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Abstract
We introduce Decoupled SGDA, a novel adap-
tation of Stochastic Gradient Descent Ascent
(SGDA) tailored for multiplayer games with in-
termittent strategy communication. Unlike prior
methods, Decoupled SGDA enables players to
update strategies locally using outdated oppo-
nent strategies, significantly reducing communi-
cation overhead. For Strongly-Convex-Strongly-
Concave (SCSC) games, it achieves near-optimal
communication complexity comparable to the
best-known GDA rates. For weakly coupled
games where the interaction between players
is lower relative to the non-interactive part of
the game, Decoupled SGDA significantly re-
duces communication costs compared to standard
SGDA. Additionally, Decoupled SGDA outper-
forms federated minimax approaches in noisy,
imbalanced settings. These results establish De-
coupled SGDA as a transformative approach for
distributed optimization in resource-constrained
environments.

1. Introduction
Several real-world problems in diverse areas, such as eco-
nomics and computer science, can frequently be described
as N -player differentiable games (Von Neumann & Mor-
genstern, 2007). While players may have competing ob-
jectives, the aim is to identify an equilibrium, a strategy
where no player benefits from deviating unilaterally. Exam-
ples of such games in machine learning include Generative
Adversarial Networks (GANs, Goodfellow et al., 2014),
adversarial robustness (Madry et al., 2017; Shafahi et al.,
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2019; Robey et al., 2023) and multi-agent reinforcement
learning (e.g., Lowe et al., 2017; Li et al., 2019).

Several gradient-based methods have been proposed for
solving minimax problems (Korpelevich, 1976; Popov,
1980; Balduzzi et al., 2018; Nouiehed et al., 2019; Chav-
darova et al., 2020; Kovalev & Gasnikov, 2022). One of
the most widely used is the gradient descent method. In the
context of 2-player zero-sum minimax games, this approach
is referred to as Gradient Descent Ascent (GDA), where the
minimizing player (u–player) takes descent steps and the
maximizing player (v–player) takes ascent steps.

In some situations, however, players may not have direct
access to their opponents’ exact strategies. The u–player
might only have a noisy estimate of v when updating its
parameters, and vice versa. In extreme cases, players might
operate with outdated strategies from their opponents, with
limited opportunities to synchronize. We refer to this sce-
nario as games with intermittent strategy communication
(ISC-games). Here are a few illustrative examples:

• Corporate competitors. Companies frequently adjust
their strategies based on individual objectives and the
strategies of their competitors. For instance, Netflix
may need to lower its prices if a competitor like Max
reduces its subscription rates (Jagadeesan et al., 2022).
Corporations may occasionally release (noisy) general
information about their strategies, giving each com-
pany an imperfect understanding of its competitor’s
actions. Alternatively, companies might hire experts to
estimate competitor strategies using publicly available
data, although this process is expensive and infrequent.

• N -agents with restricted communication. In con-
trol theory, applications involving drones or robots are
modeled with N -player games (see Spica et al., 2020;
Laine et al., 2021; Zhou et al., 2021, and references
therein). However, due to factors like long distances or
limited battery life caused by weight constraints, com-
munication between agents regarding learned strategies
is costly and can only occur intermittently.

In summary, this paper focuses on the following questions.

• Can players effectively learn and adapt locally in ISC-
games when relying on noisy or outdated opponent
strategies?
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• How do the convergence rate and communication costs
of the proposed optimization method compare to the
baseline, and can communication costs be significantly
reduced?

To address the first question, we propose an extension of
the gradient descent method where agents perform local up-
dates while using outdated strategies from their opponents.
In minimax problems, we term this approach Decoupled
SGDA, and in N -player games, it is Decoupled SGD. The
second question is examined by analyzing the convergence
rate of Decoupled SGD(A) and identifying a specific class
of problems, called Weakly Coupled Games, where commu-
nication speed-up (acceleration) can be achieved.

Contributions. Our contributions include:

• We introduce Decoupled SGD(A), the first method de-
signed for ISC-games, where each player performs local
updates using outdated opponent strategies.

• We analyze its convergence in both the strongly-convex
strongly-concave (SCSC) setting and in N -player games
where each player’s utility is strongly convex.

• We introduce a non-standard set of assumptions to mea-
sure the coupling of the players’ objectives. This allows
us to identify a specific regime, termed Weakly Coupled
Games, where Decoupled SGD(A) demonstrates commu-
nication acceleration compared to the baseline GD(A),
by removing the dependency on player conditioning.

• We show that Decoupled SGDA can even outperform the
optimal first-order method for solving SCSC games in
terms of communication rounds under a slightly stronger
assumption than weakly coupled games.

• Our method achieves robustness to noise imbalance,
a significant limitation of existing federated minimax
methods.

• We study the convergence of Decoupled SGDA for
quadratic minimax games with bilinear coupling between
the players, providing additional in-depth insights into
the algorithm’s convergence behavior.

• Through numerical experiments, we validate the practical
benefits of Decoupled SGDA in non-convex GAN train-
ing, federated learning with imbalanced noise, and in
weakly coupled quadratic minimax games, showcasing
its versatility.

• We propose a novel heuristic (Ghost-SGDA), detailed
in Appendix G, to further accelerate the convergence of
Decoupled SGDA by leveraging predictive updates for
opponent strategies. Our numerical results demonstrate
its practical effectiveness, showing that Ghost-SGDA
can achieve faster communication efficiency and conver-
gence even in highly interactive games. This heuristic
opens a promising new direction for distributed optimiza-
tion, potentially going beyond the theoretical guarantees
proven in this work.

To simplify the exposition, the main body of the paper fo-
cuses on the minimax setting, while the extension to N -
player games is presented in Appendix C.

1.1. Related Works

Our work1 draws from multiple lines of work, and herein,
we review these and discuss the difference with federated
learning. Appendix E gives additional discussion and lists
works on decentralized optimization. The latter are further
from our work in that there is no centralized communication,
and nodes communicate with neighbors.

Game optimization. Nemirovski (2004); Nesterov (2007)
achieve a rate of Op 1

T q for convex-concave minimax
problems. For strongly-convex-strongly-concave games,
(i) Thekumparampil et al. (2019) combine Nestrov’s Ac-
celerated Gradient and mirror-prox and achieve Õp 1

T 2 q

rate of convergence, (ii) Wang & Li (2020) explore ideas
from accelerated proximal point and achieve a linear rate,
and (iii) Kovalev & Gasnikov (2022) propose a method
with Op

?
κuκv log

1
ϵ q rate of convergence which matches

the lower bounds (Zhang et al., 2022b; Ibrahim et al., 2020).
Several works focus on accelerating the convergence of
GDA (Lee et al., 2024; Zhang et al., 2022a). Quadratic
games with bilinear coupling are studied in (Zhang et al.,
2021). Nouiehed et al. (2019) propose a method that per-
forms multiple first-order steps on only one of the param-
eters to solve minimax problems. Tsaknakis et al. (2021)
study a generalized minimax problem with linear constraints
coupling the decision variables. Tseng & Yun (2009) study
coordinate gradient descent method for minimizing the sum
of a smooth and separable convex function. Jain et al. (2018)
and Yoon & Ryu (2021) present algorithms with accelerated
Op1{k2q rates for smooth minimax optimization and estab-
lish the optimality of this rate through a matching lower
bound. In the context of multi-player games, several works
have explored multi-agent reinforcement learning in a dis-
tributed setting, where agents update their policies without
access to the policies of others (Lu et al., 2021; Sayin et al.,
2021; Jiang & Lu, 2022). Independent and concurrent work
by Yoon et al. (2025) also considers decoupled updates for
equilibrium computation in N -player games. While we both
address this setting (see Appendix C), their method does
not achieve the same communication efficiency as ours. See
Remark 4.6 for a detailed comparison.

Federated learning. Building on the foundational work
of McMahan et al. (2017), numerous works have explored
distributed minimization, or federated learning, across var-
ious settings (e.g., Stich, 2019a; Koloskova et al., 2020;
Karimireddy et al., 2020; Woodworth et al., 2020a;b). In

1An early version of this work was presented at an ICML 2024
workshop (Zindari et al., 2024).
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the context of minimax optimization, Deng & Mahdavi
(2021); Sharma et al. (2022); Zhang et al. (2024) extended
the so-called Local SGD (Stich, 2019a) to the minimax set-
ting, achieving convergence rates for different classes of
functions in both heterogeneous and homogeneous regimes.
Although both Federated Minimax and Decoupled SGDA
are designed to solve minimax optimization problems in a
distributed fashion, their approaches to achieving this are
fundamentally different. Refer to Section F.1 for more de-
tails.

2. Setting and preliminaries
In the main body of the paper, we focus on the two-player
setting, as this allows us to clearly present the key ideas and
insights of our approach. The extension to the more general
N -player games is detailed in Appendix C. Specifically,
we consider the following saddle-point problem over X “

Xu ˆ Xv , with Xu “ Rdu ,Xv “ Rdv :

min
uPXu

max
vPXv

fpu,vq, (SP)

where f : X Ñ R is a differentiable function. Its solution
is defined as a point x‹ ” pu‹,v‹q P X satisfying the
following variational principle: fpu‹,vq ď fpu‹,v‹q ď

fpu,v‹q for all pu,vq P X . In ISC-games, players often
have access only to the outdated strategies of their oppo-
nents. To address this in our analysis, it is useful to define
the following operator Fx̄pxq : X Ñ X , which incorpo-
rates a reference point x̄ ” pū, v̄q P X—typically the most
recent synchronization point—to account for this delay:

Fx̄pxq :“ p∇ufpu, v̄q,´∇vfpū,vqq, x, x̄ P X ,

F pxq :“ p∇ufpu,vq,´∇vfpu,vqq, x P X .
(1)

In the special case of x̄ “ x, we recover the definition
of the commonly used operator F pxq “ Fx̄“xpxq “

p∇ufpu,vq,´∇vfpu,vqq.

Notation. Bold lower and upper case denote vectors and
matrices, respectively. We often denote the two players
as u P pXu “ Rduq and v P pXv “ Rdv q. The product
space X “ Xu ˆ Xv “ Rd (with d “ du ` dv) con-
sists of vectors x “ pu,vq P Rd, where u P Xu and
v P Xv. For a differentiable function f : X Ñ R, we
denote partial gradients at a point x “ pu,vq P X w.r.t.
the corresponding variables by ∇ufpxq and ∇vfpxq, re-
spectively, so that ∇fpxq “ p∇ufpxq,∇vfpxqq. x¨, ¨y de-
notes inner product. We assume that the spaces Xu and
Xv are equipped with certain Euclidean norms, ∥u∥u :“
xPuu,uy1{2 and ∥v∥v :“ xPvv,vy1{2, respectively, where
Pu and Pv are given symmetric positive definite ma-
trices. The norm in the space X is then defined by
∥x∥ “ pαu∥u∥2u ` αv∥v∥2vq1{2 where αu, αv ą 0; thus,

∥x∥ “ xPx,xy1{2, where P is the block-diagonal matrix
with blocks αuPu and αvPv (P “ diagpαuPu, αvPvq).
The parameters αu, αv can be seen as scaling factors for
players that can be optimized separately. One can easily
assume Pu “ Pv “ I, P “ I and αu “ αv “ 1 and
recover the common euclidean norm ∥x∥ “

a

xx,xy. The
corresponding dual norms are defined in the standard way:
∥gu∥u,˚ :“ max}u}u“1xgu,uy “ xgu,P

´1
u guy1{2 (gu P

Xu), ∥gv∥v,˚ :“ max}v}v“1xgv,vy “ xgv,P
´1
v gvy1{2

(gv P Xv), and ∥g∥˚ :“ max}x}“1xg,xy “ p 1
αu

}gu}2u,˚ `

1
αv

}gv}2v,˚q1{2 “ xg,P´1gy1{2 (g ” pgu,gvq P X ).

Now we outline the necessary assumptions for establishing
the convergence of our method.

Assumption 2.1 (Strong monotonicity). Operators Fx̄ and
F from (1) are strongly monotone with parameters µ̄, µ ą 0,
i.e., for all x, x̄,x1 P X , the following inequalities hold:

xFx̄pxq ´ Fx̄px1q,x ´ x1y ě µ̄∥x ´ x1∥2 ,
xF pxq ´ F px1q,x ´ x1y ě µ∥x ´ x1∥2 .

(2)

We can show that µ̄ “ mintµu{αu, µv{αvu (Proof in
Lemma B.5) where µu is the strong convexity parameter of
f in u and µv is the strong concavity parameter of f in v.

Assumption 2.2 (Lipschitz smoothness). Operators Fx̄ and
F from (1) are Lipschitz with parameters L̄ and L, i.e., for
all x,x1, x̄ P X , the following inequalities hold:

∥Fx̄pxq ´ Fx̄px1q∥˚ ď L̄∥x ´ x1∥ ,
∥F pxq ´ F px1q∥˚ ď L∥x ´ x1∥ .

(3)

While we assume both operators are smooth, Lemma B.2
shows that L̄ ď L.

Assumption 2.3. The norm of the difference between oper-
ators Fx̄ from (1) is upper bounded with parameter Lc for
for all x, x̄ P X as follows:

∥Fx̄pxq ´ F pxq∥˚ ď Lc∥x ´ x̄∥ . (4)

It is possible to show Lc “ 1{
?
αuαv maxtLuv, Lvuu

(Proof in Lemma B.6) where ∥∇ufpu,vq ´

∇ufpu,v1q∥u,˚ ď Luv∥v ´ v1∥v and ∥∇vfpu,vq ´

∇vfpu1,vq∥v,˚ ď Lvu∥u ´ u1∥u. Here, we take the
derivative with respect to one variable while varying the
other. We will demonstrate in Section 4 that this constant
plays an important role in communication acceleration as it
quantifies the interaction level of the game. In fact, Lc can
be much smaller than L and can be even zero. We show it
always holds that Lc ď L (Proof in Lemma B.2).

For the reader’s convenience, we also present Tables 2 and 3
in the appendix, summarizing our notations.
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Assumption 2.4. There exists finite constants σ̄2 such that
for all x, x̄ P X :

Eξ

“

∥Gx̄px, ξq ´ Fx̄pxq∥2˚
‰

ď σ̄2 . (5)

where Gx̄px, ξq is an unbiased stochastic gradient or-
acle that each player has access to with the property
ErGx̄px, ξqs “ Fx̄pxq.

As we assumed that the above inequality holds for all x̄ P

X , we also cover the common operator F and we denote
Gpx, ξq ” Gx̄“xpx, ξq.

3. Decoupled SGDA for two-player games
In this section we introduce Decoupled SGDA and explain
its motivation.

Common Approach: Stochastic Gradient Descent As-
cent (SGDA). A standard way for solving (SP) is as fol-
lows:

xt`1 “ xt ´ γP´1Gpxt, ξq,

Gpx, ξq ”

ˆ

∇ufpu,v; ξq

´∇vfpu,v; ξq

˙

,
(6)

for a given positive definite matrix P.2 However, in a dis-
tributed setting, the players need one round of communi-
cation to exchange their parameters put,vtq in every step
of the method. This is because SGDA requires the most
recent parameters from each player to take an step. In many
real-world scenarios, however, communicating at every step
may not be feasible due to the high cost.

Communication Efficient Strategy Exchange. To alle-
viate this communication issue, earlier works proposed so-
called local update methods that reduce the amount of com-
munication by performing local parameter updates for each
player separately. For these methods, it is common to as-
sume that both players—the minimization player u, and the
maximization player v—have access unbiased stochastic
oracles Gupx, ξq, Gvpx, ξq : X Ñ X , with the property
EξrGupx, ξqs “ F pxq, EξrGvpx, ξqs “ F pxq and follow-
ing bound on the variance of the noise:

#

Eξr∥rGupx, ξqsu ´ rF pxqsu∥2u,˚s ď σ2
uu,

Eξr∥rGupx, ξqsv ´ rF pxqsv∥2v,˚s ď σ2
uv,

#

Eξr∥rGvpx, ξqsv ´ rF pxqsv∥2v,˚s ď σ2
vv,

Eξr∥rGvpx, ξqsu ´ rF pxqsu∥2u,˚s ď σ2
vu.

(7)

Here, we use the operator r¨si to denote the coordinates cor-
responding to player i P tu, vu. Both players could perform

2In optimization literature, the matrix P is known as the pre-
conditioning matrix. For simplicity, we can assume P “ I without
disrupting the flow of the paper.

K ě 1 updates on a local copy of the parameters. After
every communication round, local variables are initialized
as xv

t “ xu
t “ xt, and updated as:

xu
t`K “ xu

t ´ γpαuPuq´1
K´1
ÿ

i“0

Gupxu
t`i, ξt`iq,

xv
t`K “ xv

t ´ γpαvPvq´1
K´1
ÿ

i“0

Gvpxv
t`i, ξt`iq.

(8)

The local variables are then synchronized in a communica-
tion round, xt`K :“ 1

2

`

xu
t`K ` xv

t`K

˘

. This is a standard
approach in distributed optimization. However, this method
does not apply to our setting, as we would need to assume
that the stochastic noise of the oracles σ2

uv and σ2
vu are

bounded.

Decoupled SGDA: Communication Efficient with Reli-
able Information. We are considering a setting where the
two players may not have access to their opponent’s strate-
gies or gradients, and only assume that the private compo-
nents of the gradients have bounded variance, see Assump-
tion 2.4. This reflects real-world challenges where it is hard
to share reliable (with bounded noise) information between
the communication rounds. For this setting, we therefore
propose that each player should only use the reliable infor-
mation, that is rGupx, ξqsu for player u, and rGvpx, ξqsv

for player v, and wait for the communication round to get
reliable information about the other players. We introduce
the oracle G0px, ξq ” Gx̄“xr

0
px, ξq for i “ tu, vu where

x0 “ pu0,v0q refers to the parameters of each player at the
beginning of the round. Now we can write the update rule
of our method as:

xr
K “ xr

0 ´ γP´1
K´1
ÿ

t“0

G0pxr
t , ξtq,

G0pxr
t q ”

ˆ

rGupur
t ,v

r
0qsu

rGvpur
0,v

r
t qsv

˙

”

ˆ

∇ufpur
t ,v

r
0q

´∇vfpur
0,v

r
t q

˙

.

(9)

Here, the index t denotes the local update step in the current
local update phase, and the superscript r indexes the local
phases. One communication round is needed for exchanging
the updated parameters pur

K ,vr
Kq when passing to the next

round. Here we allow the variances σ2
uv and σ2

vu to be
arbitrarily large and we only need σ̄2 ď σ2

uu ` σ2
vv to be

finite which is an advantage of our method compared to
local update methods.

Method. We formalize our method in Algorithm 1. De-
coupled SGDA has a round-wise update scheme allowing
each player to share his parameters only once in a while. At
the beginning of each round r, each player receives the most
recent parameters of the other player. Then all players start
taking K local steps and updating only their own parameters
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Algorithm 1 Decoupled SGDA for two-playera games

1: Input: step size γ, initialization x0 “ pu0,v0q, number
of rounds R, number of local GD steps K, αu, αv , Pb

2: for r P t1, . . . , Ru do
3: for t P t1, . . . ,Ku do
4: ur

t`1 Ð ur
t ´ γpαuPuq´1∇ufpur

t ,v
r
0; ξq

5: vr
t`1 Ð vr

t ` γpαvPvq´1∇vfpur
0,v

r
t ; ξq

6: end for
7: Communicate pur

K ,vr
Kq to each player

8: end for
9: Output: xR

K “ puR
K ,vR

Kq

aThe extension to N -player games is displayed in Appendix C
in Alg. 2.

bThe constants αu, αv , P are determined by the vector norm
that we specify. For simplicity, the reader can assume that αu “

αv “ 1 and Pu “ Pv “ I. These terms are included for the sake
of completeness, though they are not essential for the main results.

using the information they received at the beginning of the
round from other players. Note that our method is a general
framework and one can use any first-order method to take
local steps and not just the GD steps as illustrated here. The
extension to N -player games is displayed in Appendix C in
Alg. 2.

Intuition. To provide some intuition on why Decoupled
SGDA might work, consider that the objective of minimax
games (SP) can be written as:

fpu,vq “ gpuq ´ hpvq ` rpu,vq (10)

where gpuq and hpvq represent the independent contribu-
tions of each player, and captures the interaction between
them. Note that in this formulation, rpu,vq cannot be de-
composed in the same way as f , as it specifically captures
the interdependent aspects of u and v.

In the special case when rpu,vq ” 0, i.e., there is no
interaction, the problem does not require any communica-
tion: the optimal solution can be found by minimizing g
and h separately. A method like SGDA is, therefore, not
a good choice in this setting, as it requires to communicate
parameters pu,vq in every step of the method, although this
is unnecessary. In contrast, when the coupling rpu,vq is
significant, then optimizing g and h separately might not be
a good strategy. Decoupled SGDA aims to find a balance
between the two extremes. In the following, we will charac-
terize some settings where Decoupled SGDA provably uses
significantly fewer communication rounds than SGDA or
other baselines (see also Table 1).

Extensions of Decoupled SGDA (Appendix G). It is
clear that our method is a general framework, providing
flexibility for various modifications and adaptations. For

instance, our method allows for any first-order update rule
to be applied for the local steps like GDA, Extra Gradient
(EG), and Optimistic Gradient Descent Ascent (OGDA).
Note that in this work, we focused on GDA updates, leaving
the analysis of other methods for future work. Moreover,
in Section G, we present Ghost-SGDA, where each player
aims to estimate the other player’s parameters using the so-
called Ghost Sequence, which leads to further acceleration
in terms of the number of rounds.

4. Convergence Guarantees
We could analyze our method under the common smooth-
ness assumptions in the literature (see Appendix B.2 for
the details). However, these assumptions are often overly
pessimistic in distributed settings, as they fail to account
for the interaction level between players. Specifically, they
treat games with high and low interaction identically, yield-
ing the same convergence rates in both cases. In contrast,
we introduce an important parameter Lc (see Assumption
2.3) that quantifies the interaction level of the game. This
allows us to achieve communication acceleration in games
with low interaction through a novel proof technique (see
Section B.1). To formalize this, we first introduce the notion
of Weakly Coupled Games / Regime and then provide the
convergence guarantee for our method.

Given a strongly-convex strongly-concave (SCSC) zero-
sum minimax game fpu,vq, we define the coupling degree
parameter κc for this game as follows:

κc :“
Lc

µ̄
(11)

This variable measures the level of interaction in the game.
A smaller value of κc indicates less interaction. For any
fpu,vq, we say the game is Weakly Coupled if:

κc ď
1

4
. (12)

We say the game is Fully Decoupled if κc “ 0, which im-
plies that rpu,vq “ 0 (see Eq. (10) and Lemma B.3). These
games are an extreme case of weakly coupled games. In
weakly coupled games, each player’s dynamics are mostly
driven by their own pay-off function, with little influence
from the other player.

Theorem 4.1. For any R ě 1 and any K ě 1
γµ log

´

4
κc

¯

,
after running Decoupled SGDA for a total of T “ KR
iterations on a function f , with the stepsize γ ď

µ̄
L̄2 in the

weakly coupled regime (4κc ď 1), we get a rate of:

E
“

∥xR
K ´ x‹∥2

‰

ď D2 exp
´

´p1 ´ 4κcqR
¯

`
8κcσ̄

2γ

µp1 ´ 4κcq
.
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Table 1. Comparison of Communication Complexity and Acceleration Condition for Different Methods. Speed up lists the conditions
under which Decoupled SGDA achieves acceleration relative to the respective method. Note that for simplicity and in order to compare
our results with other works, we consider Pu “ Pv “ I, P “ I and αu “ αv “ 1.

Method Communication Complexity
(Fully Decoupled)

Communication Complexity
(General Bound)

Speed Up

GDA
(Lee et al., 2024)

pκu ` κvq log 1
ϵ pκu ` κv ` κ2

uvq log 1
ϵ κc ď 1

4 (weakly coupled)

EG/OGDA
(Mokhtari et al., 2020)

pκu ` κvq log 1
ϵ pκu ` κvq log 1

ϵ κc ď 1
2

b

1 ´ 1
maxtκuκvu

APPA
(Lin et al., 2020)

?
κuκv log3 1

ϵ

?
κuκv log3 1

ϵ κc ď 1
2

b

1 ´ 1?
κuκv

FOAM
(Kovalev & Gasnikov, 2022)

?
κuκv log 1

ϵ

?
κuκv log 1

ϵ κc ď 1
2

b

1 ´ 1?
κuκv

PEARL-SGD
(Yoon et al., 2025)

κ2 log 1
ϵ κ2 log 1

ϵ κc ď 1
4 (weakly coupled)

Decoupled SGDA (ours) 0 min
!

1
1´4κc

log 1
ϵ , κ2 log 1

ϵ

)

-

Moreover, For any R,K ě 1, after running Decoupled
SGDA for a total of T “ KR iterations on a function f ,
with the stepsize γ ď min

!

µ
L2 ,

µ
KLLc

)

in the non-weakly
coupled regime, we get a rate of:

E
“

∥xR
K ´ x‹∥2

‰

ď D2 exp
´

´
γµ

2
KR

¯

`
2σ̄2γ

µ
.

where D “ ∥x0 ´ x‹∥.
Corollary 4.2. Decoupled GDA with a stepsize of γ “

µ̄
L̄2

converges to the saddle point without any communication
on fully decoupled games (κc “ 0) if K Ñ 8.

Fully Decoupled Games. For the sake of comparison, we
define the condition numbers3: κu “ Lu

µu
, κv “ Lv

µv
, and

κuv “ κvu “ Lc?
µuµv

. We also use κ “ L
µ . The most

recent rate proposed for GDA (Lee et al., 2024) requires
O
`

pκu ` κvq log 1
ϵ

˘

rounds of communication when the
game is fully decoupled. A major drawback of GDA and
several other common methods in this setting is that poor
conditioning in one of the players (large κu, κv) signifi-
cantly increases the number of communication rounds. In
contrast, our method overcomes this issue by utilizing local
steps, effectively eliminating the dependency on players’
conditioning.
Corollary 4.3. With the choice of γ “

µ̄
RL2 if the game is

weakly coupled we get:

E
“

∥xR
K´x‹∥2

‰

ď D2 exp
´

´p1´4κcqR
¯

`
8σ̄2µ̄κc

RµL2p1 ´ 4κcq
.

Consequently, to reach Er∥xR
K ´ x‹∥2s ď ϵ, it suffices to

perform R “ maxt 1
4´κc

logp 2D2

ϵ q, 16µ̄κcσ̄
2

µL2p1´4κcqϵu rounds

3∥∇ufpu,vq ´ ∇ufpu1,vq∥ ď Lu∥u ´ u1∥ and
∥∇vfpu,vq ´ ∇vfpu,v1

q∥ ď Lv∥v ´ v1∥

with K “ L2

µµ̄ logp 4
κc

q. Moreover, with the choice of γ “

min
␣

µ
32KL2 ,

1
µKR logpmaxt2, µ2D2

σ̄2 KRuq
(

if the game is
not weakly coupled we get:

E
“

∥xR
K ´ x‹∥2

‰

ď D2 exp
´

´
µ2

2L2
R
¯

`
σ̄2

µ2KR
.

Consequently, to reach Er∥xR
K ´ x‹∥2s ď ϵ, it suffices to

perform R “ 2L2

µ2 logpD2

ϵ q with K “ 2σ̄2

µ2ϵ .

Weakly and Non-Weakly Coupled Games. The main
property of our rate for weakly coupled games is the ab-
sence of κu, κv, or κ, which can be very large even if the
player interaction is low. We are able to capture this effect
due to differentiating between different smoothness param-
eters. In addition, mathematically identifying the regime
in which we can benefit from low interaction and achieve
communication acceleration is another important aspect of
our work. This stands in contrast to most popular methods,
whose communication complexity always depends on the
quantities κu, κv or κ (see Table 1), which can be overly
pessimistic, especially in the weakly coupled regime. More-
over, for non-weakly coupled games, our rate recovers the
standard Opκ2 logp1{ϵqq rate for GDA from (Zhang et al.,
2022a; Azizian et al., 2020).

Noise Term. Our method does not depend on σuv or σvu,
allowing them to be arbitrarily large. In contrast, existing
federated minimax methods assume these quantities are
bounded, which may not hold in many real-world settings.
In the weakly coupled regime, σ̄ is multiplied by κc, a small
quantity, reducing the effect of noise. In the non-weakly
coupled regime, we can mitigate noise by taking more local
steps. Herein, we state the communication complexity of
our method and compare it with GDA as the baseline.
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Figure 1. Trajectories (top row) and distance to equilibrium over synchronization rounds (bottom row) of GDA (K “ 1) and
Decoupled SGDA with K “ t2, 5u on the (13) problem (d “ 2). C in (13) is a constant here—the larger, the stronger the interactive
term. Left-to-right: decreasing the constant c P t10, 3.5, 2, 7, 0u. The markers denote the local steps and star the solution. See § 5 for
discussion.

Corollary 4.4. For any K ě 1
γµ log

´

4
κc

¯

, after running
Decoupled SGDA on a weakly coupled game, we have the
following communication complexity in order to achieve ϵ
accuracy in the noiseless setting:

Decoupled GDA

O
´ 1

1 ´ 4κc
log

1

ϵ

¯

vs.

GDA

O
´

pκu ` κv ` κ2
uvq log

1

ϵ

¯

Moreover, Decoupled SGDA in the weakly coupled regime
always has better communication complexity compared to
the baseline GDA. In other words, 1

1´4κc
ď κu ` κv ` κ2

uv .

Table 1 compares our method with other first-order methods
in terms of communication complexity in both the fully
decoupled and weakly coupled regimes. It is clear that in
the fully decoupled regime, our method outperforms all
other methods. Furthermore, it is expected to compare
our method with GDA by considering it as the baseline
because our method uses GD local updates (and not updates
using EG or momentum). In Corollary 4.4, we stated that
we always have a better complexity compared to GDA in
the weakly coupled regime. However, we can show that
under a slightly stronger assumption, our method achieves
better communication complexity than the optimal first-
order method for solving SCSC games.
Corollary 4.5. For any SCSC zero-sum minimax game with
coupling degree κc ď 1

2

b

1 ´ 1?
κuκv

, our method achieves

a better communication complexity than FOAM which is
the optimal first-order method for solving SCSC games. In
another word, if 1

1´4κc
!

?
κuκv , our method achieves sig-

nificant communication acceleration compared to FOAM.

Corollary 4.5 shows that our method can even outperform
the optimal first-order method in terms of communication

rounds. The assumption κc ď 1
2

b

1 ´ 1?
κuκv

can recover

the weakly coupled condition if maxtκu, κvu Ñ 8. Al-
though the rate Op

?
κuκv logp1{ϵqq is optimal and matches

the lower bound from (Zhang et al., 2022b), large condition
number of players (κu, κv) can increase the communication
overhead significantly.

Remark 4.6. The recent work of Yoon et al. (2025) consid-
ers a similar method in the general N -player setting (we
also address this case in Appendix C) and establishes a

linear convergence rate of O
ˆˆ

ℓ`Lmax

?
ℓ{µ

µ

˙

logp1{ϵq

˙

,

where ℓ denotes the star-cocoercivity constant and Lmax “

maxtL1, . . . , LNu is the largest smoothness parameter
among the players. For the class of µ-strongly mono-
tone and L-Lipschitz continuous operators considered
in our work, it holds that Lmax

a

ℓ{µ ď ℓ (see Yoon
et al. 2025, Appendix D), which simplifies their rate
to O

´

ℓ
µ logp1{ϵq

¯

. In general, one has the bound ℓ ď

L2

µ (Facchinei & Pang, 2003), which implies a worst-case
convergence rate of Opκ2 logp1{ϵqq, offering no commu-
nication acceleration. While acceleration is theoretically
possible when ℓ is small, the improvement is limited: since
L ď ℓ, the best achievable rate is Opκ logp1{ϵqq. In the
fully decoupled setting, this matches the convergence rate
of GDA (Lee et al., 2024), which, as discussed earlier, is
suboptimal. By contrast, our method requires only a single
round of communication in this regime (see Corollary 4.2),
demonstrating a significant advantage. A key distinction
between the two works is in how interaction between play-
ers is modeled. Our analysis introduces and leverages the
coupling parameter Lc, which more directly captures the
interaction structure and leads to sharper communication
complexity bounds.
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5. Experiments
In this section, we evaluate the empirical performance of De-
coupled GDA. For all experiments described in this section,
we provide additional implementation details (and hyperpa-
rameters) in Appendix I.

5.1. Quadratic Games

Herein, we consider the following problem class:

min
u

max
v

1

2
xu,Auy ´

1

2
xv,Bvy ` xu,Cvy , (13)

where u,v P R d
2 , and A,B,C are d

2 ˆ d
2 positive definite

matrices. We will use varying C to control the players’
interaction.

Figure 1 illustrates the performances of Decoupled SGDA
on the (13) for varying numbers of local steps K and dif-
ferent intensities of the interactive term of (13). The results
show that as the interactive term weakens, Decoupled SGDA
converges more quickly than the GDA baseline (K “ 1).
Additionally, with a stronger interactive term, increasing
the number of local steps K leads to faster convergence for
the same number of synchronization rounds. Figure 2 de-
picts the performances over a spectrum of payoff functions
controlled by the constant matrix C in (13). In the Weakly
Coupled Game regime, highlighted by shading, Decoupled
SGDA outperforms the baseline GDA. In Figure 2 (right),
we compare it with other optimization methods, demon-
strating that Decoupled SGDA achieves similar results with
significantly fewer communication rounds in the weakly
coupled regime.

5.2. Communication Efficiency For Non-convex
Functions

While our theoretical focus was on SCSC games, in this
section, we explore if our insights extend to broader problem
instances. We focus on a Toy GAN non-convex game as

follows:

min
u

max
v

␣

Eϕ„N p0,ΣqrϕTvϕs´

Eϕ„N p0,1qrpuϕqTvpuϕqs ` λ1}u}2 ´ λ2}v}2
(

,
(14)

where u P Rd1 , v P Rd2 . Figure 3 shows the smallest
gradient norm (lower is better) each algorithm can achieve
for a fixed number of communication rounds, with vary-
ing values of 1{λ. As λ decreases, the regularization terms
dominate, making the game less interactive (similar to the
weakly coupled regime). When λ increases, reducing in-
teraction, Decoupled GDA achieves a much lower gradient
norm with the same number of communication rounds. This
demonstrates that Decoupled GDA efficiently solves non-
convex problems in settings analogous to the weakly cou-
pled regime by leveraging local updates to reduce communi-
cation. This experiment highlights the method’s capabilities
beyond SCSC games. The trajectory of Decoupled GDA it-
erations for this non-convex minimax problem can be found
in Appendix H.1. Decoupled SGDA with gradient ap-
proximation. Herein, we compare Decoupled SGDA with
Federated Minimax, aka (8). We study environments with
gradient oracles with unbalanced noise unbalanced noise.
Each player has access to a gradient oracle that provides
low-variance noise for their own gradients but high-variance
noise for the remaining players. In the quadratic game in-
troduced earlier, each oracle adding zero-mean Gaussian
noise to the gradient. The variance differs between gra-
dients for a player’s own parameters (diagonal variance)
and those of others (off-diagonal variance). Equation 7 for-
malizes this. In both experiments, we kept the diagonal
variance (σ2

uu, σ
2
vv) constant, while varying the off-diagonal

variance (σ2
vu, σ2

uv) in the second experiment. Figure 4 com-
pares Decoupled SGDA and Local SGDA, the latter being
the most commonly used method for federated minimax
problems (Deng & Mahdavi, 2021). It depicts the small-
est gradient norm each algorithm achieves within a fixed
number of communication rounds across different scenarios.
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The left plot demonstrates how both methods perform in
games with varying levels of interaction. When the inter-
action is weaker, Decoupled SGDA achieves significantly
lower gradient norms with the same number of communi-
cation rounds. The right plot highlights the effect of noise
variance, showing that while high noise negatively impacts
Local SGDA, it has minimal to no effect on Decoupled
SGDA. In the presence of imbalanced noise, the results sug-
gest that switching from local SGDA to Decoupled SGDA
is beneficial, even for highly interactive games.

5.3. Communication Efficiency in GAN Training.

Figure 5 compares Decoupled SGDA with baseline meth-
ods in terms of FID score over communication rounds. The
results show that Decoupled SGDA converges faster and
requires fewer communication rounds than standard GDA
and its variants. This advantage is particularly evident on
the CIFAR-10 and SVHN datasets, where increasing the
number of local steps (K) leads to lower FID scores. These
findings highlight the efficiency of our approach in reducing
communication overhead while maintaining strong perfor-
mance in complex, non-convex tasks such as GAN training.
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GAN training, versus x-axis communication rounds. Left:
results on the CIFAR-10 (Krizhevsky, 2009) dataset. Right: results
on the SVHN (Netzer et al., 2011) dataset.

6. Conclusion
We proposed Decoupled SGDA, an effective optimization
method for games with intermittent strategy communica-
tion, particularly suited for settings with weak interaction
between players or imbalanced noise levels. Our theoretical
and empirical results show that Decoupled SGDA outper-
forms traditional methods like Local SGDA in terms of
communication efficiency and robustness, and extends be-
yond strongly-convex strongly-concave (SCSC) games to
non-convex settings. Its adaptability to varying interaction
and noise makes it a valuable tool for federated and decen-
tralized optimization.

Several future directions remain. One could explore varying
K across players or adapting other game optimization meth-
ods (e.g., Extra-Gradient) to broader settings without re-
quiring strong convexity. Moreover, the decoupled updates
naturally lend themselves to privacy-sensitive applications,
as players do not need direct access to others’ parameters,
reducing risks from gradient sharing (see Zhu et al., 2019;
Zhao et al., 2020; Wei et al., 2020, and references therein).
Future work could investigate privacy-preserving extensions
and further develop Ghost-SGDA to enhance performance
in decentralized and privacy-constrained environments.
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Table of Contents

A. Summary of Parameters

Table 2. Summary of Symbols for Two-Player Games

Symbol Definition Mathematical Definition

L Smoothness parameter for operator F pxq ∥F pxq ´ F px1q∥˚ ď L ∥x ´ x1∥

L̄ Smoothness parameter for operator Fx̄pxq ∥Fx̄pxq ´ Fx̄px1q∥˚ ď L̄ ∥x ´ x1∥

Lc Difference between Fx̄pxq and F pxq ∥Fx̄pxq ´ F pxq∥˚ ď Lc ∥x̄ ´ x∥

Lu Smoothness parameter with respect to u ∥∇ufpu,vq ´ ∇ufpu1,vq∥u,˚ ď Lu ∥u ´ u1∥u
Lv Smoothness parameter with respect to v ∥∇vfpu,vq ´ ∇vfpu,v1q∥v,˚ ď Lv ∥v ´ v1∥v
Luv Interaction smoothness parameter ∥∇ufpu,vq ´ ∇ufpu,v1q∥u,˚ ď Luv ∥v ´ v1∥v
Lvu Interaction smoothness parameter for v with respect to u ∥∇vfpu,vq ´ ∇vfpu1,vq∥v,˚ ď Lvu ∥u ´ u1∥u
µu Strong convexity parameter for u fpu1,vq ě fpu,vq ` x∇ufpu,vq,u1 ´ uy `

µu

2 ∥u1 ´ u∥2u
µv Strong concavity parameter for v fpu,v1q ď fpu,vq ` x∇vfpu,vq,v1 ´ vy ´

µv

2 ∥v1 ´ v∥2v
µ̄ Strong monotonicity parameter for Fx̄pxq xFx̄pxq ´ Fx̄px1q,x ´ x1y ě µ̄ ∥x ´ x1∥2

µ Strong monotonicity parameter for F pxq xF pxq ´ F px1q,x ´ x1y ě µ ∥x ´ x1∥2

κc Coupling degree of the game Lc

µ̄

Table 3. Summary of Symbols for N -Player Games

Symbol Definition Mathematical Definition

L̂n Upper bound for diagonal elements Lii ∥∇nfnpxq ´ ∇nfnpx ` Unhnq∥n,˚ ď L̂n∥hn∥n

L̄n Upper bound for off-diagonal elements Lij for i ‰ j ∥∇nfnpxq ´ ∇nfnpx `
ř

i‰nUihiq∥n,˚ ď L̄n∥
ř

i‰nUihi∥

Lc Difference between F pxq and Fx̄pxq ∥F pxq ´ Fx̄pxq∥˚ ď Lc ∥x ´ x̄∥

L̄ Smoothness parameter for operator Fx̄pxq ∥Fx̄pxq ´ Fx̄px1q∥˚ ď L̄ ∥x ´ x1∥

L Smoothness parameter for operator F pxq ∥F pxq ´ F px1q∥˚ ď L ∥x ´ x1∥

µ̄ Strong monotonicity parameter for Fx̄pxq xFx̄pxq ´ Fx̄px1q,x ´ x1y ě µ̄ ∥x ´ x1∥2

µ Strong monotonicity parameter for F pxq xF pxq ´ F px1q,x ´ x1y ě µ ∥x ´ x1∥2

µn Strong convexity parameter for fnpxq x∇nfnpxq ´ ∇nfnpx ` Undnq,xn ´ x1ny ě µn∥x1n ´ xn∥2n
κc Coupling degree of the game Lc

µ̄

B. Missing Proofs for Section 4
Lemma B.1. Let trtutą0 be a sequence of numbers satisfying:

rt`1 ď p1 ´ aγqrt ` γb

for constants a, γ, b ą 0 assuming aγ ă 1. After unrolling the recursion K times we get:

rK ď p1 ´ aγqK `
b

a
(15)
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Proof.

rK ď p1 ´ aγqK `

K´1
ÿ

i“0

p1 ´ aγqiγb

ď p1 ´ aγqK `

8
ÿ

i“0

p1 ´ aγqiγb ď p1 ´ aγqK `
b

a

Lemma B.2. For the parameters L, L̄ and Lc from Assumptions 2.2 and 2.3, we can say Lc ď L and L̄ ď L.

Proof. Recall that:

∥F pxq ´ F px1q∥˚ ď L∥x ´ x1∥
∥Fx̄pxq ´ Fx̄px1q∥˚ ď L̄∥x ´ x1∥
∥Fx̄pxq ´ F pxq∥˚ ď Lc∥x ´ x̄∥

we start with the definition of the ∥Fx̄pxq ´ F pxq∥˚:

∥Fx̄pxq ´ F pxq∥2˚ “
1

αu
∥∇ufpu,vq ´ ∇ufpu, v̄q∥2u,˚ `

1

αv
∥∇vfpu,vq ´ ∇vfpū,vq∥2v,˚

ď
1

αu
∥∇ufpu,vq ´ ∇ufpu, v̄q∥2u,˚ `

1

αv
∥∇vfpu,vq ´ ∇vfpu, v̄q∥2v,˚

`
1

αv
∥∇vfpu,vq ´ ∇vfpū,vq∥2v,˚ `

1

αu
∥∇ufpu,vq ´ ∇ufpū,vq∥2u,˚

“ ∥F pu,vq ´ F pu, v̄q∥2˚ ` ∥F pu,vq ´ F pū,vq∥2˚
ď L2αv ∥v ´ v̄∥2v ` L2αu ∥u ´ ū∥2u “ L2 ∥x ´ x̄∥2

which means that we can upper bound ∥Fx̄pxq ´ F pxq∥2˚ by the constant L at the worst case. However, the constant Lc that
we use can be much smaller. Next, for the the inequality ∥Fx̄pxq ´ Fx̄px1q∥˚ we have:

∥Fx̄pxq ´ Fx̄px1q∥˚ “
1

αu

∥∥∇ufpu, v̄q ´ ∇ufpu1, v̄q
∥∥2
u,˚

`
1

αv

∥∥∇vfpū,vq ´ ∇vfpū,v1q
∥∥2
v,˚

ď
1

αu

∥∥∇ufpu, v̄q ´ ∇ufpu1, v̄q
∥∥2
u,˚

`
1

αv

∥∥∇vfpu, v̄q ´ ∇vfpu1, v̄q
∥∥2
v,˚

`
1

αv

∥∥∇vfpū,vq ´ ∇vfpū,v1q
∥∥2
v,˚

`
1

αu

∥∥∇ufpū,vq ´ ∇ufpū,v1q
∥∥2
u,˚

“
∥∥F pu, v̄q ´ F pu1, v̄q

∥∥2
˚

`
∥∥F pū,vq ´ F pū,v1q

∥∥2
˚

ď L2αu

∥∥u ´ u1
∥∥2
u

` L2αv

∥∥v ´ v1
∥∥2
v

“ L2
∥∥x ´ x1

∥∥
which means we can upper bound ∥Fx̄pxq ´ Fx̄px1q∥˚ by the constant L in the worst case. However, the constant L̄ can be
much smaller.

Lemma B.3. Given a SCSC game fpu,vq. If the parameter Lc from Assumption 2.3 is zero, the game is fully decoupled
and players do not interact.

Proof. Recall that a game can be expressed as:

fpu,vq “ gpuq ´ hpvq ` rpu,vq.

We only need to show that Lc “ 0 implies rpu,vq “ 0. This means that each player’s payoff is affected only by their own
strategy. Also, recall that Lc “ 1?

αuαv
maxtLuv, Lvuu, where Luv and Lvu are defined as follows:

∥∇ufpu,vq ´ ∇ufpu,v1q∥u,˚ ď Luv∥v ´ v1∥v,
∥∇vfpu,vq ´ ∇vfpu1,vq∥v,˚ ď Lvu∥u ´ u1∥u.
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Since it is clear that if Lc “ 0, then Luv “ Lvu “ 0, the right-hand side of the above inequalities must be zero. Now, we
rewrite the left-hand side of these inequalities in terms of the functions g, h, and r, which must also be zero:

∥∇ufpu,vq ´ ∇ufpu,v1q∥u,˚ “ ∥∇ugpuq ` ∇urpu,vq ´ ∇ugpuq ´ ∇urpu,v1q∥u,˚
“ ∥∇urpu,vq ´ ∇urpu,v1q∥u,˚.

For the above expression to be zero, either rpu,vq “ 0 or ∇urpu,vq “ ∇urpu,v1q must hold. However, the latter is
impossible, as it implies that rpu,vq depends only on u, which contradicts our assumption (if a term depends only on u, it
is already captured in gpuq). The same thing can be shown in the same way with respect to player v.

Lemma B.4. Let x̄,x1,x‹ P X be such that Fx̄px1q “ F px‹q “ 0. Then,

∥x1 ´ x‹∥ ď κc ∥x̄ ´ x‹∥ . (16)

Proof. From Assumption 2.1 and the Cauchy–Schwarz inequality, it follows that ∥Fx̄px1q ´ Fx̄px‹q∥ ě µ̄∥x1 ´ x‹∥.
Hence,

∥x1 ´ x‹∥ ď
1

µ̄

∥∥Fx̄px1q ´ Fx̄px‹q
∥∥ “

1

µ̄
∥F px‹q ´ Fx̄px‹q∥ ď

Lc

µ̄
∥x̄ ´ x‹∥ “ κc ∥x̄ ´ x‹∥ .

Lemma B.5. For any x̄ P X , the operator Fx̄ is µ̄-strongly monotone with

µ̄ “ min
!µu

αu
,
µv

αv

)

.

Proof. Recall that function f is µu-strongly convex in u and µv-strongly concave in v meaning that:

x∇ufpu,vq ´ ∇ufpu1,vq,u ´ u1y ě µu∥u ´ u1∥2u
x∇vfpu,vq ´ ∇vfpu,v1q,v1 ´ vy ě µv∥v ´ v1∥2v

Therefore,

xFx̄pxq ´ Fx̄px1q,x ´ x1y

“ x∇ufpu, v̄q ´ ∇ufpu1, v̄q,u ´ u1y ` x∇vfpū,vq ´ ∇vfpū,v1q,v1 ´ vy

ě µu∥u ´ u1∥2u ` µv∥v ´ v1∥2v “
µu

αu
αu∥u ´ u1∥2u `

µv

αv
αv∥v ´ v1∥2v

ě min
!µu

αu
,
µv

αv

)

∥x ´ x1∥2.

Lemma B.6 (two-player). For any x, x̄ P X , parameter Lc can be expressed as:

Lc “
1

?
αuαv

maxtLuv, Lvuu.

Proof. Recall that:

∥∇ufpu,vq ´ ∇ufpu,v1q∥u,˚ ď Luv∥v ´ v1∥v
∥∇vfpu,vq ´ ∇vfpu1,vq∥v,˚ ď Lvu∥u ´ u1∥u

Next we have:

∥F pxq ´ Fx̄pxq∥2˚ “
1

αu
∥∇ufpu,vq ´ ∇ufpu, v̄q∥2u,˚ `

1

αv
∥∇vfpu,vq ´ ∇vfpū,vq∥2v,˚

ď
L2
uv

αu
∥v ´ v̄∥2v `

L2
vu

αv
∥u ´ ū∥2u

“
L2
uv

αvαu
αv ∥v ´ v̄∥2v `

L2
vu

αuαv
αu ∥u ´ ū∥2u

ď max

"

L2
uv

αuαv
,
L2
vu

αuαv

*

“

αv ∥v ´ v̄∥2v ` αu ∥u ´ ū∥2u
‰

“ L2
c ∥x̄ ´ x∥2 .
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Lemma B.7 (two-player). Let x̄,x‹
0,x

‹ P X be such that Fx̄px‹
0q “ 0 and F px‹q “ 0. Then κc can be expressed as:

κc “ max

"c

αu

αv

Luv

µu
,

c

αv

αu

Lvu

µv

*

. (17)

Proof. Indeed,

∥x‹
0 ´ x‹∥2 “ αu

∥∥u1 ´ u‹
∥∥2
u

` αv

∥∥v1 ´ v‹
∥∥2
v

ď
αu

µ2
u

∥∥∇ufpu1, v̄q ´ ∇ufpu‹, v̄q
∥∥2
u,˚

`
αv

µ2
v

∥∥∇vfpū,v1q ´ ∇vfpū,v‹q
∥∥2
v,˚

“
αu

µ2
u

∥∇ufpu‹,v‹q ´ ∇ufpu‹, v̄q∥2u,˚ `
αv

µ2
v

∥∇vfpu‹,v‹q ´ ∇vfpū,v‹q∥2v,˚

ď
αuL

2
uv

µ2
u

∥v̄ ´ v‹∥2v `
αvL

2
vu

µ2
v

∥ū ´ u‹∥2u

“
αuL

2
uv

αvµ2
u

αv ∥v̄ ´ v‹∥2v `
αvL

2
vu

αuµ2
v

αu ∥ū ´ u‹∥2u

ď max

"

αuL
2
uv

αvµ2
u

,
αvL

2
vu

αuµ2
v

*

“

αv ∥v̄ ´ v‹∥2v ` αu ∥ū ´ u‹∥2u
‰

“ κ2
c ∥x̄ ´ x‹∥2 .

B.1. Proof of Theorem 4.1 in Weakly Coupled Regime

In this section, we provide the proof of convergence for our method in the weakly coupled regime. In contrast to the
common assumptions and proof techniques, we utilize our new parameter Lc, which quantifies the level of interaction in
the game. We demonstrate that if the fraction Lc

µ̄ is sufficiently small (i.e., the game is weakly coupled), we can achieve
communication acceleration. This aspect is often overlooked in the analysis of games, as existing works tend to disregard
the possibility that player interactions might be very low which results in a pessimistic rate. We start with the following
auxiliary lemma.
Lemma B.8. For any x‹

0 P X that satisfies F0px‹
0q “ 0 where F0pxq “ Fx̄“x0

pxq, after K steps of Decoupled SGDA
starting from x0 with a stepsize of γ ď

µ̄
L̄2 , we have:

E
”

∥xK ´ x‹
0∥

2
ı

ď p1 ´ γµ̄qK E ∥x0 ´ x‹
0∥

2
`

γσ̄2

µ̄
(18)

Proof. We start by upper bounding the iterates generated by our method from x‹
0 at a time step 0 ă t ` 1 ď K using the

update rule of our method. Recall that G0px, ξq ” Gx̄“x0px, ξq where x0 “ pu0,v0q.

∥xt`1 ´ x‹
0∥

2
“

∥∥xt ´ γP´1G0pxt, ξtq ´ x‹
0

∥∥2
“ ∥xt ´ x‹

0∥
2

` γ2 ∥G0pxt, ξq∥2˚ ´ 2γxG0pxt, ξtq,xt ´ x‹
0y.

By taking the conditional expectation on previous iterates we have:

Eξt ∥xt`1 ´ x‹
0∥

2

ď ∥xt ´ x‹
0∥

2
` γ2 ∥F0pxtq ´ F0px‹

0q∥2˚ ´ 2γxF0pxtq ´ F0px‹
0q,xt ´ x‹

0y ` γ2σ̄2

ď p1 ´ 2γµ̄ ` γ2L̄2q ∥xt ´ x‹
0∥

2
` γ2σ̄2

With the choice of γ ď
µ̄
L̄2 and taking the unconditional expectation we have:

E ∥xt`1 ´ x‹
0∥

2
ď p1 ´ γµ̄qE ∥xt ´ x‹

0∥
2

` γ2σ̄2

After unrolling the recursion for K steps using Lemma B.1 we have:

E ∥xK ´ x‹
0∥

2
ď p1 ´ γµ̄qK E ∥x0 ´ x‹

0∥
2

`

K´1
ÿ

i“0

p1 ´ γµ̄qiγ2σ̄2

ď p1 ´ γµ̄qK E ∥x0 ´ x‹
0∥

2
`

γσ̄2

µ̄
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Now we are ready to prove the main theorem.

Theorem B.9. For any R,K ě 1
γµ log

´

4
κc

¯

, after running Decoupled SGDA for a total of T “ KR iterations on a

function f , with the stepsize γ ď
µ̄
L̄2 in weakly coupled regime (4κc ă 1), we get a rate of:

E
”∥∥xR

K ´ x‹
∥∥2ı ď D2 p4κcq

R
`

8γσ̄2

µ̄
¨

κc

1 ´ 4κc

where D “ ∥x0 ´ x‹∥.

Proof. We start by upper bounding the following term where xt ” put,vtq is the parameters of players at some round r
after t local steps.

∥xt`1 ´ x‹∥2 ď 2 ∥xt`1 ´ x‹
0∥

2
` 2 ∥x‹

0 ´ x‹∥2 (19)

where x‹
0 P X satisfies Fx̄px‹

0q “ 0. Recall that Fx̄px‹
0q “ p∇ufpu‹

0, v̄q,´∇vfpū,v‹
0qq. The point u‹

0 is the minimizer of
f given a fixed v “ v̄ meaning that u‹

0 “ argminuPXu
fpu, v̄q and v‹

0 is the maximizer of f given a fixed u “ ū meaning
that v‹

0 “ argmaxvPXv fpū,vq. Note that we know such minimizer and maximizer exists as the function is strongly convex
in u and strongly concave in v.

For the first term we use Lemma B.8 and we get:

E
”

∥xt`1 ´ x‹
0∥

2
ı

ď p1 ´ γµ̄qK E ∥x0 ´ x‹
0∥

2
`

γσ̄2

µ̄

Putting this back in (19) gives us:

E ∥xt`1 ´ x‹∥2

ď 2p1 ´ γµ̄qK E ∥x0 ´ x‹
0∥

2
` 2E ∥x‹

0 ´ x‹∥2 `
2γσ̄2

µ̄

ď 2p1 ´ γµ̄qK E ∥x0 ´ x‹
0∥

2
` 2κc E ∥x0 ´ x‹∥2 `

2γσ̄2

µ̄

ď 4p1 ´ γµ̄qK E ∥x0 ´ x‹∥2 ` 4p1 ´ γµ̄qK E ∥x‹
0 ´ x‹∥2 ` 2κc E ∥x0 ´ x‹∥2 `

2γσ̄2

µ̄

ď 4p1 ´ γµ̄qK E ∥x0 ´ x‹∥2 `
`

4p1 ´ γµ̄qKκc ` 2κc

˘

E ∥x0 ´ x‹∥2 `
2γσ̄2

µ̄

ď
`

4p1 ´ γµ̄qK ` 4p1 ´ γµ̄qKκc ` 2κc

˘

E ∥x0 ´ x‹∥2 `
2γσ̄2

µ̄

ď p4 exp p´γµ̄Kq ` 4 exp p´γµ̄Kqκc ` 2κcqE ∥x0 ´ x‹∥2 `
2γσ̄2

µ̄

where we used Lemma B.4 in the third line. Now we need to make sure that 4 exp p´γµ̄Kq ď κc ď 1 which is implied by
K ě 1

γµ̄ log
´

4
κc

¯

. Next we have:

E ∥xt`1 ´ x‹∥2 ď 4κc E ∥x0 ´ x‹∥2 `
2γσ̄2

µ̄

The above recursion can be re-written in terms of two consecutive rounds:

E
∥∥xr`1 ´ x‹

∥∥2 ď 4κc E ∥xr ´ x‹∥2 `
2γσ̄2

µ̄

After unrolling the recursion for R rounds using Lemma B.1 we have:

17
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E
∥∥xR ´ x‹

∥∥2 ď p4κcq
R E ∥x0 ´ x‹∥2 `

2γσ̄2

µ̄

R
ÿ

i“1

p4κcq
i

Note that we assumed the game is weakly coupled which implies that 4κc ď 1. Finally we have:

E
∥∥xR ´ x‹

∥∥2 ď p4κcq
R E ∥x0 ´ x‹∥2 `

2γσ̄2

µ̄

R
ÿ

i“1

p4κcq
i

ď D2 p4κcq
R

`
8γσ̄2

µ̄
¨

κc

1 ´ 4κc

B.2. Proof of Theorem 4.1 in Non Weakly Coupled Regime

We start with some auxiliary lemmas.

Lemma B.10. Let trtutě0 be a non-negative sequence of numbers that satisfy

rt`1 ď p1 ´ aγqrt `
b

K
γ

t
ÿ

i“maxt0,t´K`1u

ri ` cγ2 ,

for constants a ą 0, b, c ě 0 and integer K ě 1 and a parameter γ ě 0, such that aγ ď 1
K . If b ď a

4 , then it holds

rt ď

´

1 ´
a

2
γ
¯t

r0 `
2c

a
γ . (20)

Proof. By assumption on rt:

rt`1 ď

´

1 ´
aγ

2

¯

rt ´
aγ

2
rt `

b

K
γ

t
ÿ

i“maxt0,t´K`1u

ri ` cγ2 ,

and by unrolling the recursion:

rt`1 ď

´

1 ´ a
γ

2

¯t

r0 `

t
ÿ

i“0

´

1 ´
aγ

2

¯t´i

»

–´
aγ

2
ri `

b

K
γ

i
ÿ

j“maxt0,i´K`1u

rj

fi

fl `

t
ÿ

i“0

´

1 ´
aγ

2

¯t´i

cγ2

ď

´

1 ´
aγ

2

¯t

r0 `

t
ÿ

i“0

´

1 ´
aγ

2

¯t´i

»

–´
aγ

2
ri `

b

K
γ

i
ÿ

j“maxt0,i´K`1u

rj

fi

fl `
2c

a
γ

“

´

1 ´ a
γ

2

¯t

r0 `

t
ÿ

i“0

´

1 ´
aγ

2

¯t´i

»

–´
aγ

2
ri `

b

K
γ

i
ÿ

j“maxt0,i´K´1u

´

1 ´
aγ

2

¯i´j

ri

fi

fl `
2c

a
γ

where we used
řt

i“0p1 ´
aγ
2 qi ď 2

aγ (for p
aγ
2 q ă 1) for the second inequality.

By estimating

´
aγ

2
ri `

b

K
γ

i
ÿ

j“maxt0,i´K´1u

p1 ´
aγ

2
qi´jri ď ´

aγ

2
ri `

b

K
γ

i
ÿ

j“maxt0,i´K´1u

´

1 ´
aγ

2

¯1´K

ri

ď ´
aγ

2
ri ` bγri

´

1 ´
aγ

2

¯1´K

ri

ď ´
aγ

2
ri ` 2bγri ď 0 ,

18
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with and p1 ´
aγ
2 q1´K ď 2 for aγ ď 1

K , and the assumption b ď a
4 (and ri ě 0).

The validity of the inequality, p1 ´
aγ
2 q1´K ď 2 for aγ ď 1

K can be shown in the following way:

´

1 ´
aγ

2

¯1´K

ď

´

1 ´
aγ

2

¯´K

ď e
aγK

2

For the last inequality above we used the approximation p1 ´ xq´n ď enx for x ě 0 and n ě 0:

Given that aγ ď 1
K , we have:

e
aγK

2 ď e
1
2 .

Thus, we have
´

1 ´
aγ

2

¯1´K

ď 2

Going back to the main proof, we conclude

rt`1 ď

´

1 ´
aγ

2

¯t

r0 `
2c

a
γ .

as claimed.

Lemma B.11 (Consensus error). After running Decoupled SGDA for K local steps at some round r with a step-size of
γ ď a

32LLcK
for any constant 0 ă a ă L, the consensus error can be upper bounded as follows:

E ∥xt`1 ´ x0∥2 ď

t
ÿ

i“t`1´K

a2

64KL2
c

E ∥xi ´ x‹∥2 ` 4Kγ2σ̄2 (21)

Proof. Recall that G0px, ξq ” Gx̄“x0
px, ξq and EξrG0px, ξqs “ F0pxq where x0 “ pu0,v0q refers to the parameters of

each player at the beginning of some round r. Using the update rule of our method we have:

E ∥xt`1 ´ x0∥2

“ E
∥∥xt ´ γP´1G0pxt, ξq ´ x0

∥∥2
ď E

∥∥xt ´ γP´1F0pxtq ´ x0

∥∥2 ` γ2σ̄2

ď

ˆ

1 `
1

K

˙

E ∥xt ´ x0∥2 ` 2Kγ2 E ∥F0pxtq∥2˚ ` γ2σ̄2

ď

ˆ

1 `
1

K

˙

E ∥xt ´ x0∥2 ` 2Kγ2 E ∥F0pxtq ´ F pxtq ` F pxtq∥2˚ ` γ2σ̄2

ď

ˆ

1 `
1

K

˙

E ∥xt ´ x0∥2 ` 4Kγ2 E ∥F0pxtq ´ F pxtq∥ ` 4Kγ2 E ∥F pxtq∥2˚ ` γ2σ̄2

ď

ˆ

1 `
1

K

˙

E ∥xt ´ x0∥2 ` 4KL2
cγ

2 E ∥xt ´ x0∥2 ` 4KL2γ2 E ∥xt ´ x‹∥2 ` γ2σ̄2

With the choice of γ ď a
32KLLc

, we get:

E ∥xt`1 ´ x0∥2

ď

ˆ

1 `
1

K

˙

E ∥xt ´ x0∥2 `
a2

256KL2
E ∥xt ´ x0∥2 `

a2

256KL2
c

E ∥xt ´ x‹∥2 ` γ2σ̄2

ď

ˆ

1 `
1

K

˙

E ∥xt ´ x0∥2 `
1

256K
E ∥xt ´ x0∥2 `

a2

256KL2
c

E ∥xt ´ x‹∥2 ` γ2σ̄2

ď

ˆ

1 `
1

K
`

1

256K

˙

E ∥xt ´ x0∥2 `
a2

256KL2
c

E ∥xt ´ x‹∥2 ` γ2σ̄2

19
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where in the third line we used the fact that a2

L2 ď 1 due to the assumption a ă L. By unrolling the recursion for the last K

steps and considering the fact that
`

1 ` 1
K ` 1

256K

˘K
ď 4 we get:

E ∥xt`1 ´ x0∥2 ď

t
ÿ

i“t`1´K

a2

64KL2
c

E ∥xi ´ x‹∥2 ` 4Kγ2σ̄2

Now we are ready to prove the following theorem.

Theorem B.12 (Decoupled SGDA for two-player Games). For any R,K, after running Decoupled SGDA for a total of
T “ KR iterations on a function f , with the stepsize γ ď min

!

µ
L2 ,

µ
KLLc

, µ
KL2

c

)

in the non weakly coupled regime, we
get a rate of:

E
“

∥xR
K ´ x‹∥2

‰

ď D2 exp
´

´
γµ

2
KR

¯

`
2σ̄2γ

µ
,

where D “ ∥x0 ´ x‹∥.

Proof. We start by upper bounding the iterate x at time step t ` 1 from the equilibrium. Recall that F0pxq ” Fx̄“x0
pxq

where x0 refers to the parameters of players at the beginning of some round r.

E ∥xt`1 ´ x‹∥2

ď E
∥∥xt ´ γP´1G0pxt, ξq ´ x‹

∥∥2 ` γ2σ̄2

ď E
∥∥xt ´ γP´1F0pxtq ´ x‹

∥∥2 ` γ2σ̄2

“ E
∥∥xt ´ γP´1F pxtq ´ x‹ ` γP´1F pxtq ´ γP´1F0pxtq

∥∥2 ` γ2σ̄2

ď

´

1 `
γµ

2

¯ ”

E
∥∥xt ´ γP´1F pxtq ´ x‹

∥∥2ı ` γ

ˆ

γ `
2

µ

˙

E ∥F pxtq ´ F0pxtq∥2˚ ` γ2σ̄2

“

´

1 `
γµ

2

¯ ”

E ∥xt ´ x‹∥2 ` γ2 E ∥F pxtq ´ F px‹q∥2˚ ´ 2γxF pxtq ´ F px‹q,xt ´ x‹y

ı

`

γ

ˆ

γ `
2

µ

˙

E ∥F pxtq ´ F0pxtq∥2˚ ` γ2σ̄2

“

´

1 `
γµ

2

¯ ”

p1 ` γ2L2 ´ 2γµqE ∥xt ´ x‹∥2
ı

` γ

ˆ

γ `
2

µ

˙

E ∥F pxtq ´ F0pxtq∥2˚ ` γ2σ̄2

ď

´

1 `
γµ

2

¯ ”

p1 ´ γµqE ∥xt ´ x‹∥2
ı

`
3γ

µ
E ∥F pxtq ´ F0pxtq∥2˚ ` γ2σ̄2

ď

´

1 ´
γµ

2

¯

E ∥xt ´ x‹∥2 `
3γL2

c

µ
E ∥xt ´ x0∥2 ` γ2σ̄2

Where we assumed that γ ď
µ
L2 . Now by using the upper bound on consensus error from Lemma B.11 and setting a “ µ

we get:

E ∥xt`1 ´ x‹∥2

“

´

1 ´
γµ

2

¯

E ∥xt ´ x‹∥2 `
γµ

16K

t
ÿ

i“maxt0,t´Ku

E ∥xi ´ x‹∥2 `

ˆ

1 `
12KγL2

c

µ

˙

γ2σ̄2
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With the choice of γ ď
µ

12KL2
c

we have:

E ∥xt`1 ´ x‹∥2

´

1 ´
γµ

2

¯

E ∥xt ´ x‹∥2 `
γµ

16K

t
ÿ

i“maxt0,t´Ku

E ∥xi ´ x‹∥2 ` 2
γσ̄2

µ

By unrolling the recursion using Lemma B.10 we get:

E
∥∥xR

K ´ x‹
∥∥2 ď D2 exp

ˆ

´
µ2

L2
R

˙

` 2
γ2

µ
σ̄2

C. Decoupled SGD for N -player games
In this section, we generalize all previous results on two-player games to N -player games. We first introduce the notation
that is needed to define N -player games and will be used to establish our convergence guarantees.

C.1. Setting and Preliminaries

Notation. We consider unconstrained N -player games where each player xi belongs to the space Xi “ Rdi . The vector
x “ px1, . . . ,xN q P Rd is defined in the space X “ X1 ˆ . . . ˆ XN “ Rd with d “

řN
i“1 di. The space Xi for all

i P rN s is equipped with a certain Euclidean norm, ∥xi∥i :“ xPix
i,xiy1{2, where Pi is a positive definite matrix. The

norm in the space X is then defined by ∥x∥ “ p
řN

i“1 αi∥xi∥2i q1{2 where αi ą 0; thus, ∥x∥ “ xPx,xy1{2, where P is
the block-diagonal matrix with blocks αiPi (P “ diagpα1P1, . . . , αNPN q). The dual norms are defined as: ∥gi∥i,˚ :“

max}xi}i“1xgi,x
iy “ xgi,P

´1
i giy

1{2 (gi P Xdi
) and ∥g∥˚ :“ max}x}“1xg,xy “ p

řN
i“1

1
αi

}gi}
2
i,˚q1{2 “ xg,P´1gy1{2

(g ” pg1, . . . ,gN q P X ).

Similar to the work (Nesterov, 2012), we define the following partitioning of the identity matrix:

Id “ pU1,U2, . . . ,UN q P Rdˆd, d “

N
ÿ

i“1

di, Ui P Rdˆdi

Now we can represent the vector x as follows:

x “

N
ÿ

i“1

Uix
i P X .

We can extract the parameters of one player as follows:

xn “ UJ
nx P Xn

Problem Formulation. An N -player games is defined as:
ˆ

min
x1

f1pxq, . . . ,min
xN

fN pxq

˙

(N -player)

Where fn : X Ñ R.

The goal is to find the Nash Equilibrium in x‹ “ px‹1, . . . ,x‹N q like in the work (Bravo et al., 2018), which has the
property that if one player changes their strategy, their payoff function will increase. In other words, there is no incentive to
change one strategy alone: for all hn P Xn, it holds that

fnpx‹q ď fnpx‹ ` Unhnq. (22)
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Moreover, we define the operator Fx̄pxq : X Ñ X with respect to the fixed point x̄ P X which denotes the stack of gradients
with respect to each player’s parameters as follows:

Fx̄pxq :“ p∇1f1px̄ ` U1hq, . . . ,∇NfN px̄ ` UNhqq

Where h “ x ´ x̄. We can recover the commonly used operator as F pxq ” Fx̄“xpxq “ p∇1f1pxq, . . . ,∇NfN pxqq. Note
that for the equilibrium, it holds that F px‹q “ 0 while in general Fx̄px‹q ‰ 0. We can extract the partial gradient with
respect to one player as follows:

∇nfnpxq “ UJ
nFx̄pxq.

We now present the assumptions required for the convergence of our method.

Assumption C.1 (Strong monotonicity). Operators Fx̄ and F are strongly monotone with parameters µ̄, µ ą 0, i.e., for all
x, x̄,x1 P X , the following inequalities hold:

xFx̄pxq ´ Fx̄px1q,x ´ x1y ě µ̄∥x ´ x1∥2.
xF pxq ´ F px1q,x ´ x1y ě µ∥x ´ x1∥2.

(23)

We can show that µ̄ “ min1ďiďNt
µi

αi
u (Proof in Lemma C.8) where x∇nfnpxq ´ ∇nfnpx ` Undnq,xn ´ x1ny ě

µn∥x1n ´ xn∥2n.

Assumption C.2 (Lipschitz gradients). Operators Fx̄, F : X Ñ X are Lipschitz with parameters L̄ and L if for all
x, x̄,x1 P X , the following inequality holds:

∥Fx̄pxq ´ Fx̄px1q∥˚ ď L̄∥x ´ x1∥
∥F pxq ´ F px1q∥˚ ď L∥x ´ x1∥

(24)

Assumption C.3. The norm of the difference between operators Fx̄pxq and F pxq is upper bounded with parameter Lc for
all x, x̄ P X as follows:

∥Fx̄pxq ´ F pxq∥˚ ď Lc∥x ´ x̄∥ (25)

It’s possible to show Lc “ pmax1ďiďN

ř

j‰i

L̄2
j

αj
q1{2 where L̄n is defined as ∥∇nfnpxq ´ ∇nfnpx `

ř

i‰nUihiq∥n,˚ ď

L̄n∥
ř

i‰nUihi∥ for any x P X and any hn P Xn (Proof in Lemma C.9). The parameter L̄n corresponds to smoothness
parameter of fn when we take gradient with respect to player n while varying all other parameters (and fixing the parameters
of player n). If L̄n “ 0 for all n, it means for any two players i, j P rN s, i ‰ j, they have no interaction.

Assumption C.4. There exists finite constants σ̄2 such that for all x, x̄ P X :

Eξ

“

∥Gx̄px, ξq ´ Fx̄pxq∥2˚
‰

ď σ̄2 . (26)

Where ErGx̄px, ξqs “ Fx̄pxq.

As we assumed that the above inequality holds for all x̄ P X , we also cover the common operator F and we denote
Gpx, ξq ” Gx̄“xpx, ξq.

C.2. Method

Local update methods. As discussed in the two-player section, Local update methods proposed to reduce the communi-
cation overhead in distributed optimization. In this context, it’s reasonable to assume each player has access to their own
stochastic oracle Gipx, ξq for all i P rN s with the property ErGipx, ξqs “ F pxq and following bound on the variance of the
noise:

Eξr∥rGipx, ξqsi ´ rF pxqsi∥2i,˚s ď σ2
ii,

Eξr∥rGipx, ξqsj ´ rF pxqsj∥2j,˚s ď σ2
ij for i ‰ j

However, as we discussed we are considering a setting where the players may not have access to other players’ strategies
or gradients, and only assume that the private components of the gradients have bounded variance (σ̄2 ď

řN
i“1 σ

2
ii). On
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the other hand, local update methods require the variance σ2
ij to be bounded as well while we allow that to be arbitrarily

large. We introduce the oracle G0px, ξq ” Gx̄“xr
0
px, ξq for i “ tu, vu where x0 “ pu0,v0q refers to the parameters of

each player at the beginning of the round. Our operator only uses the reliable information which is rGipx, ξqsi for player i.
Now we can write the update rule of our method as:

xr
t`1 “ xr

t ´ γP´1G0pxr
t , ξtq, (27)

where
G0px, ξq ”

`

∇ifipx0 ` UiU
J
i px ´ x0qq; ξq

˘

1ďiďN
.

Here, the index t denotes the local update step in the current local update phase on player i, and the superscript r indexes the
local phases. One communication round is needed for exchanging the updated parameters xr

K when passing to the next
round. Note that xr,i

t P Xi and xr
t P X .

Algorithm 2 Decoupled SGD for N -player games

1: Input: step size γ, initialization x0 “ px1
0, . . . ,x

N
0 q, R,K

2: for r P t1, . . . , Ru do
3: for t P t1, . . . ,Ku do
4: for n P t1, . . . , Nu in parallel do
5: Update local model xn,r

t`1 Ð xn,r
t ´ γα´1

n ∇nfnpx0 ` Unpxr
t ´ x0q; ξtq

6: end for
7: end for
8: Communicate

”

x1,r
K , . . . ,xN,r

K

ıJ

to all players
9: end for

10: Output: xR
K “ px1,R

K , . . . ,xN,R
K q

C.3. Convergence Guarantee

Now we out to a change in the definition of weakly coupled games in N -player setting.
Definition C.5 (Weakly Coupled and Fully Decoupled Games). Given an N -player game in the form of N -player. We
define the coupling degree parameter κc for this game as follows:

κc :“
Lc

µ̄
(28)

This variable measures the level of interaction in the game. A smaller value of κc indicates less interaction. We say the
game is Weakly Coupled if the following inequality holds:

κc ď
1

4
(29)

We say the game is Fully Decoupled if we have κc “ 0 which implies each player is minimizing their own pay-off function
independently.

Theorem C.6. For any R ě 1 and any K ě 1
γµ log

´

4
κc

¯

, after running Decoupled SGDA for a total of T “ KR iterations

on a function f , with the stepsize γ ď
µ̄
L̄2 in the weakly coupled regime (4κc ď 1), we get a rate of:

E
“

∥xR
K ´ x‹∥2

‰

ď D2 exp
´

´p1 ´ 4κcqR
¯

`
σ̄2γ

µ
¨

8κc

1 ´ 4κc
.

Moreover, For any R,K ě 1, after running Decoupled SGDA for a total of T “ KR iterations on a function f , with the
stepsize γ ď min

!

µ
L2 ,

µ
KLLc

)

in the non-weakly coupled regime, we get a rate of:

E
“

∥xR
K ´ x‹∥2

‰

ď D2 exp
´

´
γµ

2
KR

¯

`
2σ̄2γ

µ
.
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where D “ ∥x0 ´ x‹∥.

Corollary C.7. With the choice of γ “
µ̄

RL2 if the game is weakly coupled we get:

E
“

∥xR
K ´ x‹∥2

‰

ď D2 exp
´

´p1 ´ 4κcqR
¯

` σ̄2 8µ̄κc

RµL2p1 ´ 4κcq
.

Consequently, to reach Er∥xR
K ´ x‹∥2s ď ϵ, it suffices to perform R “ maxt 1

4´κc
logp 2D2

ϵ q, 16µ̄κcσ̄
2

µL2p1´4κcqϵu rounds with

K “ L2

µµ̄ logp 4
κc

q. Moreover, with the choice of γ “ min
␣

µ
32KL2 ,

1
µKR logpmaxt2, µ2D2

σ̄2 KRuq
(

if the game is not weakly
coupled we get:

E
“

∥xR
K ´ x‹∥2

‰

ď D2 exp
´

´
µ2

2L2
R
¯

`
σ̄2

µ2KR
.

Consequently, to reach Er∥xR
K ´ x‹∥2s ď ϵ, it suffices to perform R “ 2L2

µ2 logpD2

ϵ q with K “ 2σ̄2

µ2ϵ .

C.4. Missing Proofs for Section C.3

Before establishing the convergence results, we first need a couple of auxiliary lemmas for N -player games.

Lemma C.8. for all x, x̄,x1 P X , the operator Fx̄ is µ̄-strongly monotone where µ̄ can be expressed as: , we have

µ̄ “ min
1ďiďN

!µi

αi

)

. (30)

Proof. First recall that that each fn is µn-strongly convex in xn P Xn meaning that:

x∇nfnpxq ´ ∇nfnpx ` Undnq,xn ´ x1ny ě µn∥x1n ´ xn∥2n,

where dn :“ x1n ´ xn. Next we have:

xFx̄pxq ´ Fx̄px1q,x ´ x1y

“

N
ÿ

i“1

x∇ifpxq ´ ∇ifpx ` UJ
i diq,x

i ´ x1iy

ě

N
ÿ

i“1

µi∥x ´ x1∥2i “

N
ÿ

i“1

µi

αi
αi∥x ´ x1i∥2i

ě min
1ďiďN

!µi

αi

)

∥x ´ x1∥2.

where di :“ x1i ´ xi.

Lemma C.9 (N -player). For all x, x̄ P X , parameter Lc can be expressed as:

L̄ “ p max
1ďiďN

ÿ

j‰i

L̄2
j

αj
q1{2. (31)

Proof. Recall that for each n P rN s, there exist constants L̂n, L̄n ě 0 such that, for any x P X , any h1 P X1, . . . ,hN P XN

and any n P rN s, it holds that:

∥∇nfnpxq ´ ∇nfnpx ` Unhnq∥n,˚ ď L̂n∥hn∥n,
∥∇nfnpxq ´ ∇nfnpx `

ř

i‰nUihiq∥n,˚ ď L̄n∥
ř

i‰nUihi∥.
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Next we define hi :“ x̄i ´ xi and v :“
ř

j‰i Ujhj and we have:

∥Fx̄pxq ´ F pxq∥2˚ “

N
ÿ

i“1

1

αi
∥∇ifipxq ´ ∇ifipx ` vq∥2i,˚ ď

N
ÿ

i“1

L̄2
i

αi
∥v∥2

“

N
ÿ

i“1

L̄2
i

αi

ÿ

j‰i

αj ∥hj∥2j “

N
ÿ

i“1

βiαi ∥hi∥2i ,

where βi “
ř

j‰i

L̄2
j

αj
. Defining now L2

c “ max1ďiďN βi, we get
řN

i“1 βiαi ∥hi∥2i ď L2
c}h}2.

Lemma C.10 (N -player). Let x̄,x1,x‹ P X be such that Fx̄px1q “ 0 and F px‹q “ 0. Then κc can be expressed as:

κc “ max
1ďiďN

p
ÿ

j‰i

αiL̄
2
i

µ2
i

q1{2. (32)

Proof. Let’s define hi :“ xi
0 ´ xi, di :“ x1i ´ xi, ri :“ x‹i ´ xi, si :“ xi

0 ´ x‹i. We first introduce the point x1 P Rd as
follows:

x1 “ px11, . . . ,x1N q, x1i “ argmin
xiPRdi

fipx `
ÿ

j‰i

Ujhjq

∥∥x1 ´ x‹
∥∥2

“

N
ÿ

i“1

αi

∥∥x1i ´ x‹
∥∥2
i

ď

N
ÿ

i“1

αi

µ2
i

∥∥∥∥∥∇ifi

˜

x ` Uidi `
ÿ

j‰i

Ujhj

¸

´ ∇ifi

˜

x ` Uiri `
ÿ

j‰i

Ujhj

¸
∥∥∥∥∥
2

i,˚

“

N
ÿ

i“1

αi

µ2
i

∥∥∥∥∥∇ifipx
‹q ´ ∇ifi

˜

x ` Uiri `
ÿ

j‰i

Ujhj

¸
∥∥∥∥∥
2

i,˚

ď

N
ÿ

i“1

αiL̄
2
i

µ2
i

∥∥∥∥∥ÿ
j‰i

Ujsj

∥∥∥∥∥
2

ď

N
ÿ

i“1

αiL̄
2
i

µ2
i

ÿ

j‰i

αj ∥sj∥2j ď

N
ÿ

i“1

βiαi ∥si∥2i ď κ2
c ∥s∥

2

where βi “
ř

j‰i
αiL̄

2
i

µ2
i

and κc :“ max1ďiďN

?
βi.

More details on smoothness parameters for N -player games. For N -player games, we can define the following matrix
for the better understanding of the smoothness parameters:

L “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

L̂1

L̂2 L̄n

. . .

L̄n
L̂N´1

L̂N

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(33)

In the above matrix, the row number corresponds to the player with respect to whom we are taking the derivative, while
the column number corresponds to the player that is fixed, with all other parameters changing. All the elements Lii on the
main diagonal of the matrix measure the strength of each individual player, while the off-diagonal elements Lij for i ‰ j

measure the interaction between players i and j. We assume that all the diagonal elements are upper bounded by L̂n and all
off-diagonal elements are upper bounded by L̄n. Here n is the player which is being fixed. The parameter L̄n measures the
interaction of the nth player with all other players.

With the use of these Lemmas, one can easily extend the proof of two player game to the general N -player games.
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D. Decoupled GDA for Quadratic Games
To provide an extra insight for the results we showed so far in Section 4 and support them with a separate analysis, we
additionally consider analysing our method for quadratic games with bi-linear coupling between the players which are a
sub-class of SCSC functions.

Problem formulation and Notation. Recall that we consider unconstrained two-player games denoted by u and v in the
spaces Xu “ Rdu and Xv “ Rdv , respectively. The corresponding product space X “ Xu ˆ Xv “ Rd (with d “ du ` dv)
consists of vectors x “ pu,vq P Rd, where u P Xu and v P Xv. We assume that the spaces Xu and Xv are equipped with
Euclidean norms, denoted by ∥u∥u, ∥v∥v . The norm in the space X is then defined by ∥x∥ “ pα∥u∥2u ` β∥v∥2vq1{2 where
α, β ą 0.

We aim to find the saddle point of the following function:

min
uPXu

max
vPXv

„

fpu,vq “
1

2
xu,Auy ´

1

2
xv,Bvy ` xu,Cvy

ȷ

, (QG)

where A P Sdu
`` and B P Sdv

`` and C P Rduˆdv . Recall that we defined a general two player game as fpu,vq “

gpuq ´ hpvq ` rpu,vq. For the class of quadratic games, we can be more specific as functions gp¨q and hp¨q are quadratic
functions and rp¨q is just a linear term. Moreover, we can be more precise about the smoothness and strong convexity
parameters as they are correspond to the maximum and minimum singular values of the matrices A,B and C. The matrix
C can be seen as the interaction between two players as it’s the only term which involves both u and v. It’s also easy to
verify that for quadratic games in the form of (QG), the saddle point is at x‹ “ p0, 0q. For clarity and ease of comparison
other related works, in this section we assume α “ β “ 1.

Definition D.1. Consider a function f : X Ñ R in the form of (QG) for some u P Xu,v P Xv. The Lipschitzness and
strong convexity / concavity parameters can be defined as:

µu ĺ A ĺ Lu and µv ĺ B ĺ Lv

Moreover, we use the norm of matrix C to measure the strength of the interactive part of the game.

Luv “ Lvu :“ ∥C∥

Note that we assume Luv “ Lvu which always holds for twice differentiable functions. Now we give an explicit formula for
the iterates generated by our method on quadratic games.

Lemma D.2. Given a two-player quadratic game in the form of (QG). At some round r after K local steps with a stepsize
of γ ď maxt 1

Lu
, 1
Lv

u, the exact iterate generated by Decoupled GDA is given as follows:

xr
K “

“

QK ` E
‰

xr
0

Q :“

¨

˚

˚

˝

pI ´ γAq 0

0 pI ´ γBq

˛

‹

‹

‚

, E :“

¨

˚

˚

˝

0 ´Eu

Ev 0

˛

‹

‹

‚

Eu :“
“

I ´ pI ´ γAqK
‰

A´1C, Ev :“
“

I ´ pI ´ γBqK
‰

B´1CJ

(34)

After taking the norm of both sides we have:

∥xr
K∥ ď max

␣

p1 ´ γµuqK , p1 ´ γµvqK
(

` ∥C∥ ¨ max tδpAq, δpBqu
1{2

δpAq :“
p1 ´ p1 ´ γLuqKq2

µ2
u

, δpBq :“
p1 ´ p1 ´ γLvqKq2

µ2
v

(35)
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Remark D.3. For a quadratic game in the form of (QG), the saddle point is x‹ “ p0, 0q. We expect our method to shrink the
norm of xr

t in each round by a factor less than 1 so that we converge to the saddle point.

Lemma D.2 shows the dynamics of Decoupled GDA for quadratic functions. We can decompose the exact iterates and write
it as the sum of two matrices Q and E. As Q is a diagonal matrix to the power of K and we have that γ ď maxt 1

Lu
, 1
Lv

u,
we know that when K Ñ 8 then Q Ñ 0. The second matrix E can be seen as an error matrix which is caused by the
interactive part of the game. It is clear that if the game is fully decoupled which implies C “ 0, we get the trivial result that
we converge only with local steps without the need for communicating. However, for the case that we have this interactive
term and the game is weakly coupled, we have to upper bound the norm of this error matrix to derive the convergence
rate. We first re-state the notion of weakly coupled games for quadratic games and then provide the convergence rate of
Decoupled GDA for quadratic games.

Definition D.4 (Weakly Coupled and Fully Decoupled Games). Given a quadratic game in the form of (QG). We define the
coupling degree parameter κc for this game as follows:

κc :“ ∥C∥ ¨ max

"

1

µu
,
1

µv

*

. (36)

This variable measures the level of interaction in the game. A smaller value of κc indicates less interaction. For any quadratic
game, we say the game is Weakly Coupled if the following inequality holds:

κc ď
1

2
(37)

We say the game is Fully Decoupled if we have κc “ 0 which implies rpu,vq “ 0.

Theorem D.5. For any R and K ě 1 with a stepsize of γ ď maxt 1
Lu

, 1
Lv

u which ensures δpAq ď 1 and δpBq ď 1, after
running Decoupled GDA for a total of T “ KR iterations on a quadratic game in the form of (QG) assuming the game is
weakly coupled, we get a rate of:

∥∥xR ´ x‹
∥∥ ď D

ˆ

exp

ˆ

´
µmin

Lmax
K

˙

`
Luv

µmin

˙R

(38)

Where Lmax :“ maxtLu, Lvu and µmin :“ mintµu, µvu.

Theorem D.5 clearly shows the effect of local steps and communication rounds which gives more insights about our method
compared to the SCSC case. We can see that the first term in the rate goes to zero with taking more local steps while there is
another term that is not affected by local steps. It’s indeed intuitive as we don’t expect our method to converge with only
local steps in general. The remaining error is do to the interactive part. All the previous results discussed for SCSC case can
be applied to the quadratic setting as well.

D.1. Missing Proofs from Section D

We first introduce some auxiliary lemmas that are needed for proofs.

Lemma D.6. Let A be a positive definite matrix and γ ě 0. Then matrices A´1 and pI ´ γAq are commutative meaning
that:

A´1pI ´ γAq “ pI ´ γAqA´1 (39)

Proof.

A´1pI ´ γAq

“ A´1 ´ γI

“ pI ´ γAqA´1
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Lemma D.7. Let A be a positive definite matrix and γ ě 0. Then matrices A´1 and pI ´ γAqK are commutative meaning
that:

A´1pI ´ γAqK “ pI ´ γAqKA´1 (40)

Proof. By induction we assume that this statement holds for K which means A´1pI ´ γAqK “ pI ´ γAqKA´1. Now we
show that this statement holds for K ` 1.

A´1pI ´ γAqK`1

“ A´1pI ´ γAqpI ´ γAqK

“ pI ´ γAqA´1pI ´ γAqK

“ pI ´ γAqpI ´ γAqKA´1

“ pI ´ γAqK`1A´1

For the case of K “ 1 we use the previous Lemma.

Lemma D.8. Let A be a positive definite matrix and γ ě 0. Then we have that:

A´1
`

pI ´ γAqK ´ I
˘

“
`

pI ´ γAqK ´ I
˘

A´1 (41)

Proof.

A´1
`

pI ´ γAqK ´ I
˘

“ A´1pI ´ γAqK ´ A´1

“ pI ´ γAqKA´1 ´ A´1

“
`

pI ´ γAqK ´ I
˘

A´1

D.2. Explicit Iterates Generated by Decoupled GDA

Lemma D.9. Given a general quadratic game in the form of (QG). After k steps of Decoupled GDA at some round r we
can compute the explicit form of iterates as follows:

ur
k “ ´A´1Cvr

0 ` A´1
`

I ´ γα´1A
˘k

pAur
0 ` Cvr

0q

vr
k “ B´1CJur

0 ` B´1
`

I ´ γβ´1B
˘k `

Bvr
0 ´ CJur

0

˘
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Proof. We use induction for the proof of this lemma. By using the update rule of Decoupled GDA we have:

ur
k`1 “ uk ´ γ∇ufpur

k,v
r
0q

“ uk ´ γ pAur
k ` Cvr

0q

“ ´A´1Cvr
0 ` A´1 pI ´ γAq

k
pAur

0 ` Cvr
0q

´ γ
´

A
”

´A´1Cvr
0 ` A´1 pI ´ γAq

k
pAur

0 ` Cv0q

ı

` Cvr
0

¯

“ ´A´1Cvr
0 ` A´1 pI ´ γAq

k
pAur

0 ` Cvr
0q

´ γ
´

´Cvr
0 ` pI ´ γAq

k
pAur

0 ` Cvr
0q ` Cvr

0

¯

“ ´A´1Cvr
0 ` A´1 pI ´ γAq

k
pAur

0 ` Cvr
0q ´ γ pI ´ γAq

k
pAur

0 ` Cvr
0q

“ ´A´1Cvr
0 `

`

A´1 ´ γI
˘

”

pI ´ γAq
k

pAur
0 ` Cvr

0q

ı

“ ´A´1Cvr
0 ` A´1 pI ´ γAq

”

pI ´ γAq
k

pAur
0 ` Cvr

0q

ı

“ ´A´1Cvr
0 ` A´1 pI ´ γAq

k`1
pAur

0 ` Cvr
0q

Now we only need to show that our claim also works for k “ 0,

ur
0 “ ´A´1Cvr

0 ` A´1 pI ´ γAq
0

pAur
0 ` Cvr

0q

“ ´A´1Cvr
0 ` ur

0 ` A´1Cvr
0

“ ur
0

Also, we do the computation with respect to v:

vr
k “ B´1CJur

0 ` B´1 pI ´ γBq
k `

Bvr
0 ´ CJur

0

˘

By using the update rule of Decoupled GDA we get:

vr
k`1 “ vk ´ γ∇vfpur

0,u
r
kq

“ vk ` γ
`

´Bvr
k ` CJur

0

˘

“ vk ´ γ
`

Bvr
k ´ CJur

0

˘

“ B´1CJur
0 ` B´1 pI ´ γBq

k `
Bvr

0 ´ CJu0

˘

´ γ
´

B
”

B´1CJur
0 ` B´1 pI ´ γBq

k `
Bvr

0 ´ CJur
0

˘

ı

´ CJur
0

¯

“ B´1CJur
0 ` B´1 pI ´ γBq

k `
Bvr

0 ´ CJu0

˘

´ γ
´

CJur
0 ` pI ´ γBq

k `
Bvr

0 ´ CJur
0

˘

´ CJur
0

¯

“ B´1CJur
0 ` B´1 pI ´ γBq

k `
Bvr

0 ´ CJu0

˘

´ γ pI ´ γBq
k `

Bvr
0 ´ CJur

0

˘

“ B´1CJur
0 `

`

B´1 ´ γI
˘

”

pI ´ γBq
k `

Bvr
0 ´ CJur

0

˘

ı

“ B´1CJur
0 ` B´1 pI ´ γBq

”

pI ´ γBq
k `

Bvr
0 ´ CJur

0

˘

ı

“ B´1CJur
0 ` B´1 pI ´ γBq

k`1 `
Bvr

0 ´ CJur
0

˘
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Now we only need to show this our claim also works for k “ 0,

vr
0 “ B´1CJur

0 ` B´1 pI ´ γBq
0 `

Bvr
0 ´ CJur

0

˘

“ B´1CJur
0 ` vr

0 ´ B´1CJur
0

“ vr
0

D.3. Proof of Lemma D.2

Given a two-player quadratic game in the form of (QG). At some round r after K local steps with a stepsize of γ ď

maxt 1
Lu

, 1
Lv

u, the exact iterate generated by Decoupled GDA is given as follows:

xr
K “

“

QK ` E
‰

xr
0

Q :“

¨

˚

˚

˝

pI ´ γAq 0

0 pI ´ γBq

˛

‹

‹

‚

, E :“

¨

˚

˚

˝

0 ´Eu

Ev 0

˛

‹

‹

‚

Eu :“
“

I ´ pI ´ γAqK
‰

A´1C, Ev :“
“

I ´ pI ´ γBqK
‰

B´1CJ

(42)

After taking the norm of both sides we have:

∥xr
K∥ ď max

␣

p1 ´ γµuqK , p1 ´ γµvqK
(

` ∥C∥ ¨ max tδpAq, δpBqu
1{2

δpAq :“
p1 ´ p1 ´ γLuqKq2

µ2
u

, δpBq :“
p1 ´ p1 ´ γLvqKq2

µ2
v

(43)

Proof. From Lemma D.9 we can write the explicit iterates for the variable x:

∥xr
k∥ “

∥∥∥∥∥∥∥∥
¨

˚

˚

˝

pI ´ γAq 0

0 pI ´ γBq

˛

‹

‹

‚

k

`

¨

˚

˚

˝

0 ´Eu

Ev 0

˛

‹

‹

‚

∥∥∥∥∥∥∥∥ ¨ ∥xr
0∥

ď

∥∥∥∥∥∥∥∥
¨

˚

˚

˝

pI ´ γAq 0

0 pI ´ γBq

˛

‹

‹

‚

k∥∥∥∥∥∥∥∥ `

∥∥∥∥∥∥∥∥
¨

˚

˚

˝

0 ´Eu

Ev 0

˛

‹

‹

‚

∥∥∥∥∥∥∥∥ ¨ ∥xr
0∥

ď max
␣

p1 ´ γµuqk, p1 ´ γµvqk
(

¨ ∥xr
0∥ `

∥∥∥∥∥∥∥∥
¨

˚

˚

˝

0 ´Eu

Ev 0

˛

‹

‹

‚

∥∥∥∥∥∥∥∥ ¨ ∥xr
0∥

For computing the norm of the error matrix we need to compute
a

λmaxpEJEq. We first form EJE:

EJE “

¨

˚

˚

˝

EJ
v Ev 0

0 EJ
uEu

˛

‹

‹

‚

So we have:

λmaxpEJEq “ max
␣

λmaxpEJ
uEuq, λmaxpEJ

v Evq
(
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For computing the λmaxpEJ
uEuq we have:

λmax

`

EJ
uEu

˘

“ λmax

´

CJA´J
“

I ´ pI ´ γAqk
‰J “

I ´ pI ´ γAqk
‰

A´1C
¯

ď ∥C∥2 λmax

´

A´J
“

I ´ pI ´ γAqk
‰J “

I ´ pI ´ γAqk
‰

A´1
¯

ď ∥C∥2 λmax

`

A´J
˘

λmax

´

“

I ´ pI ´ γAqk
‰J
¯

λmax

`“

I ´ pI ´ γAqk
‰˘

λmax

`

A´1
˘

ď ∥C∥2 p1 ´ p1 ´ γλmaxpAqqkq2

λ2
minpAq

ď
∥C∥2

µ2
u

We have the same computation with respect to player v as well which gives us:

λmax

`

EJ
v Ev

˘

“ ∥C∥2 p1 ´ p1 ´ γλmaxpBqqkq2

λ2
minpBq

ď
∥C∥2

µ2
v

Note that using the assumption γ ď maxt 1
Lu

, 1
Lv

u we make sure that δpAq ď 1 and δpBq ď 1.

D.4. Proof of Theorem D.5

For any R and K ě 1 with a stepsize of γ ď maxt 1
Lu

, 1
Lv

u which ensures δpAq ď 1 and δpBq ď 1, after running
Decoupled GDA for a total of T “ KR iterations on a quadratic game in the form of (QG) assuming the game is weakly
coupled with c “ 1, we get a rate of:∥∥xR ´ x‹

∥∥ ď D

ˆ

exp

ˆ

´
µmin

Lmax
K

˙

`
Luv

µmin

˙R

(44)

Where Lmax :“ maxtLu, Lvu and µmin :“ mintµu, µvu.

Proof. Using previous Lemmas we have:

∥xr
k∥

ď max
␣

p1 ´ γµuqK , p1 ´ γµvqK
(

¨ ∥xr
0∥ `

∥∥∥∥∥∥∥∥
¨

˚

˚

˝

0 ´Eu

Ev 0

˛

‹

‹

‚

∥∥∥∥∥∥∥∥ ¨ ∥xr
0∥

ď max
␣

p1 ´ γµuqK , p1 ´ γµvqK
(

¨ ∥xr
0∥ ` ∥C∥max

"

1

λminpAq
,

1

λminpBq

*

¨ ∥xr
0∥

ď

ˆ

p1 ´ γµminqK `
∥C∥
µmin

˙

¨ ∥xr
0∥

After unrolling the above recursion for R rounds we get:

∥xr
k∥ ď B

ˆ

p1 ´ γµminqK `
∥C∥
µmin

˙R

E. Additional Related Works & Discussion
E.1. Decentralized optimization

The key difference between decentralized and distributed minimax approaches is the presence of a central server. In the
former, there is no central server, and nodes communicate directly with their neighbors, whereas in the latter, a central server
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aggregates the parameters. Our method belongs to the category of distributed methods. However, we will discuss later on
that our approach is completely different from the general idea of distributed / federated optimization.

Decentralized optimization is widely studied for the case of minimization (Xiao & Boyd, 2004; Tsitsiklis, 1984) with the
goal of not relying on a central node or server. This idea is also applied to the case of minimax optimization problems.
The paper (Liu et al., 2020) is the first who studied non-convex-non-concave decentralized minimax. They also used the
idea of optimistic gradient descent and achieved a rate of Opϵ´12q. In (Xian et al., 2021), authors proposed an algorithm
called DM-HSGD for non-convex decentralized minimax by utilizing variance reduction and achieved a rate of Opκ3ϵ´3q.
Recently, authors in (Liu et al., 2023) proposed an algorithm named Precision for the non-convex-strongly-concave objectives
which has a two-stage local updates and gives a rate of Op 1

T q.

E.2. Comparison Between Decoupled SGDA and Federated Minimax (Local SGDA)

In this section, we aim to highlight the key differences between our method and existing distributed or decentralized methods
in the literature. As mentioned earlier, our method can be classified as distributed, though it has a major difference from
others. In fact, this difference lies in the problem formulation.

Decentralized / Distributed minimax formulation. In these settings, we aim to solve the following finite-sum optimiza-
tion problem over M clients:

fpu,vq “
1

M

M
ÿ

m“1

fmpu,vq (45)

In the above formulation, it is assumed that each client has a different data distribution Dm and tries to solve the game based
on this data. It means that each client keeps updating both u and v at the same time for several steps. Then the server
aggregates the parameters and sends them back to clients. The ultimate goal is to find the saddle point x‹ “ pu‹,v‹q of
the global function f , as if the entire dataset D “ D1 Y ¨ ¨ ¨ Y DM were on a single machine running GDA on it. In this
setting, each client is allowed to update both players meaning that it has access to the gradient of fm with respect to u and v.
However in our approach, instead of splitting the data over clients, we split the parameter space. It means one machine
is responsible for only updating u and another for v. Our method also allows to have several machines for u and several
machines for v. An important point to consider is that the notions of client and player should not be intermixed. When the
number of players is fixed, the distributed minimax approach essentially runs several instances pfmq of the main game pfq

in parallel to ultimately find the saddle point of f . In contrast, our method directly finds the saddle point of f by splitting the
parameter space across different machines. Figure 7 illustrates the difference between these two methods.

ur
k`1 “ ur

k ´ γ∇ufpur
k,v

r
0q

vr
k`1 “ vr

k ` γ∇vfpur
0,v

r
kq

Decoupled GDA

uk`1 “ uk ´ γ∇ufpuk,vkq

vk`1 “ vk ` γ∇vfpuk,vkq

GDA
ur,m
k`1 “ ur,m

k ´ γ∇ufmpur,m
k ,vr,m

k q

vr,m
k`1 “ vr,m

k ` γ∇vfmpur,m
k ,vr,m

k q

Federated Minimax

Figure 6. Comparison of different gradient descent ascent (GDA) approaches: Decoupled GDA, standard GDA, and Federated Minimax.
The top box represents Decoupled GDA, where u and v gradients are separated, while the bottom left and right boxes represent the
standard GDA and Federated Minimax approaches, respectively.
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Figure 7. Comparison of our method with the federated minimax formulation: Our method splits the parameter space, while the federated
formulation splits the data. Moreover, our method only allows each player to access the gradient with respect to their own parameters,
whereas in federated minimax, each player can compute the gradient with respect to both their own parameters and the other player’s
parameters.

F. Federated Decoupled SGDA
F.1. Comparing Decoupled SGDA with Federated Learning for Minimax Optimization

Federated learning (FL) builds on the foundational work in distributed minimization, exploring various settings. In the
context of minimax optimization, methods like Local SGD have been extended to achieve convergence rates for different
classes of functions in both heterogeneous and homogeneous regimes. FL methods for games differ from the setting
considered in this work. In FL, multiple copies of all strategies (parameters) are trained locally on different machines and
datasets and periodically aggregated. FL is suited for scenarios where a single local machine runs a multi-player algorithm
and has access to all players’ loss functions, with "collaboration" built into the design. In contrast, our method suits
competitive distributed players (local machines) where each player has noisy or outdated strategies of the remaining players.
For further discussion, see Appendix E. Additionally, federated learning assumes balanced noise across players, which is not
required in our setting; revisited in § 3 and § 5. Finally, in § 4, we identify a class of games where our approach leads to
faster convergence, even if fully centralized training is possible, which class similarly arises in non-convex settings–§ 5.In
the rest of this section, we study Federated Decoupled SGDA, which is a combination of Federated Minimax and Decoupled
SGDA algorithms, and can benefit from the advantages of both approaches. In the next section we propose this method with
details.

F.2. Federated Decoupled SGDA method

In this section, we study an extension of our method in the context of federated minimax optimization aligned with the works
(Deng & Mahdavi, 2021; Sharma et al., 2022). This line of work is closely related to finite-sum minimization, a well-studied
topic. Local SGD (Stich, 2019a) is the most popular method used to solve finite-sum minimization problems in a distributed
fashion. As an extension of this method to finite-sum minimax problems, researchers have studied Local SGDA, which is a
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straightforward extension of Local SGD, incorporating gradient ascent steps in addition to gradient descent. We extend our
method to this setting for the sake of completeness and provide a convergence rate that matches the state-of-the-art results
for Local SGD while also improving the conditioning of the existing rates for Local SGDA.

Notation. We consider unconstrained two-player games denoted by u and v in the spaces Xu “ Rdu and Xv “ Rdv ,
respectively. The corresponding product space X “ Xu ˆXv “ Rd (with d “ du `dv) consists of vectors x “ pu,vq P Rd,
where u P Xu and v P Xv . For this section, we consider the common ℓ2 norm ∥x∥2 “

a

xx,xy.

Problem formulation In distributed minimax optimization, we aim to solve the following problem:

min
uPXu

max
vPXv

«

fpu,vq “
1

M

M
ÿ

m“1

fmpu,vq “
1

M

M
ÿ

m“1

Eξm„Dm
fmpu,v, ξmq

ff

(46)

In this setting, we assume that each player’s data is distributed across M clients / processors. So each processor has access
to a function fm : X Ñ R on which it can perform stochastic gradient steps. We denote um,r

k and vm,r
k as the parameters

of players u and v on client m in some round r after k local steps. We also use the notation ūr
k “ 1

M

řM
m“1 u

m,r
k and

v̄r
k “ 1

M

řM
m“1 v

m,r
k to denote the average of parameters over clients at some round r after k local steps. Data distribution

across processors can be either homogeneous or heterogeneous. In the heterogeneous regime, which is the case of study in
this paper, each processor holds a different payoff function. To measure the heterogeneity of the problem, it’s common to
use the following assumption:

Assumption F.1. There exists a constant ζ‹ ą 0 satisfying the following inequality in distributed minimax games:

max

"

sup
m

∥∇ufmpx‹q∥2 , sup
m

∥∇vfmpx‹q∥2
*

ď ζ2‹ (47)

Assumption F.1 is very common in federated learning and it has been used in many works (Koloskova et al., 2020; Deng &
Mahdavi, 2021; Khaled et al., 2020). Another common assumption in the literature (Woodworth et al., 2020b; Patel et al.,
2024; Zindari et al., 2023) is gradient similarity ζ for every point x P X which is a stronger assumption and cannot be
satisfied for quadratic functions. In this work, we use Assumption F.1 to provide our convergence guarantee for our method.

Assumption F.2. We assume that each local function fm is L-smooth meaning that for all u,u1 P Xu and v,v1 P Xv it
holds that: ∥∥∇ufmpu,vq ´ ∇ufmpu1,v1q

∥∥ ď L
“
∥∥u ´ u1

∥∥ `
∥∥v ´ v1

∥∥‰∥∥∇vfmpu,vq ´ ∇vfmpu1,v1q
∥∥ ď L

“∥∥u ´ u1
∥∥ `

∥∥v ´ v1
∥∥‰ (48)

Assumption F.3. We assume that the global function f is µ strongly convex in u and µ strongly concave in v if for all
u,u1 P Xu and v,v1 P Xv it holds that:

xu ´ u1,∇ufpu,vq ´ ∇ufpu1,vqy ě µ
∥∥u ´ u1

∥∥2
xv ´ v1,∇vfpu,v1q ´ ∇vfpu,vqy ě µ

∥∥v ´ v1
∥∥2 (49)

Assumption F.4. The variance of the noise of stochastic gradients on each client is uniformly upper bounded by σ2.

Eξm

”

∥∇ufmpu,v; ξmq ´ ∇ufmpu,vq∥2
ı

ď σ2

Eξm

”

∥∇vfmpu,v; ξmq ´ ∇vfmpu,vq∥2
ı

ď σ2
(50)

Method Note that in this section we drop the superscript r for convenience. It’s expected to first define operators
F pxq, Fmpxq as follows:

Gmpx; ξmq :“

¨

˚

˚

˝

∇ufmpu,v; ξmq

´∇vfmpu,v; ξmq

˛

‹

‹

‚

, Gpx; ξmq :“

¨

˚

˚

˝

1
M

řM
m“1 ∇ufmpu,v; ξmq

´ 1
M

řM
m“1 ∇vfmpu,v; ξmq

˛

‹

‹

‚

(51)

Where we assume EξmrGmpx; ξmqs “ Fmpxq and EξmrGpx; ξmqs “ F pxq.
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Algorithm 3 Decoupled SGDA for two-player federated minimax games

1: Input: step size γ, initialization u0,v0

2: Initialize: @m P rM s ,ur,0
0 Ð u0, yr,0

0 Ð v0

3: for r P t1, . . . , Ru do
4: @m P rM s ,um,r

0 Ð ūr
0, ym,r

0 Ð v̄r
0

5: for k P t0, . . . ,K ´ 1u do
6: for m P t1, . . . ,Mu in parallel do
7: Update local model um,r

k`1 Ð um,r
k ´ γ∇ufmpum,r

k ,vm,r
0 ; ξmq

8: Update local model vm,r
k`1 Ð vm,r

k ` γ∇vfmpum,r
0 ,vm,r

k ; ξmq

9: end for
10: end for
11: ūr`1

0 Ð 1
M

řM
m“1 u

m,r
K , v̄r`1

0 Ð 1
M

řM
m“1 v

m,r
K

12: Communicate ūr
K to all processors with v player and v̄r

K to all processors with u player
13: end for
14: Output: ūR

K , v̄R
K

Remark F.5. Note that Fmpx‹q ‰ 0 and F px‹q “ 0.

The conventional method for solving (46) is Local SGDA which performs K gradient descent and ascent local steps on each
client followed by an averaging on parameters u and v over all clients which is done by a central server.

um
K “ um

0 ´ γ
K´1
ÿ

i“0

∇ufmpum
i ,vm

i ; ξmq, vm
K “ vm

0 ` γ
K´1
ÿ

i“0

∇vfmpum
i ,vm

i ; ξmq (52)

Then the server computes the average of parameters ūK “ 1
M

řM
m“1 u

m
K and v̄K “ 1

M

řM
m“1 v

m
K and sends them back to

all clients to start from these points. On the other hand, our method uses a different operator which contains the outdated
gradients.

G0
mpx; ξmq :“

¨

˚

˚

˝

∇ufmpu,v0; ξmq

´∇vfmpu0,v; ξmq

˛

‹

‹

‚

, G0px; ξmq :“

¨

˚

˚

˝

1
M

řM
m“1 ∇ufmpu,v0; ξmq

´ 1
M

řM
m“1 ∇vfmpu0,v; ξmq

˛

‹

‹

‚

(53)

Where we assume EξmrG0
mpx; ξmqs “ F 0

mpxq and EξmrG0px; ξmqs “ F 0pxq. The update rule of our in some round r can
be written as:

um
K “ um

0 ´ γ
K´1
ÿ

i“0

∇ufmpum
i ,vm

0 ; ξmq, vm
K “ vm

0 ` γ
K´1
ÿ

i“0

∇vfmpum
0 ,vm

i ; ξmq (54)

Assuming that all clients started with the parameters u0 “ um
0 and v0 “ vm

0 at the beginning of the round.

In Algorithm 3, we discuss our method, where two players u and v have their data distributed across M processors each.
At every round, each set of processors update their local models while having access to an outdated version of the other
opponent parameters which was received at the beginning of the round. By the end of the round, both set of u and v
processors send the their parameters to a central server which will compute the average of the parameters and send them
back to all processors.

F.3. Convergence Guarantees

Theorem F.6. For any K,R,L ą 0, µ ą 0 after running Decoupled SGDA for a total of T “ KR iterations on the
problems in the form of (46) in a distributed setting with 2M clients using a stepsize of γ ď

µ
32L2K , assuming that

∥x0 ´ x‹∥2 ď D2, we have the following convergence rate:

E
”∥∥x̄R

K ´ x‹
∥∥2ı ď D2 exp

ˆ

´
γµKR

2

˙

`
96K2L2γ2ζ2‹

µ2
`

6KL2γ2σ2

µ2
`

2γσ2

Mµ
(55)
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Corollary F.7. After choosing a stepsize of γ “ min
!

µ
32KL2 ,

lnpmaxt2,µ2B2KR{σ2
uq

µKR

)

, we get a rate of:

E
”∥∥x̄R

K ´ x‹
∥∥2ı “ Õ

ˆ

D2 exp

ˆ

´
µ2

L2
R

˙

`
L2ζ2‹
µ4R2

`
L2σ2

µ4KR2
`

σ2

µ2MKR

˙

(56)

Method Heterogeneous Homogeneous

Local SGDA

(Deng & Mahdavi, 2021)

O
´

L6

µ6R3 ` σ2

µ2MKR `
L2ζ2

‹

µ3MKR ` L2σ2

µ3MKR

¯

Õ
´

1
K2R2 ` σ2

µ2MKR ` L2σ2

µ4MKR ` L2σ2

µ4MK2R2

¯

Local SGD

(Koloskova et al., 2020)

(Yuan & Ma, 2020)

O
´

LD2 exp
`

´
µ
LR

˘

` σ2

µMKR `
Lζ2

‹

µ2R2 ` Lσ2

µ2KR2

¯

O
´

LD2 exp
`

´
µ
LKR

˘

` σ2

µKMR `
Q2σ4

µ5K2R4

¯

Ours

Fed. Decoupled SGDA

Õ
´

D2 exp
´

´
µ2

L2R
¯

` σ2

µ2MKR `
L2ζ2

‹

µ4R2 ` L2σ2

µ4KR2

¯

-

Table 4. Comparison of Methods in Heterogeneous and Homogeneous Settings

Table 4 compares state-of-the-art rates for Local SGD, Local SGDA with Federated Decoupled SGDA. The first term in
our rate enjoys an exponential decrease which matches the rate of Local SGD. However, the rate for Local SGDA has a
rate of O

´

L6

µ6R3

¯

which is worse. In addition, in this term we have a better conditioning of κ2 compared to κ6 in Local

SGDA. Note that the condition number κ2 in the first term of our rate matches the baseline SGDA which considering the
fact that SGD has a conditioning of κ which also appears in Local SGD due to the fact that the problem is minimization (not
minimax). Our method also matches the rate of Local SGD for the noise terms and the term with heterogeneity. However, it
seems that for this term the rate in (Deng & Mahdavi, 2021) contracts the existing lower bound proposed for Local SGD in
(Patel et al., 2024) which is:

ErfpxRq ´ fpx‹qs ľ
LD2

R
`

pLσ2D4q1{3

K1{3R2{3
`

σD
?
MKR

`
pLζ2‹D

4q1{3

R2{3
(57)

As it’s clear from the lower bound, the term with heterogeneity cannot be improved using local steps (there is no K in the
denominator) while in the rate of (Deng & Mahdavi, 2021) this term can be decreased if K Ñ 8, which contracts the lower
bound.

F.4. Missing Proofs for Section F

Lemma F.8. For a set of M vectors a1,a2, . . . ,aM P Rd we have:∥∥∥∥∥ M
ÿ

m“1

am

∥∥∥∥∥ ď

M
ÿ

m“1

∥am∥ . (58)

Lemma F.9. For a set of M vectors a1,a2, . . . ,aM P Rd we have:∥∥∥∥∥ M
ÿ

m“1

am

∥∥∥∥∥
2

ď M
M
ÿ

m“1

∥am∥2 . (59)

Lemma F.10. For two arbitrary vectors a,b P Rd and @γ ą 0 we have:

∥a ` b∥2 ď p1 ` γq ∥a∥2 ` p1 ` γ´1q ∥b∥2 . (60)

Lemma F.11. Let Assumption 2.4 holds. Then we have:

Eξm

∥∥∥∥∥ 1

M

M
ÿ

m“1

∇ufmpu,v, ξmq ´
1

M

M
ÿ

m“1

∇ufmpu,vq

∥∥∥∥∥
2

ď
σ2

M
. (61)

The same argument holds for gradient with respect to v.
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Lemma F.12 (Consensus Error). After running Decoupled Local SGDA for k local steps at some round r with a step-size of
γ ď

µ
32L2K , the error Ψpxm,r

k q ` Φpx̄r
kq can be upper bounded as follows:

ErΨpxm,r
k q ` Φpx̄r

kqs ď

K
ÿ

i“1

µ2

8KL2
∥x̄r

i ´ x‹∥2 ` 32K2γ2ζ2‹ `
2Kγ2σ2

M
` 2Kγ2σ2 (62)

In this setting, we have two different errors related to the use of outdated gradients and deviation from the average iterates.
Total error is the sum of both errors. We define the consensus error in this setting as follows:

Ψpum,r
k q :“

1

M

M
ÿ

m“1

∥um,r
k ´ ūr

k∥
2
, Ψpvm,r

k q :“
1

M

M
ÿ

m“1

∥vm,r
k ´ v̄r

k∥
2

Φpūr
kq :“ ∥ūr

0 ´ ūr
k∥

2
, Φpv̄r

kq :“ ∥v̄r
0 ´ v̄r

k∥
2

Ψpxm,r
k q “ Ψpum,r

k q ` Ψpvm,r
k q, Φpx̄r

kq “ Φpūr
kq ` Φpv̄r

kq

The total consensus error can be computed by summing both errors with respect to u and v:

Consensus error :“
Ψpukq ` Ψpvkq

error caused by
deviation from average

`

Φpukq ` Φpvkq

error caused by
outdated gradients

In the following, the upper bound for consensus error in different settings will be discussed. Note that in the case of multi
client, we get different upper bounds based on the assumption on data heterogeneity.
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Proof.

ErΨpum,r
k`1q ` Φpūr

k`1qs

“
1

M

M
ÿ

m“1

E

∥∥∥∥∥um,r
k ´ γ∇ufmpum,r

k ,vm,r
0 ; ξmq ´ ūr

k `
γ

M

M
ÿ

m“1

∇ufmpum,r
k ,vm,r

0 ; ξmq

∥∥∥∥∥
2

`

E

∥∥∥∥∥ūr
0 ´ ūr

k `
γ

M

M
ÿ

m“1

∇ufmpum,r
k ,vm,r

0 ; ξmq

∥∥∥∥∥
2

“
1

M

M
ÿ

m“1

E

∥∥∥∥∥um,r
k ´ γ∇ufmpum,r

k ,vm,r
0 q ´ ūr

k `
γ

M

M
ÿ

m“1

∇ufmpum,r
k ,vm,r

0 q

∥∥∥∥∥
2

`

E

∥∥∥∥∥ūr
0 ´ ūr

k `
γ

M

M
ÿ

m“1

∇ufmpum,r
k ,vm,r

0 q

∥∥∥∥∥
2

`
γ2σ2

M
` γ2σ2

ď

ˆ

1 `
1

K

˙

ErΨpum,r
k q ` Φpūr

kqs `
2Kγ2

M

M
ÿ

m“1

E

∥∥∥∥∥∇ufmpum,r
k ,vm,r

0 q ´
1

M

M
ÿ

m“1

∇ufmpum,r
k ,vm,r

0 q

∥∥∥∥∥
2

`

2Kγ2

M

M
ÿ

m“1

E ∥∇ufmpum,r
k ,vm,r

0 q∥2 `
γ2σ2

M
` γ2σ2

ď

ˆ

1 `
1

K

˙

ErΨpum,r
k q ` Φpūr

kqs `
4Kγ2

M

M
ÿ

m“1

E ∥∇ufmpum,r
k ,vm,r

0 q∥2 `
γ2σ2

M
` γ2σ2

“

ˆ

1 `
1

K

˙

ErΨpum,r
k q ` Φpūr

kqs`

4Kγ2

M

M
ÿ

m“1

E ∥∇ufmpum,r
k ,vm,r

0 q ´ ∇ufmpūr
k, v̄

r
kq ` ∇ufmpūr

k, v̄
r
kq∥2 `

γ2σ2

M
` γ2σ2

ď

ˆ

1 `
1

K

˙

ErΨpum,r
k q ` Φpūr

kqs `
8Kγ2

M

M
ÿ

m“1

E ∥∇ufmpum,r
k ,vm,r

0 q ´ ∇ufmpūr
k, v̄

r
kq∥2 `

8Kγ2

M

M
ÿ

m“1

E ∥∇ufmpūr
k, v̄

r
kq∥2 `

γ2σ2

M
` γ2σ2

ď

ˆ

1 `
1

K

˙

ErΨpum,r
k q ` Φpūr

kqs ` 8KL2γ2 ErΨpum,r
k qs ` 8KL2γ2 ErΦpv̄r

kqs`

8Kγ2

M

M
ÿ

m“1

E ∥∇ufmpūr
k, v̄

r
kq∥2 `

γ2σ2

M
` γ2σ2

“

ˆ

1 `
1

K

˙

ErΨpum,r
k q ` Φpūr

kqs ` 8KL2γ2 ErΨpum,r
k q ` Φpv̄r

kqs`

8Kγ2

M

M
ÿ

m“1

E ∥∇ufmpūr
k, v̄

r
kq ´ ∇ufmpu‹,v‹q ` ∇ufmpu‹,v‹q∥2 `

γ2σ2

M
` γ2σ2

ˆ

1 `
1

K

˙

ErΨpum,r
k q ` Φpūr

kqs ` 8KL2γ2 ErΨpum,r
k q ` Φpv̄r

kqs`

16Kγ2

M

M
ÿ

m“1

E ∥∇ufmpūr
k, v̄

r
kq ´ ∇ufmpu‹,v‹q∥2 ` 16Kγ2ζ2‹ `

γ2σ2

M
` γ2σ2
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we continue:

ErΨpum,r
k`1q ` Φpūr

k`1qs ď

ˆ

1 `
1

K

˙

ErΨpum,r
k q ` Φpūr

kqs ` 8KL2γ2 ErΨpum,r
k q ` Φpv̄r

kqs`

16KL2γ2 E ∥x̄r
k ´ x‹∥2 ` 16Kγ2ζ2‹ `

γ2σ2

M
` γ2σ2

After doing the same computation with respect to v we get:

ErΨpvm,r
k`1q ` Φpv̄r

k`1qs

ď

ˆ

1 `
1

K

˙

ErΨpvm,r
k q ` Φpv̄r

kqs ` 8KL2γ2 ErΨpvm,r
k q ` Φpūr

kqs`

16KL2γ2 E ∥x̄r
k ´ x‹∥2 ` 16Kγ2ζ2‹ `

γ2σ2

M
` γ2σ2

Now we sum up both inequalities and we get:

ErΨpxm,r
k`1q ` Φpx̄r

k`1qs

ď

ˆ

1 `
1

K

˙

ErΨpxm,r
k q ` Φpx̄r

kqs ` 8KL2γ2 ErΨpxm,r
k q ` Φpx̄r

kqs`

32KL2γ2 E ∥x̄r
k ´ x‹∥2 ` 32Kγ2ζ2‹ `

2γ2σ2

M
` 2γ2σ2

With the choice of γ ď
µ

32L2K we simplify the above inequality as:

ErΨpxm,r
k`1q ` Φpx̄r

k`1qs

ď

ˆ

1 `
1

K
`

1

128K

˙

ErΨpxm,r
k q ` Φpx̄r

kqs `
µ2

32KL2
E ∥x̄r

k ´ x‹∥2 ` 32Kγ2ζ2‹ `
2γ2σ2

M
` 2γ2σ2

After unrolling the recursion for the last K steps and considering the fact that
`

1 ` 1
K ` 1

128K

˘K
ď 4 we have:

ErΨpxm,r
k`1q ` Φpx̄r

k`1qs ď

K
ÿ

i“1

µ2

8KL2
E ∥x̄r

i ´ x‹∥2 ` 32K2γ2ζ2‹ `
2Kγ2σ2

M
` 2Kγ2σ2

F.5. Proof of Theorem F.6

For any K,R,L ą 0, µ ą 0 after running Decoupled SGDA for a total of T “ KR iterations on the problems in the form
of (46) in a distributed setting with 2M clients using a stepsize of γ ď

µ
32L2K , assuming that ∥x0 ´ x‹∥2 ď B2, we have

the following convergence rate:

E
∥∥x̄R

K ´ x‹
∥∥2 ď B2 exp

ˆ

´
γµKR

2

˙

`
96K2L2γ2ζ2‹

µ2
`

6KL2γ2σ2

µ2
`

2γσ2

Mµ
(63)
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Proof. We start by upper bounding the distance between the average iterate ūr
k`1 and the saddle point.

E
∥∥ūr

k`1 ´ u‹
∥∥2

“ E

∥∥∥∥∥ūr
k ´

γ

M

M
ÿ

m“1

∇ufmpum,r
k ,vm,r

0 ; ξmq ´ u‹

∥∥∥∥∥
2

ď E

∥∥∥∥∥ūr
k ´

γ

M

M
ÿ

m“1

∇ufmpum,r
k ,vm,r

0 q ´ u‹

∥∥∥∥∥
2

`
γ2σ2

M

“ E

∥∥∥∥∥ūr
k `

γ

M

M
ÿ

m“1

∇ufmpūr
k, v̄

r
kq ´

γ

M

M
ÿ

m“1

∇ufmpum,r
k ,vm,r

0 q ´
γ

M

M
ÿ

m“1

∇ufmpūr
k, v̄

r
kq ´ u‹

∥∥∥∥∥
2

`
γ2σ2

M

ď

´

1 `
γµ

2

¯

E

∥∥∥∥∥ūr
k ´

γ

M

M
ÿ

m“1

∇ufmpūr
k, v̄

r
kq ´ u‹

∥∥∥∥∥
2

`

ˆ

1 `
2

γµ

˙

γ2

M

M
ÿ

m“1

E ∥∇ufmpūr
k, v̄

r
kq ´ ∇ufmpum,r

k ,vm,r
0 q∥2 `

γ2σ2

M

For the first term in the above inequality we have:

´

1 `
γµ

2

¯

E

∥∥∥∥∥ūr
k ´

γ

M

M
ÿ

m“1

∇ufmpūr
k, v̄

r
kq ´ u‹

∥∥∥∥∥
2

“

´

1 `
γµ

2

¯

E ∥ūr
k ´ γ∇ufpūr

k, v̄
r
kq ´ u‹∥2

“

´

1 `
γµ

2

¯

E
”

∥ūr
k ´ u‹∥2 ` γ2 ∥∇ufpūr

k, v̄
r
kq∥2 ´ 2γxūr

k ´ u‹,∇ufpūr
k, v̄

r
kqy

ı

ď

´

1 `
γµ

2

¯

E
”

p1 ` γ2L2q ∥ūr
k ´ u‹∥2 ´ 2γxūr

k ´ u‹,∇ufpūr
k, v̄

r
kqy

ı

For the second term we also have:

ˆ

1 `
2

γµ

˙

γ2

M

M
ÿ

m“1

E ∥∇ufmpūr
k, v̄

r
kq ´ ∇ufmpum,r

k ,vm,r
0 q∥2

ď

ˆ

1 `
2

γµ

˙

L2γ2

M

M
ÿ

m“1

E ∥ūr
k ´ um,r

k ∥2 `

ˆ

1 `
2

γµ

˙

L2γ2

M

M
ÿ

m“1

E ∥v̄r
k ´ v̄r

0∥
2

“

ˆ

1 `
2

γµ

˙

L2γ2 E rΨpum,r
k qs `

ˆ

1 `
2

γµ

˙

L2γ2 ErΦpv̄r
kqs
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Where in the last line, we used the fact that vm,r
0 “ v̄r

0. We then repeat the same computation with respect to v.

E
∥∥v̄r

k`1 ´ v‹
∥∥2 “

“ E

∥∥∥∥∥v̄r
k `

γ

M

M
ÿ

m“1

∇vfmpum,r
0 ,vm,r

k ; ξmq ´ v‹

∥∥∥∥∥
2

ď E

∥∥∥∥∥v̄r
k `

γ

M

M
ÿ

m“1

∇vfmpum,r
0 ,vm,r

k q ´ v‹

∥∥∥∥∥
2

`
γσ2

M

“ E

∥∥∥∥∥v̄r
k `

γ

M

M
ÿ

m“1

∇vfmpum,r
0 ,vm,r

k q ´
γ

M

M
ÿ

m“1

∇vfmpūr
k, v̄

r
kq `

γ

M

M
ÿ

m“1

∇vfmpūr
k, v̄

r
kq ´ v‹

∥∥∥∥∥
2

`
γσ2

M

ď

´

1 `
γµ

2

¯

E

∥∥∥∥∥v̄r
k `

γ

M

M
ÿ

m“1

∇vfmpūr
k, v̄

r
kq ´ v‹

∥∥∥∥∥
2

`

ˆ

1 `
2

γµ

˙

γ2

M

M
ÿ

m“1

E ∥∇vfmpūr
k, v̄

r
kq ´ ∇vfmpum,r

0 ,vm,r
k q∥2 `

γσ2

M

For the first term in the above inequality we have:

´

1 `
γµ

2

¯

E

∥∥∥∥∥v̄r
k `

γ

M

M
ÿ

m“1

∇vfmpūr
k, v̄

r
kq ´ v‹

∥∥∥∥∥
2

“

´

1 `
γµ

2

¯

E ∥v̄r
k ` γ∇vfpūr

k, v̄
r
kq ´ v‹∥2

“

´

1 `
γµ

2

¯

E
”

∥v̄r
k ´ v‹∥2 ` γ2 ∥∇vfpūr

k, v̄
r
kq∥2 ´ 2γxv‹ ´ v̄r

k,∇vfpūr
k, v̄

r
kqy

ı

ď

´

1 `
γµ

2

¯

E
”

p1 ` γ2L2q ∥v̄r
k ´ v‹∥2 ´ 2γxv‹ ´ v̄r

k,∇vfpūr
k, v̄

r
kqy

ı

For the second term we also have:

ˆ

1 `
2

γµ

˙

γ2

M

M
ÿ

m“1

E ∥∇vfmpūr
k, v̄

r
kq ´ ∇vfmpum,r

0 ,vm,r
k q∥2

ď

ˆ

1 `
2

γµ

˙

L2γ2

M

M
ÿ

m“1

E ∥ūr
k ´ ūr

0∥
2

`

ˆ

1 `
2

γµ

˙

L2γ2

M

M
ÿ

m“1

E ∥v̄r
k ´ vm,r

k ∥2

“

ˆ

1 `
2

γµ

˙

L2γ2 ErΦpūr
kqs `

ˆ

1 `
2

γµ

˙

L2γ2 ErΨpvm,r
k qs

Summing up the results from the inequalities with respect to u and v gives us:

E
∥∥x̄r

k`1 ´ x‹
∥∥2

ď

´

1 `
γµ

2

¯

E
”

p1 ` γ2L2q ∥x̄r
k ´ x‹∥2 ´ 2γxx̄r

k ´ x‹, F px̄r
kqy

ı

` γ

ˆ

γL2 `
2L2

µ

˙

E rΦpx̄r
kq ` Ψpxm,r

k qs `
γ2σ2

M

ď

´

1 `
γµ

2

¯

E
”

p1 ` γ2L2q ∥x̄r
k ´ x‹∥2 ´ 2γµ ∥x̄r

k ´ x‹∥2
ı

` γ

ˆ

γL2 `
2L2

µ

˙

E rΦpx̄r
kq ` Ψpxm,r

k qs `
γ2σ2

M

“

´

1 `
γµ

2

¯

E
”

p1 ´ 2γµ ` γ2L2q ∥x̄r
k ´ x‹∥2

ı

` γ

ˆ

γL2 `
2L2

µ

˙

E rΦpx̄r
kq ` Ψpxm,r

k qs `
γ2σ2

M
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With the choice of γ ď
µ

16L2 we have:

E
∥∥x̄r

k`1 ´ x‹
∥∥2

ď

ˆ

1 ´
23γµ

16

˙

E ∥x̄r
k ´ x‹∥2 `

33γL2

16µ
E rΦpx̄r

kq ` Ψpxm,r
k qs `

γ2σ2

M

ď

ˆ

1 ´
23γµ

16

˙

E ∥x̄r
k ´ x‹∥2 `

33γµ

128K

K
ÿ

i“1

∥x̄r
i ´ x‹∥2 `

96K2L2γ3ζ2‹
µ

`
7KL2γ3σ2

µM
`

6KL2γ3σ2

µ
`

γ2σ2

M

We change the current notation for simplicity in proof by substituting r and k with t. t varies from 0 to T “ KR, iterating
over all rounds and local steps:

E ∥x̄t`1 ´ x‹∥2 ď

ˆ

1 ´
23γµ

16

˙

E ∥x̄t ´ x‹∥2 `
33γµ

128K

t
ÿ

i“maxt0,t´K`1u

∥x̄i ´ x‹∥2

`
96K2L2γ3ζ2‹

µ
`

7KL2γ3σ2

µM
`

6KL2γ3σ2

µ
`

γ2σ2

M

Here we use the Lemma B.10 with the following parameters,

st “ E ∥x̄t ´ x‹∥2 , a “
23µ

16
, b “

33µ

128
, c “

96K2L2γζ2‹
µ

`
7KL2γσ2

µM
`

6KL2γσ2

µ
`

γσ2

M

The final inequality is:

E ∥x̄t ´ x‹∥2 ď

ˆ

1 ´
23γµ

32

˙t

E ∥x0 ´ x‹∥2 `
32

23µ

ˆ

96K2L2γζ2‹
µ

`
7KL2γσ2

µM
`

6KL2γσ2

µ
`

γσ2

M

˙

γ

ď

´

1 ´
γµ

2

¯t

E ∥x0 ´ x‹∥2 `
96K2L2γ2ζ2‹

µ2
`

7KL2γ2σ2

µ2M
`

6KL2γ2σ2

µ2
`

γσ2

Mµ

Recall that we assumed γ “
µ

32KL2 so we have:

E ∥x̄T ´ x‹∥2 ď

´

1 ´
γµ

2

¯KR

E ∥x0 ´ x‹∥2 `
96K2L2γ2ζ2‹

µ2
`

6KL2γ2σ2

µ2
`

2γσ2

Mµ

By setting t “ T “ RK, we get:

E ∥x̄T ´ x‹∥2 ď

´

1 ´
γµ

2

¯KR

E ∥x0 ´ x‹∥2 `
96K2L2γ2ζ2‹

µ2
`

6KL2γ2σ2

µ2
`

2γσ2

Mµ

ď exp
´

´
γµ

2
KR

¯

E ∥x0 ´ x‹∥2 `
96K2L2γ2ζ2‹

µ2
`

6KL2γ2σ2

µ2
`

2γσ2

Mµ

We can see that with this inequality we can only guarantee convergence to a neighborhood of x‹. To obtain a convergence the
final, as discussed in (Stich, 2019b), we need to choose the step size carefully. If µ

32KL2 ě
lnpmaxt2,µ4∥x0´x‹∥2T 2

{σ2
uq

µT then

we choose γ “
lnpmaxt2,µ4∥x0´x‹∥2T 2

{σ2
uq

µT , otherwise if µ
32KL2 ă

lnpmaxt2,µ4∥x0´x‹∥2T 2
{σ2

uq

µT then we choose γ “
µ

32KL2

we can see that with these choices, we would have:

E ∥x̄T ´ x‹∥2 “ Õ
ˆ

exp

ˆ

´
µ2

64L2
R

˙

∥x0 ´ x‹∥2 `
K2L2ζ2‹
µ4T 2

`
KL2σ2

µ4T 2
`

2σ2

Mµ2T

˙
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G. Decoupled SGDA with Ghost Sequence
In this section, we introduce a new extension to the Decoupled SGDA algorithm called Ghost Sequence. The base Decoupled
SGDA algorithm, explained earlier, is designed to take advantage of problems with a dominant separable component. It
minimizes communication complexity by reusing outdated strategies, which has already been analyzed theoretically in the
prevous sections.

However, we can push this idea further by not just reusing old strategies but also predicting the opponent’s next move.
This smarter approach opens up a new line of research, where more advanced methods can be explored for estimating the
opponent’s strategy, offering directions for future work.

To demonstrate the potential of this approach, we propose Decoupled SGDA with Ghost Sequence. The main idea is for
each player to predict (or approximate) the next move of the opponent based on their previous actions and behaviour. This
is achieved by computing the difference between successive strategies during synchronization. Using this information,
each player can update both their own and their opponent’s parameters, leading to improved performance. As shown in
Figure 8, Decoupled SGDA with Ghost Sequence can greatly improve the algorithm’s performance. It also achieves faster
communication, even in highly interactive games, and does not require the problem to be weakly coupled.

For more details, refer to Algorithm 4.

Algorithm 4 Decoupled SGDA with Ghost Sequence

1: Input: Step size γ, initial strategies x0 “ pu0,v0q, total rounds R, local updates K
2: for r P t1, . . . , Ru do
3: Calculate guess ∆r

u Ð 1
K pur

0 ´ ur´1
0 q

4: Calculate guess ∆r
v Ð 1

K pvr
0 ´ vr´1

0 q

5: for t P t0, . . . ,K ´ 1u do
6: Update ghost sequence ṽr

t`1 Ð ṽr
t`1 ` ∆r

v

7: Update local strategy ur
t`1 Ð ur

t ´ γ∇ufpur
t , ṽ

r
t`1; ξ

r
t q

8: Update ghost sequence ũr
t`1 Ð ũr

t`1 ` ∆r
u

9: Update local strategy vr
t`1 Ð vr

t ` γ∇vfpũr
t`1,v

r
t ; ξ

r
t q

10: end for
11: Communicate pur

K ,vr
Kq to other players

12: end for
13: Output: Final strategies xR

K “ puR
K ,vR

Kq

H. Additional Experiments
H.1. Finding the stationary point Decoupled SGDA for non-convex functions

Here, we add one more figure for the toy GAN problem to provide further insight into the behavior of Decoupled SGDA.
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Figure 8. Trajectories and convergence comparison of GDA,Decoupled SGDA and Decoupled SGDA with Ghost Sequence with different
values of C “ CI (interaction strength). The top row shows the trajectories of the different algorithms for K “ t1, 5u over varying
values of C P t25, 15, 5, 0.1u. As C decreases, trajectories become more stable, with the Decoupled SGDA with Ghost Sequence (blue)
showing more efficient convergence compared to GDA (black) and Decoupled SGDA (red). The bottom row presents the synchronization
rounds versus distance to equilibrium for each configuration, highlighting faster convergence of Decoupled SGDA with Ghost Sequence
under larger C values, while Decoupled SGDA with Ghost Sequence and Decoupled SGDA converge similarly for small C.
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Figure 9. Trajectories (top row) and distance to equilibrium over synchronization rounds (bottom row) of GDA (K “ 1) and
Decoupled SGDA with K “ t2, 5u on the (14) problem (d “ 2). C in (13) is a constant here—the larger, the stronger the interactive
term. Left-to-right: decreasing the constant c P t10, 3.5, 2, 7, 0u.

H.2. More Figures Decoupled SGDA With Gradient Approximation

In this experiment (Figure 10), Decoupled SGDA achieves lower gradient norms in fewer communication rounds compared
to Local SGDA, especially as interaction noise increases (larger c). Decoupled SGDA shows much more stability in
high-noise environments, highlighting its effectiveness in dealing with noisy gradients when compared to federated minimax
settings.
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Figure 10. Comparison of Decoupled SGDA and Local SGDA under different noise settings. Each plot shows the smallest gradient
norm achieved by both algorithms over 100 communication rounds, with varying interaction levels and noise variances. Top Row:
Different settings of noise variances in off-diagonal entries (interaction noise). Left to Right: Increasing values of the constant c
controlling the interactive term’s strength in the game. Decoupled SGDA consistently outperforms Local SGDA in scenarios where
off-diagonal noise is significant, achieving lower gradient norms with fewer communication rounds.

I. Experimental Setup
I.1. Finding the saddle point of quadratic games

In the first experiment , we conducted tests with a dimensionality of D “ 2 over R “ 31 synchronization rounds. The values
of K tested were 1, 2, and 5, alongside parameter combinations pa, b, cq set as p1, 10, 10q, p1, 10, 3.5q, p1, 10, 2.7q, and
p1, 10, 0q. For each combination, we explored gamma values uniformly spaced in the interval r0.0001, 0.1s. The algorithm
initializes x and y at 1 and ´1 respectively and updates these variables based on the gradients gx and gy computed using the
defined parameters.

For the second experiment, in the left figure, eigenvalues were sampled logarithmically between 10´1.5 and 101.5, with
random symmetric positive definite matrices generated for each. We tested agent counts K as r1, 2, 5, 10, 50s and learning
rates γ from 10´10 to 1. The algorithm ran for R “ 105 rounds, adjusted based on eigenvalue size, to measure the average
distance from equilibrium until it fell below ϵ “ 10´6. Results were plotted to illustrate the relationship between λmaxpCq

and the number of rounds required for convergence.

For the left figure, we generated random symmetric positive definite matrices as oracles, varying the maximum eigenvalue of
the matrix C using logarithmic spacing between 10´1.5 and 101.5. The accuracy threshold is set to ϵ “ 10´4. We evaluated
five algorithms: GDA, Decoupled GDA, Optimistic, Alternating Gradient Descent, and Extragradient, with K fixed at 50.
Each algorithm was executed for R “ 105 rounds, determined based on the maximum eigenvalue, and their performance
was assessed by the number of rounds required to achieve ϵ accuracy.
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I.2. Decoupled SGDA with Gradient Approximation

In this experiment, we analyze the performance of Decoupled and Local Stochastic Gradient Descent (SGDA) algorithms
under varying conditions. We define oracles based on random symmetric positive definite matrices, with a fixed number of
rounds R “ 100 and K “ 40. In the first experiment (left figure) The maximum eigenvalues of matrices C are sampled
logarithmically between 10´0.25 and 101.For each maximum eigenvalue, we generate corresponding matrices and evaluate
the algorithms across five trials to determine the lowest gradient norm achieved. We reported the mean of these five
experiments. In the second experiment (right figure), off-diagonal variances (σ2

vu and σ2
uv) range linearly from 1 to 10.

In this experiment they are assumed to be equal. Results are aggregated and visualized in two plots: one depicting the
relationship between the maximum eigenvalue of C and the minimum gradient norm, and the other illustrating the effect of
varying off-diagonal variance on algorithm performance.

I.3. Communication Efficiency of Decoupled SGDA for Non-Convex Functions

In this experiment, we investigate the performance of Decoupled Single Oracle GDA under various settings of λ and K.
We evaluate the gradient norm achieved over R “ 100 communication rounds. The λ values are sampled logarithmically
between 10´4.5 and 103, while K values range from 1 to 5. For each combination of λ and K, we compute the lowest
gradient norm over 5 independent trials. The gradient norms are averaged and plotted, with vertical lines marking the
transition to the weakly coupled regime at λ “ 50. The final results show the relationship between λ and the minimum
gradient norm for different values of K, highlighting the weakly coupled regime.

I.4. Communication Efficiency of Decoupled SGDA in GAN Training

In this experiment, a Generative Adversarial Network (GAN) was trained using the CIFAR-10 and SVHN datasets, both
resized to 32 ˆ 32 pixels. The GAN was trained with a learning rate of 1 ˆ 10´4, a batch size of 256, and 50,000 rounds
of updates. The hidden dimension size for the generator was 128. For evaluation, 256 samples were used to compute the
Fréchet Inception Distance (FID) every 200 iterations. Both the generator and discriminator were optimized using the Adam
optimizer, with a learning rate scheduler that decayed by a factor of 0.95 every 1000 steps. Additionally, a gradient penalty
term was applied to stabilize training. The generator’s latent space dimension was set to 100, and its Exponential Moving
Average (EMA) was maintained with a decay factor of 0.999 for evaluation purposes. Training was conducted using CUDA
on an NVIDIA L4 GPU.

The Generator uses a series of transposed convolutions, starting from a 100-dimensional latent vector, to generate a
32ˆ 32ˆ 3 image, with BatchNorm and ReLU, ending with a Tanh activation. The Discriminator applies four convolutional
layers to downsample the input, using LeakyReLU and BatchNorm, and outputs a real/fake probability through a Sigmoid
activation.
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