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ABSTRACT

Model attribution is a popular tool to explain the rationales behind model pre-
dictions. However, recent work suggests that the attributions are vulnerable to
minute perturbations, which can be added to input samples to manipulate the at-
tributions while maintaining the prediction outputs. Although empirical studies
have shown positive performance via adversarial training, an effective certified
defense method is eminently needed to understand the robustness of attributions.
In this work, we propose to use uniform smoothing technique that augments the
vanilla attributions by noises uniformly sampled from a certain space. It is proved
that, for all perturbations within the attack region, the cosine similarity between
uniformly smoothed attribution of perturbed sample and the unperturbed sample
is guaranteed to be lower bounded. We also derive alternative formulations of the
certification that is equivalent to the original one and provides the maximum size
of perturbation or the minimum smoothing radius such that the attribution can not
be perturbed. We evaluate the proposed method on three datasets and show that
the proposed method can effectively protect the attributions from attacks, regard-
less of the architecture of networks, training schemes and the size of the datasets.

1 INTRODUCTION

The developments and wider uses of deep learning models in various security-sensitive applications,
such as autonomous driving, medical diagnosis, and legal judgments, have raised discussions of the
trustworthiness of these models. The lack of explainability of deep learning models, especially the
recent popular large language models (Brown et al., 2020), has been one of the main concerns. Reg-
ulators have started to require the explainability of the AI models in some applications (Goodman
& Flaxman, 2017), and the explainability of AI models has been one of the main focuses of the
research community (Doshi-Velez & Kim, 2017). Model attributions, as one of the important tools
to explain the rationales behind the model predictions, have been used to understand the decision-
making process of the models. For example, medical practitioners use the explanations generated
by attribution methods to assist them in making important medical decisions (Antoniadi et al., 2021;
Hrinivich et al., 2023; Du et al., 2022). Similarly, in autonomous vehicles, the explainability helps
to deal with potential liability and responsibility gaps (Atakishiyev et al., 2021; Burton et al., 2020)
and people naturally requires the confirmation of the safety critical decisions. However, since these
users often lack expertise in machine learning and technical details of attributions, there is a risk
that the attributions have been manipulated without noticing. Attackers may specifically target attri-
butions to mislead investigators, propagate false narratives, or evade detection, potentially leading
to serious consequences. Consequently, practitioners could lose trust in these methods, resulting
in their refusal to use these methods. Thus, a trustworthy application requires not only the predic-
tions made by the AI models, but also its explainability produced from attributions. However, the
attributions have also been shown recently to be vulnerable to small perturbations (Ghorbani et al.,
2019). Similar to adversarial attacks, attribution attacks generate perturbations that can be added to
input samples. These perturbations distort the attributions while maintaining unchanged prediction
outputs. This misleadingly gives a false sense of security to practitioners who blindly trust the at-
tributions. An effective defense method is emergently needed to protect the attributions from the
attacks.

Unlike adversarial defense, which has been extensively investigated to mitigate the harm of adver-
sarial attacks that using both empirical (Madry et al., 2018; Athalye et al., 2018; Carlini & Wagner,
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2017) and certified (Cohen et al., 2019; Wong & Kolter, 2018; Yang et al., 2020; Lecuyer et al.,
2019) defense methods, attribution defense is neglected. Almost all attribution protection works
focus on adversarially training the model by augmenting the training data with manipulated samples
to improve the robustness of attributions (Boopathy et al., 2020; Chen et al., 2019; Ivankay et al.,
2020; Sarkar et al., 2021; Wang & Kong, 2022). Levine et al. (2019) and a series of subsequent
works (Liu et al., 2022; Huai et al., 2022; Gu et al., 2023) study the certifications of attributions
under categorical ranking measurements, which are not easy to extend to other domains. A recent
work by Wang & Kong (2023) attempts to derive a practical upper bound of cosine similarity for the
worst-case attribution deviation, while suffering from strict assumptions and heavy computations.
Overall, there is a gap in scalable methods for providing generalized certification of attribution ro-
bustness. In this work, we put our focus on the smoothed version of attributions and seek to provide
a theoretical guarantee that the attributions are robust to any type of perturbations within ℓ2 attack
budget.

Based on the previously defined formulation of attribution robustness (Wang & Kong, 2023), given a
network f , its attribution function g and perturbation δ ∈ Rd, the attribution robustness is defined as
the optimal value that maximizes the worst-case attribution difference D(·, ·) under provided attack
budget,

max
δ

D(g(x), g(x+ δ)) s.t. ∥δ∥ ≤ ϵ. (1)

However, the aforementioned study only provides an approximate method to solve the optimization
problem under the strict assumptions that the networks is locally linear, and, as a result, is unable to
generalize to modern neural networks. To give a complete certification on the problem, we follow the
formulation and attempt to find the effective upper bound of the attribution difference, equivalently,
the lower bound of attribution similarity, which can be applied to any network. We propose to use
uniformly smoothed attribution, which is a smoothed version of the original attribution, and show
that, for all perturbations within the allowable attack budget, the cosine similarity that measures the
difference between perturbed and unperturbed uniformly smoothed attribution can be certified to be
lower bounded. The contribution of this paper can be summarized as follows:

• We provide a theoretical guarantee that demonstrates the robustness of the uniformly
smoothed attribution to any perturbations within allowable region. The robustness is mea-
sured by the similarity between the perturbed and unperturbed smoothed attribution. The
method can be generally applied to any neural networks, and can be efficiently scaled to
larger size images. To the best knowledge of the authors, this is the first work that provides
a theoretical guarantee for attribution robustness.

• We present alternative formulations of the certification that are equivalent to the original
one and also practical to be implemented. The alternative formulations determine the maxi-
mum size of perturbation, or the minimum radius of smoothing, ensuring that the attribution
remains within a given tolerance.

• We demonstrate that the uniform smoothing can protect the attribution against ℓ2 attacks.
More importantly, we evaluated the proposed method on the well-bounded integrated gra-
dients and show that it can be effectively implemented and can successfully protect and
certify the attributions from ℓ2 attacks.

The rest of this paper is organized as follows. In Section 2, we review the related works. In Section 3
and Section 4, we introduce the uniformly smoothed attribution and show that it can be certified
against attribution attacks. In Section 5, we present experimental results and evaluate the proposed
method. Finally, we conclude this paper and in Section 6.

2 RELATED WORKS

2.1 ATTRIBUTION METHODS

Attribution methods study the importance of each input feature, and measure that how much every
feature contributes to the model prediction. One of the most popular attribution approaches is the
gradient-based method. Based on the property that gradient is the measurement of the rate of change,
the gradient-based methods measure the feature importance by weighting the gradients in different
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ways. Examples of gradient-based methods include saliency (Simonyan et al., 2014), integrated
gradients (IG) (Sundararajan et al., 2017), full-gradient (Srinivas & Fleuret, 2019), and etc. Other
attribution methods include occlusion (Simonyan et al., 2014), which measures the importance of
each input feature by occluding the feature and measuring the change of the model prediction, layer-
wise relevance propagation (LRP) (Bach et al., 2015), which propagates the output relevance to the
input layer, and SHAP related methods (Lundberg & Lee, 2017; Sundararajan & Najmi, 2020; Kwon
& Zou, 2022). An important property of many attribution methods is the axiom of completeness that∑

i gi(x) = fj(x), which indicates the relationship between attribution and the prediction score.
Note that the gradient-based attribution methods are upper-bounded since the gradients of the model
output with respect to the input are upper-bounded.

2.2 ATTRIBUTION ATTACKS AND DEFENSES

Ghorbani et al. (2019) first pointed out that attributions can be fragile to iterative attribution attack,
and Dombrowski et al. (2019) extended the attack to be targeted that attributions can be changed
purposely into any preset patterns. Similar to adversarial attacks, attribution attacks maximize the
loss function that measures the difference between the original attributions and the target attributions.
In addition, the attribution attacks are controlled not to alter the classification results. To defend
against attribution attacks, adversarial training (Madry et al., 2018) approaches have been adopted.
Chen et al. (2019) and Boopathy et al. (2020) minimizes the ℓp-norm differences between perturbed
and original attributions, and Ivankay et al. (2020) considers Pearson’s correlation coefficient. It is
worth noting that these methods empirically improve attribution robustness. Meanwhile, a series
of certification methods Levine et al. (2019); Liu et al. (2022); Huai et al. (2022); Gu et al. (2023)
have been proposed to ensure that attribution changes do not exceed a certain threshold under any
perturbations within the allowable attack region. These methods measure attribution changes using
top-k intersection, while a continuous alternative, cosine similarity, remains unexplored. It has
been proved that using cosine similarity to measure attribution differences is consistent as top-k
intersection and Kendall’s rank correlation (Wang & Kong, 2022), and it is more likely to extend to
other domains.

2.3 RANDOMIZED SMOOTHING

The smoothing technique has been popular in improving certified adversarial robustness (Liu
et al., 2018; Lecuyer et al., 2019; Cohen et al., 2019; Yang et al., 2020). The smoothed clas-
sifiers take a batch of inputs that are randomly sampled from the neighbourhood of original in-
puts under certain distributions µ and make the decisions based on the most likely outputs, i.e.,
argmaxy Pη∼µ[F (x + η) = y]. They provide the certification of the a radius such that no pertur-
bation within the radius can alter the classification label. Cohen et al. (2019) certifies the ℓ2 attack
based on the Neyman-Pearson lemma and the result is alternatively proved by Salman et al. (2019)
using explicit Lipschitz constants. Lecuyer et al. (2019) and Teng et al. (2020) consider Laplacian
smoothing for the ℓ1 attack. Yang et al. (2020) derived a similar result in ℓ∞ though the radius be-
comes small when the dimension of data gets large. Kumar & Goldstein (2021) applied randomized
smoothing to structured output, which the attributions belong to, but the specific bound for attribu-
tion is too loose to be meaningful. Thus, there are no existing works that provide defense and valid
certifications for attribution using randomized smoothing due to the difficulty of defining the attri-
bution robustness and the computation of the attribution gradient. In this work, an effective method
to formulate the smoothed attribution robustness as a simple optimization problem is proposed to
provide certifications against attribution attacks.

3 UNIFORMLY SMOOTHED ATTRIBUTION

Consider a classifier f : Rd → [0, 1]
c that maps the input x ∈ Rd to the softmax output y ∈ [0, 1],

and its attribution function g(x) : Rd → Rd. The smoothed attribution of f is to construct a new
attribution h by taking the mean of attributions on x+η, where η is randomly drawn from a density
µ, i.e., the smoothed attribution h can be defined as follows:

h(x) = Eη∼µ[g(x+ η)]. (2)
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(a) Original image (b) IG

(c) Gaussian smoothed IG (d) Uniformly smoothed IG

h(x)

h(x̃)
av

Figure 1: (left) Examples of attributions (zoom in for better visibility). We choose to show the
integrated gradients (IG) and its corresponding smoothing results. For Gaussian smoothing, the
noise level is set to σ = 0.2 and for uniformly smoothed IG, ℓ2 ball with radius

√
3σ is used. (right)

A 2D illustration of the volumes of B(x; r) and B(x̃; r), as well as the relationship between h(x)
and h(x̃). Here h(x) is the original attribution, and av represents the magnitude and direction of the
translation of h(x) after the sample is perturbed. VU in Theorem 1 is the volume of shaded region
in the figure, and VS is the volume of each individual ball. When h(x) is fixed, the lower bound of
the cosine similarity between h(x) and h(x) + av can be derived as a function of volumes

To construct smoothed attribution, the density µ can be chosen arbitrarily, and the smoothed attri-
butions provide visually sharpened gradient-based attributions (see Figure 1 (left)). Smilkov et al.
(2017) choose µ to be multivariate Gaussian distribution on input gradients to weaken the visually
noisy attribution. In this work, we aim at certifying the attribution robustness under ℓ2 attack; thus
we choose µ to be a uniform distribution on a d-dimensional closed space S centered at 0, espe-
cially the ℓ2-norm ball of radius r, B(0; r) =

{
y : ∥y∥2 ≤ r,y ∈ Rd

}
. It can be seen that smooth-

ing under this setting also provides high attribution quality (Figure 1d). To quantitatively evaluate
the effectiveness of uniformly smoothed attribution, we can further evaluate its performance using
GridPG introduced by Rao et al. (2022), which quantifies the significance of individual features in
terms of positive contributions or influences. The GridPG values of IG, uniformly smoothed IG
and Gaussian smoothed IG for 5, 000 randomly selected ImageNet examples are 0.4021, 0.4093
and 0.4110, respectively, which suggest that the uniformly smoothed attributions can achieve com-
parable performance of GridPG with the Gaussian smoothed attributions, as well as the original
non-smoothed attributions.

4 CERTIFYING THE COSINE SIMILARITY OF SMOOTHED ATTRIBUTIONS

We now consider S as an ℓ2-norm ball for the ease of analyzing the certification. Adapted from the
formulation in Eq. (1), the robustness of attribution is defined as the minimum possible attribution
similarity when a natural image is perturbed by attribution attacks. As mentioned in Section 2, this
work studies cosine similarity as the measurement of similarity, as it has been shown to be the most
suitable alternative to the non-differentiable Kendall’s rank correlation, the most common evaluation
index (Wang & Kong, 2022). Suppose that the ℓ2 attribution attack is performed upon input sample
x, the maximum allowable perturbation is ϵ, i.e., x̃ = x+ δ, where ∥δ∥2 ≤ ϵ. For all ∥δ∥2 ≤ ϵ, we
want to find out the minimum value of cos(h(x), h(x̃)), i.e., the lower bound of cosine similarity
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for attributions. Thus, the optimization problem we are interested in is formulated as follows:

min
δ

cos(h(x), h(x+ δ)) s.t. ∥δ∥2 ≤ ϵ. (3)

That is, we will show that, given an arbitrary sample point x, for all perturbed samples x̃, the co-
sine similarity between the original smoothed attribution and the corresponding perturbed smoothed
attributions is guaranteed to be lower bounded by the optimum of (3). Alternatively, in a more prac-
tical perspective, given a threshold T for the cosine similarity, we want to know the maximum size
of perturbation, or the minimum smoothing radius, such that no perturbations inside would cause
the attribution difference to exceed the threshold.

However, although optimizing the cosine similarity for attribution can be an intuitive way to find
the lower bound, it is difficult in this problem to directly study the cosine function. Moreover, it is
also intractable to optimize the cosine similarity with respect to a vector δ. To address this issue,
we first reformulate the problem into an optimization over two scalars and then solve the alternative
problem to obtain the lower bound of cosine similarity. All the proofs and derivations of theorems,
lemmas and corollaries are provided in the Appendix A.

4.1 ONE-DIMENSIONAL REFORMULATION

We note that cosine similarity of attributions is in fact an inner product of their normalized vectors.
Besides, we also observe that h(x) is the mean of g(x+η) with respect to η, which is, by definition,
equivalent to the integral of g weighted by the density of uniform distribution over B(x; r). More
importantly, for perturbed example x̃, the weighting region is B(x̃; r), which is a translated version
of B(x; r) and they are expected to intersect with each other when the distance of their centers is
smaller than twice of the radius r. Therefore, given the input sample x and its attribution h(x), we
can rewrite the minimization of cosine similarity as follows:

min
a,v

h(x)T

∥h(x)∥

(
h(x) + av

∥h(x) + av∥

)
(4)

where a represents the magnitude of the translation and the unit vector v is the direction of transla-
tion as shown in Figure 1 (right). It can be shown that the magnitude a is constrained by a constant
related to the intersecting volume and the property of the attribution function itself.

In a high-dimensional case, for a fixed cosine similarity value, a given h(x) and h(x̃), in fact, form
a spherical cone. Thus, we can decompose the directional unit vector v into v = cos θv∥+sin θv⊥,
where v⊥ is perpendicular to h(x) and v∥ is parallel to h(x). Then, we have

min
a,θ

∥h(x)∥+ a cos θ√
(∥h(x)∥+ a cos θ)2 + (a sin θ)2

, (5)

where 0 ≤ θ ≤ 2π.

Since a is a scalar representing the magnitude of the translation from h(x) to h(x̃), it can be shown
that the magnitude of a is upper bounded by the magnitude of the gradient weighted by the ratio
of volume change during the translation process. Specifically, a ≤ MVU/VS , where VS is the
volume of the ℓ2-ball B(0; r), VU is the volume of the union of the two sampling space centered at
x and x̃ minus their intersection, and M is a constant that depends on the upper bound of g, We
notice that the gradient-based attribution is a function of input gradient, ∇f(x), which is bounded
for Lipschitz continuous networks (See Lemma 1 in the Appendix A); thus, the upper bound can be
derived separately for different attribution functions.

4.2 LOWER BOUND OF COSINE SIMILARITY FOR BOUNDED ATTRIBUTIONS

Now that we have reformulated the optimization with respect to vector v into an alternative simpler
one with respect to scalar values a and θ. By solving the alternative problem, our result shows that
the smoothed attribution is robust within the following half-angle of a spherical cone.

Theorem 1. Let g : Rd → Rd be a upper bounded attribution function, and η
U∼ B(0; r). Let

h be the smoothed version of g as defined in (2). Then, for all x̃ ∈ {x+ δ|∥δ∥2 ≤ ϵ}, we have
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Table 1: Comparison of top-k and Kendall’s rank correlation between ℓ2 perturbed and non-
perturbed attributions on standard and robust models using smoothed and non-smoothed attribu-
tions.

Standard IG-NORM TRADES IGR
(Chen et al., 2019) (Zhang et al., 2019) (Wang & Kong, 2022)

SM top-k 0.3449 0.6575 0.6450 0.8354
Kendall 0.1496 0.4709 0.4642 0.7553

SmoothSM top-k 0.3853 0.6261 0.6082 0.8363
Kendall 0.1670 0.4238 0.4119 0.7568

IG top-k 0.4742 0.7075 0.6821 0.8402
Kendall 0.1744 0.5098 0.5030 0.7839

SmoothIG top-k 0.5302 0.6730 0.6528 0.8460
Kendall 0.3819 0.4494 0.4533 0.7612

cos (h(x), h(x̃)) ≥ T , where

T =
∥h(x)∥2√

∥h(x)∥22 +M2V 2
U/V

2
S

(6)

Here, M is the upper bound of g. VS is the volume of the ℓ2-ball B(0; r), and VU is the volume of
the union of the two sampling space centered at x and x̃ minus their intersection.

The entire proof can be found in Appendix A. The theorem points out that the lower bound of cosine
similarity is related to the smoothing space around the input samples and the maximum allowable
perturbation size. Moreover, when the smoothing space is a ℓ2-norm ball, the above result can be
derived by directly computing two volumes VU and VS , which can be explicitly calculated by

VU = 2VS ×
(
1− I(2rh−h2)/r2

(
d+ 1

2
,
1

2

))
(7)

where h = r− ϵ/2 ≥ 0 and Ix(a, b) is the regularized incomplete beta function, cumulative density
function of beta distribution (Li, 2010).

We observe the following properties of the above theorem.

1. Unlike previous attribution robustness works, such as Dombrowski et al. (2019), Singh
et al. (2020), Boopathy et al. (2020) and Wang & Kong (2022), which require the networks
to be twice-differentiable and need to change the ReLU activation into Softplus, the pro-
posed result does not assume anything on the classifiers. Thus, it can be safely applied to
any neural network and any architectures.

2. The lower bound depends on the radius of smoothing, r. The bound becomes larger as the
radius of smoothing grows. In extreme cases when r tends to infinity, the smoothing spaces
of two samples completely overlap, which corresponds to the same smoothed attribution
and their cosine similarity becomes 1.

3. At the same time, the lower bound also decreases when the attack budget ϵ increases.
Besides, when ϵ increases beyond the constraint that h = r− ϵ/2 ≥ 0 and tends to infinity,
the distance between two attributions will become further and their cosine similarity will
tend to 0 in high dimensional space, which makes the lower bound becomes trivial.

4. The proposed method can be scaled to datasets with large images. The lower bound is
efficient to compute since only the smoothed attribution of given sample needed. On the
contrary, the previous works that approximately estimate the attribution robustness (Wang
& Kong, 2023) require the computation of input Hessian and the corresponding eigenval-
ues and eigenvectors, which becomes intractable for larger size images on modern neural
networks.
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Table 2: The theoretical lower bound (T in Eqn. (6)) for cosine similarity evaluated on baseline
models using MNIST. Note that the bound is not achievable for r = 0.5 when ϵ = 1.0, since the
radius must be greater than ϵ/2.

ϵ = 0.5 ℓ2 radius (r) 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Standard 0.3002 0.3141 0.3385 0.3732 0.4144 0.4600 0.5057
IG-NORM 0.4038 0.4189 0.4432 0.4729 0.5055 0.5466 0.5909
IGR 0.4145 0.4269 0.4482 0.4792 0.5208 0.5748 0.6392

ϵ = 1.0 ℓ2 radius (r) 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Standard / 0.3034 0.3092 0.3264 0.3716 0.3990 0.4178
IG-NORM / 0.3650 0.3822 0.3892 0.4220 0.4974 0.5365
IGR / 0.3834 0.4025 0.4558 0.4914 0.5237 0.5358

4.3 ALTERNATIVE FORMULATIONS OF THE ATTRIBUTION ROBUSTNESS

The previous section formulates the robustness of smoothed attribution in terms of the smallest co-
sine similarity between the original and perturbed smoothed attribution, when the attack budget and
the smoothing radius are fixed. In some scenarios, practitioners want to formulate the robustness in
different ways. For example, we may want to find the maximum allowable perturbation ϵ such that
the cosine similarity between the original and perturbed smoothed attribution is guaranteed to be
greater than a predefined threshold T . On the other hand, one can also obtain the minimum smooth-
ing radius needed such that the desired attribution robustness is achieved within allowable attack
region. The following corollary provides the alternative formulations of the attribution robustness.

Corollary 1. Let g : Rd → Rd be a bounded attribution function, and η
U∼ B(x; r). Let h be the

smoothed version of g as defined in (2).

(i) Given a predefined threshold T ∈ [0, 1], then for all ∥δ∥2 ≤ ϵ, we have cos(h(x), h(x+δ)) ≥
T , where

ϵ = 2r

√
1− I−1

Z

(
d+ 1

2
,
1

2

)
. (8)

(ii) Given a predefined threshold T ∈ [0, 1] and the maximum perturbation size ϵ ≥ 0, the
smoothed attribution satisfies cos(h(x), h(x̃)) ≥ T for all x̃ ∈ {x+ δ|∥δ∥2 ≤ ϵ} when
r ≥ R, where

R =
ϵ

2

(
1− I−1

Z

(
d+ 1

2
,
1

2

))− 1
2

. (9)

I−1
z (a, b) is the inverse of the regularized incomplete beta function, and Z is defined as

Z = 1− ∥h(x)∥2
2M

(
1

T 2
− 1

)
(10)

The derivation of the Corollary can be found in Appendix A. We notice that, in these formulations,
when the smoothing radius is larger, the maximum allowable perturbation is also larger, which al-
lows stronger attacks while keeping the attribution similarity within a controllable range. Similarly,
when the maximum allowable perturbation is larger, the minimum smoothing radius is also larger,
which means that the attribution similarity can be maintained with a larger smoothing radius.

5 EXPERIMENTS AND RESULTS

In this section, we evaluate the effectiveness of uniformly smoothed attribution. Following previous
work on attribution robustness, we use the ℓ2 attribution attack adapted from the Iterative Feature
Importance Attacks (IFIA) by Ghorbani et al. (2019). It is first shown that the uniformly smoothed

7
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Table 3: Theoretical lower bounds evaluated on non-robust model and ImageNet using different
radii r and attack sizes ϵ. Note that the method is only applicable when radius r must be greater than
ϵ/2.

r 0.5 1.0 1.5 2.0 2.5 3.0 3.5

ϵ = 0.5 0.2612 0.2594 0.2704 0.2716 0.2892 0.2973 0.3029
ϵ = 1.0 / 0.1803 0.1992 0.1746 0.1904 0.2127 0.2502
ϵ = 2.0 / / 0.1753 0.1852 0.2044 0.2015 0.2045

attributions are less likely to be perturbed comparing with non-smoothed attributions when being at-
tacked by IFIA. After which, we present the results of certification using the proposed lower bound
of cosine similarity. The experiments are conducted on baseline models including adversarial ro-
bust models(Madry et al., 2018; Zhang et al., 2019), attributional robust models(Chen et al., 2019;
Singh et al., 2020; Ivankay et al., 2020; Wang & Kong, 2022), as well as non-robust models trained
for standard classification tasks. Following those baseline models, the method is tested on the vali-
dation sets of MNIST (LeCun et al., 2010) using a small-size convolutional network, on CIFAR-10
(Krizhevsky, 2009) using a ResNet-18 (He et al., 2016), and on ImageNet (Russakovsky et al., 2015)
using a ResNet-50 (He et al., 2016). More details of the experiments are described in the Appendix.
All experiments are run on NVIDIA GeForce RTX 3090.1

To empirically compute the uniformly smoothed attribution for every sample, N points are randomly
sampled from the d-dimensional sphere uniformly, and augmented to the input sample. To do so,
the sampling technique introduced by Box & Muller (1958) is applied. The integration in Eqn. 2
is then empirically estimated using Monte Carlo integration where the computation scales linearly
with the number of samples, i.e., ĥ(x) = 1

N

∑
g(x + ηi), for ηi

U∼ B(0; r). For large N , the
estimator ĥ(x) almost surely converges to h(x) (Feller, 1991); hence the convergence of T̂ to T
can be obtained (see Appendix C.1 for details). Unless specifically stated, we choose the number of
samples N to be 100, 000 to compute the proposed lower bound, and N∗ = 300 for the uniformly
smoothed attribution being attacked in all experiments.

5.1 EVALUATION OF THE ROBUSTNESS OF UNIFORMLY SMOOTHED ATTRIBUTION

We first conduct the experiment to verify that the uniformly smoothed attribution itself is more
robust than the original attribution. The uniform smoothing around the ℓ2 ball with radius 0.5 is
applied to the saliency map (SM) (Simonyan et al., 2014) and integrated gradients (IG) (Sundarara-
jan et al., 2017) and evaluate on CIFAR-10. The resultant attributions are denoted by SmoothSM
and SmoothIG, respectively. We then attack the attributions using the ℓ2 IFIA attack and evalu-
ate the robustness using Kendall’s rank correlation and top-k intersection (Ghorbani et al., 2019).
The experiments are evaluated on both non-robust model (Standard) and robust models (IG-NORM,
TRADES, IGR). Note that IFIA is directly performed on the smoothSM and smoothIG, instead of its
original counterpart. Since the PGD-like attribution attack requires to take the derivative of the attri-
bution to determine the direction of gradient descent, the double backpropagation is needed. Thus,
it is necessary to replace the ReLU activation by the twice-differentiable Softplus during attack
(Dombrowski et al., 2019). The results are shown in Table 1.

We observe that for the non-robust model, both SmoothSM and SmoothIG perform better than its
non-smoothed counterparts in both metrics, which shows that the uniformly smoothed attribution
itself is more resistant to the attribution attacks. For models that are specifically trained to de-
fend against the attribution attacks using heuristic methods adapted from adversarial training, e.g.,
IG-NORM, TRADES and IGR, the smoothed attributions show comparable robustness to the non-
smoothed attribution. Moreover, we also notice that SmoothIG performs better than SmoothSM,
especially for the non-robust models. This can be attributed to the fact that IG satisfies the axiom of
completeness, which ensures that the sum of IG is upper-bounded by the model output. In addition,
we also observed that the smoothing technique does not always enhance the robustness of attribu-
tion, as measured by top-k and Kendall’s rank correlation. It is worth noting that Yeh et al. (2019)
argued that randomized smoothing can reduce attribution sensitivities and consequently improve ro-

1Source code will be released later.
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(a) r = 1.5 (b) r = 2.0 (c) r = 2.5

Figure 2: The gap between theoretical bounds and empirical cosine similarity between original and
perturbed attribution evaluated on CIFAR-10 using IGR.

bustness. The disparity in our findings stems from the fact that we specifically evaluated Kendall’s
rank correlation, whereas their study defined sensitivity based on ℓ2-norm distance, which was sub-
sequently deemed inappropriate for evaluating attribution robustness by Wang & Kong (2022).

5.2 EVALUATION OF THE CERTIFICATION OF UNIFORMLY SMOOTHED ATTRIBUTIONS

In this section, the lower bound of the cosine similarity between the original and attacked attribution
is reported. We use the integrated gradients as an example since it is well-bounded due to the axiom
of completeness, and the technique can be also applied to any other gradient-based attributions.

Table 2 reports the theoretical bound evaluated on MNIST computed using Theorem 1. We include
the non-robust and two attributional robust models and compute the bound for different ℓ2 radius r
and attack size ϵ pairs. The lower bounds are validated by examining the actual ℓ2 attacks. Specifi-
cally, each input sample has been attacked 20 times and the cosine similarities of resulting perturbed
attributions with original attributions are examined. In total, 200,000 attacked images are tested for
each parameter pair and none of the evaluation metrics exceeds the theoretical bound. Moreover,
we also observe that the bound becomes tighter when the ℓ2 radius r increases and when the attack
size ϵ decreases. Besides, since IGR is more robust than IG-NORM (Wang & Kong, 2022), we can
observe that the lower bound is also a valid measurement of the robustness of the models.

In Figure 2, we show the gap between the theoretical lower bound and the empirical cosine similarity
between the original and perturbed attributions. The results are evaluated on CIFAR-10 using IGR.
Out of 10,000 testing samples, the 200 with the smallest gaps are chosen for each pair of r and ϵ, and
the gaps are sorted for better visualization. We notice that the gaps between the theoretical bound
and empirical cosine similarity are positive and small, which shows the validity and the tightness of
the proposed bound.

In Table 3, we also include the theoretical lower bound evaluated on ImageNet to show that the
proposed method is also applicable to large-scale datasets. Since the current attribution attacks and
attribution defense methods do not scale to large-scale datasets, we only include the non-robust
model. Since our method does not rely on the second-order derivative of the output with respect
to the input, it can be scaled to ImageNet-size datasets. For the experiments on ResNet-50, each
certification for one single sample takes around 15 seconds. We observe that the reported bounds
are also consistent with our theoretical findings.

6 CONCLUSION

In this paper, we attempt to use the uniformly smoothed attribution to certify the attribution robust-
ness evaluated by cosine similarity. The smoothed attribution is constructed by taking the mean of
the attributions computed from input samples augmented by noises uniformly sampled from an ℓ2
ball. It is proved that the cosine similarity between the original and perturbed smoothed attribution
is lower-bounded based on a geometric formulation related to the volume of the hyperspherical cap.
Alternative formulations are provided to find the maximum allowable size of perturbations and the
minimum radius of smoothing in order to maintain the attribution robustness. The method works
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on bounded gradient-based attribution methods for all convolutional neural networks and is scalable
to large datasets. We empirically demonstrate that the method can be used to certify the attribution
robustness, using the well-bounded integrated gradients, and the state-of-the-art attributional robust
models on MNIST, CIFAR-10 and ImageNet.

7 LIMITATIONS AND BROADER IMPACTS

The method in paper can be generally applied to any convolutional neural networks and any bounded
attribution methods. Although the existence of an upper bound has been shown for all gradient-
based methods, in some extreme cases when the upper bound for certain attribution is trivial, i.e., an
extremely large value, the proposed lower bound for attribution robustness also becomes trivial. In
future work, we will investigate the upper bound for other bounded attribution methods and provide
the corresponding lower bounds for attribution robustness. Besides, our current smoothing technique
is restricted to the uniform distribution, and we will explore other distributions for the smoothing
technique in future work.

Our work attempts to draw the attention of the community to the need for a guarantee of attribution
robustness. With the increasingly large number of applications of deep learning, the transparency
and trustworthiness of neural networks are crucial for users to understand the outcomes and to avoid
any abuse of the techniques. While the study of the security of networks could reveal their potential
risks that can be misused, we believe this work has more positive impacts to the community and can
encourage the development of more trustworthy deep learning applications.
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A PROOFS

Lemma 1. (Paulavičius & Žilinskas (2006)) For L-Lipschitz function f : Rd → R,

|f(x)− f(y)| ≤ L∥x− y∥q (11)

where L = max {∥∇f(x)∥p : x ∈ S} is Lipschitz constant. Thus, ∥∇f(x)∥p ≤ L.

Proof. Refer to Paulavičius & Žilinskas (2006) for the proof.

Theorem 1. Let g : Rd → Rd be a upper bounded attribution function, and η
U∼ B(0; r). Let

h be the smoothed version of g as defined in (2). Then, for all x̃ ∈ {x+ δ|∥δ∥2 ≤ ϵ}, we have
cos (h(x), h(x̃)) ≥ T , where

T =
∥h(x)∥2√

∥h(x)∥22 +M2V 2
U/V

2
S

(6)

Here, M is the upper bound of g. VS is the volume of the ℓ2-ball B(0; r), and VU is the volume of
the union of the two sampling space centered at x and x̃ minus their intersection.

Proof. As defined in Eqn. (2)

h(x) = Eη∼B(0;r)[g(x+ η)] =
1

VS

∫
η∼B(0;r)

g(x+ η)dη (12)

where VS is the volume of the ℓp-ball with radius r. Similarly, let x̃ = x + δ, where δ ∈ Rd is a
vector and ∥δ∥2 ≤ ϵ. Then, we have

h(x̃) =
1

VS

∫
η∼B(0;r)

g(x̃+ η)dη (13)

We note that when η ∼ B(0; r), x+ η ∼ B(x; r) and x̃+ η ∼ B(x̃; r). We then rewrite h(x) and
h(x̃) as follows:

h(x) =
1

VS

∫
x∼B(x;r)\B(x̃;r)

g(x)dx︸ ︷︷ ︸
R1

+
1

VS

∫
x∼B(x̃;r)∩B(x;r)

g(x)dx︸ ︷︷ ︸
R2

(14)

and

h(x̃) =
1

VS

∫
x∼B(x̃;r)∩B(x;r)

g(x)dx︸ ︷︷ ︸
R2

+
1

VS

∫
x∼B(x̃;r)\B(x;r)

g(x)dx︸ ︷︷ ︸
R3

(15)

Hence,

h(x̃) = h(x)−R1 +R3 (16)

Denote av = R3−R1, where v is a unit vector in the same direction of R3−R1 and a = ∥R3−R1∥2
is a scalar with the same magnitude of R3 −R1. Then, we have

cos(h(x), h(x̃)) =
h(x)⊤

∥h(x)∥2

(
h(x) + av

∥h(x) + av∥2

)
(17)
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Note that the attribution g(x) is upper bounded by M , specifically, ∥g(x)∥2 ≤ M , for some constant
M . Thus, we can derive that

a = ∥R3 −R1∥2 (18)

=

∥∥∥∥∥ 1

VS

(∫
x∼B(x̃;r)\B(x;r)

g(x)dx−
∫
x∼B(x;r)\B(x̃;r)

g(x)dx

)∥∥∥∥∥
2

(19)

≤ 1

VS

(∥∥∥∥∥
∫
x∼B(x̃;r)\B(x;r)

g(x)dx

∥∥∥∥∥
2

+

∥∥∥∥∥
∫
x∼B(x;r)\B(x̃;r)

g(x)dx

∥∥∥∥∥
2

)
(20)

≤ 1

VS

(∫
x∼B(x̃;r)\B(x;r)

∥g(x)∥2 dx+

∫
x∼B(x;r)\B(x̃;r)

∥g(x)∥2 dx

)
(21)

≤ 1

VS

(∫
x∼B(x̃;r)\B(x;r)

Mdx+

∫
x∼B(x;r)\B(x̃;r)

Mdx

)
(22)

= M ×
VB(x;r)\B(x̃;r)∪B(x̃;r)\B(x;r)

VS
= M

VU

VS
(23)

Thus, the lower bound of cos(h(x), h(x̃)) can be found by solving the optimization problem 2

min
v

h(x)⊤

∥h(x)∥

(
h(x) + av

∥h(x) + av∥

)
s.t. ∥v∥ = 1

a ≤ M
VU

VS

(24)

Since h(x) and h(x̃) form a spherical cone, we can decompose v by v = cos θv∥ + sin θv⊥, where
v∥ and v⊥ are two orthogonal unit vectors such that h⊤(x)v⊥ = 0 and v∥ = h(x)/∥h(x)∥. Then,
the optimization problem can be rewritten as

min v⊤
∥

(
h(x) + a(cos θv∥ + sin θv⊥)

∥h(x) + a(cos θv∥ + sin θv⊥)∥

)
(25)

⇒min v⊤
∥

( ∥h(x)∥v∥ + a(cos θv∥ + a sin θv⊥)

∥∥h(x)∥v∥ + a(cos θv∥ + a sin θv⊥)∥

)
(26)

⇒min
(∥h(x)∥+ a cos θ)v⊤

∥ v∥ + a sin θv⊤
∥ v⊥√

(∥h(x)∥+ a cos θ)2v⊤
∥ v∥ + (a sin θ)2v⊤

⊥v⊥
(27)

⇒min
∥h(x)∥+ a cos θ√

(∥h(x)∥+ a cos θ)2 + (a sin θ)2
(28)

Since h(x) is known for a given sample, the optimization problem can be written as follows by
taking ∥h(x)∥ = c:

min
c+ a cos θ√

(c+ a cos θ)2 + (a sin θ)2

s.t. a ≤ M
VU

VS

(29)

We now consider the Lagrange function of the optimization problem:

L(x, θ, λ) = c+ a cos θ√
(c+ a cos θ)2 + (a sin θ)2

− λ(a−M
VU

VS
) (30)

Taking the derivative of L with respect to a and θ and setting them to zero, we have

∂

∂a
L =

1

T 2

(
T cos θ − 1

T
(c cos θ + 2a)× (c+ a cos θ)

)
− λ = 0 (31)

2∥ · ∥ in the following content denotes the ℓ2-norm unless otherwise specified.
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and
∂

∂θ
L =

1

T 2

(
−a sin θ · T +

1

T

(
c2a sin θ + ca2 sin θ cos θ

))
= 0 (32)

where T =
√
(c+ a cos θ)2 + (a sin θ)2. Solving the above equations, we have

cos θ = 0 or a = 0 (33)

where a = 0 reaches the maximum and cos θ = 0 is the minimum. Therefore, the lower bound of
cos(h(x), h(x̃)) is

cos(h(x), h(x̃)) ≥ c√
c2 + (M VU

VS
)2

=
∥h(x)∥√

∥h(x)∥2 + (MVU/VS)2
(34)

Corollary 1. Let g : Rd → Rd be a bounded attribution function, and η
U∼ B(x; r). Let h be the

smoothed version of g as defined in (2).

(i) Given a predefined threshold T ∈ [0, 1], then for all ∥δ∥2 ≤ ϵ, we have cos(h(x), h(x+δ)) ≥
T , where

ϵ = 2r

√
1− I−1

Z

(
d+ 1

2
,
1

2

)
. (8)

(ii) Given a predefined threshold T ∈ [0, 1] and the maximum perturbation size ϵ ≥ 0, the
smoothed attribution satisfies cos(h(x), h(x̃)) ≥ T for all x̃ ∈ {x+ δ|∥δ∥2 ≤ ϵ} when
r ≥ R, where

R =
ϵ

2

(
1− I−1

Z

(
d+ 1

2
,
1

2

))− 1
2

. (9)

I−1
z (a, b) is the inverse of the regularized incomplete beta function, and Z is defined as

Z = 1− ∥h(x)∥2
2M

(
1

T 2
− 1

)
(10)

Proof. Corollary 1 can be obtained by fixing T and taking r as unknown, and fixing T and taking ϵ
as unknown, respectively. We can first derive that

I(2rh−h2)/r2

(
d+ 1

2
,
1

2

)
= 1− ∥h(x)∥2

2M

√
1

T 2
− 1 = Z (35)

Using the inverse of the regularized incomplete beta function, i.e., x = I−1
y (a, b), and h = r − ϵ/2,

we have

I−1
Z

(
d+ 1

2
,
1

2

)
= (2rh− h2)/r2 = 1− ϵ2

4r2
(36)

The results in Corollary can then be solved accordingly.

B IMPLEMENTATION DETAILS

In the experiments, we implemented the ℓ2 attribution attack adapted from Ghorbani et al. (2019).
The attack uses top-k intersection version as the loss function. Following previous works, we choose
k = 100 for MNIST and k = 1000 for CIFAR-10. The number of iterations in PGD-like attack is
200, and the step size is 0.1. As mentioned in the main content, we do not implement the attack on
ImageNet since the attribution attacks are not scalable to large size images. In the following parts of
this section, we provide more details of evaluations in the experiments.
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B.1 ATTRIBUTION METHODS

We used saliency maps (SM) and integrated gradients (IG) in the evaluation sections. These two
methods are defined as follows:

• Saliency maps: SM(x) = ∂f(x)
∂x .

• Integrated gradients: IG(x) = (x− x′)×
∫ 1

α=0
∂f(x′+α(x−x′))

∂x dα.

The SmoothSM and SmoothIG are the smoothed versions of SM and IG, respectively.

B.2 EVALUATION METRICS

Given original attribution g(x) and perturbed attribution g(x̃), we use top-k intersection, Kendall’s
rank correlation (Ghorbani et al., 2019) and cosine similarity (Wang & Kong, 2022) to evaluate their
differences.

• Top-k intersection measures the proportion of k largest features that overlap between g(x)
and g(x̃).

• Kendall’s rank correlation measures the proportion of pairs of features that have the same
order in g(x) and g(x̃): 2

d(d−1)

∑d
i=1

∑d
j=i+1 1{g(x)i>g(x)j}1{g(x̃)i>g(x̃)j}.

• Cosine similarity measures the cosine of the angle between g(x) and g(x̃): g(x)⊤g(x̃)
∥g(x)∥∥g(x̃)∥ .

B.3 BASELINE METHODS

We compare with the following adversarial and attributional robust models:

IG-NORM (Chen et al., 2019)

CE(f(x), y) + λ max
x̃∈Bε(x)

∥IG(x, x̃)∥1 (37)

TRADES (Zhang et al., 2019)

CE(f(x̃), y) + βKL(f(x)∥f(x̃)) (38)

IGR (Wang & Kong, 2022)

CE(f(x̃), y) + βKL(f(x)∥f(x̃)) + λ (1− cos(IG(x), IG(x̃))) (39)

Here CE denotes the cross-entropy loss and KL denotes the Kullback-Leibler divergence.

C ADDITIONAL EXPERIMENTS

C.1 TEST ON MONTE CARLO ESTIMATION

Note that the bound given by Theorem 1 is deterministic. In this section, we provide a probabilistic
bound for the attribution robustness. Specifically, we want to find the value of t such that Pr(T ≤
t) = 1 − α, where T is defined in Eqn. (6) and α is the significance level. Recall that T is defined
as follows:

T =
∥h(x)∥2√
∥h(x)∥22 + c

(40)

where c = M2V 2
U/V

2
S . If we denote that Q = ∥h(x)∥2, then we have

Pr(T ≤ t) = Pr

(
Q√

Q2 + c
≤ t

)
= Pr

(
Q2 ≤ ct2

1− t2

)
(41)
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Table 4: Evaluation of center smoothing on attributions

ϵ1 0.1 0.2 0.3 0.4 0.5

SmoothSM 1.207 1.729 1.843 1.907 1.998

Note that we used Monte Carlo Integration to calculate the integral in h(x), which estimates h(x)
by sampling η from B, i.e.,

ĥ(x) =
1

N

N∑
i=1

g(x+ ηi), ηi ∼ B. (42)

Note that ĥ(x) is an unbiased estimator of h(x), i.e. E[ĥ(x)] = h(x). The estimator almost surely
converges to h(x) as N → ∞, i.e. limN→∞ ĥ(x) = h(x) almost surely. By the Central Limit
Theorem, the estimator ĥ(x) has the following asymptotic distribution,

ĥ(x)
a.s.∼ N (h(x), D), (43)

which the covariance matrix D = diag(σ2
ii/N) can be estimated by the empirical variances of g(x+

ηi). Thus, the quadratic form Q2 = ∥h(x)∥22 can be seen as generalized chi-square distributed. We
can derive the cumulative distribution function of Monte Carlo estimator TMC at t as the cumulative
distribution function of the generalized chi-square distribution at ct2

1−t2 , i.e.,

Pr(TMC ≤ t) = F

(
ct2

1− t2

)
, (44)

where F is the cumulative distribution function of the generalized chi-square distribution con-
structed from the quadratic form of Gaussian random variable with mean h(x) and covariance D
(Davies, 1980; Das & Geisler, 2021). In this work, we use the R package CompQuadForm (Duch-
esne & De Micheaux, 2010) to compute the cumulative distribution function. For any fixed image
sample x, we can validate t2 − t1 is close to 0 when Pr(t1 ≤ TMC ≤ t2) = 1 − α by solving the
following equation. For small α = 0.01 and the number of samples N = 100, 000, we found that
the values of t2−t1 are at scale of 10−4 in MNIST and CIFAR-10, and 10−3 in ImageNet calculated
by choosing 10, 000 samples from each dataset. This validates the error from Monte Carlo integral
is minute and that the probabilistic bound is close to the deterministic bound.

F

(
ct22

1− t22

)
= 1− α/2 and F

(
ct21

1− t21

)
= α/2. (45)

C.2 ADDITIONAL VISUALIZATION OF THE UNIFORMLY SMOOTHED ATTRIBUTIONS

In Figure 1 (left), we have shown that the uniformly smoothed attributions have a comparable quality
as the original attributions. Here more examples are provided in Figure 3 to illustrate the quality of
the uniformly smoothed attributions.

C.3 EVALUATION OF CENTER SMOOTHING (KUMAR & GOLDSTEIN, 2021) ON
ATTRIBUTIONS

To compare the performance with center smoothing (Kumar & Goldstein, 2021), we also imple-
mented the same method to evaluate the certification of attributions. Specifically, we compute the
bound for SmoothSM on IG-NORM using MNIST, and follow the same setting by choosing h = 1
and ϵ1 = 0.1, 0.2, · · · , 0.5. Directly using the cosine similarity on the method is not applicable
since cosine similarity does not satisfy the triangle inequality. Following the relaxation method in
Sec.4 of Kumar & Goldstein (2021), a multiplier γ = 2 is added. Besides, we use 1−cos θ to reflect
the distance metric instead of the similarity metric. The results are shown in the Table 4. It can be
observed that the upper bound for 1−cos θ is greater than 1 for all the choices of ϵ, which is trivially
valid for the trigonometric function since we only consider cos θ ∈ [0, 1]. Thus, the upper bound
provided in the aforementioned work can be too loose on our setting.
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(a) Original image (b) IG (c) Gaussian smoothed (d) Uniformly smoothed

Figure 3: Additional visualization of the attribution maps of the (a) original image, (b) IG, (c)
Gaussian smoothed IG, and (d) uniformly smoothed IG.

C.4 EVALUATION OF ALTERNATIVE FORMULATIONS

In Section 4.3, we introduced two alternative formulations of the proposed method that can be ap-
plied in specific scenarios. In this section, we provide additional information to report the experi-
ments on these two formulations.

In Tables 5 to 7, which correspond to MNIST, CIFAR-10 and ImageNet, respectively, we report
the computed values of the maximum allowable perturbation size. Under the size constraint, no
examples can be found by the attacks against uniformly smoothed IG of a certain radius such that
the cosine similarity between clean and perturbed attributions exceeds the given threshold (T = 0.8
and T = 0.9). The results are consistent with our theory. For larger radius smoothing, the maximum
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Table 5: Maximum allowable perturbation size for different threshold (T = 0.8 and T = 0.9) under
various choices of ℓ2 smoothing radii r evaluated on MNIST.

T = 0.9 ℓ2 radius (r) 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Standard 0.0389 0.0951 0.1550 0.2164 0.2783 0.3404 0.4029
IG-NORM 0.0394 0.0957 0.1557 0.2170 0.2790 0.3420 0.4067
IGR 0.0390 0.0952 0.1552 0.2174 0.2818 0.3477 0.4163

T = 0.8 ℓ2 radius (r) 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Standard 0.0447 0.1051 0.1691 0.2345 0.3004 0.3664 0.4329
IG-NORM 0.0448 0.1052 0.1692 0.2354 0.3037 0.3733 0.4456
IGR 0.0452 0.1057 0.1697 0.2350 0.3010 0.3680 0.4365

Table 6: Maximum allowable perturbation size for different threshold (T = 0.8 and T = 0.9) under
various choices of ℓ2 smoothing radii r evaluated on CIFAR-10.

T = 0.9 ℓ2 radius (r) 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Standard 0.0086 0.0469 0.0885 0.1322 0.1773 0.2222 0.2683
IG-NORM 0.0323 0.0705 0.1104 0.1510 0.1923 0.2337 0.2749
IGR 0.0167 0.0545 0.1032 0.1586 0.2150 0.2588 0.2805

T = 0.8 ℓ2 radius (r) 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Standard 0.0128 0.0522 0.0951 0.1402 0.1866 0.2330 0.2868
IG-NORM 0.0343 0.0742 0.1157 0.1580 0.2009 0.2439 0.2867
IGR 0.0237 0.0693 0.1258 0.1861 0.2546 0.3090 0.3559

Table 7: Maximum allowable perturbation size for different threshold (T = 0.8 and T = 0.9) under
various choices of ℓ2 smoothing radii r evaluated on ImageNet.

ℓ2 radius (r) 0.5 1.0 1.5 2.0 2.5 3.0 3.5

T = 0.9 0.0046 0.0100 0.0152 0.0295 0.0494 0.0628 0.0768
T = 0.8 0.0058 0.0127 0.0196 0.0369 0.0618 0.0820 0.1040

Table 8: Empirical cosine similarity between original and perturbed smoothed attributions under
various choices of ℓ2 smoothing radius r, and the perturbation size computed in Table 5 (T = 0.8).

r 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Standard 0.8636 0.8522 0.8347 0.8127 0.8477 0.8603 0.8310
IG-NORM 0.8308 0.8181 0.8504 0.8728 0.8502 0.8193 0.8199
IGR 0.8231 0.8800 0.8720 0.8603 0.8362 0.8135 0.8567

Table 9: Minimum smoothing radius requires to achieve the threshold (T = 0.8 and T = 0.9) under
various choices of ℓ2 perturbation size ε. IG-NORM and IGR are omitted since they are not scalable
to ImageNet.

MNIST CIFAR-10 ImageNet

perturbation size (ϵ) 0.5 1.0 0.5 1.0 0.5 1.0

T = 0.9 Standard 5.1902 5.8752 5.9752 7.9504 74.6272 149.2544
IG-NORM 5.1189 5.7699 5.6860 7.3720 / /
IGR 5.0265 5.6623 5.2895 6.5790 / /

T = 0.8 Standard 3.8927 4.4064 5.7082 7.4164 48.2095 96.4190
IG-NORM 3.8392 4.3274 5.4875 6.9750 / /
IGR 3.7699 4.2468 5.0287 6.0573 / /

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

allowable perturbation size is also larger. When the threshold requirement is stricter, the maximum
allowable perturbation size is smaller, which suggests weaker attacks are allowed. The method is
also scalable to ImageNet, which takes around 15 seconds to compute for each sample. Moreover,
we also applied attribution attacks using the same radius and maximum perturbation size ϵ, computed
using Eqn. (8). Similar to the experiments in Section 5, we performed 20 attacks on each sample.
We found that out of the total 200,000 attacked samples, the cosine similarities between clean and
perturbed attributions were higher than the given threshold, suggesting that the computed bound is
valid (see Table 8).

We also evaluate the third formulation that the minimum radius of smoothing required such that,
within the given perturbation sizes, the cosine similarity between original and perturbed smoothed
attributions is larger than the given threshold. In Table 9, the computed minimum radius of smooth-
ing is reported. Similarly, we observe that the minimum radius of smoothing is larger when the
threshold requirement is stricter, and when the attack is stronger. This is also consistent with our
theory. We also notice that the radius for ImageNet is extremely large, which indicates that ImageNet
is difficult to defend under such strict threshold requirements.
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