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ABSTRACT

High-fidelity diffusion and flow models remain latency-bound at inference, mo-
tivating acceleration that leaves pretrained weights untouched. We ask: what is
the minimal yet principled way to accelerate sampling? Under a simple and mild
budget, when uniform reduction targets more than 2x speedup, each three-step
window contains at most one fresh denoiser call, creating a structural scarcity
of real signals. From this constraint, we isolate the observed information at
step t—the fresh output from the denosing model v; and its backward differ-
ence Awt(l) = ¢y — Y41—and show it induces a uniquely minimal, affine-exact
second-order predictor QZJt,l = 29y — Yy41. We prove that, under this scarcity, the
two-point second-order rule is the information-consistent optimum: it is BLUE
among linear two-point estimators. Naively chaining this predictor across consecu-
tive steps destabilizes sampling by compounding approximation errors. We resolve
this by reusing the observed tuple in an interleaved zig—zag schedule that prevents
back-to-back extrapolations and controls variance. The resulting method, ZEUS,
is a zero-overhead, backbone- and parameterization-agnostic plug-in requiring no
retraining, no feature caches, and no architectural changes. Across images and
video, ZEUS consistently moves the speed—fidelity Pareto frontier outward versus
recent state-of-the-art, delivering up to 3.2 x end-to-end speedup while improving
perceptual similarity.

1 INTRODUCTION

Recent advances in denoising generative models (Diffusion/Flow) have set new benchmarks across
image, video, text, and audio generation Sohl-Dickstein et al.| (2015); Song et al.|(a)), substantially
lowering creative barriers. Sampling in these models can be cast as transport along a reverse
probability-flow ODE [Song & Ermon/(2019); [Song et al.| (b); Lipman et al.| (2023)); Liu et al.|(2022),
often requiring hundreds to thousands of steps. Modern high-order numerical solvers (Karras et al.,
2022; |Lu et al., [2022a3b) dramatically reduce the number of evaluations, yet wall-clock latency
remains substantial when models and resolutions scale Rombach et al.|(2022);[Podell et al.; |(Chen et al.
(2024aib); Esser et al.|(2024). This motivates training-free acceleration strategies, which significantly
reduce inference cost without modifying pretrained weights.

Training-free strategies Yuan et al.|(2024)); Zhang et al.| (2025a); [ Xi et al.| (2025); Yang et al.|(2025a))
exploit redundancy empirically observed along the sampling trajectory of pretrained backbones
Ronneberger et al.|(2015); [Peebles & Xie|(2023)). Step-wise approaches (e.g., feature caching Ma
et al.| (2024)); |[Zhao et al.| (2024)); Wimbauer et al.| (2024)); [Liu et al.| (2024])); |Chen et al.| (2024c));
Shen et al.) reduce or bypass computation at selected steps and approximate the corresponding
output from cached information, offering large acceleration granularity and easy deployment on new
backbones. Recent work [Yu et al.|(2025); [Liu et al.| (2025) pushes toward higher-order extrapolation
with complex approximation strategies and longer chains of consecutive reduced steps. While
achieving unprecedentedly small overhead, these designs exhibit faithfulness gaps (LPIPS Zhang
et al.| (2018), FID Heusel et al.| (2017)) relative to the original sampler. In this work, we make a
counterintuitive but principled approach:
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Figure 1: Accelerating F1lux.1-Dev by 2.09x with ZEUS (medium) with 50 inference steps.

Less is more—accelerating diffusion/flow sampling is best achieved by reusing a second-order
predictor derived from the observed information set.

Consider accelerating denoising with a step-wise method that applies a uniform reduction after a
single fresh computation and then approximates subsequent steps. We formalize our insight under a
mild pigeonhole budget assumption: once the acceleration ratio exceeds 2x with a uniform reduction
rule, two consecutive fresh evaluations cannot occur. This induces a structural scarcity of fresh
steps along the sampling trajectory. Consequently, higher-order predictors that extend their input
window across multiple consecutively reduced steps draw on an increasing fraction of approximated
signals whose errors accumulate across sampling, leading to faithfulness degradation. This motivates
a precise question for any state ¢: which signals are truly observed by the sampler at that moment,
and how can we fully leverage them under the budget constraint?

The freshly evaluated model output at the current state, )¢, is an observed signal. We also observed

that the backward first difference Agl) = Py — &tﬂ is an observed, path-dependent signal that
encodes the model’s realized response between the received signal at t+1 and the fresh computation

at t. Taken together, this observed information set {1, Agl)} naturally follows by a uniquely
minimal second-order predictor for the next reduced step: ¢y 1 = 2ty — 1)1. Ablations show that
the second-order predictor yields better sampling quality and lower reconstruction error. We thus
state our first observation:

Observation 1: Under uniform reduction and > 2 X acceleration, second-order prediction from the
observed information set is the minimal yet effective scheme for training-free acceleration.

After determining a second-order predictor, we confront the stability challenge that arises when
approximating across multiple consecutively reduced steps. Higher-order—and especially second-
order—predictors are precise but can overshoot without frequent re-anchoring. In comparison,
reuse-only schemes remain numerically stable yet sacrifice precision. This tension poses a natural
question: can we be both precise and stable at ambitious skipping rates? Our answer is deliberately
simple: reuse the observed information pair and arrange it in an interleaved schedule that never
extrapolates twice in a row. When reducing computation over consecutive steps, duplicating the pair
in a zig-zag pattern preserves stability—each approximate step is immediately re-anchored—while
fully leveraging the available real signals to recover precision. Ablations show that this tuple-reuse
strategy yields superior sampling quality and robustness under aggressive acceleration compared to
reuse-only and predictor-only baselines. We thus state our second observation:

Observation 2: Reusing the observed information pair across multiple consecutive steps achieves
the precision of second order without drift.

We call this simple, lightning—fast zig-zag rule ZEUS—Zero-cost Extrapolation-based Unified
Sparsity. In the sections that follow, we present theoretical guarantees and extensive experiments
showing that ZEUS is plug-and-play across diverse backbones, prediction objectives, and sampling
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schedules. Despite its minimalism, ZEUS consistently improves the speed—fidelity Pareto frontier
and outperforms prior training-free approaches on comprehensive evaluation suites.

Our main contributions are fourfold, naturally forming ZEUS:

* Zero-cost: A training-free method with no finetuning, no architectural changes, and negligi-
ble runtime overhead.

» Extrapolation-based: A principled second-order predictor that fully exploits observed signals
under uniform skipping.

* Unified: A backbone- and head-agnostic framework compatible with diverse architectures,
schedulers, and modalities.

* Sparsity: A structured zig-zag reuse rule that yields stable acceleration with lower perceptual
error at aggressive skip rates.

2 RELATED WORK

Denoising Generative Models. |Sohl-Dickstein et al.| (2015); |[Ho et al.[ (2020); |Song et al.| (b);
Nichol & Dhariwal| (2021) construct a forward perturbation of data into noise and learn a denoising
network that enables sampling by integrating an associated reverse dynamics. Diffusion |Ho et al.
(2020); Nichol & Dhariwal| (2021)) and flow models [Liu et al.| (2022); /Albergo & Vanden-Eijnden
(2022); |Lipman et al.|(2023) have emerged as widely used and scalable frameworks for generative
modeling. Recent efforts train large models with transformer-based backbones |Peebles & Xie| (2023)
to produce high-fidelity samples across image, video, text, and audio modalities.

Sampling with denoising generative models can be cast as transport along a reverse probability-
flow ODE Song & Ermonl| (2019); [Song et al.| (a), with parameterizations into various prediction
objectives Song et al.| (b); [Song & Ermon| (2019); |Song et al.| (a; [2023); |Kim et al.; |[Lipman et al.
(2023). Numerical ODE solvers |[Lu et al.|(2022agb); Karras et al.| (2022) substantially reduce the
number of model evaluations needed for high-quality samples. Complementary frameworks build
on this probability-flow view: consistency models Song et al.[(2023)); Lu & Song|(2024) provide
a direct mapping between clean data and any point on the trajectory, while MeanFlow Geng et al.
(2025)) predicts an induced field of the velocity field to enable one-step generation. Despite these
advances, generating from a pre-trained architecture is still time-consuming, motivating the study of
training-free acceleration techniques that reduce computation without modifying weights.

Table 1: Unified network parameterizations.

Prediction mode  Target ¥9(x0,€,s)  Reconstruction 5(85)

e-prediction € f((os) = a%xs — 2= (X, )
xo-prediction X0 fcés) = ’l/);g (x5, 5) .

v-prediction V= Q€ — OsX0 5((()8) = ﬁxS - ﬁ Po(Xs, )
s-prediction V. log gs(xs) fcés) = C%st + Z—E Yo (Xs, 5)

Flow matching € — Xo )Acgs) = x5 — $Pg(Xs, )

Training-free Acceleration. of denoising generative models optimize various granularity levels
of the denoising process. Token reduction strategies |Bolya & Hoffman| (2023); Kim et al.| (2024)
exploit spatial redundancy in image tokens. The ToCa series Zou et al.|(2024);[Zhang et al.| (2024)
combines adaptive token pruning with feature caching. Attention-focused methods include the
Sparse VideoGen series X1 et al.[ (2025); |Yang et al.| (2025a), which introduces sparse attention in
spatial-temporal dimension (SVG) and semantic-aware permutation (SVG2) to select and densify
critical tokens for efficient GPU execution. DiTFastAttn |Yuan et al.| (2024)); |[Zhang et al.| (2025a)
compresses the attention module according to the redundancies identified after a light search. In a
higher granularity level, feature-caching methods cut sampling latency by reusing intermediate states
across steps Ma et al.| (2024)); [Zhao et al.| (2024); Wimbauer et al.| (2024); Liu et al.| (2024); |Chen
et al.|(2024c)); Shen et al.|. Recent approaches pursue higher-order prediction of features or outputs
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Figure 3: Ablations of ZEUS on SDXL with DPM-Solver++ (50 steps). (a,b) Effectiveness of the
second-order predictor: (a) image quality vs. predictor order (LPIPS |); (b) per-step reconstruction
error vs. predictor order (MSE |). (c,d) Stability of reusing the observed information set: (c)
image quality at full:reduced = 1:3 under three approximation schemes (LPIPS |); (d) image quality
vs. the number of consecutive reduced steps under the same three schemes (LPIPS ).

to push training-free limits. TaylorSeer|Liu et al.| (2025)) forecasts future features from past timesteps
using Taylor expansion instead of cache-then-reuse. AB-Cache Yu et al.|(2025)) models and predict
adjacent denoising step relations with Adams—Bashforth. AdaptiveDiffusion |Ye et al.[(2024) and
SADA iang et al.[(2025) allocate computation dynamically, with the latter addressing step-wise and
token-wise sparsity during denoising in an Adams—Moulton solver manner.

3 BACKGROUND

A central tool in modern denoising generative models is the probability flow ODE (PF-ODE). Starting
from the linear forward process x; = axg + 05€, s € [0, 1], with data sample x, and Gaussian
noise € ~ N(0, I), Previous works (Song & Ermon, [2019; [Song et al, |b) showed that the marginal
laws {¢s} can be generated not only by a reverse SDE but also by the deterministic ODE

dxs = |f(s)xs — 29(5)*Vx, log gs(x,) | ds (1

where f(s) and g(s) denote the drift and diffusion schedules determined by the forward process.
The PF-ODE exactly preserves the diffusion marginals while avoiding stochasticity. Consequently,
a trained network that estimates Vy_ log ¢4(x;), or an equivalent target, enables fully deterministic
generative sampling.

To unify different training conventions, we adopt a single notation 1 : R? x [0, 1] — R, trained
to predict 1o (X0, €, s), where 1y is chosen from several linearly related parameterizations. This
abstraction covers e-prediction, xg-prediction, v-prediction, score-prediction, and flow-matching
within the same framework, enabling uniform analysis of objectives and inference rules.

4 ZERO-COST EXTRAPOLATION-BASED UNIFIED SPARSITY

We now develop our methods from the step-
wise acceleration strategy. We bypass denoising
model evaluations with a sparsity ratio r and
Ber then approximate the model output ¢y parame-
terized by common prediction objectives. To
formulate our acceleration paradigm during dis-
cretized ODE sampling, we pose two guiding
questions that lead to our key design choices:
Figure 2: Scarcity of fresh computation. Un- (i) What is the minimal but effective approxi-
der limited denoiser calls, the executed trajec— mation scheme? (ii) How can we approximate
tory yields the observed, path-wise information multiple consecutive steps without destabilizing

set {0y, AW, }, where AW epy = oy — iy, sampling?

1
ADqyp, Observed: {1, AV}

PPOIN

~ 2
Y1 %. Y,

4.1 WHAT IS THE MINIMAL BUT EFFECTIVE APPROXIMATION SCHEME?

Consider a denoising generative model sampling across discrete times - - - > t+1 >t > t—1 > ---.
Training-free acceleration reduces evaluations by exploiting either step-level or feature-level reuse,
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Figure 4: ZEUS overview and approximation strategies. Panel (a) shows the pipeline; panel
(b) compares reuse-only, predictor-only, and the reuse of the observed information pair. Dark gray:
reference trajectory ™. Light gray: solver-computed outputs ¢/;. Crimson: approximated segments.
Left—Reuse only: numerically stable but limited in expressivity; fine details erode (bottom).
Middle—Predictor only: chaining second-order extrapolations overshoots without re-anchoring,
producing artifacts (bottom). Right—Reuse observed information (ZEUS): alternating reuse of
{4y, by + AM),} prevents overshoot and preserves detail, yielding the best perceptual quality.

typically inserting a single fresh denoiser call between several approximated steps. This creates a
persistent scarcity of fresh computation. Under this constraint, we require an approximation that (i)
uses all signals that are already fully-computed along the executed trajectory and (ii) stays principled
and minimal.

At a given fresh step ¢, we assume the neighbors ¢t+1 and ¢t—1 are reduced and approximated, along
with the state’s denoiser output ¢/, fully computed. This leads to the “reuse only” scheme in previous
works |[Ma et al.|(2024), where the next reduced model output is approximated by the fresh model
output _1 < 1. This scheme yields non-distorting results, yet suffers from low similarity and
degraded details compared to the original sample, as shown in Fig4b|

Crucially, we have already advanced the solver from Z;; to Z; using the previously available signal
1/3t+1, and then evaluated the denoiser to obtain the fresh 1), at (Z;, t). Hence, the backward first-order
difference AWM, = oy — ¢t+1 is an observed, path-wise quantity: it captures the model’s realized
change in output between the received signal at 4-1 and the fresh computation at ¢. Under scarcity,
the information set at ¢ is {9, A(l)d)t}. This naturally introduces a finite difference predictor in
second order 1&,5_1 — 29y — ﬁtﬂ, which can be regarded as an inductive field of the available
information set at ¢, as visualized by Fig. 2] This predictor underlies several recent training-free

accelerations|Liu et al.| (2025); |Yu et al.|(2025)) and we adopt it as the minimal, information-consistent
choice under scarce fresh computation.

Theorem 4.1 (unique tuple under 2x acceleration). If the scheme achieves a speed-up factor of
at least 2, then by the pigeonhole principle each local window {t — 1,t,t + 1} contains at most
one full network evaluation. Hence the only genuinely available computational unit is the 2-tuple

(1/)15’ A(l)wt)a

consisting of one evaluated state 1, and its deterministic difference AW,

A seemingly natural upgrade is a third-order predictor. However, it would yield suboptimal results, as
shown in Fig.[3] as any higher-order scheme necessarily substitutes additional approximated points,
inflating the upstream term and magnifying accumulated error. In the next paragraph, we rigorously
demonstrate the surprising effectiveness of a second-order predictor.

The surprising effectiveness of a second-order predictor Under scarce fresh computation, this
pair is the entire available signal at a fresh step ¢, and everything else (e.g., ¥:11) is an algebraic
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reuse with no new network signal. The “reuse-only” rule zﬁt,l < 1) honors this constraint but throws
away the trend A(1q),, yielding a zeroth-order hold that cannot cancel the (typically large) affine
drift of 1y (-, t) along the executed trajectory. In contrast, the second-order backward predictor

Pio1 = 29 — 1 = Yo+ Ay, 2

uses exactly the freshly evaluated signal v, and the already realized first difference AV, adding
no extra model calls and no additional state besides what the solver has already materialized. This
simple rule is principled in four complementary senses.

(i) Affine invariance and BLUE optimality. Writing the denoiser outputs locally as ¢, = ¢(u) +
1, With a smooth trend ¢ and zero-mean perturbation 1 (Theorem , the weights (2, —1) in
equation2]are the unique linear coefficients that are unbiased for all affine ¢ and, under homoscedastic
uncorrelated perturbations, minimize variance among all such estimators—i.e., equation [2]is the

BLUE (Theorem[A.5).

(ii) Second-order accuracy and minimax sufficiency. A Taylor expansion at ¢ shows the local truncation
error B[y 1 — (20 — th41)] = A2 ¢ (s,) +0(A2) so the bias is O(A?) (Theorem. Moreover,
without additional fresh evaluations the A2 rate is information-theoretically optimal: any estimator
using only {x, 1&#1} must incur 2(A?) worst-case bias over C? trends (Theorem , which
equation attains tightly (Theorem . By contrast, one-point reuse is provably limited to ©(A)
error, explaining its detail loss and low similarity.

(iii) Curvature awareness without extra cost. The predictor equation [2|implicitly measures the second
difference A2¢"(s;), so it is responsive to local bending of the denoiser’s response while remaining
insensitive to global shifts or linear ramps. This “curvature gating” is precisely what preserves fine
details when skipping steps.

(iv) Stability and parameterization invariance. Because all common parameterizations (€, X, v,
score, flow) are related by fixed affine readouts in s, equation [2] commutes with these transformations,
making the rule architecture- and target-agnostic. At the same time, higher-order extrapolants
necessarily ingest more approximated points and inflate variance with rapidly growing weights,
leading to noise amplification and reduced stability under uniform time grids, while offering no
minimax bias improvement beyond O(A?) in our C? regime (Section

4.2 HOW CAN WE APPROXIMATE MULTIPLE CONSECUTIVE STEPS?

In this section, we aim to reduce computations in as many consecutive states as possible in a
numerically stable manner. Consider £>2 consecutive reduced steps starting with ¢, in the
denoising process. A second-order predictor tends to overshoot (Fig.[db)), as chaining extrapolants
compounds approximation error without re-anchoring. By comparison, a reuse-only baseline tends to
prevent overshooting but underutilizes available information, leading to detail loss (Fig. @b). This
exposes a trade-off between the approximation precision from the second-order predictor and the
approximation stability from the reuse-only baseline. A question naturally arises: Can we improve
both precision and stability at the same time?

In this work, we offer a simple but effective solution: we reuse the observed informa-
tion set {v;, AMy,}. As illustrated in Figure we duplicate the two-element tuple
{4,001 = +AM ey}, forming a “zig-zag” pattern. When reducing computation for multiple con-
secutive steps, reusing the tuple preserves approximation stability, and leveraging all fully-computed
information (i.e., the tuple) enhances approximation precision. We then provide a rigorous analysis
of the induced error of the three strategies above.

In particular, their bias—variance behavior can be precisely characterized as follows. Consis-
tent with Theorems and [A.20] two-point 2-nd order prediction achieves second-order bias,
| Bias(vr—;)|| = O(j?A?), with the exact expansion given in Theorem , but its variance grows

quadratically with the jump length, Var(zZt,j) = ((j+1)* + j%) o1,
In contrast, reuse observed and reuse only maintain a j-independent variance (equal to 021 for even-

j reuse observed and reuse only, and 5521, for odd-j reuse observed), but remain only first-order
accurate with ||Bias|| = O(jA).
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Figure 5: Scaling: Speedup vs. LPIPS (|). Gray circles denote training-free baselines; the maroon
polyline marks our ZEUS variants (Balanced—Medium—Fast—Turbo). Rightward is faster, down-
ward is better. Across CogVideoX-v1.5, Wan-2.1, and Flux (Euler/flow), ZEUS exhibits near-linear
scaling—consistently attaining high speedups with lower LPIPS.

Our reuse observed scheme, built on the pair {1, A"y}, inherits the best property at the first
reduced step: when j=1, it coincides with the (2, —1) BLUE, attaining second-order bias O(A?)
while keeping constant variance 502 1,;. For longer jumps, duplicating the tuple preserves the constant-
variance behavior of reuse only, yet remains bias-dominated O(jA) rather than variance-dominated.
Consequently, in low-noise, short-jump regimes the one-step estimate achieves strictly smaller MSE;
as jump length increases or noise grows, 2-nd order prediction suffers variance explosion, whereas
reuse observed remains numerically stable—2-nd order prediction tends to overshoot, while reuse

observed stays stable at the cost of precision. A full derivation of these results is provided in
Section[A3]

5 EXPERIMENT

5.1 EXPERIMENTAL SETTINGS

Models Configuration. To assess generalization across modalities, architectures, and prediction
objectives, we evaluate ZEUS on Text-to-image and Text-to-video models in a comprehensive and
diverse setting. Image: Stable Diffusion 2 (U-Net, v-prediction) Rombach et al.| (2022), SDXL
(modified U-Net, e-prediction) [Podell et al., and Flux.1-dev (MMDIiT, u-flow matching) Black-Forest-
Labs| (2024). Video: Wan2.1-T2V-14B (DiT, u-flow matching) Wan et al.| (2025) and CogVideoX-
v1.5-T2V (DiT, e-prediction) |Yang et al.|(2025b). We use two standard ODE solvers—Euler (first
order) Karras et al.|(2022)) and DPM-Solver++ (second order) |Lu et al.[(2022ajb)—with 50 sampling
steps in all main experiments. All pipelines are implemented in the HuggingFace diffusers
framework for reproducibility, and all runs use a single NVIDIA A100 (80 GB) GPU.

Evaluation Metrics Our objective is to preserve baseline fidelity while reducing latency. For
text-to-image, we follow MS COCO-2017 captions as prompts [Lin et al.|(2014) under identical seeds
and guidance. Efficiency is reported as the end-to-end wall-clock speedup relative to the baseline
pipeline. Generation quality is evaluated using the Peak Signal-to-Noise Ratio (PSNR), Learned
Perceptual Image Patch Similarity (LPIPS) Zhang et al. (2018)), and Fréchet Inception Distance
(FID) [Heusel et al.| (2017) between original generated and accelerated samples. For Text-to-video
experiments, we follow the exact setup in the SparseVideo Gen series [Xi et al.| (2025); |Yang et al.
(2025a). We adopt the VBench/Penguin prompts provided by the VBench team. Generation quality
is evaluated using LPIPS and FID, alongside Structural Similarity Index Measure (SSIM).

Baselines We compare ZEUS to a comprehensive list of recent training-free acceleration strategies,
to the best of our knowledge. For Text-to-image, We compare against DeepCache Ma et al.| (2024),
AdaptiveDiffusion Ye et al.| (2024)), SADA [Jiang et al.[(2025) on stable diffusion models with U-Net
backbones. We compare against ToCa |Zou et al.|(2024)), TaylorSeer , TeaCache [Liu et al.| (2024),
DiCache Bu et al.| (2025)), and SADA on FLUX.1-dev with MMDIT backbone. For Text-to-video,
we adopt the evaluation suite from the Sparse VideoGen series Xi et al.| (2025); [Yang et al.|(2025a).
We compare against DiTFastAttn Yuan et al.|(2024)), Minference Jiang et al.|(2024), PAB |Zhao et al.
(2024), and SpargeAttn Zhang et al.|(2025b)) along with the SVG series and TeaCache.
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Table 2: Image quality vs. speed on SD-2, SDXL, and FLUX. Higher is better for PSNR/Speedup;
lower is better for LPIPS/FID. Per model+scheduler block, best is bold, second best is underlined.
ZEUS variants are highlighted only from the Method column onward.

Model Scheduler Method PSNR 1 LPIPS | FID | Speedup *
DeepCache 17.7 0.271 7.83 1.43x%

AdaptiveDiffusion 243 0.100 4.35 1.45x%

DPM++ SADA 26.34 0.094 4.02 1.80x
ZEUS-Quality 28.37 0.0641 2.95 1.56 %

SD-2 ZEUS-Medium 25.72 0.1039 4.46 1.85x
DeepCache 18.9 0.239 7.40 1.45%

AdaptiveDiffusion 21.9 0.173 7.58 1.89x

Euler SADA 26.25 0.100 4.26 1.81x
ZEUS-Quality 27.35 0.078 3.57 1.57 %

ZEUS-Medium 25.37 0.118 5.06 1.86 %

DeepCache 21.3 0.255 8.48 1.74x

AdaptiveDiffusion 26.1 0.125 4.59 1.65x%

DPM-+ SADA 29.36 0.084 3.51 1.86x
ZEUS-Quality 31.38 0.058 2.57 1.57 %

ZEUS-Medium 29.17 0.084 3.59 1.87 %

SDXL ZEUS-Fast 26.38 0.129 5.39 1.93x
DeepCache 22.00 0.223 7.36 2.16x

AdaptiveDiffusion 24.33 0.168 6.11 2.01x

Euler SADA 28.97 0.093 3.76 1.85%
ZEUS-Quality 30.25 0.071 3.02 1.57 %

ZEUS-Medium 28.66 0.095 3.87 1.85x%

ZEUS-Fast 25.15 0.153 6.47 1.93x

TeaCache 19.14 0.216 4.89 2.00%

SADA 29.44 0.060 1.95 2.02x

ToCa 17.70 0.352 8.84 1.52x

TaylorSeer 15.36 0.430 10.08 3.13x

Flux Euler (Flow) DiCache 22.39 0.270 / 3.22x
ZEUS-Balanced 31.08 0.039 1.29 1.92x

ZEUS-Medium 30.19 0.047 1.53 2.09%

ZEUS-Fast 26.77 0.079 249 2.47x

ZEUS-Turbo 21.80 0.171 4.52 3.22x

5.2 MAIN RESULTS

Image Results. We examine ZEUS on modern diffusion stacks (Flux.v1l, SDXL, SD-2/1.5). With
only a minor, training-free change to the sampler, ZEUS consistently moves the speed—quality frontier
outward. On classic ODE schedules (e.g., DPM++), ZEUS variants reach the fastest end-to-end
runtimes while simultaneously improving perceptual fidelity—for example on SDXL/DPM++, ZEUS-
Fast attains the top speed (about 1.93 x) while ZEUS-Quality improves LPIPS/FID over the strongest
baseline (e.g., 0.058/2.57 vs. 0.084/3.51). On flow-matching with Flux, the gap is larger, with ZEUS-
Turbo delivering markedly higher throughput (about 3.22x vs. 2.02x) and ZEUS-Balanced achieving
stronger LPIPS/FID (e.g., 0.039/1.29 vs. 0.060/1.95). Even in the few settings where another method
edges out ZEUS on raw speed, the ZEUS-Quality variant still attains the best perceptual scores,
and the ZEUS-Fast/ZEUS-Medium variants trace a smooth Pareto curve between quality and speed.
Overall, a small, model-agnostic, training-free tweak to step selection and cache-aware reconstruction
yields state-of-the-art or near-SOTA speed while consistently preserving perceptual realism.

Video results. Across both Wan 2.1 and CogVideoX-v1.5, ZEUS establishes a new qual-
ity—efficiency frontier without any video-specific kernels or model changes (Tab.[3). In the Balanced
setting on Wan 2.1, ZEUS delivers higher perceptual fidelity (LPIPS|/PSNRT: 0.117/29) while still
running faster than the strongest prior (1.76x vs. 1.58x), and it remains near the top on SSIM. Push-
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Table 3: Quality & efficiency on video generation. Higher is better for PSNR/SSIM/Speedup; lower
is better for LPIPS. Per-model best is bold, second-best is underlined.

Model Method PSNR1T SSIM{t LPIPS| Speedup 1

Wan 2.1
SpargeAttn 20.519 0.623 0.343 1.44x
SVG 22.989 0.785 0.199 1.58x
SVG2 25.808 0.854 0.138 1.58x
SVG2-Turbo 23.682 0.789 0.196 1.89x
Ours-Balanced 29.000 0.846 0.117 1.76 x
Ours-Fast 26.594 0.7919 0.179 2.24 x

CogVideoX-v1.5
DiTFastAttn 23.202 0.741 0.256 1.56x
Minference 22.451 0.691 0.304 1.48 x
PAB 22.486 0.740 0.234 1.41x
SVG 29.989 0.910 0.112 2.28x
Ours-Balanced 32.495 0.893 0.060 1.71x
Ours-Fast 30.970 0.876 0.073 2.00x

ing to the Fast setting, ZEUS sustains top-tier throughput ( 2.24 x) with competitive LPIPS/SSIM,
outperforming sparsity baselines at comparable cost. The same trend holds on CogVideoX-v1.5:
Balanced achieves the best perceptual scores at healthy speed ( 1.7x), while Fast reaches 2x and
stays close to the quality frontier. In short, a single, model-agnostic skipping policy consistently
lets us raise fidelity at higher speed or raise speed at better fidelity across both T2V generators,
dominating the quality—latency trade-off. Although minimal, ZEUS achieves significantly better
similarity consistently across experiment settings, as illustrated in Fig. [3}

5.3 ABLATION STUDIES

Table 4: Ablation study on few-step sampling We conduct ablation studies on few-step sam-
across schedulers. Results on MS-COCO 2017.  pling. Table [ reports few-step sampling on
MS-COCO 2017 across schedulers and back-

Flux bones with steps {50,25,15}. For Flux (Eu-

Scheduler Steps LPIPS | FID | Speedup ler), ZEUS lowers LPIPS from 0..047 to 0.036

as steps drop from 50 to 15, with FID mov-

Fuler ool ae R ing from 153 to 2.47, while achieving 2.09x,

15 0036 247  122x 1.58%, and 1.22x speedups, respectively. For

SDXL SDXL, ZEUS shows the same pattern: with Eu-

ler, LPIPS improves from 0.095 to 0.065 as steps

Euler ;g 8‘822 i‘g; }‘igx decrease, with FID ranging 3.87 — 4.72, and
. . 40X .

15 0.065 472 1.20x speedups 1.85%, 1.46)(, 1.20)(; with DPM++,

LPIPS improves from 0.084 to 0.066, FID ranges

DFM+ ;g 8822 ggg ii;i 3.59 — 4.87, and speedups are 1.87x, 1.45x%,

15 0.066  4.87  1.20x 1.20x. Overall, ZEUS consistently preserves or

improves perceptual similarity (LPIPS) under ag-
gressive step reduction, with modest FID trade-offs, and delivers stable acceleration in the few-step
regime (about 1.5x at 25 steps and 1.2x at 15 steps) across backbones and schedulers.

6 CONCLUSION

In this paper, we introduce ZEUS: a minimal, training-free, method-agnostic plug-in that consistently
shifts the speed—fidelity Pareto frontier across five backbones and two solvers—achieving up to 3.2x
end-to-end speedup on Flux while improving LPIPS/FID/PSNR. ZEUS addresses the scarcity of fresh
computation in an ambitious acceleration scenario. Reusing and leveraging the observed information
set from this constraint, yielding either better quality at the same cost or higher speed at comparable
quality. ZEUS conveys a counterintuitive but compelling message: accelerating diffusion is as easy
as a second-order predictor.
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LLMS USAGE STATEMENT

We clarify that LLMs were used solely as auxiliary aids, restricted to refining the manuscript’s
exposition for clarity and conciseness.
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Appendix

A MATHEMATICAL FOUNDATIONS

A.1 NOTATION

In this section, we firstly formalize all the specific notation used in the paper.

Definition A.1. Let (2, 7, Pr) be the probability space that generates the random pair (xo, €) and
hence the noisy latent z; = oy xg + or€ atany t € {1,...,T}. For a fixed, deterministic network
Po(-, -) : R x [0,1] — R?, which is the network training result for 1/, like € or v in the forward
process, define the random output vy ; := g(x;,t) € L?(€2) and define the output in inference

process ’(/AJt = Py (&, t).

General forward process. Let (€2, F, Pr) be a probability space. A data sample is represented
by a random vector xg : 2 — R? with distribution pgaa. Let € : © — R? be an independent
standard Gaussian noise, i.e. € ~ N (0,1,;). We distinguish continuous time s € [0, 1] and a uniform
discrete grid s; :=t/T fort € {0,1,...,T} with step size A := 1/T. For each s € [0, 1], define
deterministic schedule functions «s € (0,1], o5 € (0, 1].

The forward latent at time s is defined as

Xs 1= QsXo+ 0sE, x, € L*(9;RY). (A.D)

Equivalently, conditioned on X, the marginal distribution is Gaussian:

a(xs | x0) = N axo, o21,).

Thus the diffusion forward process is the family {x; : s € [0, 1]}, with discrete samples {x; : t =
0,...,T} obtained by evaluating at time grid points.

Reverse process. The forward process {x; : s € [0, 1]} defined in equation[A.1]is Markovian. In
particular, for any 0 < s’ < s < 1, the conditional distribution of x4 given (xs,Xg) is Gaussian:

q(xs | X5,%0) = N(Ms’,s(xsvxo)a Z) (A.2)
with mean
g’ Qg la' ] O
/jfs/,s(Xs,XO) =2 Xs + (Ozo - = as)xo [ Xs + (1 G )XO,
s Qg Qg Qg

and covariance
a?
2 s’ 2
Ygs = (JS, 2 as)Id.

S

Equivalently, marginalizing out x, the reverse-time transition kernel can be expressed as

aber | x:) = [ atxo [ xx0) o | x.) o, (A3)
which is generally intractable. The role of the neural network is precisely to approximate the

conditional dependence on x( by predicting either the noise €, the clean sample x, or equivalent
parameterizations.

Training objective. The network is trained by conditional regression: for a chosen ground-truth
target ¥ (xo, €, $), we minimize

Hlein Eoympanca, e~ N (0,1), smua0,1] [ A0 (X5 8), Yo(x0,€,5))],

where £ is typically the squared error.
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Unified network parameterization. To express all variants within a single notation, we define
g : RY % [0,1] = RY, Yg(Xs, s) trained to predict g (xg, €, ).
Here 1) is chosen from a finite family of equivalent targets, e.g.
Yo € { €, X0, € — 05X0, Vx, logqs(xs), € —xg },

corresponding to e-prediction, Xg-prediction, v-prediction, score-prediction, and flow-matching.
Thus, different implementations correspond to linearly related instances of the same abstract map )y,
which enables uniform analysis of loss functions and inference rules.

Continuous-time probability flow ODE. The forward process {x; : s € [0, 1]} in equation[A.1]
admits a continuous-time formulation as a linear 1td SDE:
dxs = f(s)xsds+ g(s)dws, (A4)

where w, is a standard Wiener process in R, and the drift/diffusion coefficients ( f(s), g(s)) are
determined by the schedules (s, o). Concretely, the marginal law of x given x is Gaussian with
mean asX( and variance 021 ,.

Following (Song et al., |b; [Song & Ermon, [2019; |Chen et al., [2022), the reverse-time SDE that
generates the same marginal distributions runs backward from s = 1to s = 0:

s = [F(s)xs = g(5)* V. log qgs(xs)] ds + g(s) dws, (A.5)

where ¢, denotes the density of x, and w; is a standard Wiener process running backward in time.

The probability flow ODE (PF-ODE) is the deterministic counterpart of equation[A.5] obtained by
removing the stochastic term:

dxs = [f(s)xs — 39(s)* Vi, log gs(x)] ds. (A.6)

This ODE preserves the exact marginal distributions {qs } s¢[o,1] of the forward process, and therefore
provides a deterministic generative sampling procedure.
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A.2 SOME THEOREM

Consistency of the training objective. Recall that the network is trained by conditional regression:
M0 B ppen, e (0.1), snttf0.1) [{0 (%5, 8), o (%0, €,9))],
where x; = a3Xg + 05€ and /£ is the squared error loss.

Theorem A.2 (Optimal predictor under L? training). Let {(a,b) = ||a—b||3. Define the population
risk
L£(0) = Exe,s [Hw9(XSa 5) — o(xo, €, 5)”3]
Then any minimizer b* of L satisfies, for all (X, s),
P* (x5, 8) = E[¢o(x0, €, 8) | Xs,5]. (A7)

In other words, in the L? sense, training recovers the conditional expectation of the regression
target 1 given the noisy input (Xs, s). Let the hypothesis class be all measurable maps with finite
second moment; equivalently, consider the Bayes risk minimization.”

Proof. For fixed (x4, s), define the conditional distribution
p(Xo0, € | X5, 5).

The contribution of (x4, s) to the expected loss is

Byl s | V055 5) = (o, €, 5) [3].
This is a convex quadratic in 1y (Xs, $), uniquely minimized at

P* (X5, 8) = E[¢o(x0, €, 8) | Xs,5].
Therefore, the global risk minimizer ¢)* coincides with the conditional expectation equation O
Discussion. The theorem shows that, under exact optimization of the L? objective, the learned
network 1y does not in general recover the ground-truth target 1o (xo, €, s) pointwise. Instead, it
recovers its conditional expectation given the accessible input (X, s). Thus, the choice of ¢ (noise,

clean data, or equivalent parameterizations) directly determines which conditional expectation is
realized by the trained model.

Unified network parameterization. We now establish that all common training targets in diffusion-
type models are instances of the same conditional regression principle.

Theorem A.3 (Equivalence of parameterizations). Let the forward process follow Definition A.1,

i.e. Xs = asXo + gs€ with € ~ N(0, ). Fix a target functional 1y (X, €, s) from a finite set of
admissible forms. Suppose the network is trained with the L? objective

L(0) = Ex,e,s UW@(XS; 5) — Z/}O(XOv €, 3)”2]

Then, in the limit of exact optimization, the optimal predictor satisfies

V* (xs,8) = E[ 1o (X0, €, 8) | Xs,] -

Moreover, for each admissible 1), there exists deterministic coefficients (as,bs) such that the
clean data is exactly recovered by

f(és) = asX; + bstV* (x5, 5). (A.8)

Thus, all parameterizations are equivalent in expressive power: they differ only in the choice of
regression target 1o and in the reconstruction formula equation[A12)

Proof. From Theorem the L? minimizer satisfies
P (xs,8) = Elg(x0,€,8)|Xs,9].
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By construction, the forward process is linear-Gaussian:
X, = Q3Xg + 0s€, e ~N(0,I), e U xq. (A.9)

Each admissible training target is an affine (here linear) functional of (x¢, €). We unify them by
writing
Z/JO(XO»G?S) = Us € + Vs X, (Alo)

where (us, vs) are scalar (or diagonal, coordinate-wise) coefficients depending only on s. Combining

equation [A.9}-equation [A.T0]

Xs _ Qg Oy X0 — Ms X0 )

7/}0 Us Usg € €
Assume det(My) # 0,i.e. Ag := azus—0osvs # 0. Then My is invertible and we have the algebraic
identity

Usg O
Xg = asXs + bso, as = A bs = _K~ (A.11)

Taking conditional expectation of equation given (x4, s) and using ¥* = E[g | x4, 5], we
obtain

E[xo | xs,8] = asxs + bs¥*(xs,8). (A.12)
Thus the reconstruction rule )2(()8) = asXs + bs9* (x5, s) exactly equals the posterior mean E[x |
Xs, 8]; when ¢* = 1)y (ideal limit), equation is a pointwise identity. In particular, fcgs) is an
unbiased estimator of the clean sample x. Therefore, any admissible 1)y induces a unique pair
(as, bs) and an equivalent reconstruction of xg.

Instantiations. We now instantiate equation for the common parameterizations by plugging the
corresponding (us, vs):

1. e-prediction: ¢y = €, i.e. (us,vs) = (1,0). Then A; = a5 and

1 _ o _ o, *
as =5, bs=—2%, = Xy = oo Xs ot (%, 8).

2. xg-prediction: vy = X, i.e. (us,vs) = (0,1). Then Ay, = —0o and
as=0, by=1 = x{V=y*(x,,s).
3. v-prediction: 1y = g€ — 04X, i.e. (us,vs) = (a5, —05). Then Ay = a2 + o2 and

Y* (X, 8).

P Os ~(s) P Os

s = ————= by = — —— = X5 = Xg —
2 27 8 2 27 0 2 2 s 2 2
as + o3 a; + o3 as + o3 a; + o3

4. Score-prediction (conditional score). For the conditional Gaussian ¢(xs | x¢) =
N (asxg,021),

Xg — QsXg 1
V. logq(xs | x0) = — % =——e¢
02 Os
Hence choosing 1y = Vi, logq(xs | xg) corresponds to (us,vs) = (—1/0,,0). Then
A = —a, /o, and the reconstruction coefficients are
2 X 2
as:a%7 bs:%SS, = x(()é):a%xstg—zi/;*(xs,s).

5. Score-prediction (marginal score). Define the marginal distribution

4s(3s) = / 4(%4 | X0) Paata(Xo) do.

By the Gaussian score identity,

Vi, log QS(XS) = Ex0|xs[vxs log Q(Xs ‘ XO)] = -

18



Under review as a conference paper at ICLR 2026

Table A.1: Unified view of common parameterizations. Each training target )y corresponds to a
conditional regression, and the clean data xy is exactly reconstructed via equation [A.12]

Prediction mode  Target ¢y (xo, €, $) Reconstruction fc(()s)

e-prediction € 1V = Xy — %%y, 8)
xo-prediction Xq 1§ = (x4, 5)

v-prediction V= Q€ — 0gXg f(és) = X — e ¥ (X, 8)
s-prediction Vi, log qs(xs) = —U%(XS — ﬁxo) f((()s) = a%xs + Z Y*(xs,8)

Flow matching € — Xo o f((()s) =X — sU*(Xs, 5)

Rearranging yields the posterior mean in closed form:

1 2
E[xo | Xs] = — X5 + 2= Vi, log gs(xs). (A.13)
Qs Qs
If the network is trained by DSM with squared loss so that 1* (x5, s) = Vx, log gs(xs),
then equation gives the same reconstruction rule as in the conditional case:
O

2
Xo = o% Xs + Zf‘,w*(xs,SL

with coefficients (as, bs) = (1/a, 02 /ay).
Remark. The coefficients depend only on the forward schedule (a, o5 ); the data distribu-

tion pdata appears solely through the value of the marginal score Vy_ log ¢4(x;) that the
network estimates.

6. Flow matching. For the linear path x, = (1 — s)xg + sewehave agy =1 — s, 05 = 5. A
common target is ¥y = € — X, i.e. (us,vs) = (1,—1),80 Ay = a5+ 05, = 1 and

as=1, bs=—0,=—s, = ﬁgs):xs—sw*(xs,s).
Other normalizations (e.g. scaling ¥y by (1 — s)) yield the corresponding (as, bs) via
equation with the modified (us, vs).

In all cases, equation|[A.12|shows that training with any admissible 1)y recovers the same posterior
mean of x( from (xs, ) up to a deterministic linear readout (as, bs) determined solely by (o, o)
and the chosen (us, vs). Hence the parameterizations are equivalent in expressive power: they differ
only in the regression target and in the reconstruction coefficients (as, bs). O
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A.3 WHY SECOND-ORDER DIFFERENCES ARE OPTIMAL

We now provide a mathematical justification, entirely driven by the setting of Section and
Section [A] for why second-order differences are (i) necessary and advantageous, (ii) sufficient
and information-theoretically optimal, and (iii) why higher-order schemes degrade in practice.
Throughout, ¢ indexes discrete steps, while s € [0, 1] denotes continuous time.

A.3.1 WHY SECOND-ORDER DIFFERENCES ARE GOOD

Setting. Let (€2, 7, Pr) be a probability space. A data sample is zo € L?(£; R?) with distribution
Pdata- Let € ~ N(0,1;) be independent of z¢. Fix C? schedules ay, o : [0,1] — R and define the
forward latent

Ts = Qs + g€, s €0,1].
Let ¢ : R? x [0,1] — R? be a trained network, twice continuously differentiable in both arguments
and of at most linear growth so that sup,c(y 1 El|vg (25, s)[|* < oo. For discrete steps t € Z we
write ¢ 1= 1p(Xs,, $¢) with a locally uniform grid ;11 = s; + A.

Theorem A.4 (Signal-noise decomposition and invariance). There exists a unique ¢ €
C?([0, 1]; R?) and a zero-mean perturbation n; with sup, E||n||> < oo such that

P = P(s5¢) + M, E[nt | St} =0.

Hence the statement holds uniformly for the usual parameterizations (€, Xg, v, score, and flow),
which are related by deterministic affine readouts in s.

Proof. Let
G = {p(s): ¢:[0,1] = R, Eflp(s0)lI” < o0} € L*(%RY)
It is a closed subspace. The orthogonal projection of ¢, onto G is ¢(s:) = E[¢)y | s¢], and
N := Py — ¢p(s¢) satisfies E[n, | s¢] = 0.
Uniqueness follows from the uniqueness of Hilbert projections.

Write F(s, X, €) := ¥g(asXo+05€, 5), 50 ¢(s) = E[F(s, X0, €)]. Since 10y € C? and g, 05 € C2,
chain rule yields

OsF = 0s1pg(xs, 8) + Vatbg(xs, 8) (alxo + ole),
OIF = 939p9+2 0,V by (alyxo+07€)+Vauthy (%o +07€)+(alxo+0%e) ' Vigy (alxo+0le),
all evaluated at (x,, s). By the polynomial growth assumption and xg, € € L2, ,F and 0 F are
dominated by integrable envelopes. Thus, by dominated convergence (interchange of limit and

expectation),
¢'(s) =E[0,F),  ¢"(s) = E[02F],

so ¢ € C?([0,1]).
Bounded variance follows from E||n;||? < 2sup, E||vg(zs, s)||* + 2sup, |[¢(s)]|? < oo. O

Theorem justifies the local model v, = ¢(u) + 1, with a smooth deterministic trend ¢ and a
zero-mean perturbation 7,,. We now study the task of reconstructing a skipped state 1. A from the
two most recent computed states {1y, ¥y A }-

Theorem A.5 (Second-order backward extrapolation is BLUE and second-order accurate). Assume
the decomposition in Theorem[A4|and a locally uniform grid si+1 = s; = A. Consider linear
estimators Yy_n = ay + by that are unbiased for all affine trends ¢(u) = Lo + Sru.
Then a = 2, b = —1 is the unique unbiased choice, and under homoscedastic uncorrelated
perturbations Var([n;, ni+a]") = o2l it minimizes the variance among all unbiased linear
estimators. Moreover,

Elpe—a — (2thy — ern)] = A ¢"(s¢) + o(A?),
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so the bias is O(A?) for ¢ € C2.

Proof. Write y; 1= 1y, Y4+ = Y44 and stack y = [y ytJ . Under an affine trend, y = X8 + 7
t+

_ | s _ |5 _ | m
X_{l stJ:A]’ ﬁ_[ﬁﬁ]’ n_{miA]'

The target is 0 := ¢(s; — A) = ¢ B with ¢ = [S 1 A} A linear estimator w "y is unbiased
L —

with

for all affine ¢ iff w' X = ¢, ie., X Tw = c. Solving yields w = (2, —1)T and hence Vin =

2y — Py

For variance optimality with Var(n) = o215, Gauss—Markov gives

w* =arg min Var(w'y)=argminc?|w|i = w*=X(X'X)"lc=(2,-1)".
w: X Tw=c

Thus 2t — ¢4 is the BLUE.
For bias, expand ¢ at s;:
s+ A) = d(s0) £ A (s1) + 570" (s1) + o(A?).
Hence
P(st — A) — (26(s¢) — d(s¢ + A)) = A ¢"(s¢) + 0o(A?).

Adding the zero-mean perturbations on both sides preserves the expansion in mean, proving the stated
local truncation error. O

Remark A.6 (On conditioning in Theorem A.4: ¢(s) is a population-level trend). Let x5 = asXo +
0s€ with Xg ~ Pdata, € ~ N (0,1), and assume s is independent of (xq, €). For a target ¢, =
1o(Xo, €, 5¢), Theorem A.4 defines the signal part by

¢(s) = E[g | st = s].
Importantly, the conditioning is only on the time index s (not on the realization Xg), hence ¢ is a
deterministic function of s. By the tower property,

¢(s) = E[too(xo0, €, 5) | s| = E[E[¢o(xo0, €, 5) | Xs, S| | s],

s0 ¢(s) is obtained by first taking the posterior mean given (Xs, s) and then marginalizing over xg ~
¢s. This is fundamentally different from posterior reconstruction (e.g., Xo(Xs, s) := E[xg | Xs, 5]),
which depends on the particular observation Xg.

For the usual parameterizations we get closed forms. We use that E[e | s] = E[e] = 0 and E[xg | ] =
E[xo] by independence.

* e-prediction: 1)o(xo, €,s) = €. Then ¢(s) = E[e| s] = 0.
* xg-prediction: vy (Xo, €, 8) = Xq. Then ¢(s) = E[xq | s] = E[xg]-

* v-prediction: y(xo,€,5) = ase — gsxo. Hence ¢(s) = asEle|s] — osE[xo|s] =
—os E[xo].

* Score-prediction: 1y(xg, €, s) = Vi, log ¢s(Xs), 30 ¢(s) = Ex_~q.[V 10g ¢s(xs)] = 0.

* Flow-prediction: 1y(xo, €, 5) = “Lxs = o/, xo+0,€, 50 ¢(s) = a,E[xq | s]+0.E[e| s] =
o E[xo).

Equivalently, whenever a parameterization is an affine readout 1 (X0, €, s) = a(s) €+b(s) xo +¢(s),
we have the general identity
¢(s) = b(s) Exo] + ¢(s),

since E[e] = 0 and s L (xg, €).

Thus assuming that ¢(s) is an afine trends is reasonable.
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Table A.2: Summary of different parameterizations.

Parameterization  @(s) = E[¢); | s; = $]
e-prediction 0

Xo-prediction E[xo)
v-prediction — 05 E[xo0]
Score-prediction 0
Flow-prediction o, E[xo]

Proposition A.7 (No two-point linear estimator beats the O(A?) order). Let 1@_ A= ath; +
b4 A be any estimator that is unbiased for all affine ¢. Then for every such choice,

Ye_n — i = K(a,b) A% ¢"(s;) + o(A%)  with K(a,b) # 0,
so the order O(A?) cannot be improved using only {tb;, Vs A }.

Proof. Unbiasedness for all affine ¢ enforces the constraints a+b = 1 and as; +b(s; +A) = s; — A,
which have the unique solution @ = 2, b = —1. For any C? trend, Taylor’s theorem with remainder
gives the error coefficient K (2, —1) = 1. If one relaxed unbiasedness, matching constants and linears
is still necessary to avoid O(1) or O(A) bias uniformly in ¢; with only two samples, the highest
degree one can reproduce is 1, hence the Peano kernel argument yields an O(A?) remainder with a
nonzero coefficient for some ¢". O

Corollary A.8 (Curvature observability). The second difference AP, = Vg — 20y + YA
cancels any affine trend and isolates curvature:

AP g(s,) = A ¢ (s0) + o(A?).

Thus the BLUE extrapolator 210, — 1, a explicitly exploits A to reconstruct the skipped state
1y A while being insensitive to large affine drifts in ¢.

Remark A.9 (Correlated perturbations and generalized least squares). If Var(n) = X > 0 (not
necessarily diagonal), the BLUE weights become

()T = (XTE71X) 7' XTe
When ¥ = o021, this reduces to (2, —1).

Takeaway. Under the mild, parameterization-invariant decomposition of Theorem [E], the backward
second-order rule

ron = 20 — Yo

is simultaneously (i) unbiased for all affine trends, (ii) variance-optimal among all linear unbiased
two-point estimators, (iii) second-order accurate with bias O(AQ), and (iv) curvature-aware through

A®) None of these guarantees is achievable with zeroth- or first-order reuse from {t;, 1);1 A } alone.

From the next section onward, we omit the perturbation terms 7 and focus solely on the underlying
trend ¢, as the (2, —1) rule has already been shown to be the unique BLUE. Any additive zero-mean
noise merely inflates the estimation variance but cannot reduce the inherent bias floor.

A.3.2 WHY SECOND-ORDER IS SUFFICIENT

Setup. Let the unknown target function ¢ : [0, 1] — R belong to the class
FOn) = {o € CUOALRY: sup ()] < Mo}
s€|0,1

At discrete step ¢, we only have access to the model evaluations

Yy = ¢(st), Vipn = P(s140),
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with s;1A = s; £ A. The goal is to estimate ¢(s;— ) based on these observations. Denote a generic
estimator by

&th = Alg(wt, 1/Jt+A) .

We show that under only C? regularity, every estimator incurs worst-case bias of order A2, while the
standard second-order extrapolation

~(2
Dy = 20 — Yraa (A.14)
achieves this rate. Thus, second-order is minimax optimal.

Lower Bound via Two-Point Method.

Theorem A.10 (Two-point lower bound). For any estimator zz;t_ A depending only on {t¢, Y1 n},
there exist ¢4 € F(My) such that

¢+ (st) = d+(st+a) =0, |6+ (st-a) = d—(s0-a)|| > ¢ Mz A?,

for some absolute constant ¢ > 0. Consequently,

infsup [[r-a = d(sioa)|| = QMA?).
Pi—n GEF(M2)

Proof. Letu = (s — s;)/A and consider the quadratic Lagrange basis polynomial
p(u) = gu(u—1),  p(0) =p(1) =0, p(-1) =1, p"(u) = 1.

Define g(s) = MaA?p((s — s;)/A) and set ¢4 = +g. Then ¢4 € F(M,), agree at s; and 544,
but differ by

[p+(5t-a) — G- (5t-n)|| = 2MaAZ.

Since the data are indistinguishable, Le Cam’s two-point method (LeCaml|1973) implies any estimator
incurs at least half this separation on one of the two instances, yielding the stated (M>A?) bound.

Transition. Theorem 1 shows that A2 bias is an information-theoretic lower bound. Next we show
that the second-order extrapolation equation matches this rate.

Upper Bound via Second-Order Extrapolation.
Theorem A.11 (Achievability). For any ¢ € F(Ms),
¢(si—a) = (2¢(se) — ¢(sera))|| < MaA? = O(MA?).

Proof. By Taylor’s theorem, for some 61, 65 € (0, 1),

O(strn) = ¢(se) + ¢ (s0) A+ 5 ¢ (50 + 01 A) A%,
P(st-n) = P(s6) = @' () A + 5 ¢ (50 — 02 A) A®.

Subtracting yields
¢(St7A) - (2¢5(3t> - ¢(5t+A)) = %[¢”(St - 92A) + ¢”<5t + elA)}Az,

whose norm is bounded by M,AZ, O

Corollary A.12 (Minimax rate). Combining Theorems 1 and 2, the minimax rate for estimating
& (st ) under C? regularity is A?, achieved by the second-order extrapolation equation
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Interpolation with 2 points Interpolation with 10 points
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Figure A.1: Illustration of the Runge phenomenon. Left: polynomial interpolation with only 2
nodes. Right: interpolation with 10 nodes, which exhibits severe oscillations and divergence near the
boundary.

Variance and BLUE. Suppose further that observations are corrupted by i.i.d. noise:
Vi = (s¢) + N, Yira = ¢(st4a) + Neta, E[m] = 0, Var(n;) = o>

Consider linear unbiased estimators 1Zt_ A = a)y + bipy a. Unbiasedness for all affine ¢(s) requires

b s =)

whose unique solution is (a, b) = (2, —1). The variance is then
Var(dy_a) = (a® + b*)o? = 5o>.
Thus equation[A.T4]is the unique best linear unbiased estimator (BLUE).

Complexity Perspective. Three points uniquely determine a quadratic interpolant, achieving order-
A? bias. Adding more points to fit higher-degree polynomials cannot improve the minimax rate, since
functions in F(M>) need not possess bounded higher derivatives. In fact, the Lebesgue constant

An = maXZ |£J(8)|
5=0

of polynomial interpolation typically grows with the number of nodes, degrading stability. Hence
“more points” only increase constants without reducing the minimax order. Moreover, since our
sampling points are nearly uniform, the resulting polynomial interpolant is susceptible to Runge’s
phenomenon (Runge et al.,[I901) (see Figure[A.T)), which may further degrade stability (see Theo-
rem[A.T6| for more details).

Conclusion. Under scarce fresh evaluations and only C? regularity (the weakest assumption
justified by the forward process, cf. Appendix A.1), second-order extrapolation equation is
information-theoretically optimal: it matches the A? minimax lower bound and is BLUE among
linear unbiased estimators. Thus it lies on the Pareto frontier (Pareto, |1919) of the bias—variance
tradeoff, and additional points cannot improve the minimax rate while often worsening numerical
stability.

A.3.3 WHY FIRST-ORDER REUSE IS INSUFFICIENT

We quantify the best possible accuracy if one only reuses a single model evaluation (e.g., qzt, A= Uy
or Py—a = Pryn). Let

FM) = {oeCU01RY : sup [¢/(s)]] < My .

s€10,1]

Since ¢ € C?([0, 1]) on a compact interval implies ¢’ € C! and hence bounded, the class F; (M) is
compatible with the C? setting of §A.3.2)
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Information-theoretic lower bound for one-point estimators. Consider any estimator that de-
pends on a single point,

bioa = ANlg(e,), 7€ {t, t+A},
with ¥, = ¢(s,,) and sg1n = s¢ £ A.

Theorem A.13 (One-point minimax lower bound). For any measurable estimator 1@_ A =
Alg () using only one of vy, b a,

inf sup ||1Zt—A*¢(3t—A)|| = Q(MA).
Yi_an PEF1(M1)

Proof. WLOG take 7 = t (the case 7 = t+A is analogous). Define two affine trends

d1(s) = £M (s — sz).
Then ¢ € F1(M;), and they agree at s;: ¢4 (s¢) = ¢_(s;) = 0, hence the observation 1), is
identical in both cases. But at the target location,
6 (s1-a) = 6-(s1-a)]| = [ +M(~A) — (M1 (~A))]| = 20, A,

Since the data are indistinguishable, Le Cam’s two-point method (LeCaml|1973) implies any estimator
incurs at least half this separation on one of the two instances, yielding the stated (M7 A) bound. [

Achievability with naive reuse. The trivial reuse zZt, A = 1 attains this rate.

Proposition A.14 (First-order bias upper bound). For any ¢ € F1 (M),

|@(st—n) — tbe|| = [|#(se—a) — B(se)|| < M1 A.

Thus the one-point minimax rate is © (M1 A).

Proof. By the mean-value theorem, ¢(s;_a) — P(sy) = —A ¢/ (s, — OA) for some 6 € (0, 1), so the
norm is < MjA. O

Consequences (vs. second-order).

* Bias order: Any one-point scheme is at best first-order accurate (bias ©(A)), while the two-
point second-order extrapolation 21, —1); 1 A is second-order (bias ©(A?)), cf.Section

* Linear-unbiased restriction: If we additionally require linear unbiasedness for constants
(natural for reuse), ¥;_ A = a )y forces a = 1, so

B(s1-n) —hin = Blsi-n) — B(s1) = —A ¢ (s0) + B¢ (s1) + 0(A?),

whose leading term is generically O(A) and cannot be removed without using two points to
cancel the linear drift.

to an O(A) bias (Theorem ), which the trivial reuse 1A = 1, already attains (Proposi-
tion[A.14). In contrast, the two-point second-order rule cancels the linear drift and reaches the ©(A?)
minimax rate under C? regularity (Theorem and Theorem . Hence first-order reuse is
necessarily suboptimal.

Takeaway. Any estimator that “just reuses” a single evaluation is information-theoretically limited
i
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A.3.4 WHY HIGHER-ORDER EXTRAPOLATION IS DETRIMENTAL

We now establish, in a formal manner, why schemes of order k£ > 2 are not advantageous under the
C? regularity available in diffusion ODE sampling. Despite the apparent flexibility of higher-order
stencils, they suffer from four fundamental drawbacks: exponential noise amplification, curvature
mixing, collapse of stability domain, and interpolation sensitivity.

Theorem A.15 (Exponential noise amplification). Let w*) € R¥t1 be the Lagrange weights for
extrapolating ¥_1 from {1y, ...,y }. Then

||w(k)||2 . 2]€+2 N 4k+1
27 \k+1 r(k+1)’

and hence the variance of the extrapolate obeys Var(zzgcl) ) = Q(4ka?).

Proof. For equispaced nodes {0, 1,.. ., k} the j-th Lagrange basis reads

k
r—m
L) =] = .
m:()]_m

m#j

Evaluating at x = —1 gives

k
o Hm:O,m;ﬁj(_l - m)
k . '
Hm:O,m;ﬁj (] - m)

The numerator simplifies as

k k
CIDao(=1=m) DM+ 1)! (k1)
m:gl#j(_l_m)_ —-1— B —(j.|_1) _( 1)k 1 .

The denominator splits into two products:

k j—1 k ‘
[T G-m=(TG-m)( II G-m) =0
m=0,m#j m=0 m=j+1

Combining yields

k) j (k‘+1)! VY k+1
v = gy - Y <j+1)'

Therefore the squared ¢5 norm is
llw““)llZ—ij k+1 2_% k+ 1\
t §j=0 it m=1 N .

By the Chu—Vandermonde identity - (") 2 (2") , we obtain

m=0 \m n

2k 42
k)12 —
w13 = (% 7).

Finally, Stirling’s formula for the central binomial coefficient gives
2k +2 4Rt
( k1 ) VU
hence

Nk
Var(9)) = o2 [w®|3 = Q(4*0?),
as claimed. O
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Theorem A.16 (Interpolation sensitivity). Let Ay be the Lebesgue constant of equispaced inter-
polation using k + 1 nodes. Then Ay, grows exponentially in k, whereas for optimal Chebyshev
nodes it grows only logarithmically. Hence, higher-order extrapolants with equispaced stencils
are exponentially sensitive to perturbations or irregular steps.

Proof. The exponential growth already appeared in Theorem [A.T5} the ¢, norm of the weights
[|w®) |5 scales like 4%, so any perturbation in the data is magnified accordingly. This phenomenon is
precisely quantified by the Lebesgue constant

k
A, = supz |1 ()],
T =0

which measures the operator norm of the interpolation map. Classical interpolation theory (Runge
et al.l|[1901) shows that for equispaced nodes Ay ~ ¢2* with ¢ > 0. Since diffusion ODE sampling
necessarily uses uniform timesteps, we inherit the exponential sensitivity of equispaced interpolation.

O

Conclusion. Together, these theorems show that higher-order extrapolation schemes amplify
stochastic noise by 2(4%), destroy curvature alignment through alternating differences, shrink the
admissible stability domain beyond usefulness, and become exponentially sensitive to small pertur-
bations. Under the C? smoothness regime of diffusion processes, the minimax bias rate is Q(AQ),
already attained by second-order schemes. Thus higher-order methods offer no bias improvement but
introduce severe variance and stability costs. In realistic sampling budgets, second-order extrapolation
is both necessary and sufficient for robust skipping in diffusion ODE:s.

A.4 WHY IS SECOND-ORDER DIFFERENCING THE ONLY POSSIBILITY UNDER AMBITIOUS
SKIPPING?

We now make precise the consequence of enforcing uniform skipping with a speed-up factor of at
least two. Under such uniform spacing, the pigeonhole principle implies that no two consecutive
steps can both be fresh, and every three-step local window contains at most one fresh evaluation. As
a result, the only minimally sufficient real-computation unit is formed by a single fresh value together
with its deterministic difference against the next state, yielding a unique second-order difference rule.

Theorem A.17 (Uniform > 2x skipping forbids consecutive fresh steps and yields a unique
minimal tuple). Let steps be 1,2, ..., n on a uniform grid. Each step is either produced by a fresh
network evaluation (“fresh”) or by purely algebraic reuse of already computed values. Assume
the skipping pattern is uniform: there exists an integer r > 2 and a residue class ¢ € {1,...,r}
such that the fresh steps are exactly those indices

F ={ie{l,....,n}:i=c (modr)},
and every other step is obtained by algebraic reuse (no extra network calls). Then:
1. No two consecutive steps can both be fresh.
2. In any local window {t — 1,t,t + 1}, there is at most one fresh step.

3. If Y1 is skipped (to be reconstructed by reuse), the only minimally viable real-
computation tuple is

(0e, Ady), Ay := P — i,

in the sense that 1 is the unique fresh evaluation in the window and Ay is a deter-
ministic difference (trend) computable without an additional network call. No strictly
smaller tuple can determine both level and local trend, and any tuple containing two
fresh entries contradicts the uniform r > 2 spacing.

Proof. By uniformity, any two fresh indices differ by a multiple of » > 2. Hence the gap between
consecutive fresh steps is at least 2, so no two adjacent indices can both be fresh, proving (1).
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Consequently, any three-consecutive-step window {¢ — 1,¢,¢ + 1} contains at most one fresh index,
proving (2).

For (3), consider a window {¢ — 1,¢,¢ + 1} in which v;_; is skipped. By (2), at most one of these
is fresh. If ¢ — 1 were fresh, no reconstruction would be needed; thus (w.l.o.g.) ¢ is the unique
fresh index. Any additional quantity used to infer 1),_; must be obtained without further network
calls. Since ¢ + 1 cannot be fresh when ¢ is fresh under the uniform r > 2 spacing, reusing ;1 is
deterministic. The first difference A, := 1)y — 1111 then supplies independent information about
the local trend around .

Minimality follows from identifiability: a single fresh value 1), fixes only the local “level.” Without
at least one independent trend descriptor (e.g., A;), ¥;_1 is not determined in general (e.g., under
an affine local model one needs both level and slope). Thus any tuple strictly smaller than (¢, Avy)
is insufficient. Conversely, any tuple with two fresh entries violates the uniform gap > 2. Hence
(1¢, At)y) is the unique minimally sufficient real-computation unit under uniform > 2x skipping. [

A.5 MULTI-STEP ERROR UNDER REUSE AND TWO-POINT EXTRAPOLATION

We study the bias and variance of three strategies for jumping left by j grid points from an anchor
at s; = tA when only the two most recent observations {t;, 11} are available. Assume a d-
dimensional smooth ground-truth trajectory %* : [0,1] — R¢ with ¥»* € C*([0,1]), and noisy
observations

Uy = V¥ (84) + Nu, E[n,] =0, Var(n,)=0c%I4, n, uncorrelated across .
For any estimator @, jof i ==~ (st—;), define its mean-bias and variance by
Bias(v—;) = B[y 5] —vf_;,  Var(yy;) = Var({r_;),

and the mean-squared error MSE = || Bias||3 + tr Var. Below, all big-O terms are uniform in ¢ and
j as A — 0; derivatives of ¢* are evaluated at s; unless stated otherwise.

Three strategies. (A) Two-point linear extrapolation at a single anchor: for any j > 1,
~4 ) )
Vi = ()Y — i

(B) Interval reuse: first compute zzt_l = 21y — Y41, and then reuse every other step to the left, i.e.
B = z/;f” for s <t — 2. Equivalently,

'(ZJ\B _ wta jeven,
T\ 24 — Yra1,  J odd.

(C) Pure reuse: ignore 1)1, and set 1@/07] = forall j > 1.
Lemma A.18 (Closed form and equivalence). Strategy (A) is the unique sequence generated by
the second-order recurrence ¥y (1) = 24 — Y4 (x—1) With initial conditions by = 1y and

@,1 = 2y — Yy11. In particular, 1@;4_]- = (j+1)¢ — jbpyq forall j > 1.

Proof. Solve the linear homogeneous recurrence zy+1 — 2z, + x—1 = 0, whose general solution
is z, = a+ Bk. With xg = ¢, and &1 = 294 — ;41 one obtains z; = (k + 1)1y — kbry1.
Uniqueness follows from linearity. O

Theorem A.19 (Bias of the three strategies). Let M, := sup,¢o 11 || Y (s) || forr =1,2,3,4.
Then, uniformly int and j:
(A) For two-point linear extrapolation,

IBias(il )l < 3(+1) M2 A® = O(2A%).

Moreover, the exact Taylor expansion is

Bias(Pf ;) = — 2 j(Gi+1) " A% + L (=) ¢y DA — L (7*+5) v DAt + 0(aY).
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(B) For interval reuse, letting j = 2k or j = 2k+1,
||Bias(z$£2k)|| < 2k My A+ %(2]6)2M2A2 + %(2k)3M3A3 +0(AY) = 0(jA),
IBias($f gpp1)ll < 26 My A + (2K+2k+1) M A? + O(A%) = O(jA).
The leading-order expansions are, respectively,
Bias(02 ;) = 2k 7 A — 2k% LUA% 4 O(AY),
Bias(Pf gpp1) = 2k 05 A — (2K +2k+1)9} " A% + O(A®).

(C) For pure reuse,
IBias( )| < j My A + 372MaA% + 12 Mz A® + O(A%) = O(jA),
with leading expansion Bias(zl)\gj) =jor' A — 129" A2 + O(A3).
Proof. Fix a uniform grid with step size A > 0 so that 5,41 = s; + A and 5,_; = s, — jA. Let
¥* 1 [0,1] — R? be C* and denote derivatives at s; by
w — w*(st)7 w/ — w*(l)(st)7 '@[JH — w*(2)(8t)’ w/// — '(/J*(S)(St), w//// — w*(4)(5t)-

The observations are v, = ¥*(s,,) + 1, with E[n,] = 0. Hence for any affine estimator 1@_ ;j based
on (¢, i41), its bias is

Bias(Vr—;) = Elte—j] — 0" (s1-j) = 0,1 — 4" (s0-), (A.15)
where @d_e; is obtained by replacing (¢;, ¥y1) with (0*(s¢), ¥* (St41))-
Taylor expansion at s; up to order four gives
W (se01) =9 + YA+ JPTAT + 5" AT+ AT+ O(AY), (A.16)
'l/)*(stfj) _ w o J?/}/A 4 %jQw//AQ _ %j?),lp///AS + ijZLI,Z)HHALL + O(AS) (A17)

All O(-) terms are uniform in ¢, j once bounded by

M, := sup |[¢* " (s)], r=1,234.
s€[0,1]

Strategy (A). By definition,
A = G (s0) =30 (s041) = (19— (0 At Ju A4 10" A Ly A +0(A).
Simplifying gives
,(z}\td_e;,A =9 — ]w/A _ %w//AQ _ %w///AS _ %dJNNAAl + O(A5) (A.18)
Subtracting equation from equation yields
Bias(viL ;) = =35 + DA% + 5% — )0 A% = (" + )" A+ 0(A%),

and therefore R
[Bias(iL )l < 37(j + 1) MaA® + O(5°A%) = O(j?A%).

Strategy (B). For even j = 2k, one has '@f_e;’,f = 1), hence

Bias($F 5,) = ¢ — ¥ (si—ax) = 2k ' A — 2k2" A2 + FEYAR +O(AY).
This implies

|Bias(df 5| < 2kMyA + 1(2k)* Mo A? + 1(2k)* M3 A® + O(A*) = O(jA).
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For odd j = 2k + 1, one has sz(t’;]f 1y = 29— 1*(s¢+1). Expanding and subtracting equation
with j = 2k + 1 yields
Bias(V y11)) = 2k /A — (2K + 2k + 1) A% + O(A?),
so that
Bias(f gpi))|l < 2KMiA + (2K2 + 2k + 1)MaA? + O(A%) = O(jA).

Strategy (C). Here zth_e;’C =1, S0
Bias(fy ;) = — 9" (si—;) = ji' A — L5207 A2 + L3 A% + O(AY),
and thus
[Bias(vf )| < iMIA+ 352 MaA? + 555 MsA® + O(AY) = O(jA).

Combining the three strategies completes the derivation of the bias bounds and their leading expan-
sions. O

Theorem A.20 (Variance growth). Under the noise model above and independence across grid
points, the variances are:

o2l;,  jeven,

-~C 2
5021, jodd, Var(y—;) = o"la.

Var(zz;f_j) = ((j+1)2+j2)021d, Var(zzt‘ij) = {

Proof. Each estimator is a fixed linear combination wo; + wyty1 with weights (wo,w1) =
((41),—4) for (A), (1,0) or (2, —1) for (B), and (1, 0) for (C). With homoscedastic uncorrelated
noise, Var(woty; + witpy1) = (wg + w?)o?ly. O

Corollary A.21 (Dominant orders of MSE). Let h := jA. As A — 0 with j possibly growing, the
mean-squared errors satisfy

MSE(${ ;) = 0(h')+6(j%0?),  MSE@LE ) = 0(h*)+0(c?),  MSE(YL ) = 6(h?)+0(d?).

Proof. Combine Theorems and[A.20] The squared-bias for (A) is O((j2A%)?) = O(h*), while
for (B) and (C) itis O((jA)?) = ©(h?). The variance orders are given in Theorem [A.20) O

Remark A.22 (Interpretation). Strategy (A) achieves second-order bias ©(h?) but pays a variance
that grows quadratically with the number of skipped steps. Strategies (B) and (C) maintain constant
variance independent of j but can only guarantee first-order bias ©(h). In low-noise, short-jump
regimes, (A) enjoys a strictly better MSE due to its ©(h*) squared bias. However, once the jump
length exceeds one step or the noise level becomes higher, the variance term of (A) dominates, and
(B)/(C) may become preferable. In summary, extrapolation tends to overshoot, while reuse remains
stable but sacrifices precision.
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