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ABSTRACT

Beyond high-fidelity image synthesis, diffusion models have recently exhibited
promising results in dense visual perception tasks. However, most existing work
treats diffusion models as a standalone component for perception tasks, employ-
ing them either solely for off-the-shelf data augmentation or as mere feature
extractors. In contrast to these isolated and thus sub-optimal efforts, we intro-
duce an integrated, versatile, diffusion-based framework, Diff-2-in-1, that can
simultaneously handle both multi-modal data generation and dense visual per-
ception, through a unique exploitation of the diffusion-denoising process. Within
this framework, we further enhance discriminative visual perception via multi-
modal generation, by utilizing the denoising network to create multi-modal data
that mirror the distribution of the original training set. Importantly, Diff-2-in-1
optimizes the utilization of the created diverse and faithful data by leveraging a
novel self-improving learning mechanism. Comprehensive experimental evalua-
tions validate the effectiveness of our framework, showcasing consistent perfor-
mance improvements across various discriminative backbones and high-quality
multi-modal data generation characterized by both realism and usefulness.

1 INTRODUCTION

Diffusion models have emerged as powerful generative modeling tools for various high-fidelity im-
age synthesis tasks (Song et al., 2021; Ho et al., 2020; Rombach et al., 2022; Zhang et al., 2023b).
Beyond their primary synthesis capabilities, diffusion models are increasingly recognized for their
expressive representation abilities. This has spurred interest in leveraging them for dense pixel-level
visual perception tasks, such as semantic segmentation (Baranchuk et al., 2022; Wu et al., 2023;
Xu et al., 2023a) and depth estimation (Saxena et al., 2023b; Zhao et al., 2023). Nonetheless, most
existing approaches treat diffusion models as a standalone component for perception tasks, either
employing them for off-the-shelf data augmentation (Burg et al., 2023), or utilizing the diffusion
network as feature extraction backbone (Xu et al., 2023a; Zhao et al., 2023; Ji et al., 2023; Saxena
et al., 2023a). These efforts overlook the unique diffusion-denoising process inherent in diffusion
models, thus limiting their potential for discriminative dense visual perception tasks.

Inspired by foundational studies that explore the interplay between generative and discriminative
learning (Rubinstein & Hastie, 1997; Ng & Jordan, 2001; Raina et al., 2003; Ulusoy & Bishop,
2005), we argue that the diffusion-denoising process plays a critical role in unleashing the capability
of diffusion models for the discriminative visual perception tasks. The diffusion process corrupts
the visual input with noise, enabling the generation of abundant new data with diversity. Subse-
quently, the denoising process removes the noise from noisy images to create high-fidelity data, thus
obtaining informative features for discriminative tasks at the same time. As a result, the diffusion-
denoising process naturally connects the generative process with discriminative learning.

Interestingly, this synergy further motivates us to propose a novel integrated diffusion modeling
framework that integrates both discriminative and generative learning within a single, coherent
paradigm. From the generative perspective, we focus on synthesizing photo-realistic multi-modal
paired data (i.e., RGB images and their associated pixel-level visual attributes) that accurately cap-
ture various types of visual information. Simultaneously, the integrated diffusion model can achieve
promising results in different visual prediction tasks from the discriminative standpoint. As an ex-
ample illustrated in Figure 1, when considering RGB and depth interactions, if the model receives
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Figure 1: A single, integrated diffusion-based model capable of performing both multi-modal
generation and dense perception. If the model receives an RGB image as input, its function
is to predict an accurate visual attribute map. Simultaneously, the model is equipped to produce
photo-realistic and coherent multi-modal data sampled from Gaussian noise. We use depth as an
example here for illustration, and the framework is also applicable to other visual attributes such as
segmentation, surface normal, etc.

an RGB image as input, its function is to predict an accurate depth map. Meanwhile, the model is
equipped to produce photo-realistic and coherent RGB-depth pairs sampled from noise. Despite its
conceptual simplicity, fully operationalizing the integrated framework – acquiring enhanced perfor-
mance for both multi-modal generation and dense perception such as by effectively leveraging gen-
erated samples for discriminative tasks – presents non-trivial challenges. In particular, the generation
process inevitably produces data of relatively inferior quality compared to real data. Additionally,
generated samples may exhibit considerable data distribution gaps from the target domain.

To address these challenges, we introduce Diff-2-in-1, a diffusion framework bridging multi-modal
generation and discriminative dense visual perception within one integrated diffusion model. The
core design within our Diff-2-in-1 is a self-improving learning mechanism, featuring two sets of
parameters for our integrated diffusion model during the training process. Specifically, the creation
parameters are tailored to generate additional multi-modal data for discriminative learning, while
the exploitation parameters are employed for utilizing both the original and synthetic data to learn
the discriminative dense visual perception task. Meanwhile, the creation parameters continuously
undergo self-improvement based on the weights of the exploitation parameters via exponential mov-
ing average (EMA). With our novel design of two sets of parameters interplaying with each other,
the discriminative learning process can benefit from the synthetic samples generated by the model
itself, while the quality of the generated data is iteratively refined at the same time.

We validate the effectiveness of Diff-2-in-1 through extensive and multi-faceted experimental eval-
uations. We start with the evaluation of the discriminative perspective, demonstrating its superiority
over state-of-the-art discriminative baselines across various tasks in both single-task and multi-task
settings. We additionally show that Diff-2-in-1 is generally applicable to different backbones and
consistently boosts performance. Next, we ablate the experimental settings such as different train-
ing data sizes, to gain a comprehensive understanding of our method. Finally, we demonstrate the
realism and usefulness of the multi-modal data generated by our Diff-2-in-1.

Our contributions include: (1) We propose Diff-2-in-1, an integrated framework that seamlessly inte-
grates multi-modal generation and discriminative dense visual perception based on diffusion models.
(2) We introduce a novel self-improving mechanism that progressively enhances multi-modal gen-
eration in a self-directed manner, thereby effectively boosting the discriminative visual perception
performance via generative learning. (3) Our method demonstrates consistent performance improve-
ments across various discriminative backbones and high-quality multi-modal data generation under
both realism and usefulness.

2 RELATED WORK

Generative modeling for discriminative tasks. The primary objective of generative models has tra-
ditionally been synthesizing photo-realistic images. However, recent advancements have expanded
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their utility to the generation of “useful” images for downstream visual tasks (Zhan et al., 2018; Zhu
et al., 2018; Aleotti et al., 2018; Pilzer et al., 2018; Zhang et al., 2023c; Zhu et al., 2024; Zheng et al.,
2023b; Bao et al., 2022). This is typically accomplished by generating images and corresponding
annotations off-the-shelf, subsequently using them for data augmentation in specific visual tasks.

Nowadays, with the emergence of powerful diffusion models in high-fidelity synthesis tasks (Song
et al., 2021; Ho et al., 2020; Rombach et al., 2022; Zhang et al., 2023b; Wang et al., 2022; Chen
et al., 2023), there has been a growing interest in applying them to discriminative tasks. Among
them, ODISE (Xu et al., 2023a) and VPD (Zhao et al., 2023) extract features using the stable diffu-
sion model (Rombach et al., 2022) to perform discriminative tasks such as segmentation and depth
estimation. DIFT (Tang et al., 2023) and its concurrent work (Luo et al., 2023; Zhang et al., 2023a;
Hedlin et al., 2023) utilize diffusion features for identifying semantic correspondence. DDVM (Sax-
ena et al., 2023a) solves depth and optical flow estimation tasks by denoising from Gaussian noise
with RGB images as a condition. Diffusion Classifier (Li et al., 2023a) utilizes diffusion mod-
els to enhance the confidence of zero-shot image classification. Another line of research including
Marigold (Ke et al., 2024), Hyperhuman (Liu et al., 2024a), GeoWizard (Fu et al., 2024), StableNor-
mal (Ye et al., 2024) repurposes text-to-image diffusion models from text-to-image generation to
dense prediction by finetuning the denoising network. With such a design, they achieve promising
results with the cost of totally losing the capability of generation. In comparison, we are exploiting
the capability of diffusion models to discriminative perception, and at the same time, preserving
the original RGB generation capability, and further expanding to multi-modal generation. Other
studies (Trabucco et al., 2024; Feng et al., 2023; Burg et al., 2023) have explored using diffusion
models to augment training data for image classification. Different from them, we propose an inte-
grated diffusion-based model that can directly work for discriminative dense visual perception tasks,
and simultaneously utilize its multi-modal generation capability to facilitate discriminative learning
through the proposed novel self-improving algorithm.

3 INTEGRATED DIFFUSION MODEL: DIFF-2-IN-1

3.1 PRELIMINARY: LATENT DIFFUSION MODELS

Diffusion models (Ho et al., 2020) are latent variable models that learn the data distribution with
the inverse of a Markov noising process. Instead of leveraging the diffusion models in the RGB
color space (Song et al., 2021; Ho et al., 2020), we build our method upon the state-of-the-art latent
diffusion model (LDM) (Rombach et al., 2022). First, an encoder E is trained to map an input image
x ∈ X into a spatial latent code z = E(x). A decoder D is then tasked with reconstructing the input
image such that D(E(x)) ≈ x.

To convert a clean latent z0 to a noisy latent zT of arbitrary timestep T , we have:

zT ∼ q(zT |z0) = N (zT ;
√
ᾱT z0, (1− ᾱT )I), (1)

where the notation αT = 1 − βT and ᾱT =
∏T

s=1 αs makes the formulation concise, βT controls
the strength of the noise added in timestep T . When T → ∞, zT is nearly equivalent to sampling
from an isotropic Gaussian distribution.

The denoising process takes inverse operations from the diffusion process. We estimate the denoised
latent at timestep t− 1 from t by:

pθ(zt−1|zt) = N (zt−1;µθ(zt, t),Σθ(zt, t)), (2)

where the parameters µθ(zt, t),Σθ(zt, t) of the Gaussian distribution are estimated from the model.

3.2 AN INTEGRATED MODEL BEYOND RGB GENERATION

In this section, we use diffusion-based models for both discriminative and generative tasks to form
our Diff-2-in-1 framework. Concretely, for a diffusion-based integrated model Φ, we want it to
predict task label ŷ = Φdis(x) given input image x; meanwhile, after training, it can generate
multi-modal paired data from Gaussian: (x̃, ỹ) = Φgen(ϵ). We describe how we achieve this below.

Discriminative perspective. Previous work (Xu et al., 2023a; Zhao et al., 2023) has demonstrated
the possibility of using diffusion models for perceptual tasks. Following VPD (Zhao et al., 2023),
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Figure 2: Our self-improving learning paradigm with two sets of interplayed parameters dur-
ing training. The data creation parameter θC generates samples serving as additional training data
for the data exploitation parameter θE, while θE performs discriminative learning and provides guid-
ance to update θC through exponential moving average. Finally, θC performs both discriminative
and generative tasks during inference.

with the latent code z = E(x) from given image x, we perform one-step denoising on z through the
denoising U-Net (Ronneberger et al., 2015) to produce multi-scale features. Afterward, we rescale
and concatenate those features and further pass them to a task head for downstream prediction.

Generative perspective. To generate multi-modal data consisting of paired RGB and visual at-
tributes, we first produce a latent vector z̃0 by denoising from Gaussian with conditional text. Next,
we directly generate the color image x̃ by passing it to the LDM decoder; meanwhile, we perform
another one-step denoising with z̃0 and send the resulting multi-scale features to the task head to
obtain the corresponding label ỹ.

The two perspectives reflect different usages of the integrated diffusion model while they are not
fully separated: performing generation can be treated as a process of denoise-and-predict for a noisy
image at timestep t = T ; predicting labels can be treated as a process of data generation conditioned
on a given latent vector z0. This special connection motivates the design of our Diff-2-in-1.

4 LEARNING MECHANISM OF DIFF-2-IN-1

To effectively leverage the generated multi-modal data for dense visual perception, we propose a
self-improving mechanism for our Diff-2-in-1 framework to make the discriminative and generative
processes interact with each other, as shown in Figure 2. The details are described as below.

4.1 WARM-UP STAGE

Since pretrained diffusion models are only designed for RGB generation, we need a warm-up stage
to activate the task head in Figure 2 for additional tasks. To achieve this, we train our integrated
diffusion model using its discriminative learning pipeline with all the original training data with loss

L =

N∑
i=1

Lsup(fθW(xi),yi), (3)
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Figure 3: Real data samples from
NYUv2 and synthesized samples gen-
erated from Gaussian noise. The distri-
bution of the generated data varies from
the real data distribution.
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Figure 4: In-distribution data generation using partial
noise. We generate in-distribution data by denoising
from a noisy image at timestep T with 0 < T < Tmax.
A larger T leads to greater diversity, whereas a smaller
T enhances the resemblance to the original distribution.

where Lsup is the supervised loss for our chosen discriminative task on the original paired training
data Dtrain = {xi,yi}Ni=1. We obtain a set of parameter weights θW after this warm-up stage.

4.2 DATA GENERATION

Many approaches (Feng et al., 2023; Burg et al., 2023) that use diffusion models for data augmenta-
tion generate data from Gaussian noise as discussed in Section 3.2. However, as shown in Figure 3,
the synthetic samples generated from Gaussian noise have a non-negligible distribution shift from
the original training data, posing huge obstacles to utilizing the generated data for boosting the dis-
criminative task performance. To narrow down the domain gap between the generated data and
original data, inspired by SDEdit (Meng et al., 2022) and DA-Fusion (Trabucco et al., 2024), we use
the inherent diffusion-denoising mechanism to control the data generation process.

Concretely, we add noise to the latent zi of an image xi from the training set using Equation 1 at a
timestep T satisfying 0 < T < Tmax, where Tmax is the maximum timestep in the training process of
diffusion models (Tmax = 1000 for all our experiments). This process partially corrupts the image
with noise, yet maintains a degree of the original content, as depicted in the first row of Figure 4.
After denoising the noisy image with Equation 2 and decoding with the variational autoencoder, we
obtain the synthetic image x̃i with different content but a relatively small domain gap, as shown in
the second row of Figure 4. At the same time, we can obtain the prediction ỹi which is decoded from
the task head of the integrated diffusion model. As shown in the third row of Figure 4, the generated
annotations (surface normal as an example) well match the generated RGB images. The timestep
T , representing the noise level, acts as a modulator, balancing the diversity of the generated samples
and the fidelity to the in-distribution data: higher noise levels lead to greater diversity, whereas lower
levels enhance the resemblance to the original distribution.

4.3 SELF-IMPROVING STAGE

While synthetic multi-modal data typically demonstrates high visual fidelity, its direct utility for dis-
criminative learning remains uncertain. To more effectively utilize the generated multi-modal data,
we propose a self-improving mechanism inspired by the mean teacher learning system (Tarvainen &
Valpola, 2017). As shown in Figure 2, our self-improving mechanism introduces the following two
sets of parameters, both are initialized with θW, to iteratively perform the self-improvement for both
generative and discriminative learning. The functions of these two sets of parameters are elaborated
as follows.
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Model Training Samples 11.25◦ (↑) 22.5◦ (↑) 30◦ (↑) Mean (↓) Median (↓) RMSE (↓)
SkipNet (Bansal et al., 2016) 795 47.9 70.0 77.8 19.8 12.0 28.2
GeoNet (Qi et al., 2018) 30,816 48.4 71.5 79.5 19.0 11.8 26.9
PAP (Zhang et al., 2019) 12,795 48.8 72.2 79.8 18.6 11.7 25.5
GeoNet++ (Qi et al., 2022) 30,816 50.2 73.2 80.7 18.5 11.2 26.7
Bae et al. (2021) 30,816 62.2 79.3 85.2 14.9 7.5 23.5
Bae et al. (2021) 795 56.6 76.8 83.0 17.2 9.3 26.6
GNA on Bae et al. 795 56.4 76.7 83.0 17.3 9.3 26.7
DA-Fusion (Trabucco et al., 2024) on Bae et al. 795 58.1 77.5 83.6 16.8 8.9 26.1
Diff-2-in-1 on Bae et al. (Ours) 795 67.4 83.4 88.2 13.2 6.5 22.0
iDisc (Piccinelli et al., 2023) 30,816 63.8 79.8 85.6 14.6 7.3 22.8
iDisc (Piccinelli et al., 2023) 795 57.3 76.4 82.9 17.8 8.8 26.4
GNA on iDisc 795 56.9 76.2 82.4 18.1 8.9 26.7
DA-Fusion (Trabucco et al., 2024) on iDisc 795 58.7 78.3 83.4 17.3 8.6 26.2
Diff-2-in-1 on iDisc (Ours) 795 68.7 83.7 88.4 12.7 6.0 21.6

Table 1: Surface normal evaluation on NYUv2 (Silberman et al., 2012; Ladicky et al., 2014). When
applying our Diff-2-in-1 on top of state-of-the-art baselines, we achieve consistently and signifi-
cantly better performance with notably fewer training data, demonstrating the advantages of data
efficiency from our integrated diffusion model. Additionally, Diff-2-in-1 outperforms augmentation
methods GNA and DA-Fusion, proving the usefulness of the multi-modal data generated by our
pipeline, and the effectiveness of our self-improving mechanism in utilizing synthetic data.

Model mIoU (↑)
Swin-L (Liu et al., 2021b) 52.1
ConvNeXt-L (Liu et al., 2022) 53.2
ConvNeXt-XL (Liu et al., 2022) 53.6
MAE-ViT-L/16 (He et al., 2022) 53.6
CLIP-ViT-B (Rao et al., 2022) 50.6
VPD (Zhao et al., 2023) 53.7
DA-Fusion (Trabucco et al., 2024) on VPD 54.0
Diff-2-in-1 on VPD (Ours) 54.5

Table 2: Comparison with diffusion-based segmentation method VPD (Zhao et al., 2023). The other
baselines follow the setting of VPD, which utilize features from supervised pretraining (Liu et al.,
2021b; 2022), self-supervised pretraining (He et al., 2022), and visual-language pretraining (Rao
et al., 2022) combined with a learnable segmentation head (Xiao et al., 2018). Our proposed Diff-2-
in-1 further improves the performance of the diffusion-based VPD model.

Data creation network (θC) is used to create samples through the generative process within our
integrated diffusion model. During every iteration, for a batch of m real paired data {(xi,yi)}mi=1,
we additionally generate n paired samples {(x̃i, ỹi)}ni=1 with θC following the data creation scheme
described in Section 4.2. Both real and synthetic data are used for data exploitation.

Data exploitation network (θE) is used for exploring the parameter space by exploiting both the
original and the synthetic data samples to learn the discriminative task. With those m+ n samples,
θE is updated via the discriminative loss:

L =

m∑
i=1

Lsup(fθE(xi),yi) +

n∑
i=1

Lsyn(fθE(x̃i), ỹi), (4)

where Lsyn is the loss term for synthetic data for which we regard the generated annotation ỹi as the
ground truth. It has the same format as the supervised loss Lsup.

Feedback from data exploitation: EMA optimization. The additional generated data from θC
facilitate the discriminative learning of θE. To further promote the interaction of the two sets of
parameters within the integrated diffusion model, θE provides θC with gradient guidance as the
feedback in response via the exponential moving average (EMA) strategy:

θC ← αθC + (1− α)θE, (5)

where α ∈ [0, 1) is a momentum hyperparameter that is usually set to close to 1. A large α maintains
the overall quality of the generated data, preventing θC from getting distracted by the inevitable
inferior data. With the feedback from θE to θC, the generated multi-modal data further get refined,
in turn providing higher-quality and more reliable data back to θE to achieve a self-improving cycle.

After the self-improvement, only one set of parameter, θC, is used to perform both generative and
discriminative tasks during inference. The parameters in the diffusion model are kept frozen in
default settings unless otherwise specified, allowing more flexibility and lightweight finetuning with
less burden for the computational overhead.
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Model Semseg Depth Normal
mIoU (↑) RMSE (↓) mErr (↓)

Cross-stitch (Misra et al., 2016) 36.34 0.6290 20.88
PAP (Zhang et al., 2019) 36.72 0.6178 20.82
PSD (Zhou et al., 2020) 36.69 0.6246 20.87
PAD-Net (Xu et al., 2018) 36.61 0.6270 20.85
NDDR-CNN (Gao et al., 2019) 36.72 0.6288 20.89
MTI-Net (Vandenhende et al., 2020) 45.97 0.5365 20.27
ATRC (Bruggemann et al., 2021) 46.33 0.5363 20.18
DeMT (Xu et al., 2023c) 51.50 0.5474 20.02
MQTransformer (Xu et al., 2023b) 49.18 0.5785 20.81
DeMT (Xu et al., 2023c) 51.50 0.5474 20.02
InvPT (Ye & Xu, 2022) 53.56 0.5183 19.04
DA-Fusion (Trabucco et al., 2024) on InvPT 53.70 0.5167 18.81
Diff-2-in-1 on InvPT (Ours) 54.71 0.5015 18.60
TaskPrompter (Ye & Xu, 2023) 55.30 0.5152 18.47
DA-Fusion (Trabucco et al., 2024) on TaskPrompter 55.13 0.5065 18.15
Diff-2-in-1 on TaskPrompter (Ours) 55.73 0.5041 17.91

Table 3: Comparison with state-of-the-art methods on the multi-task NYUD-MT (Silberman et al.,
2012) benchmark. Our Diff-2-in-1 brings additional performance gain to the state-of-the-arts.

Model Semseg Parsing Saliency Normal
mIoU (↑) mIoU (↑) maxF (↑) mErr (↓)

ASTMT (Maninis et al., 2019) 68.00 61.10 65.70 14.70
PAD-Net (Xu et al., 2018) 53.60 59.60 65.80 15.30
MTI-Net (Vandenhende et al., 2020) 61.70 60.18 84.78 14.73
ATRC-ASPP (Bruggemann et al., 2021) 63.60 60.23 83.91 14.30
ATRC-BMTAS (Bruggemann et al., 2021) 67.67 62.93 82.29 14.24
MQTransformer (Xu et al., 2023b) 71.25 60.11 84.05 14.74
DeMT (Xu et al., 2023c) 75.33 63.11 83.42 14.54
InvPT (Ye & Xu, 2022) 79.03 67.61 84.81 14.15
DA-Fusion (Trabucco et al., 2024) on InvPT 79.33 68.45 84.45 14.04
Diff-2-in-1 on InvPT (Ours) 80.36 69.55 84.64 13.89
TaskPrompter (Ye & Xu, 2023) 80.89 68.89 84.83 13.72
DA-Fusion (Trabucco et al., 2024) on TaskPrompter 80.81 69.23 84.47 13.70
Diff-2-in-1 on TaskPrompter (Ours) 80.93 69.73 84.35 13.64

Table 4: Comparison on the multi-task PASCAL-Context (Mottaghi et al., 2014) benchmark.
Equipped with our Diff-2-in-1, the state-of-the-art methods reach an overall better performance.

5 EXPERIMENTAL EVALUATION

5.1 EVALUATION SETUP

We first evaluate our proposed Diff-2-in-1 in the single-task settings with surface normal estimation
and semantic segmentation as targets. Next, we apply Diff-2-in-1 in multi-task settings of NYUD-
MT (Silberman et al., 2012) and PASCAL-Context (Mottaghi et al., 2014) to show that it can provide
universal benefit for more tasks simultaneously.

Datasets and metrics. We evaluate surface normal estimation on the NYUv2 (Silberman et al.,
2012; Ladicky et al., 2014) dataset. Different from previous methods that leverage additional raw
data for training, we only use the 795 training samples. We include the number of training samples
for each method in Table 1 for reference. Following Bae et al. (2021) and iDisc (Piccinelli et al.,
2023), we adopt 11.25◦, 22.5◦, 30◦ to measure the percentage of pixels with lower angle error than
the corresponding thresholds. We also report the mean/median angle error and the root mean square
error (RMSE) of all pixels. We evaluate semantic segmentation on the ADE20K (Zhou et al., 2017)
dataset and use mean Intersection-over-Union (mIoU) as the metric. For multi-task evaluations,
NYUD-MT spans across three tasks including semantic segmentation, monocular depth estimation,
and surface normal estimation; PASCAL-Context takes semantic segmentation, human parsing,
saliency detection, and surface normal estimation for evaluation. We adopt mIoU for semantic seg-
mentation and human parsing, RMSE for monocular depth estimation, maximal F-measure (maxF)
for saliency detection, and mean error (mErr) for surface normal estimation, following the same
standard evaluation schemes (Misra et al., 2016; Zhang et al., 2019; Zhou et al., 2020; Xu et al.,
2018; Gao et al., 2019; Vandenhende et al., 2020; Bruggemann et al., 2021; Xu et al., 2023b; Mani-
nis et al., 2019; Xu et al., 2023c; Ye & Xu, 2022; 2023).

Key implementation details. To speed up training, instead of creating the paired data on the fly
which takes significantly longer time due to denoising, we pre-synthesize a certain number of RGB
images and later use θC to produce corresponding labels during the self-improving stage. More
details about datasets, baselines, and implementations are included in Section A in the appendix.
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Model T 11.25◦ (↑) 22.5◦ (↑) 30◦ (↑) Mean (↓) Median (↓) RMSE (↓)

Diff-2-in-1 on Bae et al. (2021)
300 67.2 83.3 88.1 13.3 6.6 22.1
600 67.4 83.4 88.2 13.2 6.5 22.0
800 67.3 83.3 88.1 13.3 6.6 22.1

Diff-2-in-1 on iDisc (Piccinelli et al., 2023)
300 68.6 83.6 88.4 12.8 6.0 21.6
600 68.7 83.7 88.4 12.7 6.0 21.6
800 68.5 83.6 88.3 12.8 6.0 21.6

Table 5: Ablation study on different timesteps T during the data generation process within Diff-2-
in-1. A medium timestep T = 600 achieves the best performance, but overall Diff-2-in-1 is robust
to different choices of T .

Bae et al.

Ours

Image

Ground Truth

Figure 5: Qualitative results on the surface normal prediction task of NYUv2 (Silberman et al.,
2012; Ladicky et al., 2014). Our proposed Diff-2-in-1 outperforms the baseline with more accurate
surface normal estimations, indicating that our integrated diffusion-based models excel at handling
discriminative tasks. The black regions in the ground truth visualizations are invalid regions.

5.2 DOWNSTREAM TASK EVALUATION

Surface normal estimation. We build our Diff-2-in-1 on two state-of-the-art surface normal pre-
diction frameworks: Bae et al. (2021) and iDisc (Piccinelli et al., 2023). Our Diff-2-in-1 creates
500 synthetic pairs with timestep T = 600 (refer to Section 4.2). Besides conventional methods,
we include two additional baselines with diffusion-based data augmentation. DA-Fusion (Trabucco
et al., 2024) generates in-distribution RGB images with labels sharing a similar spirit as us, but
only focuses on improving image classification task. To adapt it for dense pixel prediction, we
adopt an off-the-shelf captioning strategy (Li et al., 2023b) to replace its textual inversion and apply
the pretrained instantiated model to get the pixelwise annotations for the generated images. Af-
terward, the generated RGB-annotation pairs are utilized in the same way as DA-Fusion originally
uses RGB-class pairs to boost the performance. Gaussian Noise Augmentation (GNA) is a self-
constructed baseline that generates additional data by denoising from Gaussian noise, then applies
the self-improving strategy to utilize the generated data.

With the results shown in Table 1 and Figure 5, we observe: (1) When applying our Diff-2-in-1 on
top of the state-of-the-art baselines, we achieve significantly better performance with notably fewer
training data, demonstrating the great advantages of data efficiency from an integrated diffusion
model. (2) Our Diff-2-in-1 has better performance than other augmentation methods like GNA and
DA-Fusion, showcasing the usefulness of the multi-modal data generated by our pipeline, and the
effectiveness of synthetic data utilization with our self-improving mechanism. (3) Our Diff-2-in-1
is a general design that can universally bring benefits to different discriminative backbones.

Semantic segmentation. We instantiate our Diff-2-in-1 on VPD (Zhao et al., 2023), a diffusion-
based segmentation model. For self-improving, we synthesize one sample for each image in the
training set. With the results shown in Table 2, we observe that the diffusion-based VPD can benefit
from our paradigm by effectively performing self-improvement to leverage the generated samples.

Multi-task evaluations. We apply our Diff-2-in-1 on two state-of-the-art multi-task methods, In-
vPT (Ye & Xu, 2022) and TaskPrompter (Ye & Xu, 2023). A total of 500 synthetic samples are

8
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Model Source→ Target 11.25◦ (↑) 22.5◦ (↑) 30◦ (↑) Mean (↓) Median (↓) RMSE (↓)
Bae et al. (2021) ScanNet→ NYUv2 59.0 77.5 83.7 16.0 8.4 24.7

NYUv2→ NYUv2 62.2 79.3 85.2 14.9 7.5 23.5
Diff-2-in-1 on Bae et al. (2021)(Ours) ScanNet→ NYUv2 63.0 80.4 86.0 14.6 7.3 23.3

Table 6: Cross-domain evaluation on the surface normal estimation task of NYUv2 (Silberman et al.,
2012; Ladicky et al., 2014). The performance of our method trained on ScanNet even outperforms
the baseline Bae et al. trained on NYUv2, suggesting our generalizability to unseen datasets.
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Figure 6: Ablation study on different data settings with our
Diff-2-in-1. Green line: Performance of the baseline VPD.
Yellow line: Performance with our Diff-2-in-1. Gray bars:
Improvement in each data setting. Our Diff-2-in-1 could
consistently bring performance gain for all different data
settings with more benefits in mid-range data settings.

RGB

Depth

Normal

Semseg

Figure 7: Multi-modal samples gen-
erated by Diff-2-in-1 on NYUD-
MT (Silberman et al., 2012). Our
method can generate high-quality
RGB images and precise multi-
modal annotations, further facilitat-
ing discriminative learning via our
self-improvement.

generated for NYUD-MT following the surface normal evaluation. For PASCAL-Context, one sam-
ple is synthesized for each image in the training set with our Diff-2-in-1. The comparisons on
NYUD-MT and PASCAL-Context are shown in Table 3 and Table 4, respectively. The results val-
idate that our Diff-2-in-1 is a versatile design that can elevate the performance of a wide variety of
vision tasks.

5.3 ABLATION STUDY

In this section, we offer a better understanding of the superiority of our Diff-2-in-1 by answering the
three primary questions. More ablations are included in Section B in the appendix.

How does timestep T in data creation affect final performance? As illustrated in Figure 4, the
timestep T balances the trade-off between the content variation and domain shift of the generated
data. We ablate different timesteps T ∈ {300, 600, 800} in the experiments on surface normal
instantiated on Bae et al. (2021) and iDisc (Piccinelli et al., 2023). The results in Table 5 indicate
that we achieve the best performance when T = 600, with a balance of data diversity and quality.
Nevertheless, it is noteworthy that our performance is generally robust to different choices of T .

How robust is Diff-2-in-1 for domain shift? We perform the cross-domain evaluation to show
that our Diff-2-in-1 has strong generalizability. We train both the baseline Bae et al. (2021) and
our Diff-2-in-1 on the ScanNet (Dai et al., 2017) dataset for the surface normal estimation task,
and evaluate the performance on the test set of NYUv2 (Silberman et al., 2012; Ladicky et al.,
2014). Interestingly, with the results shown in Table 6, we find that the performance of our method
trained on ScanNet even outperforms the baseline Bae et al. trained on NYUv2, suggesting the
generalizability of our method to unseen datasets and its great potential in real practice.

How Diff-2-in-1 is helpful in different data settings? We ablate different settings when the num-
ber of available training samples for Diff-2-in-1 varies to investigate whether it is more helpful in
data abundance or data shortage scenarios. We run this ablation for semantic segmentation on the
ADE20K dataset: we randomly select 10% (2K) to 90% (18K) samples with 10% (2K) intervals in
between, assuming that Diff-2-in-1 only gets access to partial data. In each setting, one additional
sample for each image is generated using our data generation scheme.
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Setting 11.25◦ (↑) 22.5◦ (↑) 30◦ (↑) Mean (↓) Median (↓) RMSE (↓)
GT Only 56.6 76.8 83.0 17.2 9.3 26.6
GT + Syn (Before Self-improving) 57.5 77.1 83.3 17.1 9.1 26.5
GT + Syn (After Self-improving) 57.8 77.1 83.3 17.0 9.0 26.5

Table 7: Comparison between two data settings. GT Only: Use real samples to train Bae et al. (2021)
until converges. GT + Syn: Further finetune the converged model with real and synthetic samples.
Synthetic data further boost the performance of a converged model, demonstrating their realism.

Backbone Setting 11.25◦ (↑) 22.5◦ (↑) 30◦ (↑) Mean (↓) Median (↓) RMSE (↓)
Bae et al. (2021) Synthetic 67.4 83.4 88.2 13.2 6.5 22.0

Real 67.5 83.5 88.2 13.2 6.5 22.0

iDisc (Piccinelli et al., 2023) Synthetic 68.7 83.7 88.4 12.7 6.0 21.6
Real 68.7 83.7 88.4 12.8 6.0 21.5

Table 8: Comparison between using generated samples and unlabeled real images in NYUv2 surface
normal estimation. Comparable performance proves the premium quality of our generated data.

With the results shown in Figure 6, we offer the following observations: (1) Diff-2-in-1 consistently
boosts the performance under all settings, with improvement ranging from 0.8 to 1.4 in mIoU,
indicating the effectiveness and robustness of our method. (2) Diff-2-in-1 provides more benefits in
the data settings from 40% (8K) to 70% (14K). We analyze the reasons including that when the data
are scarce, it is relatively hard to train a good model via Equation 3 to provide high-quality multi-
modal synthetic data for self-improvement. On the other hand, when the data are already adequate,
there is less demand for more diverse data. Under both scenarios, the benefit of our method is still
noticeable yet less significant.

5.4 SYNTHETIC DATA EVALUATION

In addition to Figure 4, we visualize samples generated by our method on NYUD-MT (Silberman
et al., 2012) in Figure 7. Diff-2-in-1 is able to generate high-quality RGB images and precise
multi-modal annotations, further facilitating discriminative learning via our self-improvement. More
qualitative visualizations can be found in Section C in the appendix. Below, we additionally examine
the realism and usefulness of the generated data.

Generated samples serving as data augmentation. We select surface normal estimation as the
target task and train an external discriminative model, Bae et al. (2021), under the following two
settings: (1) only use the original 795 samples to train the model until convergence (GT Only); and
(2) finetune the converged model in GT Only using the mixture of original samples and generated
samples from our Diff-2-in-1 before the self-improving stage (GT + Syn). For (2), we generate 500
synthetic samples with T = 600 and naively merge them together with the original samples. We
report two variants of setting (2) with generated samples before or after the self-improving stage in
Table 7. We have the following observations: firstly, the synthetic samples are capable of boosting
the performance of a converged model, indicating that the generated RGB and annotation maps are
consistent. Moreover, the generated multi-modal data get refined during the self-improving stage,
verifying the effectiveness of our method towards generation.

Synthetic data V.S. real data. In the surface normal task, we replace the 500 generated samples
with 500 additional real captured images from NYUv2 raw video clips. The annotations of them are
produced by our Diff-2-in-1 on the fly. Then, we use the same training strategy to train Diff-2-in-1.
As shown in Table 8, using our generated data achieves comparable performance to using the real
captured data, proving the premium quality of the synthetic data.

6 CONCLUSION

In this paper, we bridge generative and discriminative learning by proposing an integrated diffusion-
based framework Diff-2-in-1. It enhances discriminative learning through the generative process by
creating diverse while faithful data, and gets the discriminative and generative processes to interplay
with each other using a self-improving learning mechanism. Extensive experiments demonstrate its
superiority in various settings of discriminative tasks, and its ability to generate high-quality multi-
modal data characterized by both realism and usefulness. More discussions about limitations and
future work can be found in Section E in the appendix.
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CODE OF ETHICS

There is no obvious negative societal impact from our work. The potential negative impact is likely
the same as other research on data generation with the risk of digital forgery.

REPRODUCIBILITY STATEMENT

We provide extensive descriptions of the implementation details in Section A in the appendix. Also,
we will release the code upon acceptance.
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In the appendix, we first include additional implementation details in Section A. Then, in Section B,
we perform additional ablations on different implementation choices of text prompters, timesteps
to perform discriminative learning with Diff-2-in-1, etc., to provide more informative guidelines
about how to apply our Diff-2-in-1 on discriminative tasks. Afterwards, we provide additional
qualitative results in Section C, including comparisons of the performance on discriminative tasks
and the multi-modal generation quality of our proposed Diff-2-in-1. Moreover, we include more
experimental comparisons with diffusion-based methods (Ke et al., 2024) which repurpose text-to-
image diffusion models for discriminative perception, and more applications of our model on visual
perception tasks beyond dense perception in Section D. Finally, we present dicussions of limitations
and future work in Section E.

A IMPLEMENTATION DETAILS

A.1 ARCHITECTURE DETAILS

Feature extraction from diffusion models. We first describe how we extract features for down-
stream dense prediction tasks from the pretrained stable diffusion model (Rombach et al., 2022) in
our framework, which is generally applicable to all the model instantiations discussed below. We
take the latent vector obtained from the VAE encoder in stable diffusion as input for the denoising
network, followed by a one-step denoising to obtain the features. Since the denoising operation in
stable diffusion is realized by a U-Net (Ronneberger et al., 2015) module, multi-scale features can be
obtained through the one-step denoising process for a given image. As we use the publicly released
stable diffusion pretrained weight Stable Diffusion v1-5 which is finetuned on 512× 512
resolution, the input images are also resized to 512 × 512 before being processed by our model.
Therefore, the raw multi-scale features {f raw

i }3i=0 extracted from our model are in the spatial reso-
lutions of 8× 8, 16× 16, 32× 32, and 64× 64. Following Li et al. (2023c), for each pair of features
f raw
i−1, f

raw
i (1 ≤ i ≤ 3) with adjacent resolutions, we upsample the lower-resolution feature to the

higher-resolution one, concatenating them, and processing with a convolutional layer:

f proc
i = Conv(Up(f raw

i−1), f
raw
i ). (6)

Then, we get the processed multi-scale features {f proc
i }3i=1 which are further used for fitting into the

specific network architectures when we build our Diff-2-in-1 on existing works.

Surface normal estimation. For both Bae et al. (2021) and iDisc (Piccinelli et al., 2023), the surface
normal maps are decoded from multi-scale features extracted by their original encoder. When in-
stantiating our Diff-2-in-1 upon them, we replace their original encoders with the integrated model
described above. If the decoder requires a feature map with a spatial resolution unavailable in
{f proc

i }3i=1, we use a similar strategy as Equation 6 to obtain the feature of a new spatial resolu-
tion. If the features required are of higher resolution than the existing features, then we increase the
resolution range of the features by

f proc
i+1 = Conv(Up(f proc

i ),Deconv(f proc
i )), (7)

where the upsampling and deconvolutional (Noh et al., 2015) layers increase the feature size by
the same ratio. For obtaining lower resolution features, we simply replace the upsampling and de-
convolutional layers in Equation 7 with downsampling and convolutional layers. The upsampling or
downsampling factor in Equation 7 is set to 2. Moreover, we can iteratively perform Equation 7 mul-
tiple times if the required features are more than twice larger or smaller than the features {f proc

i }3i=1
from the pretrained stable diffusion model.

Semantic segmentation. As VPD (Zhao et al., 2023) also builds upon stable diffusion (Rombach
et al., 2022), we directly apply the self-improving algorithm in our Diff-2-in-1 on VPD to boost its
performance.

Multi-task learning. The decoder of InvPT (Ye & Xu, 2022) requires multi-scale features. There-
fore, we use the same strategy as the surface normal estimation methods (Bae et al., 2021; Piccinelli
et al., 2023) to provide the decoder with the required features. The decoder of TaskPrompter (Ye &
Xu, 2023) only requires single-scale features. Therefore, we use Equation 7 to resize all the features
in {f proc

i }3i=1 to this specific scale. As a result, the multi-scale knowledge extracted from stable diffu-
sion can be injected into the TaskPrompter framework. Additionally, both InvPT and TaskPrompter
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ClipCap

BLIP-2

Image

Figure A: Captions generated by ClipCap (Mokady et al., 2021) and BLIP-2 (Li et al., 2023b) on the
NYUv2 (Silberman et al., 2012) dataset. The generated captions using these two off-the-shelf image
captioning models not only have similar semantic meanings, but also share similar text formats.

adopt pretrained ViT (Dosovitskiy et al., 2021) or Swin Transformer (Liu et al., 2021b) as their en-
coders. To better utilize the prior knowledge within the original encoders, we merge the knowledge
from the two sources by adding the features from stable diffusion to their original encoders.

Summary. From the instantiations above, we have the following guidelines for converting existing
methods to the integrated diffusion-based models in our Diff-2-in-1: (1) By default, we replace the
encoders in the original models with the stable diffusion feature extractor; (2) If the features required
by the original decoder is unavailable in the multi-scale features, we can use Equation 7 to expand
the range of the multi-scale features; (3) If the original model design contains a pretrained encoder,
we consider merging the knowledge of the stable diffusion model and the pretrained encoder.

A.2 TEXT PROMPTS

Our Diff-2-in-1 uses the generative nature of diffusion models to create samples, which requires
text prompts as conditions during the denoising process to generate high-quality samples. However,
the text prompts are not always available in our target datasets. To solve this challenge, we use the
off-the-shelf image captioning model BLIP-2 (Li et al., 2023b) to generate text descriptions for each
image. The generated text descriptions serve as conditions when performing denoising to generate
new data samples with our Diff-2-in-1. We further show in the ablation study in Section B that the
choice of the image captioning model has little influence on the performance.

A.3 ADDITIONAL TRAINING DETAILS

In the warm-up stage, we follow the same hyperparameters of the learning rate, optimizer, and
training epochs of the original works that our Diff-2-in-1 builds on. In the self-improving stage,
the exploitation parameter θE continues the same training scheme in the warm-up stage, while the
creation parameter θC updates once when θE consumes 40 samples. Thus, the interval of the EMA
update for θC depends on the batch size used in the self-improving stage. For the surface normal
estimation and semantic segmentation tasks, we adopt a batch size of 4, so the EMA update happens
every 10 iterations. For the multi-task frameworks, the batch size is 1, so we perform the EMA
update every 40 iterations. The momentum hyperparameter α for the EMA update is set as 0.999
for multi-task learning on PASCAL-Context (Mottaghi et al., 2014), and 0.998 for the rest of the
task settings. During the whole training process, we freeze the parameters in diffusion models by
default, and only the parameters in the lightweight task head is tunable. The only exception in our
experiments is when we build upon VPD for semantic segmentation, we follow the same setting as
VPD to also allow the diffusion parameters to be trainable for fair comparison.

B ADDITIONAL ABLATION STUDY

What text prompts to use for the integrated diffusion model? As mentioned in Section A.2,
we adopt BLIP-2 to generate text prompts for creating new samples based on the reference images.
What if the text prompters are less powerful? We show that different choices of image captioning

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Model Caption 11.25◦ (↑) 22.5◦ (↑) 30◦ (↑) Mean (↓) Median (↓) RMSE (↓)

Diff-2-in-1 on Bae et al. (2021)
None 66.0 83.0 88.0 13.6 7.0 22.0

ClipCap (Mokady et al., 2021) 67.3 83.4 88.2 13.2 6.5 22.0
BLIP-2 (Li et al., 2023b) 67.4 83.4 88.2 13.2 6.5 22.0

Diff-2-in-1 on iDisc (Piccinelli et al., 2023)
None 67.2 83.4 88.1 13.0 6.6 21.7

ClipCap (Mokady et al., 2021) 68.7 83.7 88.4 12.7 6.0 21.6
BLIP-2 (Li et al., 2023b) 68.7 83.7 88.4 12.7 6.0 21.6

Table A: Ablation study on using text prompts from different off-the-shelf image captioning models
ClipCap (Mokady et al., 2021) and BLIP-2 (Li et al., 2023b) to generate samples with Diff-2-in-
1. The evaluation is conducted on the surface normal estimation task on the NYUv2 (Silberman
et al., 2012; Ladicky et al., 2014) dataset. Our Diff-2-in-1 is robust to different choices of image
captioning models. Nevertheless, it is necessary to have an image captioning model to provide text
prompts in the denoising process during data generation.

Setting 11.25◦ (↑) 22.5◦ (↑) 30◦ (↑) Mean (↓) Median (↓) RMSE (↓)
Direct Finetuning 58.0 76.5 82.4 16.9 8.7 26.5
LoRA Finetuning 64.8 82.0 87.4 14.1 7.3 22.8
Diff-2-in-1 (Ours) 67.4 83.4 88.2 13.2 6.5 22.0

Table B: Ablation study on strategies to finetune the diffusion backbone. Direct Finetuning: Directly
finetune the denoising U-Net. LoRA Finetuning: Adopt LoRA (Hu et al., 2022) to finetune the U-
Net. Their unsatisfactory results indicate that the features extracted from the finetuned network are
less informative and have worse generalizability. The information loss introduced by finetuning is
inevitable even if using the parameter-efficient finetuning technique LoRA to mitigate forgetting.
In contrast, our diffusion-denoising strategy injects external knowledge from the pretrained stable
diffusion to the samples, without risks of forgetting the discriminative ability of diffusion models.

models have a marginal influence on the performance of our Diff-2-in-1. We first show the captions
generated by BLIP-2 and another relatively weaker model ClipCap (Mokady et al., 2021) in Fig-
ure A. The captions generated by these two off-the-shelf models have similar semantic meanings,
as well as sharing similar formats of “A [Place] with [Object 1], [Object 2], ..., [Object N-1], and
[Object N].” We further evaluate the performance of using the text prompts from ClipCap and BLIP-
2 to generate synthetic samples for the self-improving learning system in Diff-2-in-1. The results
are shown in Table A. We can observe that once again there is no large difference between the two
variants and both of them greatly outperform the baseline, demonstrating that our Diff-2-in-1 is ro-
bust to different text prompters used during the denoising process for data generation. Nonetheless,
it does not indicate that the image captioning model is dispensable. If we completely get rid of the
image captioning model and do not use text as the condition during denoising (None for Caption in
Table A), we could observe an evident drop in the performance on discriminative tasks.

Should we finetune the diffusion backbone? As shown in Figure 3, if the generation process of our
integrated diffusion model starts from Gaussian noise, the generated samples will have an evident
domain shift from the original distribution. Therefore, we adopt the halfway diffusion-denoising
mechanism to synthesize in-distribution data. Another potential solution to overcome the domain
shift issue is to finetune the stable diffusion backbone. We test this setting with two finetuning
strategies for a comprehensive ablation: (1) directly finetune all the parameters of the denoising
U-Net (Direct Finetuning); (2) adopt parameter-efficient finetuning strategy Low-Rank Adaptation
(LoRA) (Hu et al., 2022) on the denoising modules of stable diffusion (LoRA Finetuning). We con-
duct the experiments on the surface normal task on the NYUv2 dataset with Bae et al. (2021) as the
task head. The results are shown in Table B. The inferior performance of using the finetuned sta-
ble diffusion indicates that the diffusion-denoising data generation scheme and the self-improving
learning system in our Diff-2-in-1 are essential. One factor for the unsatisfactory performance of us-
ing finetuning is that the finetuning process incurs a loss in the generalization capability, especially
during finetuning with limited data (e.g., 795 samples on NYUv2), making the features extracted
from the stable diffusion model less informative for decoding visual task predictions. In compari-
son, our proposed diffusion-denoising data generation scheme injects external knowledge from the
pretrained stable diffusion model to the samples in the training data, without risks of knowledge
forgetting with respect to its discriminative ability.

What timestep T to choose for discriminative feature extraction? In our current experiments,
we follow existing works ODISE (Xu et al., 2023a) and VPD (Zhao et al., 2023) to adopt T = 0 as
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T 11.25◦ (↑) 22.5◦ (↑) 30◦ (↑) Mean (↓) Median (↓) RMSE (↓)
0 67.4 83.4 88.2 13.2 6.5 22.0

50 67.5 83.3 88.1 13.2 6.5 22.0
100 66.9 82.6 87.5 13.5 6.5 22.4
150 65.5 81.6 86.7 14.0 6.8 23.0

Table C: Ablation study on extracting features from the pretrained stable diffusion model with differ-
ent timesteps T on NYUv2 surface normal evaluation. Our Diff-2-in-1 achieves better performance
with smaller T in this task setting.

α 11.25◦ (↑) 22.5◦ (↑) 30◦ (↑) Mean (↓) Median (↓) RMSE (↓)
N/A (Baseline) 62.2 79.3 85.2 14.9 7.5 23.5
0.99 67.1 83.2 88.1 13.4 6.6 22.1
0.993 67.3 83.4 88.2 13.3 6.6 22.0
0.996 67.3 83.4 88.2 13.3 6.6 22.0
0.998 67.4 83.4 88.2 13.2 6.5 22.0
0.999 67.1 83.3 88.1 13.3 6.7 22.1

Table D: Ablation study on different α for the EMA update within Diff-2-in-1. α = 0.998 reaches
the best performance in this setting of surface normal prediction with Bae et al. (2021) on NYUv2.
Nonetheless, our Diff-2-in-1 is robust to different α within a broad range.

the timestep for feature extraction from the pretrained stable diffusion model. We ablate different
timesteps T for extracting features from stable diffusion in Table C. The performance is generally
satisfactory with relatively small timesteps T , which add little noise to the clean latents before
extracting features from denoising U-Net. We do not attentively optimize for the best T and it is
likely that a better T may exist in other settings which can further improve the performance of our
Diff-2-in-1. We leave the exploration of optimal T for different tasks as future work.

How to choose hyperparameters for the EMA update? We ablate the choice of α ∈ [0.99, 0.999]
for the EMA update according to guidelines in Liu et al. (2021a). The results with Bae et al. (2021)
on the NYUv2 (Silberman et al., 2012; Ladicky et al., 2014) surface normal task are shown in
Table D where α = 0.998 achieves the best performance. Nevertheless, the performance of our
Diff-2-in-1 is robust to different choices of α within a broad range.

How important is the self-improving mechanism in Diff-2-in-1? The self-improving learning
mechanism is a key design in our framework. We ablate the usage of the self-improving stage in the
surface normal experiment instantiated on Bae et al. (2021) in Table E, where w/o self-improving
indicates that we discard our self-improving strategy, and instead mix the original and the gener-
ated samples to finetune the model after the warm-up stage. We observe that the self-improving
mechanism indeed further boosts the performance of the model by fostering an effective interaction
between the discriminative and generative components in our framework.

Setting 11.25◦ (↑) 22.5◦ (↑) 30◦ (↑) Mean (↓) Median (↓) RMSE (↓)
w/o Self-improving 65.2 82.4 87.5 14.0 7.2 22.7
Diff-2-in-1 (Ours) 67.4 83.4 88.2 13.2 6.5 22.0

Table E: Ablation study of the self-improving mechanism. The self-improving strategy further
boosts the performance of the model by fostering an effective interaction between the discrimi-
native and generative components in our framework.

C MORE VISUALIZATIONS

We provide more qualitative results from the following two aspects: (1) performance comparison
with state-of-the-art methods on discriminative tasks and (2) multi-modal data generation quality of
the synthetic samples from our Diff-2-in-1.
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Model 11.25◦ (↑) 22.5◦ (↑) 30◦ (↑) Mean (↓) Median (↓) RMSE (↓)
Marigold (Pretrain) 50.5 73.0 79.3 20.9 11.1 26.2

Marigold (SD) 48.7 76.8 84.0 18.1 11.5 25.8
Marigold (Finetune) 64.0 82.4 87.8 14.2 7.7 22.3

Diff-2-in-1 on Bae et al. (2021) (Ours) 67.4 83.4 88.2 13.2 6.5 22.0

Table F: Comparison with diffusion-based visual perception method Marigold (Ke et al., 2024) on
the NYUv2 surface normal benchmark. Our framework outperforms all three variants of Marigold,
indicating that our framework is a superior choice with limited data for finetuning.

C.1 COMPARISONS ON DISCRIMINATIVE TASKS

The qualitative comparisons of our Diff-2-in-1 and the baselines are shown in Figures B, C (surface
normal prediction) and D (multi-task). Our Diff-2-in-1 outperforms the baselines, demonstrating the
competence of our integrated diffusion-based model in the discriminative perspective.

C.2 DATA GENERATION QUALITY

We display the synthetic multi-modal data from our Diff-2-in-1 data creation framework in Fig-
ures E, F (RGB-normal pairs) and G, H (RGB and multiple annotations) to show that Diff-2-in-1
has powerful generation ability that is capable of generating high-quality and consistent samples.

D ADDITIONAL EXPERIMENTAL COMPARISONS

D.1 COMPARISON WITH MARIGOLD (KE ET AL., 2024).

As discussed in the related work, another line of work repurposes diffusion models for dense predic-
tion by finetuning the denoising network. We include additional comparisons with these diffusion-
based dense perception methods, empirically demonstrating that our framework is more flexible for
such tasks. We choose Marigold (Ke et al., 2024) as an example, due to its most relevance and most
complete codebase. We make comparisons with three variants of Marigold on the NYUv2 surface
normal estimation benchmarks. Marigold (Pretrain) is the released checkpoint that is trained on a
mixed large dataset excluding NYUv2. Marigold (SD) is obtained when we adopt the same training
setting as our framework, using the 795 training samples to train Marigold from the Stable Diffusion
checkpoint until convergence. Marigold (Finetune) is obtained by further finetuning the released
checkpoint with 795 training samples from NYUv2.

The comparison is shown in Table F. Notably, all three variants lagged behind our model, indicating
the effectiveness of our model design with the self-improving learning mechanism. Moreover, we
observe that Marigold gets inferior performance when adapted to a specific domain with a limited
amount of training data (795 samples). While finetuning from a well-trained model can help mitigate
this issue, it still does not work as well as our proposed method. The reason is that tuning these
diffusion-based perception models like Marigold, which require finetuning the denoising U-Net, is
computationally expensive. In comparison, our approach only requires training a lightweight task
head, which makes our framework more flexible and easier to train or fine-tune for new domains.

In addition, we report the comparison of the computational cost of our method and Marigold with a
batch of images of shape (2, 512, 512, 3) in Table G. Our framework is a more efficient and effective
solution compared with Marigold.

D.2 APPLICATION ON PERCEPTION TASKS BEYOND DENSE PERCEPTION.

Despite the focus of our work being dense perception tasks, which are a series of primary and impor-
tant tasks in computer vision, our framework is a general-purpose design that can be easily applied
to other visual perception tasks beyond dense prediction. We perform the following experiment on
the multi-task setting in a subset of Tiny-Taskonomy (Zamir et al., 2018) including the scene catego-
rization task which is beyond dense perception. The results in Table H validate that our framework
can also provide improvement on other types of perception tasks beyond dense pixel prediction.
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Metrics Training Time (s/iteration) (↓) Model Size (M) (↓) GPU Memory (GB) (↓)
Marigold 1.08 860 30

Diff-2-in-1 on Bae et al. (2021) (Ours) 0.28 96 10

Table G: Comparison of computational costs between our method and Marigold. The numbers are
reported by running a batch of images of shape (2, 512, 512, 3). Our framework is a more efficient
and effective solution compared with Marigold.

Model Categorization Semseg Depth Normal
Top-1 Acc. (↑) mIoU (↑) RMSE (↓) mErr (↓)

TaskPrompter 38.80 15.63 0.8350 28.87
Diff-2-in-1 on TaskPrompter (Ours) 39.67 16.61 0.8289 28.35

Table H: Comparison on Tiny-Taskonomy (Zamir et al., 2018). Our Diff-2-in-1 can also provide
improvement on other types of perception tasks beyond dense pixel prediction.

E DISCUSSIONS AND FUTURE WORK

Limitation. One major limitation of this work is that adopting diffusion models for data generation
is relatively time-consuming as diffusion models typically need multi-step denoising to produce
samples. To alleviate this shortcoming, current advancement on accelerating the inference process
of diffusion models (Zheng et al., 2023a; Lu et al., 2022; Yin et al., 2024; Liu et al., 2024b) can be
adopted to speed up the data generation process.

Future work. Looking ahead, the potential applications of this integrated diffusion model are vast.
Future research directions include extending this methodology to other types of tasks, such as 3D de-
tection, and refining and optimizing the Diff-2-in-1 framework such as a more efficient data creation
scheme and knowledge transfer to a new domain.

Bae et al.

Ours

Image

Ground Truth

Figure B: Qualitative results on the surface normal prediction task of NYUv2 (Silberman et al.,
2012; Ladicky et al., 2014). Our proposed Diff-2-in-1 outperforms the baseline with more accurate
surface normal estimations, indicating that our integrated diffusion-based models excel at handling
discriminative tasks. The black regions in the ground truth visualizations are invalid regions.
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Last one is 324
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Figure C: Qualitative results on the surface normal task of NYUv2 (Silberman et al., 2012; Ladicky
et al., 2014). Our proposed Diff-2-in-1 outperforms the baseline with more accurate surface normal
estimations, indicating that our integrated diffusion-based models excel at handling discriminative
tasks. The black regions in the ground truth visualizations are invalid regions.
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(a) Comparison on the NYUD-MT dataset
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(b) Comparison on the PASCAL-Context dataset

Figure D: Qualitative results on the multi-task datasets NYUD-MT (Silberman et al., 2012) and
PASCAL-Context (Mottaghi et al., 2014). Diff-2-in-1 has superior performance compared to the
baselines, demonstrating the effectiveness of our integrated diffusion-based model design. Zoom in
for the regions with bounding boxes to better see the comparison.
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Figure E: Synthetic samples from our method after the Diff-2-in-1 framework is trained on the
surface normal task of NYUv2 (Silberman et al., 2012; Ladicky et al., 2014). The odd rows are the
generated RGB images while the even rows are the generated surface normal maps. The model is
capable of generating diverse and high-fidelity images with the corresponding surface normal maps
matching the generated RGB images.
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Figure F: Synthetic samples from our method after the Diff-2-in-1 framework is trained on the
surface normal task of NYUv2 (Silberman et al., 2012; Ladicky et al., 2014). The odd rows are the
generated RGB images while the even rows are the generated surface normal maps. The model is
capable of generating diverse and high-fidelity images with the corresponding surface normal maps
matching the generated RGB images.
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Figure G: Synthetic samples from our method after the Diff-2-in-1 framework is trained on the multi-
task setting of NYUD-MT (Silberman et al., 2012). Each batch of samples contains four rows: RGB,
depth map, surface normal map, and semantic labels (from top to bottom). The generated samples
are of high quality with their multi-task annotations.
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Figure H: Synthetic samples from our method after the Diff-2-in-1 framework is trained on the
multi-task setting of PASCAL-Context (Mottaghi et al., 2014). Each batch of samples contains five
rows: RGB, semantic labels, human parsing labels, saliency map, and surface normal map (from top
to bottom). If the human parsing labels are all black, it means that there is no human in the generated
image. The generated samples are of high quality with their multi-task annotations.

27


	Introduction
	Related Work
	Integrated Diffusion Model: Diff-2-in-1
	Preliminary: Latent Diffusion Models
	An integrated Model Beyond RGB Generation

	Learning Mechanism of Diff-2-in-1
	Warm-up Stage
	Data Generation
	Self-improving Stage

	Experimental Evaluation
	Evaluation Setup
	Downstream Task Evaluation
	Ablation Study
	Synthetic Data Evaluation

	Conclusion
	Implementation Details
	Architecture Details
	Text Prompts
	Additional Training Details

	Additional Ablation Study
	More Visualizations
	Comparisons on Discriminative Tasks
	Data Generation Quality

	Additional Experimental Comparisons
	Comparison with Marigold ke2023repurposing.
	Application on perception tasks beyond dense perception.

	Discussions and Future Work

