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ABSTRACT

Phenotypic drug discovery generates rich multi-modal biological data, yet trans-
lating complex cellular responses into molecular design remains a computational
bottleneck. Existing generative methods operate on single modalities (transcrip-
tomic or morphological alone) and condition on post-treatment measurements
without leveraging paired control-treatment dynamics. We present Pert2Mol,
the first framework for multi-modal phenotype-to-structure generation that inte-
grates transcriptomic and morphological features from paired control-treatment
experiments. Pert2Mol employs separate ResNet and cross-attention encoders
for microscopy images and gene expression profiles, with bidirectional cross-
attention between control and treatment states to capture perturbation dynamics
rather than simple differential measurements. These multi-modal embeddings
condition a rectified flow transformer that learns velocity fields along straight-
line trajectories from noise to molecular structures, enabling deterministic gen-
eration with superior efficiency over diffusion models. We introduce Student-
Teacher Self-Representation (SERE) learning where an exponential moving aver-
age teacher supervises student representations across network depths, stabilizing
training in high-dimensional multi-modal spaces. Unlike previous approaches that
require preprocessed differential expression vectors, Pert2Mol learns perturbation
effects directly from raw paired experimental data. Experiments on large-scale
datasets demonstrate the first successful multi-modal framework for phenotype-
driven molecular generation.
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Figure 1: Perturbation guided drug molecule design through Pert2Mol

1 INTRODUCTION

Phenotypic drug discovery is re-emerging as a powerful alternative to target-centric strategies, con-
sistently yielding more first-in-class medicines Swinney (2013); Vincent et al. (2022); Moffat et al.
(2017). Modern assays now capture transcriptomic and morphological responses to perturbations
Chandrasekaran et al. (2021); Bray et al. (2017); Haghighi et al. (2022); Way et al. (2021), yet trans-
lating these rich readouts into molecular design remains a challenging inverse problem. Current
workflows rely on manual interpretation, creating a bottleneck between phenotypic data and struc-
ture–activity insights. This mapping is inherently many-to-many: distinct compounds often induce
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convergent phenotypes Sun et al. (2012); Schneider et al. (1999). Rather than a limitation, this re-
dundancy enables scaffold hopping and novel mechanism discovery, reflecting how most approved
drugs historically emerged from phenotype-first approaches Eder et al. (2014).

Existing generative methods cannot capture this complexity. Transcriptome-only models such as
MolGene-E use differential expression profiles without paired controls Ohlan et al. (2025), while
morphology-based approaches rely solely on imaging Zapata et al. (2023); Tang et al. (2025);
Caicedo et al. (2017). No framework integrates both modalities, despite their complementarity:
expression reveals pathway-level changes, while microscopy captures structural phenotypes absent
from gene-level data Scheeder et al. (2018); Rohban et al. (2017). Graph-based Simonovsky &
Komodakis (2018); Mitton et al. (2021) and text-conditioned models Chang & Ye (2024); Wang
et al. (2023); Edwards et al. (2022) ensure structural validity or semantic alignment but fail on high-
dimensional multi-modal perturbation data. Multi-modal conditioning further poses computational
challenges, as perturbations span thousands of genes and complex morphological features, requiring
encoding strategies that preserve interpretability while enabling cross-modal interactions Lotfollahi
et al. (2023); Rampášek et al. (2022). Diffusion models add inefficiency with hundreds of denoising
steps and stochastic outputs misaligned with reproducibility requirements for hypothesis-driven val-
idation Song et al. (2020); Ni et al. (2025). Advances in spatial transcriptomics underscore the value
of integrating morphology with molecular signatures at cellular resolution Moses & Pachter (2022);
Rao et al. (2021), yet existing methods remain focused on tissue analysis rather than molecular
design Bae et al. (2021); Williams et al. (2022).

We present Pert2Mol, the first framework for multi-modal phenotype-to-structure generation. By
integrating transcriptomic and morphological features with paired control–treatment data and rec-
tified flow dynamics, Pert2Mol enables efficient, structurally diverse molecule generation guided
by complex cellular phenotypes. This establishes a paradigm for linking high-content phenotypic
screening with computational hypothesis generation in drug discovery. Pert2Mol operates in the la-
tent space of molecular autoencoders, conditioned on integrated transcriptomic and morphological
embeddings. A paired transcriptome encoder with cross-attention learns gene-to-gene mappings be-
tween control and treatment states, capturing perturbation dynamics beyond differential expression.
Morphological features are extracted via a ResNet encoder, providing complementary information.
These embeddings condition a rectified flow transformer that learns velocity fields along straight-
line trajectories from noise to molecular structures, eliminating stochastic sampling and high cost in
diffusion models while enabling deterministic hypothesis generation suitable for validation.

Our contributions include: (i) The first application of rectified flow for inverse drug design using
perturbation conditioning; (ii) A transformer architecture that directly models control–treatment per-
turbation dynamics by fusing transcriptomic and morphological signals; and (iii) Student-Teacher
Self-Representation Learning (SERE), where an EMA teacher supervises student representations
across depths, stabilizing training in high-dimensional multi-modal spaces. Together, these inno-
vations enable systematic and reproducible molecule generation from phenotypic measurements,
advancing phenotype-driven drug discovery.

2 RELATED WORK

Generative Models for Molecular Design have advanced from SMILES-based RNNs and VAEs
Segler et al. (2018); Gómez-Bombarelli et al. (2018); Arús-Pous et al. (2019) to graph- and flow-
based models such as GraphNVP, MoFlow, and GraphAF Madhawa et al. (2019); Zang & Wang
(2020); Shi et al. (2020), which ensure structural validity and latent invertibility. More recently,
transformers and diffusion models have improved controllability; e.g., Graph Diffusion Transform-
ers Liu et al. (2024) integrate property encoders with a transformer denoiser for multi-conditional
generation across polymers and small molecules. While these approaches optimize chemical/
physicochemical properties (e.g., solubility, synthetic accessibility), they rarely incorporate biolog-
ical conditioning (transcriptomic, morphological) or perturbation dynamics. Multi-property inverse
design has been explored using hierarchical VAEs, Gaussian mixture latent spaces, and encoder-
decoder architectures Jin et al. (2018); Shino & Kaneko (2025); Lee & Min (2022), addressing
constraints like synthetic score and gas permeability, but typically relying on static property vectors
rather than high-dimensional biological readouts or paired control/ treatment states.
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Perturbation-Conditioned Molecular Design incorporates biological data more directly.
MolGene-E Ohlan et al. (2025) harmonizes bulk and single-cell transcriptomics with contrastive
learning to generate molecules from perturbation-induced profiles. GexMolGen Cheng et al. (2024)
produces hit-like molecules guided by gene expression signatures, and GxVAEs Li & Yamanishi
(2024) predict responses from transcriptomic profiles. Yet, these methods are largely unimodal
and focus on processed differential or post-treatment signatures rather than paired control-treatment
modeling or joint transcriptome-morphology conditioning.

Flow Matching and Biological Conditioning provide deterministic generative paths and efficient
sampling compared to diffusion. GraphNVP Madhawa et al. (2019) and MoFlow Zang & Wang
(2020) yield invertible latent representations, but flow-based frameworks conditioned on multi-
modal biological data (gene + morphology) under paired perturbation control remain unexplored.
Our work addresses this gap by integrating latent rectified flow with multi-modal condition encoders
to enable efficient, deterministic molecular generation from biological perturbation data.

3 METHODS
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Figure 2: Overview of the Pert2Mol architecture.

We formulate drug perturbation prediction as a conditional generative modeling problem where the
model learns to generate molecular structures given multi-modal biological context. Let x ∈ RD be
a molecular structure in latent space, let cimg ∈ R4×H×W be control and treatment microscopy im-
ages, and crna ∈ RG be gene expression profiles with G genes. The objective is to learn conditional
distribution p(x | cimg, crna) that captures a relationship between biological perturbation context
and molecular structure. Figure 2 presents the high-level architecture of Pert2Mol.

3.1 MULTI-MODAL CONDITIONING

Image encoding. To process the 4-channel microscopy images representing control and treatment
conditions, we implement separate ResNet backbones for each condition. Each image encoder
f
(C)
img , f

(T )
img : R4×H×W → Rdimg begins with a 7 × 7 convolution followed by GroupNorm, ReLU

and processes through four residual layers with progressively increasing channel dimensions (64→
128→ 256→ 512) and spatial downsampling. Each residual block implements the skip-connection
update hl+1 = hl + F(hl,Wl), where F denotes the residual function composed of two 3 × 3
convolutions with GroupNorm and ReLU activations. After adaptive global pooling, the condition-
specific representations undergo bidirectional cross-attention:

H′
control = Hcontrol +CrossAttn(Hcontrol,Htreatment),

H′
treatment = Htreatment +CrossAttn(Htreatment,Hcontrol).

The final image embeddings are produced eimg,control , eimg,treatment ∈ R256. The separate back-
bones enable condition-specific feature learning, while bidirectional cross-attention captures inter-
condition relationships critical for understanding treatment effects on cellular morphology.
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RNA expression encoding. For gene expression data we implement two complementary approaches
for different experimental setups. In the single-condition setting, we use a standard self-attention
encoder that permits genes to attend to each other based on expression patterns. The gene embedding
matrix is Egene = Embedding(crna) ∈ RG×dembed . For paired control–treatment experiments we
implement a cross-attention mechanism between the two conditions. We first compute self-attended
condition representations as:

Hcontrol, Htreatment = SelfAttn(Econtrol), SelfAttn(Etreatment),

and then refine each condition representation with cross-attention:

H′
control = Hcontrol +CrossAttn(Hcontrol,Htreatment),

H′
treatment = Htreatment +CrossAttn(Htreatment,Hcontrol).

This cross-attention explicitly models gene-to-gene relationships between control and treatment con-
ditions and thus captures differential expression patterns that are important for understanding drug
mechanisms. Both RNA encoders use attention-weighted pooling to obtain a condition-level repre-
sentation:

erna =
G∑
i=1

αihi, where αi =
exp

(
w⊤ tanh(Wattnhi)

)∑G
j=1 exp

(
w⊤ tanh(Wattnhj)

) .
Multi-Modal Fusion. Image and RNA features for each condition are concatenated and stacked to
produce the final conditioning tensor:

y = Stack
(
[eimg,control ⊕ erna,control, eimg,treatment ⊕ erna,treatment]

)
∈ R2×192,

where⊕ denotes concatenation. This structured representation preserves relationships between con-
ditions while providing rich multi-modal context to the generator.

Molecular Representation. Molecular structures are represented using a pre-trained BERT-based
autoencoder Liu et al. (2019) that maps SMILES strings to continuous latent representations similar
to Chang & Ye (2024). Tokenization uses learned molecular motifs (regex tokenization) instead of
character-level tokens to capture chemically meaningful substructures. A frozen pre-trained BERT
encoder processes tokenized sequences, and a trainable linear compression layer reduces BERT out-
puts from 768 to 64 dimensions, producing a compact molecular latent representation. Concretely,

xtarget = Linear
(
BERT(Tokenize(SMILES))

)
∈ R64×127.

Continuous latent representations are amenable to gradient-based optimization; pre-trained molec-
ular BERT captures chemical semantics, and dimensionality reduction focuses the model on task-
relevant molecular features.

3.2 GENERATIVE MODELING

We adopt rectified flow Liu et al. (2022) as the generative framework with its training stability and
sampling efficiency relative to traditional diffusion models. Rectified flow parameterizes straight-
line paths between noise and data distributions. Given a noise sample x0 ∼ N (0, I) and data
x1 = xtarget, the interpolating path is xt = (1 − t)x0 + tx1, t ∈ [0, 1], and its instantaneous
velocity is given by:

vt =
dxt

dt
= x1 − x0.

The model is trained to predict this velocity field vθ(xt, t,y) ≈ vt, with the rectified flow objective:

Lflow = Et∼U(0,1), x0∼N (0,I)

[∥∥vθ(xt, t,y)− (x1 − x0)
∥∥2
2

]
.

This formulation obviates complex noise scheduling, provides stable gradients compared to score-
based methods, enables efficient sampling in fewer steps, and supports exact likelihood computation.

Rectified Transformer Architecture. Our core generative model is a transformer adapted to
molecular generation with multi-modal conditioning. Noisy molecular representations are lin-
early projected and augmented with learnable positional embeddings: X = Linear(xt) + P ∈

4
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RL×dmodel , and timesteps are embedded via a sinusoidal encoding passed through an MLP: temb =
MLP(SinCos(t)) ∈ Rdmodel . Conditioning information is processed along two pathways: a cross-
attention pathway and an adaptive-normalization pathway:

ycross = Linear192→256(y), ypool = Linear192→dmodel

(
Mean(y,dim = 1)

)
The conditioning signal used for adaptive normalization is c = temb + ypool. Each transformer
block implements Adaptive Layer Normalization (AdaLN) Xu et al. (2019), which modulates nor-
malization parameters as a function of conditioning:

AdaLN(x, c) = x⊙
(
1 + scale(c)

)
+ shift(c),

where scale(c), shift(c) = Linear(SiLU(c)), allowing fine-grained conditional modulation.

Each block first applies self-attention with a gating mechanism:

X′ = X+ gatesa(c)⊙MultiHeadAttn
(
AdaLN(X, c)

)
,

then applies cross-attention to the conditioning embedding:

X′′ = X′ + gateca(c)⊙ CrossAttn
(
AdaLN(X′, c),ycross

)
,

and finally performs a feed-forward update using the SwiGLU nonlinearity:

Xout = X′′ + gateffn(c)⊙ SwiGLU
(
AdaLN(X′′, c)

)
.

The SwiGLU Shazeer (2020) activation is defined as SwiGLU(x) = SiLU(xW1) ⊙ (xW2)W3,
and empirically provides superior performance compared to a standard MLP. AdaLN is critical
for conditional generation because it provides layer-wise, conditioning-dependent modulation of
activations and attention.

Student-Teacher Self-representation (SERE). To improve training stability and sample quality we
introduce SERE. The SERE teacher model is maintained as an exponential moving average (EMA)
of the student parameters: θteacher ← β θteacher + (1 − β) θstudent. During training we extract
intermediate representations from selected layers: the student representation is taken at a higher-
noise layer, e.g., hstudent = Xlayer-4, while the teacher representation is taken at a lower-noise layer
(shifted by a small ∆t), e.g., hteacher = Xteacher

layer-8 . The SERE loss aligns representations using a
projection head:

LSERE =
∥∥ProjectionHead(hstudent)− hteacher

∥∥2
2
,

with the projection head defined as

ProjectionHead(h) = LayerNorm
(
Linear(SiLU(Linear(h))))

)
.

The total training objective combines the rectified flow loss and the SERE loss,

Ltotal = Lflow + λSERELSERE,

where λSERE = 0.1 balances the contribution of representation alignment. SERE provides inter-
mediate supervision beyond just the final velocity prediction, creating multiple gradient pathways
through the network. Performance gain comes from the model learning what good representa-
tions should look like at different noise levels, rather than just learning to predict velocities. This
representation-level supervision creates more stable, generalizable internal features that improve
both training stability and sample quality shown in Figure 4.

Training Setup. Multi-modal data batches are assembled with temporal alignment across condi-
tions. For classifier-free guidance, modalities are randomly masked during training: 10% RNA-
only and 10% image-only inputs. SMILES strings are augmented via canonical randomization to
preserve molecular identity. Optimization uses AdamW (lr=10−4 with scheduled weight decay),
mixed-precision (16-bit) for memory efficiency, gradient clipping (norm=5.0), distributed data-
parallel training with synchronized gradients, and early stopping (patience=10). Two exponential
moving averages are maintained: β = 0.9999 for final parameter averaging and βSERE = 0.9999
for updating the SERE teacher network.

Sample generation integrates the learned velocity field from noise to data. Updates follow xi+1 =
xi+∆t ·vθ(xi, ti,y), using Euler integration for speed or Dormand–Prince (DOPRI5) for accuracy,
with adaptive step size ∆tadapt. Modality-specific guidance enables independent control:

vguided = vimg + λimg

(
vfull − vimg

)
+ λrna

(
vrna − vimg

)
,
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where vfull, vimg, and vrna are predictions conditioned on both, image-only, and RNA-only in-
puts, respectively. Latent molecular representations are decoded to SMILES with our pre-trained
autoencoder and beam search to improve recovery and validity. The generative model is a 12-layer
transformer (768 hidden dims, 16 attention heads) implemented in PyTorch, trained for 200 epochs
with batch size 64 on 4 NVIDIA H100 GPUs. Experiments use GDP, LINCS RNA, CPGJump
datasets. Evaluation metrics include molecular validity, uniqueness, and biological relevance.

4 EXPERIMENT

Datasets. We build upon the multi-modal Ginkgo Data Platform (GDP) collection Model & Bi-
ologics (2025), which pairs transcriptomic profiles with four-channel fluorescence microscopy of
chemically perturbed cell populations. Correspondence across modalities was established through
compound identity matching and experimental parameter alignment, with metadata standardized
for dose normalization, consistent cell line identifiers, and synchronized timepoints; DMSO-treated
samples served as controls. Transcriptomic data were normalized to 106 reads per sample, log1p
transformed, and reduced to the top 2000 variable genes via scanpy. Imaging data were scaled from
16-bit to unit range, contrast-adjusted per channel using percentile clipping, and resampled with
bilinear interpolation. This framework preserved the full combinatorial design (cell line, drug-dose,
timepoint) during partitioning, enabling controlled comparisons between compounds and vehicle
controls. Canonical SMILES for PubChem drugs Wang et al. (2009) were obtained, with up to
20 variants enumerated to train molecular autoencoders; evaluation outputs were standardized into
canonical SMILES with RDKit Landrum (2016). For single-modality experiments, we trained on
GDP RNA-seq and Cell Painting data, and further incorporated preprocessed LINCS gene expres-
sion data Subramanian et al. (2017) covering >3000 PubChem-matched perturbations. To miti-
gate LINCS batch effects Hetzel et al. (2022), we applied Harmony Korsunsky et al. (2019) for
dimension-matched normalization. Since our model uses both pre- and post-treatment data, it learns
treatment-induced changes even under Harmony transformation, whereas simple vector differences
after correction would be invalid. This design allows leveraging batch-effect corrections under uni-
form transformations. We also evaluated on Cell Painting (cpgjump-pilot) Chandrasekaran et al.
(2024), comprising ∼300 compounds across two cell lines, for imaging-only experiments.

Evaluation Metrics. We evaluate molecular generation for drug discovery Grant & Sit (2021) using
a diverse set of metrics. Validity ensures chemically sound structures, while the Fréchet ChemNet
Distance (FCD) quantifies similarity to the target dataset by comparing deep neural network acti-
vations that capture chemical and biological properties. Quantitative Estimation of Drug-likeness
(QED) provides a unified drug-likeness score, and Lipinski compliance measures adherence to the
Rule of Five, critical for oral bioavailability. We further assess the drug-like fraction and target sim-
ilarity to capture therapeutic relevance. Finally, KL divergences for molecular weight, LogP, and
TPSA quantify preservation of key physicochemical property distributions. Together, these metrics
provide a comprehensive evaluation of validity, drug-likeness, therapeutic relevance, and property
distribution preservation, satisfying core requirements for practical drug discovery.

Generation Task. Pert2Mol demonstrates the capacity for de novo molecular design by generating
novel drug candidates directly conditioned on biological perturbation profiles. The model employs
a rectified flow-based generative process to sample molecular structures from learned distributions,
conditioned on encoded pre- and post-treatment biological features. This capability directly mea-
sures Pert2Mol’s fundamental generative abilities and its capacity to explore chemically meaningful
regions of molecular space while maintaining therapeutically relevant properties.

Repurposing Task. Pert2Mol can perform drug selection guided by known-context for unseen (test)
data through biological similarity matching. Here we encode test biological conditions using the
same feature extraction pipeline as the generative framework, then performs nearest neighbor search
in the known biological feature space from provided training data, to identify similar conditions from
the training set using cosine similarity metrics. The drugs associated with these nearest biological
profiles are returned as predictions. Performance is quantified using same metrics as generation
evaluation. This capability establishes how Pert2Mol’s learned representations compare against
direct biological similarity-based approaches for therapeutic compound identification.

Retrieval Task. To show meaningful learned drug representations, Pert2Mol performs retrieval ac-
curacy analysis on augmented train data. Each training sample is used as a query to retrieve nearest

6
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neighbors in the 192-dimensional embedding space using cosine similarity, testing whether samples
treated with the same compound clustered together. Retrieval performance was measured with Pre-
cision@K and Hit@K (K=1,3,5,10), Mean Reciprocal Rank (MRR), and average intra-compound
similarity. Clustering quality was further assessed via separation scores (intra- vs. inter-compound
similarity), identifying compounds most effectively distinguished by the learned embeddings. This
framework validates whether the RNA-image encoder captures compound-specific biological ef-
fects, a prerequisite for downstream tasks such as mechanism-of-action prediction and repurposing.

4.1 RESULTS

Since no existing method tackles the task of perturbation guided drug molecule design, we compared
our method with a diffusion-based baseline. We also trained our model with only RNA-seq or
CellPainting imaging input, as well as with a version with SERE disabled as ablations.

Pert2Mol achieves superior molecular generation performance across all evaluation metrics. On the
GDP dataset (Table 1), the full multi-modal model attains an FCD score of 4.996, outperforming the
diffusion baseline (7.343) and all ablation variants. The model maintains perfect molecular validity
(1.0) while achieving a QED score of 0.587 and Lipinski compliance rate of 78.5%, compared to the
baseline’s 55.2% QED and 71.5% Lipinski compliance. The model demonstrates precise physic-
ochemical property distribution preservation with KL divergences of 0.263 for molecular weight,
0.195 for LogP, and 0.208 for TPSA, substantially lower than baseline values of 1.524, 1.044,
and 3.081 respectively. Among single-modality variants, Pert2Mol-RNA (FCD: 5.501) outperforms
Pert2Mol-image (FCD: 5.762), indicating transcriptomic features provide more informative signals
than imaging features alone. Cross-dataset evaluation (Table 2) shows consistent performance with
FCD scores of 4.996 (GDP), 2.748 (CPG-jump), and 8.354 (LINCS). All datasets maintain per-
fect validity while achieving QED scores between 0.551-0.587 and Lipinski compliance rates of
76.7-79.6%.

Table 1: Molecular generation performance on GDP dataset, compared against baseline & ablations.
Method Validity FCD↓ QED↑ Lipinski↑ Drug-like↑ Target Sim.↑ MW KL↓ LogP KL↓ TPSA KL↓
Baseline 0.962 7.343 0.552 0.715 0.557 0.133 1.524 1.044 3.081
Pert2Mol-RNA 1.0 5.501 0.568 0.723 0.591 0.136 0.827 0.870 0.819
Pert2Mol-image 0.998 5.762 0.538 0.702 0.522 0.136 0.332 0.249 0.41
Pert2Mol-wo-SERE 1.0 6.809 0.582 0.745 0.627 0.143 0.153 0.274 0.282
Pert2Mol 1.0 4.996 0.587 0.785 0.652 0.136 0.263 0.195 0.208

Table 2: Molecular generation performance on all datasets for Pert2Mol model.
Dataset Validity FCD↓ QED↑ Lipinski↑ Drug-like↑ Target Sim.↑ MW KL↓ LogP KL↓ TPSA KL↓
GDP 1.0 4.996 0.587 0.785 0.652 0.136 0.263 0.195 0.208
CPG-jump 1.0 2.748 0.551 0.767 0.611 0.103 0.159 0.091 0.167
LINCS 1.0 8.354 0.568 0.796 0.621 0.104 0.052 0.062 0.096

Drug repurposing evaluation results in Table 3 reveals Tanimoto similarity scores of 0.571 ± 0.427
for the full model on GDP dataset, compared to 0.498 ± 0.411 for the baseline. Pert2Mol-RNA
achieves the highest similarity score of 0.597 ± 0.415, while Pert2Mol-image (0.407 ± 0.378)
and Pert2Mol-wo-SERE (0.401 ± 0.371) show reduced performance, highlighting the importance
of transcriptomic data and cross-modal integration mechanisms. Cross-dataset analysis in Table 4
shows dataset-dependent performance with GDP achieving 0.571 ± 0.427, while CPG-jump and
LINCS datasets yield lower similarity scores of 0.195 ± 0.164 and 0.198 ± 0.154 respectively,
despite maintaining high Lipinski compliance rates (95.5% and 99.8%).

Compound retrieval analysis on GDP dataset (Table 5) demonstrates the effectiveness of learned
drug representations. Pert2Mol achieves Precision@1 of 0.7610 and Hit@1 of 0.7610, compared
to 0.6560 for both metrics in the SERE-disabled variant. Performance scales consistently across
retrieval depths, reaching Precision@10 of 0.7659 and Hit@10 of 0.9690. The Mean Reciprocal
Rank increases from 0.7656 (without SERE) to 0.8364 (full model), confirming the critical role of
cross-condition attention mechanisms. The validation loss curves (Figure 4) reveal distinct conver-
gence patterns between model variants. Pert2Mol achieves rapid convergence with validation loss
decreasing from 0.72 to approximately 0.10 by step 2500, while Pert2Mol-no-SERE shows slower
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Figure 3: Molecule generation results for given control-treatment RNA-image input for different
drug examples from GDP dataset. Our Pert2Mol is compared against diffusion baseline along with
RNA & image only models.
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Table 3: Repurposing performance on GDP dataset,
compared against baseline & ablations.
Method Validity QED↑ Lipinski↑ Tanimoto Sim.↑
Baseline 1.0 0.537 ± 0.206 0.824 0.498 ± 0.411
Pert2Mol-RNA 1.0 0.536 ± 0.193 0.750 0.597 ± 0.415
Pert2Mol-image 1.0 0.407 ± 0.378 0.878 0.407 ± 0.378
Pert2Mol-wo-SERE 1.0 0.550 ± 0.205 0.785 0.401 ± 0.371
Pert2Mol 1.0 0.552 ± 0.213 0.878 0.571 ± 0.427

Table 4: Repurposing performance on all datasets
Dataset Validity QED↑ Lipinski↑ Tanimoto Sim.↑
GDP 1.0 0.552 ± 0.213 0.878 0.571 ± 0.427
CPG-jump 1.0 0.569 ± 0.192 0.955 0.195 ± 0.164
LINCS 1.0 0.561 ± 0.168 0.998 0.198 ± 0.154

Figure 4: SERE ablation

Steps

Validation Loss

convergence, declining from 0.95 to 0.43 over the same period. The full model demonstrates su-
perior optimization dynamics with lower final loss values, supporting the quantitative performance
improvements observed across all evaluation tasks.

Table 5: Retrieval performance on GDP dataset

Metric Pert2Mol-wo-SERE Pert2Mol

Precision Hit Precision Hit

@1 0.6560 0.6560 0.7610 0.7610
@3 0.6730 0.8590 0.7653 0.8920
@5 0.6766 0.9030 0.7640 0.9350
@10 0.6840 0.9330 0.7659 0.9690

MRR 0.7656 0.8364

5 DISCUSSION

Pert2Mol establishes the first successful framework for multi-modal phenotype-to-structure gener-
ation. We demonstrate that integrating transcriptomic and morphological features can effectively
bridge the gap between complex biological perturbation data and molecular design. Our latent
rectified flow method consistently outperforms diffusion-based baseline approaches across drug dis-
covery metrics while maintaining perfect molecular validity. Through SERE our model learns en-
hanced representations without additional components, showing training stability, which is crucial
for generative modeling in high-dimensional multi-modal spaces. The bidirectional cross-attention
mechanism successfully captures perturbation dynamics beyond simple differential measurements,
enabling direct learning from paired control-treatment experimental data rather than preprocessed
differential vectors.

While our method currently requires paired control-treatment data, it could be adapted for tar-
geted perturbations of specific pathways or phenotypic features. Performance variability across
datasets reflects differences in measurement technologies, presenting opportunities to explore uni-
fied datasets such as large-scale single-cell RNA-seq screening where foundational models could
standardize data curation. Although our framework generates chemically valid structures with favor-
able drug-like properties, experimental validation of biological activity remains essential for trans-
lating computational predictions into therapeutic applications. Despite these limitations, Pert2Mol
represents a significant step forward in systematic, reproducible molecule generation from phe-
notypic measurements, offering a new approach for phenotype-driven drug discovery that could
accelerate the identification of novel therapeutic compounds from high-content screening data.
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A APPENDIX

A.1 ETHICS STATEMENT

Large language models served only as proofreading and editorial assistance tools for the manuscript
text, with no participation in data analysis, scientific interpretation, or content development.

A.2 REPRODUCIBILITY STATEMENT

Code and pretrained model weights will be released upon acceptance.

13


	Introduction
	Related Work
	Methods
	Multi-modal Conditioning
	Generative Modeling

	Experiment
	Results

	Discussion
	Appendix
	Ethics statement
	Reproducibility statement


