Mosaic Augmentation for Text:
Cropping and Collaging as Cross-Domain Techniques

Anonymous ACL submission

Abstract

We present new visually inspired cropping and
collaging data augmentations for text. We test
how these augmentations impact data-scarce
scenarios over multiple NLP tasks: Name En-
tity Recognition, Extractive Question Answer-
ing and Abstractive Summarization. Ablation
studies show different prevailing reasons for
the augmentations’ effectiveness for each dif-
ferent task, but all benefit from our approach.
We achieve significant improvements over base-
lines, in particular for limited data use cases.

1 Introduction

Data augmentations are a set of techniques used to
generate additional data examples based on exist-
ing training sets, and are particularly useful when
the data source is scarce. These leverage data ma-
nipulations at character (Belinkov and Bisk, 2018),
word (Zhang et al., 2015) phrase (Shi et al., 2021),
or document (Shen et al., 2020) level.! Beyond
textual applications, data augmentation is widely
used in various fields of machine learning, includ-
ing computer vision (CV) (Shorten and Khoshgof-
taar, 2019) and audio processing (Park et al., 2019).
However, input-space augmentations tend to be
developed with a specific modality in mind (e.g.,
speech, vision, or text) and are generally applied
only within that domain.

In this work, we develop textual augmentations
inspired by concepts originally conceived in the vi-
sion domain, thus opening the door for a vast body
of literature and potential applications by adopting
methodologies across modalities. In particular, we
build upon Mosaic, a popular CV augmentation
introduced by (Bochkovskiy et al., 2020) and used
in various follow-up works (Hao and Zhili, 2020;
Jocher et al., 2020; Wei et al., 2020).

We rely extensively on two main ideas imple-
mented in Mosaic, namely cropping and collaging,

'See (Shorten et al., 2021), Dhole et al. (2021) and Bayer
et al. (2021) for recent surveys of data augmentations in NLP.
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Figure 1: Top: Mosaic augmentation for Named En-
tity Recognition. Using two data examples, we crop
random regions around labeled entities, then collage
them by concatenation. Bottom: cropping and collaging
augmentation visualization for images, Figure adapted
from (Takahashi et al., 2020)

as exemplified in Fig 1. We chose them for their
simplicity, intuitive articulation, their wide usage in
CV implementations and their ability to compose
with other augmentations.

We combine cropping and collaging into a new,
fully analogous, mosaic augmentation for the text
domain and show performance improvements over
baselines on 3 new tasks: Named Entity Recogni-
tion (NER), Extractive Question Answering and



Abstractive Summarization.

Our main contributions are: (1) We articulate
and implement cropping and collaging inspired
augmentations for three NLP tasks. (2) We demon-
strate adoption of augmentation concepts from CV
to NLP, opening the door to cross modality, domain-
free augmentations. (3) We identify the effects and
key reasons of why these augmentations help, in
particular for low data resources scenarios.

2 Background: Mosaic, Cropping and
Collaging in Images

In this section we briefly describe the Mosaic ap-
proach to CV augmentation, particularly focusing
on cropping and collaging, which we later adapt to
the textual domain.

Mosaic image augmentations were popularized
by YOLOv4 (Bochkovskiy et al., 2020), which
used the method extensively in object detection
and built upon prior works describing related image
combination approaches, including CutMix (Yun
et al., 2019), Mixup (Zhang et al., 2018) and
Cutout (DeVries and Taylor, 2017). Mosaic is com-
posed of two components: cropping and collaging.

First, in cropping (Krizhevsky et al., 2012;
Szegedy et al., 2015), a random region of the origi-
nal image is used as the new example, keeping the
same label, and transforming bounding boxes as
applicable. For example, in Fig 1 a random crop of
the airplane is taken and used as a new training ex-
ample. This enriches the variety of features learned
to be associated with that semantic label.

Second, collaging (Yun et al., 2019; Takahashi
et al., 2020) tiles several (possibly cropped) im-
ages into a combined sample. For example, in
Fig 1, cropped regions of four different images are
combined to create a new sample, shown in the
figure center. This process can help models to han-
dle occlusions (Fong and Vedaldi, 2019), reduces
chances for shortcut learning (Geirhos et al., 2020),
increases effective batch size, and limits overfitting
on global context.

3 Mosaic in the Text Domain

As described above, mosaic is composed of crop-
ping and collaging.

We make the analogy of cropping in the text
domain by selecting text substrings of the con-
texts, constraining positions according to task label
bounds where appropriate. For example, in the
NER task, start and end indices of the entity are

the label bounds, and we crop contexts that include
these, as seen in Fig 1. TODO: sentence on why
we constrain

To realize collaging in the text domain, we con-
catenate examples’ contexts together, adjusting the
label positions as needed. This is illustrated in
Fig 1, where we combine cropped portions from
top blue and bottom green sentences and collage
them together by concatenating them into a sin-
gle example. Note that combining images together
requires an additional rescaling or filling-in strat-
egy, as the new image they combine to is usually
bounded by a fixed size. The direct corollary to
text is the bound imposed by the tokenizer and
architecture’s maximum number tokens.

Related to our method, text concatenation is used
for data augmentation in neural machine transla-
tion. (Nguyen et al., 2021) concatenates translation
pairs among four target/source languages, while
(Kondo et al., 2021) concatenates sources and their
back-translations. senMixup and wordMixup from
(Guo et al., 2019) use a Mixup (Zhang et al., 2018)
inspired strategy in text embedding space. Our
work differs from these by taking a broad view of
collaging, adapting it to several NLP tasks, and by
combining it with cropping to make the augmenta-
tion analogous to image mosaic.

4 Methodology

In this section, we present our cropping- and col-
laging- inspired augmentation for three major NLP
tasks, namely NER, Extractive Question Answer-
ing, and Abstractive Summarization. In each of
these, we outline the analogy and adaptions of the
visual concepts into the textual domain.

4.1 Per Task Augmentations Articulation

At every epoch for all tasks, we first randomly
shuffle the dataset and apply our augmentation to
successive pairs of examples as described below,
each time creating a new pair of examples. With
this process, different examples are paired in each
epoch, and the total number of training steps is
maintained.

Name Entity Recognition. In this task, each data
example from the dataset is defined by a context
and label for every token in the context. We define
the mosaic augmentation in this task as follows.
Given two examples, (1) from each example, crop a
random region containing all entity-labeled tokens;
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Figure 2: Augmentations, Left: Extractive Question Answering, Right: Abstractive Summarization

(2) concatenate the cropped contexts in each order,
to generate two new training samples. See Fig 1.

Extractive Question Answering. In this task,
each data example from the dataset is defined by
a triplet: a context, a question, and an answer sup-
plied as the word positions in the context that con-
tain the answer. We define the mosaic augmenta-
tion in this task as follows. Given two examples,
(1) from each example context, crop a random re-
gion that contains the answer; (2) concatenate the
cropped contexts; (3) using the combined context,
generate two new training samples, one with each
question/answer pair. See Fig 2a.

Abstractive Summarization. Each data exam-
ple from the dataset is defined by a context and
a target summary. In this task we only concate-
nate the different contexts and corresponding sum-
maries, as there is no way to verify we don’t drop
text used in the summary, as seen in Fig 2b.

5 Experiments

5.1 Experimental Setup

We perform extensive experiments on three stan-
dard NLP tasks. For each task, we trained a rele-
vant transformer architecture without any augmen-
tations as baseline, and compared with same archi-
tecture trained with each of our augmentations.
For NER, we used the MRQA (Fisch et al.,
2019) version of five datasets: bc2gm (Smith et al.,
2008), conll2003 (Tjong Kim Sang and De Meul-
der, 2003), ncbi-disease (Dogan et al., 2014),
species800 (Pafilis et al., 2013), wnutl7 (Derczyn-
ski et al., 2017). For Extractive Qustion Answering,
we average over 2 datasets: SQuAD (Rajpurkar

et al., 2016), hotpotqa (Yang et al., 2018). For AS,
we measure on the samsum (Gliwa et al., 2019) and
xsum (Narayan et al., 2018) datasets.

For each task, 5 different random seeds were
used for all architectures and datasets, and their
results averaged, to mitigate seed outlier effects as
described in (Picard, 2021). Full results including
means and standard deviations are shown in the
appendix tables.

All models were trained on a single GPU over 10
epochs. For NER, we train bert-base-uncased (De-
vlin et al., 2019) using default huggingface param-
eters. For EQA, we train roberta-base (Zhuang
et al., 2021) using default parameters from (Ram
etal., 2021). For AS, we train 15-small (Raffel et al.,
2020) model with fixed "summarize:" prompt us-
ing default huggingface parameters.” We make our
code publicly available.

5.2 Augmentations

We evaluate mosaic and each of its component
augmentations in our experiments:

concat combines two distinct examples by only
concatenating contexts, but without cropping.

crop applies only cropping to each example,
without concatenating.

mosaic combines two examples by cropping and
concatenating contexts as described in Sec. 4.

In all cases we shift the labels (start/end indices
of answers/entities) according to the length of the
sequence added before the context for EQA and
NER. For AS, we concatenate the summaries.

We compare against two baselines: baseline
does not apply any augmentations. For NER, we

https://github.com/huggingface/
transformers/blob/master/examples/
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Figure 3: Relative improvements using our augmenta-
tions on the relevant metric (F1, rougeLsum) per task.
Our augmenations improve over baseline for all tasks
with dataset size at least 32.

Relative F1 Gains for Name Entity Recognition
+50%

= baseline
== baseline-double
crop

+40% —- concat

—— mosaic

+30%

+20%

+10%

Relative F1 Improvement

0%

-10% T T T T T
16 32 64 128 256

Examples

Figure 4: Ablations for Named Entity Recognition. Mo-
saic is better not only than concat or crop alone, but also
than the combination of their individual contributions.

also include baseline-double, which repeats each
training sample twice in each epoch (before shuf-
fling) and doubles the batch size, so that the total
number of training steps is the same but each ex-
ample is seen twice per epoch. Since the samples
generated by our augmentations from each example
pair may contain data from both original examples,
we include this stronger baseline to control for this
possible doubling effect.

6 Results and Discussion

Fig. 3 shows a summary of the results. Each line
shows relative improvement for each method over
the baseline.

First, Fig. 3 shows that our augmentations im-
prove F1 scores for all dataset sizes in Named
Entity Recogntion (NER) and all but the small-

est size for Extractive Question Answering (EQA).
Abstractive Summarization (AS) improves in rouge
score by a small but consistent amount of 1-5%.

For Named Entity Recognition, the smallest data
sizes tend to benefit the most, with improvements
up to 108% relative for 16 original examples, and
47% for 32 examples. Larger data sizes with 256
original examples do not benefit as much, but still
show improvement.

Fig. 4 shows further ablation studies on the NER
task. Mosaic is better not only than either concat or
crop alone, but also than the combination of their
individual contributions: for 256 dataset size in
particular, crop shows no gain over baseline and
concat a slight degradation (-1.7% relative), while
combining them into a mosaic results in a 1.5%
relative improvement. This shows that not just con-
catenation or cropping, but their combination is
important to realize best performance for this task.
Furthermore, baseline-double, which doubles the
batch size and examples seen each epoch, performs
similarly to baseline, showing that variation from
our augmentation operations, and not possible data
repetition, causes the increased performance.

For Extractive Question Answering, our method
achieves highest relative improvement for data
sizes of 64 examples (77.6% concat and 46.2% mo-
saic, blue lines in Fig. 3), with smaller but mean-
ingful improvements in both larger and smaller
dataset sizes. In contrast to NER, cropping does
not seem to help in this task, with concat alone
performing best. We believe this is because in the
EQA task, the model must compare between ques-
tion and context to find the answer, and the longer
training contexts supply more negative “distractor”
segments in the training-time comparison. For this
task, this appears to be a larger effect than that
offered by more variation in crops and positions.

Applied to Abstract Summarization, concat
yields small but consistent gains, between 1% to
5% relative improvement in rougeLsum at all data
sizes (green line in Fig. 3), demonstrating its appli-
cability to a wide range of tasks.

7 Conclusion

We adapt mosaic data augmentations to text, find-
ing it effective in three tested NLP tasks, with
largest gains in NER. More broadly, we hope to
adapt more augmentations from CV to NLP, e.g.,
scaling and color shift, which may apply to token
representations.
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Examples Aug Exact Match F1

16.0 concat +0.447(+7.0%) +0.666(+6.1%)
16.0 mosaic -2.21(-34.7%) -2.298(-21.2%)
32.0 concat +4.697(+77.2%) +6.441(+62.6%)
32.0 mosaic +1.047(+17.2%) +2.722(+26.5%)
64.0 concat +8.585(+86.0%) +12.151(+77.6%)
64.0 mosaic +3.148(+31.5%) +7.237(+46.2%)
128.0 concat +9.547(+48.9%) +12.951(+45.5%)
128.0 mosaic +1.305(+6.7%)  +5.106(+17.9%)
256.0 concat +5.775(+18.8%) +7.1(+16.5%)
256.0 mosaic -1.0(-3.3%) +2.188(+5.1%)

Table 1: Task: Extractive Question Answering. Results average across over datasets: SQuAD, hotpotqa. Results
show deltas from baseline in format <Absolute delta>(<Relative delta>). Model:roberta-base. Averaged over 5

random seeds [42-46]

Examples Aug Exact Match F1
hotpotqa
16.0 baseline 6.372 4+ 1.551 10.838 £+ 2.240
16.0 concat  6.819 +3.080  11.505 4+ 4.649
16.0 mosaic  4.162 + 1.678  8.541 £+ 2.269
32.0 baseline 6.087 + 1.137  10.287 + 1.555
32.0 concat 10.785 +2.657 16.728 + 3.758
32.0 mosaic  7.135 £1.497  13.009 + 2.889
64.0 baseline 9.981 +2.164  15.655 + 3.321
64.0 concat 18.566 + 2.810 27.806 + 3.788
64.0 mosaic  13.129 + 1.436 22.892 + 1.453
128.0 baseline 19.539 +4.957 28.486 + 6.914
128.0 concat  29.087 + 1.257 41.436 + 2.073
128.0 mosaic  20.844 £2.655 33.592 4+ 3.502
256.0 baseline 30.656 + 0.916 43.054 + 1.243
256.0 concat  36.431 £1.926 50.154 + 2.206
256.0 mosaic  29.656 = 1.414 45.242 4+ 0.329
SQuAD

16.0 baseline 5.012 +£2.681  8.589 4+ 4.769
16.0 concat  5.573 £3.014  8.700 4 4.200
16.0 mosaic  6.993 + 3.047 11.247 + 4.420
32.0 baseline 12.416 +4.581 18.556 £+ 6.170
32.0 concat 14.539 +3.384 20.898 + 5.052
32.0 mosaic  15.527 £ 1.257 22.233 4+ 2.055
64.0 baseline 23.560 4+ 1.816  30.596 + 2.967
64.0 concat 25930 £ 3.188 34.723 + 3.403
64.0 mosaic  28.233 £2.556 36.641 + 2.780
128.0 baseline 32.457 £5.131 40.666 + 5.847
128.0 concat 38.730 £ 5.253 48.397 £ 5.312
128.0 mosaic  39.060 £ 4.066 47.383 4+ 4.447
256.0 baseline 46.147 +4.812 55.676 + 4.996
256.0 concat 51.804 +£0.479 61.301 +0.168
256.0 mosaic  49.776 £2.214 59.122 4+ 2.388

Table 2: Task: Extractive Question Answering. Results for datasets: SQuAD, hotpotqa. Model:roberta-base.

Averaged over 5 random seeds



Examples Aug Accuracy Recall Precision F1

16.0 double_baseline +0.0(+0.0%) -0.001(-7.1%) -0.008(-8.7%) -0.002(-8.7%)
16.0 concat +0.001(+0.1%) +0.006(+42.9%) +0.035(+38.0%) +0.007(+30.4%)
16.0 crop +0.001(+0.1%) +0.005(+35.7%) +0.031(+33.7%) +0.006(+26.1%)
16.0 mosaic +0.001(+0.1%) +0.02(+142.9%) +0.042(+45.7%) +0.025(+108.7%)
32.0 double_baseline +0.0(+0.0%) +0.003(+2.2%)  +0.014(+6.3%) +0.007(+4.2%)
32.0 concat +0.006(+0.7%) +0.044(+31.9%) +0.03(+13.5%) +0.043(+26.1%)
32.0 crop +0.002(+0.2%) +0.021(+15.2%) +0.013(+5.9%) +0.02(+12.1%)
32.0 mosaic +0.009(+1.0%) +0.086(+62.3%) +0.052(+23.4%) +0.079(+47.9%)
64.0 double_baseline +0.0(+0.0%) +0.005(+1.5%)  +0.057(+13.8%) -0.003(-0.9%)
64.0 concat +0.003(+0.3%) +0.052(+15.9%) +0.042(+10.2%) +0.046(+13.3%)
64.0 crop +0.001(+0.1%) +0.008(+2.4%)  +0.007(+1.7%) +0.012(+3.5%)
64.0 mosaic +0.004(+0.4%) +0.092(+28.0%) +0.05(+12.1%) +0.076(+22.0%)
128.0 double_baseline +0.001(+0.1%) +0.008(+1.7%) +0.014(+2.7%) +0.011(+2.3%)
128.0 concat +0.001(+0.1%) +0.017(+3.7%)  +0.009(+1.7%) +0.013(+2.7%)
128.0 crop +0.0(+0.0%) -0.002(-0.4%) +0.008(+1.5%) +0.008(+1.7%)
128.0 mosaic +0.002(+0.2%) +0.049(+10.7%) +0.004(+0.8%) +0.035(+7.4%)
256.0 double_baseline +0.0(+0.0%) -0.001(-0.2%) +0.002(+0.3%) +0.0(+0.0%)
256.0 concat -0.001(-0.1%)  -0.012(-2.3%) +0.0(+0.0%) -0.009(-1.7%)
256.0 crop +0.0(+0.0%) -0.014(-2.7%) +0.021(+3.6%) +0.0(+0.0%)
256.0 mosaic +0.0(+0.0%) +0.021(+4.1%)  -0.009(-1.5%) +0.008(+1.5%)

Table 3: Task: Name Entity Recognition. Results average across 5 Datasets: bc2gm, conll2003, ncbi-disease,
species800, wnutl7. Results show deltas from baseline in format <Absolute delta>(<Relative delta>). Model:bert-
base-uncased. Averaged over 5 random seeds



Examples Aug Accuracy Recall Precision F1
bc2gm
16.0 baseline 0.895 £ 0.000 0.001 £ 0.001 0.037 £0.071 0.001 £ 0.002
16.0 baseline-double 0.894 + 0.000 0.000 £ 0.000 0.000 £ 0.000 0.000 + 0.000
16.0 mosaic 0.894 £ 0.001 0.002 £ 0.003 0.021 £0.021 0.004 + 0.005
16.0 concat 0.894 £ 0.000 0.001 £0.001 0.017 £0.011 0.002 £ 0.002
32.0 baseline 0.906 £ 0.007 0.149 £0.102 0.242 £ 0.055 0.176 £ 0.094
32.0 baseline-double 0.907 £ 0.005 0.153 +£0.042 0.246 £ 0.030 0.187 &+ 0.040
32.0 mosaic 0.913 £0.008 0.219 £ 0.093 0.252 +0.048 0.232 + 0.073
32.0 concat 0911 £0.006 0.181 £0.061 0.251 £0.035 0.208 + 0.054
64.0 baseline 0.919 £ 0.006 0.266 + 0.071 0.329 +0.023 0.292 + 0.052
64.0 baseline-double  0.922 4+ 0.004 0.319 £ 0.073 0.322 +£0.023 0.318 £ 0.049
64.0 mosaic 0.926 £ 0.004 0.330 £ 0.047 0.346 £ 0.017 0.337 £ 0.032
64.0 concat 0.924 +£0.005 0.304 +0.056 0.334 +0.024 0.318 + 0.041
128.0 baseline 0.933 £0.003 0.414 +0.051 0.406 +0.012 0.409 + 0.031
128.0 baseline-double  0.933 +0.003 0.444 +£0.068 0.411 £0.016 0.426 £+ 0.040
128.0 mosaic 0.931 £0.003 0.398 +£0.058 0.393 +£0.023 0.394 + 0.037
128.0 concat 0.932 £ 0.005 0.427 +£0.046 0.403 +£0.028 0.413 +0.030
256.0 baseline 0.934 +£0.005 0.395+0.074 0.421 £0.025 0.406 + 0.051
256.0 baseline-double 0.934 + 0.002 0.390 + 0.036 0.425 + 0.018 0.406 4+ 0.025
256.0 mosaic 0.934 +£0.004 0.413+0.073 0.442+0.022 0.424 + 0.045
256.0 concat 0.933 £0.005 0.369 +0.073 0.434 +£0.031 0.397 + 0.057
conll2003

16.0 baseline 0.833 £0.001 0.011 £0.016 0.170 £ 0.159 0.020 + 0.029
16.0 baseline-double 0.833 + 0.001 0.011 +£0.014 0.176 + 0.186 0.020 + 0.026
16.0 mosaic 0.835 £0.001 0.019+£0.013 0.332£0.176 0.035 + 0.023
16.0 concat 0.833 £ 0.001 0.008 + 0.005 0.333 +0.210 0.014 £+ 0.010
32.0 baseline 0.871 £0.014 0.235+0.077 0.410 £ 0.028 0.292 + 0.065
32.0 baseline-double  0.868 +0.010 0.225 +£0.060 0.451 +£0.041 0.294 £+ 0.050
32.0 mosaic 0.901 £0.007 0.416 £0.050 0.498 £ 0.034 0.453 £ 0.040
32.0 concat 0.888 £0.011 0.339+0.072 0.460 = 0.040 0.386 + 0.048
64.0 baseline 0.925 £0.003 0.574 +0.024 0.574 £0.043 0.574 + 0.033
64.0 baseline-double 0.922 + 0.006 0.556 £ 0.043 0.550 £ 0.050 0.553 + 0.046
64.0 mosaic 0.934 £ 0.003 0.654 +£0.017 0.632+0.021 0.643 +0.018
64.0 concat 0.933 £0.002 0.637 £0.019 0.625 £ 0.031 0.631 £ 0.024
128.0 baseline 0.943 +£0.002 0.684 +0.008 0.648 £+ 0.007 0.666 + 0.008
128.0 baseline-double 0.944 £+ 0.001 0.687 & 0.007 0.657 £ 0.007 0.672 %+ 0.006
128.0 mosaic 0.945 £ 0.001 0.700 £ 0.004 0.661 £ 0.010 0.679 + 0.007
128.0 concat 0.946 £ 0.002 0.699 + 0.007 0.667 = 0.014 0.683 £ 0.009
256.0 baseline 0.950 £ 0.001 0.732+£0.009 0.692 +0.014 0.712+0.010
256.0 baseline-double 0.952 + 0.001 0.737 £0.008 0.702 £ 0.010 0.719 + 0.008
256.0 mosaic 0.950 £ 0.001 0.732 £ 0.004 0.684 +0.002 0.707 £ 0.002
256.0 concat 0.949 +£0.002 0.728 £ 0.013 0.679 +0.011 0.702 + 0.011

Table 4: Task: Name Entity Recognition. Results for datasets: bc2gm, conll2003. Model:bert-base-uncased.

Averaged over 5 random seeds
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Examples Aug Accuracy Recall Precision F1
ncbi-disease
16.0 baseline 0.927 +0.003 0.059 £0.039 0.252 +0.038 0.092 £ 0.050
16.0 baseline-double 0.927 + 0.003 0.054 + 0.036 0.244 + 0.047 0.086 + 0.049
16.0 mosaic 0.933 £ 0.003 0.148 £0.059 0.311 +0.059 0.198 £ 0.066
16.0 concat 0.930 +0.002 0.089 £0.041 0.278 +0.054 0.133 £ 0.051
32.0 baseline 0.940 £ 0.002 0.287 0.035 0.382 +0.015 0.327 +0.024
32.0 baseline-double 0.941 4+ 0.001 0.308 £ 0.046 0.404 4+ 0.008 0.348 £+ 0.031
32.0 mosaic 0.943 £0.001 0.354 £0.032 0.387 & 0.027 0.369 4+ 0.027
32.0 concat 0.942 +0.001 0.318 £0.034 0.375+£0.012 0.343 £+ 0.020
64.0 baseline 0.960 + 0.001 0.524 £0.016 0.458 +0.010 0.489 £+ 0.010
64.0 baseline-double 0.961 £ 0.001 0.549 £0.029 0.470 &£ 0.015 0.506 4+ 0.015
64.0 mosaic 0.957 £0.002 0.586 £ 0.024 0.414 +0.025 0.485 £ 0.022
64.0 concat 0.961 +0.002 0.582 £ 0.020 0.453 +0.029 0.509 +£ 0.025
128.0 baseline 0.969 £+ 0.001 0.646 = 0.007 0.580 +0.024 0.611 +0.012
128.0 baseline-double 0.968 4+ 0.001 0.627 £0.019 0.612 +0.009 0.619 £ 0.010
128.0 mosaic 0.967 +0.002 0.660 £ 0.014 0.560 4+ 0.024 0.606 £ 0.009
128.0 concat 0.968 +0.001 0.654 £0.012 0.574 £0.022 0.611 £0.016
256.0 baseline 0.972 £ 0.001 0.654 £0.014 0.664 +0.019 0.659 £+ 0.012
256.0 baseline-double 0.971 & 0.001 0.657 £ 0.007 0.652 + 0.011 0.654 £ 0.007
256.0 mosaic 0.970 +0.001 0.659 £ 0.009 0.620 4+ 0.025 0.639 £ 0.013
256.0 concat 0.972 £ 0.000 0.666 £ 0.011 0.650 & 0.016 0.658 £ 0.005
species800

16.0 baseline 0.960 4+ 0.001  0.000 £ 0.000 0.000 4 0.000 0.000 = 0.000
16.0 baseline-double 0.960 + 0.000 0.000 & 0.000 0.000 £ 0.000 0.000 + 0.000
16.0 mosaic 0.959 +0.001 0.001 £0.001 0.006 4+ 0.009 0.002 +£ 0.002
16.0 concat 0.960 = 0.001 0.001 #0.001 0.007 & 0.017 0.001 4 0.002
32.0 baseline 0.964 £ 0.002 0.019 +0.021 0.074 & 0.065 0.030 + 0.031
32.0 baseline-double 0.963 4+ 0.002 0.018 £0.018 0.079 & 0.062 0.029 £ 0.028
32.0 mosaic 0.968 =0.003 0.129 £0.076 0.235 +0.110 0.166 + 0.091
32.0 concat 0.967 +0.002 0.072 £0.041 0.173 £ 0.077 0.101 £ 0.054
64.0 baseline 0.971 £0.002 0.214 £0.071 0.369 & 0.080 0.269 £ 0.075
64.0 baseline-double 0.970 & 0.002 0.176 & 0.050 0.329 £ 0.110 0.229 + 0.069
64.0 mosaic 0.972 £ 0.001 0.301 £0.018 0.443 +0.020 0.358 £ 0.013
64.0 concat 0.972 £0.002 0.267 £ 0.048 0.445 + 0.060 0.334 4+ 0.054
128.0 baseline 0.973 £0.000 0.353 £0.023 0.502 +0.022 0.413 4+ 0.013
128.0 baseline-double 0.973 +0.001 0.353 £0.011 0.511 £=0.040 0.417 £0.011
128.0 mosaic 0.973 £0.001 0.403 +0.031 0.521 =0.047 0.452 +0.014
128.0 concat 0.973 £ 0.001 0.360 £0.021 0.507 +£0.012 0.421 £0.018
256.0 baseline 0.976 = 0.001 0.373 £0.013 0.539 +0.025 0.441 £0.014
256.0 baseline-double 0.976 + 0.001 0.367 £ 0.028 0.545 £ 0.020 0.438 £ 0.023
256.0 mosaic 0.977 £0.000 0.419 £0.016 0.576 +0.033 0.484 £+ 0.012
256.0 concat 0.976 £ 0.001 0.370 £ 0.025 0.549 +0.021 0.441 +0.018

Table 5: Task: Name Entity Recognition. Results for datasets: ncbi-disease, species800, wnutl7. Model:bert-base-

uncased. Averaged over 5 random seeds
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Examples Aug Accuracy Recall Precision F1
wnutl7

16.0 baseline 0.921 +0.000 0.000 £ 0.000 0.000 4 0.000 0.000 =+ 0.000
16.0 baseline-double 0.921 £ 0.000 0.000 £ 0.000 0.000 £ 0.000 0.000 £ 0.000
16.0 mosaic 0.921 +0.000 0.000 £ 0.000 0.000 4+ 0.000 0.000 =+ 0.000
16.0 concat 0.921 £ 0.000 0.000 4 0.000 0.000 4+ 0.000 0.000 4 0.000
32.0 baseline 0.921 £ 0.000 0.000 4 0.000 0.000 4+ 0.000 0.000 4 0.000
32.0 baseline-double 0.921 4+ 0.000 0.000 £ 0.000 0.000 4+ 0.000 0.000 =+ 0.000
32.0 mosaic 0.920 £+ 0.000 0.000 4 0.000 0.000 4+ 0.000 0.000 4 0.000
32.0 concat 0.921 +0.000 0.000 £ 0.000 0.000 4+ 0.000 0.000 +£ 0.000
64.0 baseline 0.924 +0.005 0.063 £0.085 0.331 0.302 0.099 £ 0.131
64.0 baseline-double 0.924 + 0.003 0.063 £ 0.058 0.675 £0.299 0.103 £ 0.088
64.0 mosaic 0.932 £ 0.006 0.228 £0.125 0.473 £0.068 0.280 £ 0.146
64.0 concat 0.927 £0.006 0.110£0.097 0412 4+0.258 0.161 +0.131
128.0 baseline 0.934 +£0.003 0.205 £ 0.054 0.449 4+ 0.055 0.280 4+ 0.060
128.0 baseline-double  0.935 4+ 0.005 0.227 £0.081 0.463 +0.042 0.301 £ 0.082
128.0 mosaic 0.942 +£0.004 0.386 & 0.053 0.468 + 0.060 0.423 4+ 0.056
128.0 concat 0.935 £0.006 0.247 +0.098 0.477 +0.052 0.319 4+ 0.094
256.0 baseline 0.947 £ 0.003 0.424 £0.049 0.605 +0.027 0.498 £+ 0.042
256.0 baseline-double  0.947 £+ 0.003 0.425 +£0.051 0.607 £ 0.033 0.500 £ 0.047
256.0 mosaic 0.947 £ 0.004 0.464 =0.040 0.551 =0.046 0.503 + 0.041
256.0 concat 0.945 +0.003 0.386 £ 0.054 0.609 +0.012 0.471 £ 0.043

Table 6: Task: Name Entity Recognition. Results for datasets: wnutl7. Model:bert-base-uncased. Averaged over 5

random seeds

Examples Aug rougel rouge2 rougeL rougeLsum

16.0 concat +0.414(+1.6%) +0.407(+6.5%) +0.184(+1.0%) +0.458(+2.1%)
32.0 concat +0.07(+0.3%)  -0.107(-1.4%) -0.27(-1.3%) +0.192(+0.8%)
64.0 concat +0.948(+3.3%) +0.282(+3.2%) +0.17(+0.8%) +1.091(+4.5%)
128.0 concat +1.134(+3.7%) +0.279(+2.8%) +0.158(+0.7%) +1.411(+5.4%)
256.0 concat +0.396(+1.2%) +0.062(+0.6%) -0.566(-2.2%)  +0.891(+3.3%)

Table 7: Task: Abstractive Summarization. Results Averaged across datasets: xsum, samsum, showing deltas from
baseline in format <Absolute delta>(<Relative delta>). Model:t5-small - fixed-prompt: "summarize:". Averaged

over 5 random seeds [42-46].
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Examples Aug rougel rouge2 rougeL rougeLsum
samsum
16.0 baseline 30.218 £0.386 9.465+0.188  24.219 +0.247 27.490 4 0.288
16.0 concat 30.896 +£0.336 10.207 £0.167 24.641 £0.339 28.272 £ 0.308
32.0 baseline 34.372+£0.276 12.522+0.213 27.994+0.192 31.239 4+ 0.279
32.0 concat 34.219 £0.235 12.222 +0.196 27.696 4 0.223 31.335 £ 0.250
64.0 baseline 36.468 +0.267 13.979+0.269 29.844+0.310 33.229 £ 0.329
64.0 concat 37.440 +£0.249 14.511 +0.162 30.422 +0.152 34.580 £ 0.187
128.0 baseline 38.751+£0.328 16.080+0.319 31.648 £0.360 35.278 £0.321
128.0 concat 40.334 +£0.217 16.652 +0.203 32.492 +0.115 37.275£0.163
256.0 baseline 39.754+0.346 16.834+0.266 32.733+£0.259 36.445 =+ 0.305
256.0 concat 40.952 £0.193 17.188 £0.159 32.932 £0.170 37.994 £+ 0.186
xsum

16.0 baseline 20.154+£0.028 3.062+0.010 14.306 +0.024 15.914 4+0.019
16.0 concat 20.304 +0.018 3.134 +0.011  14.251 £0.021 16.047 £0.013
32.0 baseline 20.461+£0.055 3.1884+0.025  14.799 +0.035 15.913 £ 0.050
32.0 concat 20.754 £ 0.026 3.274 +£0.019  14.555 £ 0.035 16.201 £ 0.025
64.0 baseline 20.363+£0.090 3.52940.042 15.372+£0.071 15.676 £ 0.082
64.0 concat 21.287 +£0.034 3.561 £0.021  15.134 £ 0.027 16.506 £ 0.030
128.0 baseline 21.835+0.109 4.1354+0.056 16.543 £0.089 16.607 £ 0.092
128.0 concat 22.520 +0.021 4.120+0.017  16.017 £0.026 17.431 £0.025
256.0 baseline 24.149+£0.020 4.933 £0.033 18.152+0.029 18.163 4 0.032
256.0 concat 23.744 +0.036  4.705 +£0.006  16.821 £0.021 18.396 £ 0.030

Table 8: Task: Abstractive Summarization. Results on xsum and samsum datasets. Model:t5-small - fixed-prompt:

"summarize:". Averaged over 5 random seeds [42-46].
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