document representations into hypothetical
retrieval scenarios, where each scenario encapsulates the reasoning process required to
uncover implicit relevance between a hypothetical information need and the document
content. As illustrated in Figure 1, SPIKE organizes document knowledge into hypotheti-
cal retrieval scenarios, which are considered alongside the document during the retrieval
process. This approach 1) enhances retrieval performance by explicitly modeling how a
document addresses hypothetical information needs, capturing implicit relevance between
query and document. It also 2) effectively connects query-document pairs across different
formats such as code snippets, enabling semantic alignment despite format differences. Ad-
ditionally, it 3) enhances the retrieval experience for users by providing useful information
while also serving as valuable context for LLMs in RAG settings.

Specifically, SPIKE consists of the following three steps: 1) constructing a scenario-
augmented training dataset using a teacher LLM to generate high-quality supervision,
2) employing scenario distillation to transfer the reasoning capabilities of teacher LLM into
a smaller, more efficient scenario generator, and 3) using the trained scenario generator to
formulate structured retrieval scenarios for documents. During inference, SPIKE considers
scenario-level relevance alongside document-level relevance to retrieve the relevant doc-
uments. Our extensive experiments demonstrate that SPIKE not only improves retrieval
performance but also enhances the retrieval experience for users. Additionally, we demon-
strate that SPIKE serves as a valuable additional context for LLMs in RAG settings. For
reproducibility, our codes are publicly available at the anonymous github repository.1

The main contributions of our work are summarized as follows:

• We propose SPIKE, a dense retrieval framework that decomposes documents into scenar-
ios. These scenarios enable effective retrieval by capturing implicit relevance.

• Our extensive experiments show that SPIKE consistently improves performance across
diverse retrieval models, query types and document types.

• SPIKE helps users by providing explanations that make retrieved results easier to under-
stand, while also making it easier for LLMs to generate accurate answers in RAG.

1https://github.com/augustinLib/SPIKE
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2 Related Works

Reasoning-intensive retrieval. Traditional retrieval benchmarks (Thakur et al., 2021; Muen-
nighoff et al., 2022) have largely focused on surface-level information-seeking queries where
simple keyword or semantic matching-based retrieval is often sufficient. To address this
limitation of traditional retrieval benchmarks, Su et al. (2024) propose BRIGHT, a benchmark
that requires reasoning to retrieve relevant documents for a query. Su et al. (2024) and Niu
et al. (2024) propose LLM-based query expansion and reranking as potential solutions for
reasoning-intensive retrieval task. However, they have several limitations. First, LLM-based
query expansion and reranking introduce significant computational overhead. Since these
approaches require running inference on inefficient LLMs (> 8B parameters) for every
query, they are computationally expensive and lead to high latency. Second, rerankers
are dependent on the first-stage retrieval performance. If the first-stage retrieval fails to
retrieve relevant documents, even a strong reranker cannot recover them. This dependency
prevents rerankers from fully addressing the challenges of reasoning-intensive retrieval.
Overall, these limitations highlight the importance of improving first-stage retrieval for
reasoning-intensive retrieval tasks, though this area remains largely underexplored.

Document expansion & organization. Prior works have improved retrieval performance
by appending pseudo queries (Nogueira et al., 2019; Chen et al., 2024), summaries (Jeong
et al., 2021), or keyphrases (Boudin et al., 2020) to the original document. Since these
approaches are performed at the indexing stage, they do not introduce additional inference-
time overhead. Another line of works replace the original document representations with
more effective retrieval units, such as summaries (Sarthi et al., 2024) or propositions (Chen
et al., 2023). While these approaches refine document representations, they are limited in
handling implicit information that cannot be addressed through simple semantic matching.
As a result, they struggle in reasoning-intensive retrieval task. Additionally, the models
used in these methods are typically trained only on natural language documents, they
cannot be directly applied to non-natural language documents like code snippet.

3 Proposed Method: SPIKE

In this section, we present a dense retrieval framework, Scenario-Profiled Indexing with
Knowledge Expansion (SPIKE), which introduces a scenario-profiled retrieval to explicitly
index potential implicit relevance. The overall framework is illustrated in Figure 2.

3.1 Scenario: Reasoning format for modeling implicit relevance

The first step of our SPIKE framework is to define the concept of a scenario, which serves
as a structured reasoning format used to explicitly model the implicit relevance between a
document and potential information needs. SPIKE reframes each document into multiple
scenarios, each representing a distinct reasoning path that explains how the document could
satisfy a hypothetical information need. Through scenario generation, SPIKE uncovers the
diverse forms of implicit relevance a document may hold. To generate meaningful scenarios,
we employ an LLM-driven reasoning approach that analyzes the document and constructs
each scenario through a step-by-step process involving the following scenario components:

Main topic (M). To construct meaningful scenarios, we first identify the main topic of the
document, which serves as a high-level summary of its content. This ensures that subsequent
scenario components remain grounded in the document’s overall theme, preventing them
from diverging too far from its core subject.

Key aspects (K). Then, we extract key aspects that capture the diverse multi-aspects of the
document’s content. Key aspects provide a more detailed breakdown of the document’s
content compared to the main topic, capturing the diverse and specific information embed-
ded within the document. By explicitly listing various details at this step, subsequent steps
can produce a broader range of information, ensuring diverse scenario coverage.

Information needs (I). The next step is to generate information needs that reflect the
potential retrieval intents a document can address. Specifically, we generate diverse infor-
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Scenario Distillation

D2 I, E

I, EM, K Efficient Small LLM

1) Define Scenario

2) Build Scenario Generator

3) Retrieval with Scenario

D2: The LCR and Open market 
operations (OMOs) are monetary 
policy operations in which the central 
bank exchanges re-serves for assets 
with the private sector. These 
operations can be structured in ...

Once the LCR is introduced, this 
prope-rty no longer holds. The 
structure of an OMO determines how 
it affects elements of bank balance 
sheets other than reserves and, 
therefore, can directly affect banks’ 
liquidity ratios. A couple of simple 
examples are helpful to ...

Information need (I): A user wants to find 
about monetary policy

Explanation (E): This document deals with 
OMO, one of the monetary policies, and ...

Scenario 1 

Information need (I): A User wants to 
understand the impact of the LCR ...

Explanation (E): The document highlights that 
the LCR introduces a new dimension to the ...

It means that asset type exchanged can impact 
a bank's ability to meet its liquidity obligations, 
which in turn affects the money supply.

Scenario 2

High-Performing Large LLM

(D, Scenario 1, Scenario 2 ...)

Main Topic (M): Impact of OMO 

Key aspects (K): 

1. Role of (OMOs) in monetary policy ...

2. Structure of OMOs can affect banks' liquidity
Reasoning through step-by-step generation

Scenario-Augmented Dataset

Latent Space Aggregate Score Rank

0.3

0.5

0.8
0.6

0.6 #2
D1

#1
D2

Q2: Is there anything stupid
about the below argument that fed 
open market operations don't affect 
the money supply?  And if not, are 
there any professional economists ...
Fed buys or sells treasury bonds they 
are not chang-ing the broader stock of 
highly liquid assets that include 
treasury bonds (is that m3?), ... Scenario 3 ...

Figure 2: Overview of SPIKE framework. (1) SPIKE define Scenario and generate it with
high-performing large LLM. (2) Then, it construct scenario-augmented training set, and use
this to optimize the efficient student LLM. During inference, (3) SPIKE considers scenario-
level relevance alongside document-level relevance to retrieve the documents.

mation needs that describe situations in which the given document can effectively address
hypothetical information requests based on the main topic and each key aspects.

Explanations (E). For each generated information need, we generate an explanation that
explicitly convey the connection between the document and the generated information need.
These explanations serve as the core component for modeling relevance, as they describe
why and how a document provides the necessary information to satisfy a given information
need. This step ensures that each scenario captures implicit relevance by explicitly linking
the document’s content to the generated information need.

By generating components autoregressively, SPIKE uncovers potential implicit relevance
within a document, ultimately modeling it through Explanations (E). Leveraging E for re-
trieval enables SPIKE to overcome limitations of existing dense retrieval models, effectively
capturing implicit relevance through explicit reasoning. However, indexing only E may
lead to dense vector representations that fail to fully capture the document’s overall con-
text. To mitigate this issue, SPIKE incorporates the Main topic (M) component along with
E, indexing their combination (M+E). The main topic provides a high-level anchor that
maintains coherence with the document’s overall content, while explanations explicitly
model the reasoning processes essential for identifying implicit relevance. This balanced
approach ensures that retrieval representations remain both contextually grounded and
reasoning-aware, ultimately enhancing retrieval performance more effectively.

3.2 Scenario generator & Scenario Indexing

Since scenario generation requires strong reasoning capabilities, high-performing LLMs like
GPT-4o are essential for producing high-quality scenarios. However, applying such models
to an entire corpus is computationally expensive and impractical for large-scale corpus.
While smaller open-source models are more efficient, they often lack the reasoning ability
needed for scenario generation. To address this, we first (1) use a high-performing LLM
to construct a scenario-augmented training dataset with high-quality supervision, then (2)
employ scenario distillation to train a smaller model, effectively transferring the reasoning
capabilities of large LLMs into a small scenario generator.

Scenario-augmented training dataset. To train an effective scenario generator, we first
construct a scenario-augmented training dataset D = {(d, S̃d)i}N

i=1, where each document
d is paired with a sequence of scenarios S̃d = {s̃1, . . . s̃k}. Since generating high-quality
scenarios demands reasoning that goes beyond basic text generation, we leverage high-
performing LLM such as GPT-4o to construct a scenario-augmented training dataset.

Scenario distillation. Once the scenario-augmented training dataset is constructed, we train
a smaller scenario generator to efficiently produce reasoning-driven scenarios. Specifically,
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we minimize the following distillation loss:

LDistillation = −∑ log P(S̃d | I , d; θ) (1)

where θ denotes the parameters of the scenario generator model, trained to generate scenar-
ios S̃d given the document d and instruction for scenario generation I .

Scenario indexing. After training the scenario generator, we generate a set of scenarios
for each document d in the corpus. From each generated scenario, we extract only the
Main topic (M) and Explanation (E) components, as discussed in Section 3.1, which are
combined to construct the final scenario representation set Sd = {s1, . . . sk}. Then each
scenario representation is encoded into a dense vector using the same encoder E used
for document representations. These vectors are used to build a scenario-profiled index
alongside the standard document index. This additional scenario-profiled index allows
the retrieval system to capture implicit relevance more effectively by leveraging reasoning-
derived scenario representations during retrieval. Since scenario generation and indexing
are performed offline, this approach imposes no additional inference-time burden, unlike
query expansion (Su et al., 2024) or LLM-based reranking methods (Niu et al., 2024).

3.3 Retrieval with scenario

During retrieval, we produce the final ranked list Yfinal. To this end, we first compute the
relevance scores between the query and each document, as well as its associated scenarios
with pre-built indexes. Let q be the query and E the dense retrieval model. For a given
document d with associated scenario set Sd, we compute relevance scores as follow:

rd = sim(E(q), E(d)), rs = sim(E(q), E(s)), ∀ s ∈ Sd (2)

where sim(·) denotes cosine similarity, rd represents the relevance score for the document,
and rs represents the relevance score for the scenario. Then, we select the maximum
relevance score among the scenarios associated with each document and compute the final
relevance score as a weighted sum of the document and scenario scores:

rfinal(d) = α rd + (1 − α) max
s∈Sd

{rs} (3)

where α is the relevance weight, which is the hyperparameter that controls the effect of
document and scenario. Finally, we produce Yfinal by calculating final relevance score
rfinal(d) for all documents and sorting them in descending order.

3.4 Efficient retrieval strategy

While SPIKE’s scenario-profiled index enhances retrieval effectiveness, a naive implemen-
tation could introduce significant latency by scoring every scenario for all documents. Such
an approach would cause additional overhead and latency to scale proportionally with the
corpus size (N). To ensure practical efficiency, we employ an efficient retrieval strategy. For
a given query, SPIKE first identifies a candidate set of top-k’ documents using only the
document scores (rd). Subsequently, scenario scores (rs) are computed exclusively for this
limited subset. This approach ensures that the additional computation is bounded by the
hyperparameter k′ (where k < k′ ≪ N) and does not scale with the corpus size.

4 Experiments

In this section, we conduct our experiments to answer the following research questions:

• RQ1: Can SPIKE effectively enhance the retrieval performance?
• RQ2: Can SPIKE’s scenarios serve as useful information for real-world users?
• RQ3: Can SPIKE’s scenarios serve as an effective additional context in a RAG setting?
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Natural language Code Math Avg. Improv.
Bio. Earth. Econ. Psy. Sus. Rob. Stack. Leet. Pony Aops TheoQ. TheoT.

Dense retrieval models (< 1B)

BGE 12.0 24.2 16.6 17.4 13.3 12.2 9.5 26.7 5.6 6.0 13.0 6.9 13.6 +5.9%+SPIKE 13.2 26.4 17.0 18.1 13.2 11.5 13.3 27.1 6.4 4.8 13.0 8.5 14.4
SBERT 15.5 20.1 16.6 22.6 15.3 8.4 9.5 26.4 6.9 5.3 20.0 10.8 14.8 +6.1%+SPIKE 18.2 23.1 17.9 21.3 15.5 9.0 13.4 26.7 8.1 5.4 19.3 11.2 15.7

Dense retrieval models (> 1B)

E5-Mistral 18.8 26.0 15.5 15.8 18.5 16.4 9.8 28.7 4.8 7.1 26.1 26.8 17.9 +20.7%+SPIKE 25.9 33.0 18.2 20.6 20.6 18.4 16.2 29.4 17.5 7.0 23.4 28.4 21.6
SFR 19.5 26.6 17.8 19.0 19.8 16.7 12.7 27.4 2.0 7.4 24.3 26.0 18.3 +18.6%+SPIKE 23.6 31.7 19.9 26.0 21.2 17.8 17.6 28.6 17.3 6.5 22.8 27.5 21.7
GRIT 25.0 32.8 19.0 19.9 18.0 17.3 11.6 29.8 22.0 8.8 25.1 21.1 20.9 +4.3%+SPIKE 27.8 29.0 20.0 20.4 19.0 19.2 16.7 32.0 18.3 9.2 25.2 24.9 21.8
Qwen 30.9 36.2 17.7 24.6 14.9 13.5 19.9 25.5 14.4 27.8 32.9 32.9 24.3 +3.3%+SPIKE 32.4 41.2 23.7 25.7 24.7 16.0 23.7 26.3 16.7 12.5 27.1 31.0 25.1

Table 1: The retrieval performance of existing retrieval models and our SPIKE framework
on the BRIGHT benchmark with the original query. We report nDCG@10 for all datasets.
Avg. denotes the average score across 12 datasets and Improv. denotes the improvement
rate of the average score. The best score on each model is shown in bold.

4.1 Experimental settings

Datasets & Evaluation metric. We use BRIGHT benchmark (Su et al., 2024) to assess
retrieval performance of SPIKE. By evaluating on BRIGHT, we assess how much SPIKE
improves the performance of dense retrieval models that previously struggled on reasoning-
intensive retrieval task, demonstrating its effectiveness. As done in previous works, we
evaluate retrieval performance using nDCG@10. More details are provided in Appendix C.1.

Backbone models. To demonstrate that SPIKE can be applied effectively across different
dense retrievers, we evaluate performance of SPIKE with 6 representative dense retrievers.
Specifically, we conduct experiments with BGE-Large (Xiao et al., 2023), SBERT (Reimers &
Gurevych, 2019), E5-Mistral-7B (Wang et al., 2023), SFR-Embedding-Mistral (Meng et al.,
2024), GRIT (Muennighoff et al., 2024) and gte-Qwen1.5 (Li et al., 2023).

Implementation details. We construct the scenario-augmented training dataset by ran-
domly sampling 300 documents per dataset from StackExchange split of BRIGHT (Su et al.,
2024) and all datasets in BEIR (Thakur et al., 2021), resulting in a total of 8,100 documents.
Note that there is not any exposure to test queries or their relevance annotations, ensuring
that retrieval evaluation remains entirely independent of the training process. For each
sampled document, we use GPT-4o to generate scenarios, ensuring that the dataset contains
high-quality scenarios that facilitate deeper reasoning over a document’s contents. For
the scenario generator, we use Llama-3.2-3B-Instruct (Dubey et al., 2024) as the backbone
model and fine-tune it using LoRA (Hu et al., 2021). For our main experiments, we set the
relevance weight in Equation (3) to 0.7. We use the efficient retrieval strategy mentioned
in Section 3.4 for all experiments, setting the value K′ at 1000. For reproducibility, we also
provide more details about implementation details in Appendix C.2.

4.2 SPIKE improves retrieval performance (RQ1)

Main result on BRIGHT. Table 1 shows the retrieval performance of dense retrieval models
on the BRIGHT benchmark, comparing their original performance against their SPIKE-
enhanced versions. Across different retrieval models and datasets, SPIKE consistently
improves average retrieval performance, demonstrating its effectiveness in capturing im-
plicit relevance through scenario-profiled indexing. These improvements are observed
across both small (<1B) and large (>1B) dense retrieval models, highlighting the ability to
generalize across different retrieval architectures. Notably, SPIKE yields substantial gains
for models with relatively weaker baseline performance, such as E5-Mistral and SFR, where
retrieval accuracy improves by over 18%, emphasizing its potential to bridge reasoning gaps
in weaker LLM-based retrieval models. Moreover, the results show that SPIKE provides
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Figure 4: Human evaluation of pairwise
comparisons for retrieval results.

significant benefits in datasets involving non-natural language content, such as code-based
datasets. Standard dense retrieval models struggle in these datasets due to the inherent dis-
crepancy between non-natural language documents and natural language queries. SPIKE
mitigates this gap and connects between them by leveraging scenario-profiled retrieval,
which explicitly describes in natural language how a non-natural language document ad-
dresses diverse information needs. In the math domain, SPIKE also shows performance
gain. In TheoT., where documents feature LaTeX-formatted mathematical expressions,
our scenario-profiled approach substantially improves retrieval performance by clarifying
implicit reasoning steps. In contrast, the performance gains in Aops. and TheoQ. are less
pronounced, primarily because these datasets present documents in a question-like format.
Since these documents are already written in a question-like format, it becomes challenging
to generate additional scenarios that meaningfully enrich them.

Results with reasoning-augmented queries. We additionally evaluate performance using
reasoning-augmented queries, obtained by prompting LLM to reformulate the original
queries with explicit step-by-step reasoning (Su et al., 2024). This setup allows us to
assess how SPIKE performs when queries already contain explicit reasoning steps. In
this experiment, we use GPT-4 reasoning queries provided by the BRIGHT benchmark,
which are reformulated from the original queries in BRIGHT. For further details, please refer
to the Appendix C.3. Figure 3 compares average nDCG@10 scores for four retrieval models
under two query types: original queries and GPT-4 reasoning queries, each evaluated
with and without SPIKE enhancement. First, using SPIKE with original query yields
performance comparable to or better than using GPT-4 reasoning queries without SPIKE.
Notably, this result highlights the efficiency of SPIKE, as it achieves similar performance
to GPT-4-based query reformulation while using a much smaller 3B generator. Second,
when GPT-4 reasoning queries are used, incorporating SPIKE further improves retrieval
performance across all models. This consistent improvement demonstrates that SPIKE
remains robust across various query types, including those augmented with GPT-4’s chain-
of-thought reasoning. In other words, the scenarios generated by SPIKE help capture
implicit relevance in reasoning-intensive tasks, regardless of the query format.

4.3 SPIKE enhances retrieval experience for real-world users (RQ2)

To examine the effectiveness of the additional information provided by SPIKE, we con-
duct a human evaluation. Specifically, we compare different retrieved results across four
criteria: Comprehensibility (Comp.), Specificity (Spec.), Usefulness (Use.) and Overall (Over.).
These criteria are designed to assess different aspects of user satisfaction with the retrieved
results (see Appendix C.4 for detailed descriptions). Figure 4 presents the results of two
human evaluation settings: (1) comparing standard document retrieval (Document Only)
with SPIKE, and (2) comparing SPIKE with one of its variants, Document + Main Topic.
Across all evaluation criteria, SPIKE consistently outperforms both baselines. The gains are
particularly notable in Specificity and Usefulness, where reasoning-derived information pro-
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vides clearer and more practically helpful signals by explicitly expressing implicit relevance.
Furthermore, SPIKE offers a clear advantage in Comprehensibility, demonstrating that users
find retrieved results easier to interpret when supported by the scenario context. Especially,
the comparison between SPIKE and the Document + Main Topic setting (i.e., SPIKE w/o
Explanation) highlights the critical role of the Explanation (E) component. While the Main
Topic provides useful context, the explanation substantially enhances document comprehen-
sion and practical decision-making by explicitly expressing implicit relevance. This finding
clearly implies that reasoning-derived explanations significantly improve the clarity and
usefulness of retrieved results for real-world users.

4.4 SPIKE boosts RAG performance with additional context (RQ3)

As SPIKE ’s scenario-profiled information helps users better understand about retrieved
contents, it can also serve as effective context for retrieval-augmented generation (RAG) by
providing additional information alongside the retrieved content. To verify this, we evaluate
the QA performance of Claude-3.5-sonnet and Llama3.3-70B-Instruct when augmented with
documents retrieved by different retrievers, comparing its performance with and without
the additional context from SPIKE. Specifically, we use reference answers provided in the
BRIGHT benchmark and follow the evaluation process of Su et al. (2024), where a evaluation
model scores the generated answers based on their alignment with the references. For
detailed experimental settings, please refer to Appendix C.5. Figure 5 presents the average
QA performance in different retrievers and generation models in the RAG setting. First, we
observe that using documents retrieved via SPIKE as context consistently improves QA
accuracy across all retrievers and generators. This improvement is attributed to enhanced
retrieval performance, which allows more relevant documents to be retrieved, thereby
providing better context for the generator to produce accurate answers. Moreover, further
performance gains are achieved when SPIKE ’s scenario contexts are provided alongside
the retrieved documents. These results suggest that the scenario context not only contributes
to retrieval performance but also directly enriches the retrieved content, offering stronger
and more structured support for answer generation in retrieval-augmented settings.

5 Analysis

Ablation study on scenario components. As shown in Figure 6, we analyze the effectiveness
of different scenario-generation components within SPIKE across various document types:
natural language, code, and math. Among the individual components (M, I, E), E achieves
the highest retrieval performance, showing the importance of explicitly modeling reasoning
to capture implicit relevance. Additionally, combining E with other components (M+E, I+E)
led to further improvements, achieving higher retrieval performance compared to when
each component was used individually. Notably, the combination of M+E yielded the best
overall performance, further emphasizing the benefit of combining main topic identification
with reasoning-derived explanations, as discussed in Section 3.1. These results highlight
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Natural language Code Math Avg. Improv.
Bio. Earth. Econ. Psy. Sus. Rob. Stack. Leet. Pony Aops TheoQ. TheoT.

E5-Mistral 18.8 26.0 15.5 15.8 18.5 16.4 9.8 28.7 4.8 7.1 26.1 26.8 17.9 -
+SPIKE (C = 4000) 25.0 28.5 17.9 20.0 20.0 17.7 14.1 28.6 9.7 6.1 23.5 27.9 19.9 11.5%
+SPIKE (C = 20000) 25.8 35.9 19.5 24.3 21.3 16.1 14.1 28.0 25.6 6.9 23.6 27.8 22.4 25.4%
SFR 19.5 26.6 17.8 19.0 19.8 16.7 12.7 27.4 2.0 7.4 24.3 26.0 18.3 -
+SPIKE (C = 4000) 22.0 29.0 19.0 25.5 22.0 17.6 16.2 27.9 9.6 6.2 22.7 26.7 20.4 11.5%
+SPIKE (C = 20000) 25.0 34.3 22.8 29.9 22.4 16.6 16.1 27.8 24.2 7.1 23.3 27.5 23.1 26.3%
GRIT 25.0 32.8 19.0 19.9 18.0 17.3 11.6 29.8 22.0 8.8 25.1 21.1 20.9 -
+SPIKE (C = 4000) 23.0 27.6 18.4 20.2 19.5 18.3 15.8 31.5 17.5 8.9 25.6 25.9 21.0 0.7%
+SPIKE (C = 20000) 30.4 34.9 21.7 24.3 21.1 18.6 17.0 29.4 24.4 8.8 25.3 27.0 23.6 13.0%
Qwen 30.9 36.2 17.7 24.6 14.9 13.5 19.9 25.5 14.4 27.8 32.9 32.9 24.3 -
+SPIKE (C = 4000) 31.3 40.4 22.8 24.4 24.5 16.2 22.8 24.6 11.1 13.6 27.8 33.3 24.4 0.5%
+SPIKE (C = 20000) 34.6 42.9 23.2 30.6 28.1 19.4 24.1 25.6 27.0 13.5 28.6 34.0 27.6 13.8%

Table 2: Retrieval performance when scenarios are generated by a scenario generator trained
only on the BEIR corpus without the BRIGHT corpus. We report nDCG@10 for all datasets.
Avg. denotes the average score across 12 datasets and Improv. denotes the improvement rate
of the average score. C denotes the number of documents used in the scenario-augmented
training dataset. The best score on each model is shown in bold.

that modeling implicit relevance through reasoning and indexing it for use in retrieval is
more effective than relying solely on summaries or information needs.

Ablation study on relevance weight. Figure 6 also illustrates the impact of the relevance
weight α in Equation (3), which balances scenario-level and document-level relevance scores.
Across nearly all components, retrieval performance peaked at α = 0.7. However, different
document type exhibited distinct trends. In natural language and code documents, M+E
performance improves as α decreases indicating that the information provided by scenarios
is more crucial than the original document content in these document types. Conversely, in
math documents, performance improves steadily as α increases, suggesting that document-
level content (e.g., LaTeX equations) is more critical for effective retrieval. Given these
analysis, we select α = 0.7 as the primary configuration, as it provides the most consistent
performance improvements across different types of documents. The full results of the
ablation study on scenario components and relevance weight are provided in Appendix B.3.

Zero-shot generalization of scenario generator. To evaluate the generalizability of our
scenario generator, we conduct a zero-shot experiment where the generator was trained
exclusively on the BEIR corpus without exposure to the BRIGHT corpus. Table 2 presents the
retrieved results under this setting. Notably, BEIR does not fully cover the range of domains
present in BRIGHT, particularly code and math. Despite this domain gap, the version of
SPIKE trained only on the BEIR corpus consistently improves retrieval performance across
nearly all datasets in BRIGHT. Surprisingly, even when trained solely on BEIR, it sometimes
exhibits higher performance than when utilizing a scenario generator trained on the BRIGHT
corpus (refer to Table 1). Specifically, we observe substantial gains in code domain and
TheoT. dataset, which are not covered by the BEIR corpus. These results demonstrate the
strong out-of-domain generalization capability of our scenario-based retrieval framework.

Ablation study on scenario-augmented training dataset. To investigate the impact of
scaling the scenario-augmented training dataset on retrieval performance, we conducted
an ablation study on the size of the scenario-augmented training dataset used for training
our scenario generator. Table 2 presents the results of this ablation study performed solely
with the BEIR corpus. Even when utilizing only 4,000 documents, SPIKE demonstrates
superior performance compared to the baseline without SPIKE. Furthermore, scaling
the scenario-augmented training dataset yields a significantly greater performance im-
provement. Notably, as previously mentioned, this performance surpasses the retrieval
performance achieved when trained on the BRIGHT dataset. These results indicate that
performance of SPIKE consistently improves as the scenario-augmented training dataset
scales, suggesting that SPIKE could benefit from even larger and more diverse datasets to
further enhance its capabilities to capture implicit relevance across various domains.

Ablation study on efficient retrieval strategy. To validate the effectiveness of the efficient
retrieval strategy introduced in Section 3.4, we conducted an ablation studys on the candi-
date set size, k′. Table 3 shows the retrieval performance as k′ is varied. The results indicate
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Natural language Code Math Avg.
Bio. Earth. Econ. Psy. Sus. Rob. Stack. Leet. Pony Aops TheoQ. TheoT.

E5-Mistral 18.8 26.0 15.5 15.8 18.5 16.4 9.8 28.7 4.8 7.1 26.1 26.8 17.9
+SPIKE (k′ = 1000) 25.9 33.0 18.2 20.6 20.6 18.4 16.2 29.4 17.5 7.0 23.4 28.4 21.6
+SPIKE (k′ = 10000) 25.7 33.0 18.2 20.6 20.6 18.4 16.2 29.4 17.2 7.0 23.5 28.2 21.5
+SPIKE (k′ = N) 25.7 33.0 18.2 20.6 20.6 18.4 16.2 29.4 17.2 7.0 23.5 28.2 21.5

Table 3: Retrieval performance on BRIGHT for different values of K′, using E5-Mistral-7B as
the retrieval model. Retrieval performance is virtually unchanged regardless of the value of
K′, whether K′ is set to 1000, 10000, or N (i.e., exhaustive search).

prompt = ChatPromptTemplate.from_template(template)

model = ChatOpenAI()



 ( ):

     .join([d.page_content  d  docs])



chain = (

    { : retriever | format_docs, : RunnablePassthrough()}

    | prompt | model | StrOutputParser())

chain.invoke( )



 ( ):

     (

            , : , *, : CallbackManagerForRetrieverRun)

          List[Document]:

          [Document( =query)]



retriever = CustomRetriever()

retriever.get_relevant_documents( )

def

class
def

format_docs

_get_relevant_documents

docs

self query run_manager

page_content

return for in

return

" "

"context" "question"

"What did the president say about technology?"

"bar"

\n\n

CustomRetriever BaseRetriever

str
->

... I'm seeking clarification on the proper methodology for integrating the 
retrieved documents into the RetrievalQA chain to ensure effective 
utilization by the LLM. Any insights, suggestions, or code examples on 
how to achieve this integration would be greatly appreciated.

Using Retrievers in Language Models

A user wishes to explore examples of using retrievers in a specific 
language model framework.

<Main Topic>

<Information Need>

The document includes an example of using retrievers in a language 
model framework, demonstrating how retrievers are composed with 
other components to process queries and generate responses.

<Explanation>

Query Document: langchain/LangChain_34_2.txt (Failed to Retrieve)

Scenario (Successfully retrieved)

Any insights, suggestions, or code examples on how to integrate the 
retrieved documents into the RetrievaQA chain is accepted.

Human Annotated Relevance for Query Document

Since retrievers are Runnable's, we can easily compose them with other ... 

Reframe into scenario

Figure 7: A StackOverflow example from BRIGHT where standard dense retrieval fails due
to the absence of explicit semantic connections, while SPIKE retrieves the correct document
by capturing implicit relevance through scenario-profiled retrieval.

that performance remains nearly identical to the naive method (i.e., scoring all scenarios)
as long as k′ is sufficiently large, while significantly reducing the computational load. This
result demonstrates that our efficient retrieval strategy successfully provides high efficiency
without compromising the retrieval effectiveness of the SPIKE framework.

Case study on non-natural language documents. Figure 7 shows an example from the
StackOverflow in BRIGHT. In this case, standard dense retrieval, which relies solely on the
document, fails to retrieve the relevant result. In contrast, SPIKE successfully retrieves it.
The query seeks guidance on integrating retrieved documents into a RetrievalQA chain,
but the relevant document does not explicitly contain it. Instead, it provides a code snippet
demonstrating how retrievers interact with other components. Standard dense retrieval
fails as it relies on surface-level similarity without reasoning, making it unable to bridge the
gap between the query and the document. SPIKE overcomes this limitation by leveraging
scenarios that highlight latent connection between the query and the document. This
case highlights SPIKE ’s ability to retrieve documents that require reasoning to establish
implicit relevance, making it particularly effective for non-natural language content like
code snippets where relevant information is not explicitly stated.

6 Conclusion

This paper proposes SPIKE, a novel dense retrieval framework designed to enhance re-
trieval effectiveness by explicitly modeling implicit relevance. By reframing documents
into structured retrieval scenarios, SPIKE addresses the limitations of existing dense re-
trieval models that struggle with reasoning-intensive tasks. Our extensive experiments
demonstrate that SPIKE not only enhances retrieval performance across various domains,
including natural language, code, and math, but also improves usability in real-world re-
trieval systems and serves as an effective context for RAG-based applications. Furthermore,
our analysis showed that SPIKE exhibits robust out-of-domain generalization capabilities.
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A Comparison with existing document expansion works

A.1 Experimental settings

As discussed in Section 2, prior works have improved document representations by expand-
ing them with pseudo queries (Nogueira et al., 2019; Chen et al., 2024) or summaries (Jeong
et al., 2021). To evaluate whether SPIKE offers a more effective approach in reasoning-
intensive retrieval tasks, we conduct additional comparative experiments against these
traditional document expansion methods. However, directly comparing SPIKE to ex-
isting methods is not entirely fair, as prior approaches typically rely on models such as
DocT5Query (Cheriton, 2019) or PEGASUS-Large (Zhang et al., 2019), which not only lack
the ability to handle non-natural language documents like code but also fall significantly
short in overall language understanding capabilities compared to the LLM used in SPIKE.
To ensure a fair comparison, we use the same LLM backbone (Llama3.2-3B-Instruct) that is
used for SPIKE ’s scenario generator, and apply it to generate pseudo queries and summary
for each document. Specifically, we generate three pseudo queries for the pseudo query doc-
ument expansion and one summary for the summary document expansion per document,
and concatenate them with the document representation.

A.2 Results

Table 4 presents the performance comparison between SPIKE, pseudo query-based doc-
ument expansion, and summary-based document expansion. First, SPIKE consistently
improves average performance across all dense retrievers, whereas traditional document
expansion methods leveraging pseudo queries or summary yield smaller gains compared
to SPIKE, and even lead to performance degradation. In particular, document expansion
approach that leveraging pseudo queries fails to provide any improvements and even
degrades performance across all dense retrievers. These results suggest that the additional
context used in prior document expansion methods may introduce noise, especially in
reasoning-intensive retrieval tasks where surface-level semantic information is insufficient.

Natural language Code Math Avg. Improv.
Bio. Earth. Econ. Psy. Sus. Rob. Stack. Leet. Pony Aops TheoQ. TheoT.

E5-Mistral 18.8 26.0 15.5 15.8 18.5 16.4 9.8 28.7 4.8 7.1 26.1 26.8 17.9 -
+PQ. 18.6 28.3 13.2 12.7 15.4 14.6 14.3 29.9 3.3 4.8 19.7 16.5 15.9 -11.2%
+Sum. 17.8 24.9 16.5 18.5 22.6 16.3 15.8 31.3 0.6 5.3 22.5 19.8 17.7 -1.1%
+SPIKE 25.9 33.0 18.2 20.6 20.6 18.4 16.2 29.4 17.5 7.0 23.4 28.4 21.6 +20.7%

SFR 19.5 26.6 17.8 19.0 19.8 16.7 12.7 27.4 2.0 7.4 24.3 26.0 18.3 -
+PQ. 17.9 28.5 16.2 17.7 17.6 15.1 15.8 29.4 3.7 5.8 19.6 19.2 17.2 -6.0%
+Sum. 20.6 27.6 18.5 23.3 24.6 16.7 17.4 31.6 1.1 5.6 22.7 22.3 19.3 5.5%
+SPIKE 23.6 31.7 19.9 26.0 21.2 17.8 17.6 28.6 17.3 6.5 22.8 27.5 21.7 +18.6%

GRIT 25.0 32.8 19.0 19.9 18.0 17.3 11.6 29.8 22.0 8.8 25.1 21.1 20.9 -
+PQ. 20.3 24.6 16.0 18.9 18.5 18.8 13.3 33.4 7.6 7.4 23.4 19.2 18.4 -12.0%
+Sum. 25.4 31.9 19.9 23.2 22.5 16.0 17.5 33.0 3.0 8.8 22.8 18.1 20.2 -3.3%
+SPIKE 27.8 29.0 20.0 20.4 19.0 19.2 16.7 32.0 18.3 9.2 25.2 24.9 21.8 +4.3%

Qwen 30.9 36.2 17.7 24.6 14.9 13.5 19.9 25.5 14.4 27.8 32.9 32.9 24.3 -
+PQ. 31.1 42.6 21.7 28.4 25.1 14.5 26.6 27.1 17.4 8.7 22.9 24.9 24.3 +0.0%
+Sum. 36.6 46.7 8.9 14.4 18.9 5.0 24.4 22.6 0.6 2.5 24.8 20.8 18.8 -22.6%
+SPIKE 32.4 41.2 23.7 25.7 24.7 16.0 23.7 26.3 16.7 12.5 27.1 31.0 25.1 +3.3%

Table 4: Performance comparison of different document expansion methods on reasoning-
intensive retrieval tasks. We compare SPIKE against pseudo query-based and summary-
based document expansion approaches. PQ. denote the pseudo query-based approach and
Sum. denote the summary-based approach.
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B More experiment & analysis result

B.1 Reasoning-augmented query result

To provide a more comprehensive view of how SPIKE interacts with reasoning-augmented
queries, we present the full results of experiments using GPT-4-generated reasoning queries
from the BRIGHT benchmark. Table 5 reports nDCG@10 scores across all 12 datasets in
BRIGHT, comparing standard retrieval models with and without SPIKE. These results
confirm that SPIKE consistently improves retrieval performance even when applied to
queries that already include explicit reasoning. It demonstrates not only the robustness
of SPIKE across query types, but also its potential to be effectively integrated into future
methods aimed at enhancing reasoning-intensive retrieval performance.

Natural language Code Math Avg. Improv.
Bio. Earth. Econ. Psy. Sus. Rob. Stack. Leet. Pony Aops TheoQ. TheoT.

E5-Mistral 29.6 43.6 20.1 26.7 15.6 11.8 17.7 29.1 9.0 5.3 25.6 35.7 22.5 +8.4%+SPIKE 37.4 46.2 22.3 27.1 15.5 13.4 23.2 30.2 8.5 6.8 28.0 34.8 24.4
SFR 26.2 39.1 21.5 28.3 19.5 13.4 16.8 28.4 1.5 7.1 25.9 33.2 21.7 +10.7%+SPIKE 30.1 40.2 24.7 29.6 17.8 15.2 22.7 30.0 9.4 8.8 28.0 34.5 24.3
GRIT 33.1 38.9 22.3 28.8 24.1 17.4 17.7 31.8 11.7 6.7 26.3 29.5 24.0 +4.2%+SPIKE 29.8 35.1 23.8 29.1 24.2 18.4 22.0 34.2 11.4 8.3 30.0 33.6 25.0
Qwen 35.8 43.0 24.3 34.3 24.4 15.6 19.7 25.4 5.2 4.6 28.0 33.7 24.5 +6.9%+SPIKE 37.5 42.2 26.6 33.4 24.5 17.6 26.6 28.4 4.3 7.3 31.0 35.0 26.2

Table 5: The retrieval performance of existing retrieval models and our SPIKE framework
on the BRIGHT benchmark with GPT4 reasoning query provided in Su et al. (2024).

B.2 RAG Experimental Result

We provide the full result tables for the RAG experiments conducted in Section 4. Table 6
presents the complete results using Claude-3.5-sonnet as the generation model and GPT-4o
for answer evaluation. To further verify the robustness of our findings under different
model configurations, we also include results where Llama3.3-70B-Instruct is used as the
generation model (Table 7). This another setup allows us to assess whether the benefits of
SPIKE ’s additional context hold consistently across different generation model.

Ret. Bio. Earth. Econ. Psy. Rob. Stack. Sus. Avg.
doc. +sce. doc. +sce. doc. +sce. doc. +sce. doc. +sce. doc. +sce. doc. +sce. doc. +sce.

SBERT 58.4 - 62.4 - 52.7 - 56.7 - 53.3 - 66.8 - 53.5 - 57.7 -
+SPIKE 58.8 61.2 64.0 64.9 55.7 54.4 57.0 57.0 53.8 55.6 65.0 66.1 54.7 56.9 58.4 59.4
SFR 60.8 - 64.1 - 54.8 - 60.2 - 54.1 - 67.3 - 55.4 - 59.5 -
+SPIKE 60.5 64.8 68.4 70.1 54.8 55.6 62.1 61.5 56.3 55.8 67.6 68.6 57.1 57.3 61.0 62.0
Qwen 62.2 - 68.6 - 55.9 - 60.8 - 50.5 - 67.7 - 56.9 - 60.4 -
+SPIKE 62.9 65.7 69.4 68.7 56.7 58.8 60.8 60.5 55.0 56.1 66.9 68.5 57.4 58.8 61.3 62.5

Oracle 67.9 73.3 66.1 73.2 71.0 77.0 64.0 70.3

Table 6: Full RAG performance results using Claude-3.5-sonnet as the generation model and
GPT-4o for evaluation. doc. denotes document only, which only use retrieved document as
context and +sce denotes +Scenario which additionally uses scenario information as context.

B.3 Analysis result

Table 8 presents the full results of our analysis, as discussed in Section 5.
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Ret. Bio. Earth. Econ. Psy. Rob. Stack. Sus. Avg.
doc. +sce. doc. +sce. doc. +sce. doc. +sce. doc. +sce. doc. +sce. doc. +sce. doc. +sce.

SBERT 56.5 - 57.8 - 53.2 - 55.0 - 53.0 - 64.1 - 51.9 - 55.9 -
+SPIKE 59.1 61.0 63.2 65.1 56.3 55.0 57.6 56.9 52.3 57.1 64.9 66.5 55.4 57.4 58.4 59.9
SFR 57.6 - 60.2 - 53.7 - 59.1 - 56.4 - 69.3 - 49.4 - 57.9 -
+SPIKE 60.8 65.0 66.7 69.6 55.3 57.2 62.2 62.0 56.1 55.8 67.6 67.8 55.6 57.5 60.6 62.1
Qwen 60.6 - 62.4 - 51.7 - 57.5 - 51.7 - 65.2 - 53.3 - 57.5 -
+SPIKE 63.2 65.8 68.7 69.4 57.1 58.2 61.8 61.2 52.5 58.4 66.2 68.7 58.1 58.3 61.1 62.9

Oracle 66.4 73.8 65.0 73.0 72.6 76.3 63.7 70.1

Table 7: Full RAG performance results using Llama3.3-70B-Instruct as the generation model
and GPT-4o for evaluation. doc. denotes document only, which only use retrieved document
as context and +sce denotes +Scenario which additionally uses scenario information as
context.

C Experiment details

C.1 Dataset

C.1.1 BRIGHT

BRIGHT includes 1,398 real-world queries covering diverse domains such as economics,
psychology, robotics, mathematics, and software programming. These queries are carefully
designed to reflect challenging scenarios that demand deep comprehension and reasoning
to retrieve relevant documents. Su et al. (2024) categorizes datasets into groups such as
StackExchange, Coding, and Theorem-based collections. Specifically, individual datasets
are classified as follows:

• StackExchange: Biology (Bio.), Earth Science (Earth.), Economics (Econ.), Psychology
(Psy.), Robotics (Rob.), Stack Overflow (Stack.), Sustainable Living (Sus.),

• Coding: Leetcode (Leet.), Pony (Pony)
• Theorem-based: Aops (AoPS), TheoremQA-Question (TheoQ.), TheoremQA-Theorem

(TheoT.)

Our work adopts a different classification based on document type, categorizing datasets
into Natural Language, Code, and Math to better capture the retrieval challenges associated
with different content structures. Specifically, individual datasets are classified as follows:

• Natural Language: Biology (Bio.), Earth Science (Earth.), Economics (Econ.), Psychology
(Psy.), Sustainable Living (Sus.)

• Code: Leetcode (Leet.), Pony (Pony), Robotics (Rob.), Stack Overflow (Stack.),
• Math: Aops (AoPS), TheoremQA-Question (TheoQ.), TheoremQA-Theorem (TheoT.)

During the evaluation process, for instruction-following models used in our experiments,
we directly utilized the instructions provided by Su et al. (2024).

C.1.2 BEIR

BEIR is a benchmark comprising diverse information retrieval tasks, consisting of 18 datasets
across various domains such as Wikipedia, scientific publications, and others. In this work,
we use the corpus from 15 publicly available BEIR dataset (MS MARCO, TREC-COVID,
NFCorpus, NQ, HotpotQA, FiQA-2018, ArguAna, Touche-2020, CQADupStack, Quora,
DBPedia, SCIDOCS, FEVER, Climate-FEVER, and SciFact) to train our scenario generator.

C.2 Implementation details

C.2.1 Scenario-augmented training dataset

Scenario generation for constructing the scenario-augmented training dataset was per-
formed using GPT-4o with greedy decoding to ensure consistent and high-quality outputs.
Additionally, to guarantee that each scenario component was generated without omission,
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Comp. α
Natural language Code Math Avg.

Bio. Earth. Econ. Psy. Sus. Rob. Stack. Leet. Pony Aops TheoQ. TheoT.

M

0.0 18.9 20.6 13.7 18.2 12.2 6.5 11.8 17.1 2.7 1.4 11.1 18.7 12.7
0.1 21.0 22.7 14.4 19.7 13.3 7.7 11.7 18.9 3.6 1.6 13.4 19.3 13.9
0.2 22.4 24.5 15.0 20.5 14.5 8.7 12.3 21.7 4.0 2.0 15.3 20.6 15.1
0.3 23.1 26.7 16.1 21.0 17.0 9.6 12.7 23.9 5.2 2.2 16.5 23.0 16.4
0.4 23.9 27.9 17.6 21.9 17.9 9.9 13.1 25.3 7.1 2.7 18.5 23.3 17.4
0.5 24.6 28.8 18.2 22.5 18.6 10.9 13.0 27.1 9.2 3.4 20.0 24.7 18.4
0.6 25.2 30.0 18.7 22.0 19.7 12.5 14.0 28.8 10.8 4.5 21.5 27.1 19.5
0.7 24.8 29.3 19.5 21.4 19.4 14.0 14.1 29.3 12.5 5.5 22.7 17.3 20.0
0.8 24.7 28.2 18.0 19.6 20.1 15.1 13.9 29.1 13.6 6.3 24.1 27.1 20.0
0.9 23.6 28.6 18.0 18.2 19.5 16.4 13.6 29.2 16.7 6.7 25.8 27.0 20.3

I

0.0 22.9 22.6 15.1 17.2 12.5 10.2 14.6 19.6 7.3 1.3 12.0 13.7 14.1
0.1 23.9 24.4 16.5 18.9 14.2 11.1 14.8 22.3 8.2 2.0 13.9 15.6 15.5
0.2 25.2 26.3 17.7 20.1 15.2 12.2 14.7 24.9 10.0 2.5 16.0 16.2 16.7
0.3 26.1 27.7 17.5 20.6 16.0 12.6 14.3 26.2 12.0 3.4 18.3 16.9 17.6
0.4 26.8 28.8 18.0 20.3 16.7 12.9 13.7 27.9 14.4 4.0 19.9 18.2 18.4
0.5 26.5 30.0 17.9 20.7 17.3 14.7 14.7 28.7 15.9 4.9 20.8 19.1 19.3
0.6 25.9 31.1 18.5 20.1 17.6 15.5 15.5 29.3 16.7 5.4 21.8 22.7 20.0
0.7 24.9 30.6 18.3 19.3 18.3 16.7 15.7 29.4 16.5 6.0 22.3 25.2 20.3
0.8 18.8 18.7 29.1 18.7 18.6 16.5 14.4 29.3 15.7 6.7 23.7 25.1 20.2
0.9 23.5 28.6 18.1 18.1 18.7 17.1 14.0 28.7 14.7 7.2 25.1 26.1 20.0

E

0.0 27.2 27.6 16.2 20.7 14.0 8.3 12.6 20.2 15.9 0.4 10.9 14.0 15.7
0.1 27.7 28.6 16.7 21.7 14.5 9.2 13.0 22.6 16.3 0.6 13.0 14.8 16.6
0.2 28.0 30.1 16.9 22.3 15.2 10.1 13.5 25.2 16.5 1.1 15.5 18.8 17.8
0.3 28.7 30.9 17.4 23.8 16.8 11.3 14.3 26.7 16.2 1.4 17.2 23.2 19.0
0.4 29.2 32.0 17.7 24.4 18.3 12.7 14.4 27.7 17.3 2.4 18.5 24.9 20.0
0.5 29.4 33.0 17.8 24.0 19.2 13.6 15.1 28.8 17.3 3.5 20.6 27.9 20.9
0.6 29.0 32.6 19.0 22.6 19.3 15.0 15.3 30.4 18.2 4.7 21.9 28.2 21.3
0.7 28.3 32.3 19.2 22.2 19.7 16.1 15.6 30.4 18.0 5.1 23.8 28.5 21.6
0.8 26.5 32.0 18.5 20.3 19.6 16.8 15.0 29.8 17.0 6.5 24.8 28.1 21.2
0.9 25.0 30.1 17.9 19.4 19.7 16.6 14.0 29.3 16.6 7.1 25.5 26.5 20.6

M+E

0.0 25.9 29.9 15.7 21.3 17.9 15.9 15.8 23.4 17.9 1.2 14.5 18.5 18.2
0.1 26.4 30.2 16.2 22.1 19.1 16.6 16.5 24.8 18.0 1.9 16.2 19.9 19.0
0.2 27.4 31.5 16.4 23.0 19.6 17.1 16.7 26.7 18.0 2.4 17.7 21.2 19.8
0.3 28.1 32.2 16.8 23.7 20.3 17.8 16.0 28.4 18.1 3.3 18.5 23.3 20.5
0.4 28.0 34.0 17.0 23.9 19.9 18.3 16.7 29.4 18.1 4.3 20.7 23.7 21.2
0.5 27.9 34.4 17.5 23.5 20.4 18.6 16.8 29.2 18.6 6.5 25.8 25.8 22.1
0.6 26.6 32.9 17.7 21.4 21.0 18.9 16.9 29.1 18.3 6.2 22.3 28.9 21.7
0.7 25.9 33.0 18.2 20.6 20.6 18.4 16.2 29.4 17.5 7.0 23.4 28.4 21.6
0.8 25.0 32.0 18.2 20.1 20.4 17.9 14.9 29.5 15.9 7.5 24.5 27.1 21.1
0.9 23.9 28.8 18.1 18.7 19.6 16.9 14.1 28.6 15.1 7.5 25.2 26.6 20.3

I+E

0.0 24.0 25.9 14.5 21.9 15.3 13.2 14.7 22.5 9.9 1.2 11.7 13.0 15.6
0.1 24.3 27.8 14.8 22.4 16.0 13.4 15.0 25.0 11.7 1.4 13.4 14.8 16.7
0.2 25.4 29.4 15.9 22.1 18.0 14.7 14.8 26.7 13.1 1.4 15.0 16.8 17.8
0.3 26.2 31.0 16.5 22.7 18.5 15.9 15.0 27.7 14.0 2.2 16.6 19.3 18.8
0.4 26.9 32.0 16.9 23.0 19.2 16.8 16.1 27.7 14.7 3.0 18.8 21.1 19.7
0.5 27.1 32.3 17.6 21.9 19.5 16.7 16.1 28.7 15.3 4.3 20.3 24.0 20.3
0.6 27.0 32.5 18.1 21.7 19.6 16.9 16.0 29.4 15.7 4.9 21.6 25.5 20.7
0.7 25.7 31.8 18.2 20.9 19.6 17.5 16.0 29.7 15.5 5.7 22.8 26.3 20.8
0.8 24.8 31.0 17.9 20.2 19.2 17.5 14.8 30.3 14.9 7.0 24.0 27.3 20.7
0.9 23.2 29.2 17.8 18.5 19.0 16.7 14.2 29.0 14.2 6.9 25.0 26.6 20.0

Table 8: Full ablation results presented in Section 5.

we leveraged OpenAI’s structured output feature, ensuring that all output scenarios should
be JSON format. For the prompt used in this process, please refer to Table 9 in C.6.

For each individual document, we did not set a fixed number of scenarios to be generated.
Instead, we employ an adaptive approach, where the number of generated scenarios is
determined based on the content of each document. Documents with more extensive content
resulted in a larger number of generated scenarios, while those with less content generated
fewer scenarios.
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C.2.2 Scenario generator

The scenario generator is optimized using AdamW with a learning rate of 2e-5, a linear
warmup scheduler, weight decay of 0.1, and a batch size of 4 with gradient accumulation of
2. Optimization is conducted for a maximum of 10 epochs, with early stopping based on
evaluation loss and a patience of 4. The LoRA hyperparameters are set as follows: r = 32,
alpha=64, dropout = 0.1. After training the scenario generator, we applied it to the entire
BRIGHT corpus to generate scenarios for each dataset.

C.3 Reasoning-augmented query

BRIGHT provides reasoning-augmented queries, which are reformulated versions of the
original queries generated using various large language models. These queries incorporate
explicit step-by-step reasoning, aiming to clarify the user intent and better guide retrieval
models. Among the available variants, we adopt the GPT-4–generated reasoning queries,
which achieved the best performance in the experiments reported in the Su et al. (2024).

C.4 Criteria for human evaluation

We randomly sample 100 examples from the BRIGHT test set and ask three human judges
per example to compare different retrieval contexts following four criteria:

• Specificity: Which search result better provides information that is more specific in detail?
• Comprehensibility: Which search result is more easily understandable and clear, allow-

ing you to grasp the overall content at a glance?
• Usefulness: Which search result is more practically helpful in solving user problems or

aiding decision-making in the query?
• Overall: Which search result do you prefer overall when reviewing search results?

We show the interface for the evaluation in Figure 8.

C.5 Experimental setting for RAG experiment

In Section 4.4, we investigate whether SPIKE can serve as an effective context provider
in retrieval-augmented generation (RAG) by offering additional information alongside
retrieved documents. In this experiment, we use the queries and reference answers from the
BRIGHT dataset, following the experimental setup proposed by Su et al. (2024), and use
GPT-4o as the evaluation model to score the generated answers. Specifically, in the oracle
setting, the full set of gold documents corresponding to each query is provided as context,
while the retrieval setting uses the top-10 documents retrieved by the retrieval model. The
prompts used for question answering and evaluation also follow those introduced in Su
et al. (2024).

C.6 Prompt

We present four types of prompts used in our experiments:

• Construct scenario-augmented dataset: The prompt designed for constructing scenario-
augmented dataset is shown in Table 9

• Scenario generator instruction: The prompt designed for training scenario generator is
shown in Table 10

• RAG answering: The prompt designed for answering in RAG setting is shown in Table 11
• Evaluate RAG: The prompt designed for evaluating answer in RAG setting is shown in

Table 12
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Figure 8: The interface for human evaluation
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Prompt for constructing scenario-augmented dataset

[Task Description]
You are an advanced language model specializing in knowledge extraction and user need modeling.
Your task is to extract hypothetical user scenarios from a given dataset document, ensuring that
the generated information needs reflect the document’s overall insights and knowledge, rather than
isolated details.

**Step 1: Document Analysis**:
Summarize the key points of the document in a structured manner. This step should not be a direct
extraction but should synthesize the document’s core concepts, key arguments, and insights, avoiding
specific code snippets, variable names, or minor details.
Content:
- Main Topic: Briefly describe the primary subject of the document
- Key Aspects: Summarize the core concepts, insights, or knowledge presented

**Step 2: Generate Possible Information Needs**:
Based on the document analysis, generate a diverse set of possible information needs that can be
satisfied by the document, ensuring that they **focus on high-level insights, generalizable knowledge,
or core principles conveyed by the document rather than specific implementation details (e.g., function
names, variable names, or isolated sections)**.
Guidelines:
- The information needs must align with the document’s main message and core knowledge, not
minor details.
- Focus on concepts, reasoning, and insights rather than localized facts.
- Ensure that they **focus on high-level insights, generalizable knowledge, or core principles conveyed
by the document rather than specific implementation details (e.g., function names, variable names, or
isolated sections)**.
- Ensure that the needs **capture different aspects of the document’s knowledge** rather than concen-
trating on a single part.

Format:
- Each information need is started with ”A User wants to know”
- Generate a python list of information needs. (e.g. [”information need 1”, ”information need 2”,
”information need 3”])

**Step 3: Generate Explanation for Each Information Need**:
For each information need, explain how the document fulfills that need, ensuring that explanations are
generalized and conceptual rather than overly detailed. Avoid focusing on function names, variable
names, or specific lines unless absolutely necessary for clarity.

Format:
- Generate JSON format with the following components:
- Key: information need
- Value: explanation for the information need

[Text Content]
...

Table 9: The prompt for constructing scenario-augmented dataset
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Scenario generator instruction

[Task Description]
You are an advanced language model specializing in knowledge extraction and user need modeling.
Your task is to extract hypothetical user scenarios from a given dataset document, ensuring that
the generated information needs reflect the document’s overall insights and knowledge, rather than
isolated details.

Content:
- Main Topic: Briefly describe the primary subject of the document
- Key Aspects: Summarize the core concepts, insights, or knowledge presented
- Information Needs: Generate a diverse set of possible information needs that can be satisfied by the
document
- Explanation: Explain how the document fulfills that need, ensuring that explanations are generalized
and conceptual rather than overly detailed.

Format:
- Generate JSON format

[Text Content]
...

Table 10: Scenario generator instruction

RAG answering Prompt

[Task Description]
Problem:
question

Document:
document

Based on the provided documents, write an answer to the problem.

Table 11: The prompt for RAG answering
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RAG evaluation Prompt

[Task Description]
———- PROBLEM START ———-
problem
———- PROBLEM END ———-
———- STUDENT ANSWER START ———-
predicted answer
———- STUDENT ANSWER END ———-
———- REFERENCE ANSWER START ———-
gold answer
———- REFERENCE ANSWER END ———-
Criteria:
0 - The student’s answer is completely irrelevant or blank.
10 - The student’s answer addresses about 10% of the reference content.
20 - The student’s answer addresses about 20% of the reference content.
30 - The student’s answer addresses about 30% of the reference content.
40 - The student’s answer addresses about 40% of the reference content.
50 - The student’s answer addresses about 50% of the reference content.
60 - The student’s answer addresses about 60% of the reference content.
70 - The student’s answer addresses about 70% of the reference content.
80 - The student’s answer addresses about 80% of the reference content.
90 - The student’s answer addresses about 90% of the reference content.
100 - The student’s answer addresses about 100% of the reference content.
Use the following format to give a score:
REASON:
Describe why you give a specific score
SCORE:
The score you give, e.g., 60
Do not say anything after the score

Table 12: The prompt for RAG evaluation
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