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(c) Tactile-driven Image Stylization
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Figure 1: The Touch and Go dataset. We collect a dataset of real-world visual and touch data. (a) Humans walk
through a large number of scenes, probing objects around them with a touch sensor and recording video. We
apply this dataset to: (b) learning tactile features through self-supervision by associating touch with sight, (c)
manipulating an image to match the tactile signal (e.g., restyling a smooth surface to match the tactile signal for
a rough rock, whose photo we show for reference), (d) predicting future tactile signals from visuo-tactile inputs.

Abstract

The ability to associate touch with sight is essential for tasks that require physically
interacting with objects in the world. We propose a dataset with paired visual and
tactile data called Touch and Go, in which human data collectors probe objects
in natural environments using tactile sensors, while simultaneously recording
egocentric video. In contrast to previous efforts, which have largely been confined
to lab settings or simulated environments, our dataset spans a large number of
“in the wild” objects and scenes. We successfully apply our dataset to a variety
of multimodal learning tasks: 1) self-supervised visuo-tactile feature learning, 2)
tactile-driven image stylization, i.e., making the visual appearance of an object
more consistent with a given tactile signal, and 3) predicting future frames of a
tactile signal from visuo-tactile inputs.

* Indicates equal contribution
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1 Introduction

As humans, our ability to correlate touch with sight is an essential component of understanding the
physical properties of the objects around us. While recent advances in other areas of multimodal
learning have been fueled by large datasets, the difficulty of collecting high-quality data has made
it challenging for the community to develop similarly effective visuo-tactile models.

An intuitively appealing solution is to offload data collection to robots [8, 9, 42], which can acquire
enormous amounts of data by repeatedly probing objects around them. However, this approach
captures only a narrow, “robot-centric” slice of the visuo-tactile world. The data typically is limited
to a specific environment (e.g., a robotics lab), and it fundamentally suffers from a chicken-and-egg
problem, as the robot must already be capable of touching and manipulating the objects it acquires
data from. In practice, this often amounts to recording data from tabletops, typically with small
objects the robots can safely grasp. Recent work has also turned to simulation [21, 22], such as by
modeling special cases where tactile interactions can be accurately simulated (e.g., rigid objects). Yet
this approach, too, is highly limited. Real objects squish, deform, and bend in complex ways, and
their seemingly simple surfaces can hide complicated microgeometry, such as weaves of fabric and
tiny pores. Obtaining a full understanding of vision and touch, beyond simple robotic manipulation
tasks, requires modeling these subtle visuo-tactile properties.

We argue that many aspects of the visuo-tactile world are currently best learned by observing physical
interactions performed by humans. Humans can easily access a wide range of spaces and objects that
would be very challenging for robots. By capturing data from objects in situ, the recorded sensory
signals more closely match how the objects would be encountered in the wild. Inspired by this idea,
we present a dataset, called Touch and Go, in which human data collectors walk through a variety
of environments, probing objects with tactile sensors and simultaneously recording their actions on
video. Our dataset spans a wide range of indoor and outdoor environments, such as classrooms, gyms,
streets, and hiking trails. The objects and “stuff” [1] they contain are thus significantly more diverse
than those of existing datasets, making it well-suited to self-supervised learning, and to tasks that
require an understanding of material properties, such as visual synthesis tasks.

We apply our dataset to a variety of multimodal learning tasks. First, we learn tactile features through
self-supervised learning, by training a model to associate images with touch. We find that the learned
features significantly outperform supervised ImageNet [15] features on a robotic manipulation
task, and on recognizing materials in our dataset (Fig. 1b). Second, we propose a novel task of
tactile-driven image stylization: making an image “feel more like” a given tactile input. To solve this
problem, we adapt the recent method of Li et al. [41] to generate an image whose structure matches
an input image but whose style is likely to co-occur with the given tactile information. This task
evaluates the ability to learn cross-modal associations – i.e., how an object feels from how it looks
and vice versa. The resulting model can successfully change the texture of an input image, such as
by adding bumps to a smooth surface to match the tactile information recorded from a rock (Fig. 1c).
Finally, we study multimodal models for future touch prediction: predicting future frames of a touch
sensor’s recording, given both visual and tactile signals. We show that visual information improves
these predictions over touch alone (Fig. 1d).

2 Related Work

Simulated vision and touch. A variety of methods have simulated low-dimensional Biotac [59]
and fabric-based tactile sensing [46]. Other work has proposed to simulate high-dimensional tactile
data, based on visual tactile sensors such as GelSight [73, 32, 31]. Wang et al. [65] simulated visual
and tactile data for robotic grasps of rigid objects. Gao et al. [21, 22] proposed a dataset of simulated
visual, tactile, and audio data, derived from CAD models with only rigid deformation. In contrast to
these works, we collect our data from real objects and scenes, which contain non-rigid deformation,
microgeometry, and wider variations in visual appearance.

Robotic vision and touch. Researchers have proposed a variety of methods that use visual and
touch signals for robotic applications [9, 8, 13, 34, 37, 48, 43, 12, 70, 11, 18]. Several of these have
proposed visuo-tactile datasets. Calandra et al. created a dataset for multimodal grasping [9] and
regrasping [8] with a robotic arm. Li et al. [42] collected data from a robotic arm synthesis, and
proposed a model based on generative adversarial networks [24] for cross-modal translation. Murali
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et al. [48] proposed a dataset for tactile-only grasping. These datasets have largely been confined to
specific environments (e.g., a lab space containing the robots), and only contain objects provided to
them by humans that the robots are capable of interacting with. Consequently, they contain a small
number of object instances (each less than 200).

Human-collected multimodal data. We take inspiration from work that collects data by having
humans physically interact with objects in situ. Song et al. [60] proposed a human-collected grasping
dataset. In contrast, our focus is on having humans collect rich multimodal sensory data that is
well-suited to self-supervised learning. Our approach is similar to Owens et al. [51], which learns
audio-visual associations by probing objects with a drumstick [51]. In contrast, we collect touch
instead of sound, and record data in an approximately egocentric manner as they move from object
to object. Later work predicts the trajectory of a bounced ball [55]. Sundaram et al. [61] proposed
a glove that records tactile signals, and collected a dataset of human grasps for 26 objects in a lab
setting. Other work predicts hand pose from touch [75]. Burka et al. combined several haptic
sensors [5, 6]. They then demonstrated the resulting sensor by collecting a preliminary (currently
unreleased) dataset of 357 real-world surfaces, and training a model to predict human ratings of 4
surface properties from touch. By contrast, we have significantly larger and more diverse data from
indoor and outdoor scenes (rather than flat, largely indoor surfaces), use a rich vision-based tactile
sensor (GelSight), and demonstrate our dataset on cross-modal prediction tasks.

Multimodal feature learning. In seminal work, de Sa [14] proposed to learn from correlating sight
from sound. A variety of methods of been proposed for training deep networks to learn features from
audio-visual correlations [49, 51, 52, 2, 35, 50, 47], from images and depth [63], and from vision and
language [33, 45, 17, 56], and matching images and touch [38]. We adapt the contrastive model of
Tian et al. [63] to visuo-tactile learning.

Multimodal image prediction. A variety of methods have been proposed for predicting images
from another modality, such as by using text or labels [58, 30, 4, 57] or sound [39, 10, 41]. Li
et al. [41] proposed a model for audio-driven stylization, i.e. learning to restyle images to better
match an audio signal. We adapt this model to tactile-driven stylization, creating a model that is
conditioned on tactile inputs instead of sound. We also take inspirations from work on future video
prediction [16, 23, 54, 66, 20, 71, 67, 3, 64]. In particular, Tian et al. [62] trains an action-conditioned
video prediction method to estimate future tactile signals, using a GelSight sensor controlled by a
CNC machine. In contrast, we predict future tactile signals from natural objects, and show that visual
information can improve the prediction quality.

Cross-modal image stylization. Many areas of multimodal perception have used cross-modal
image stylization to evaluate whether models can capture associations between modalities (e.g. Text-
to-image stylization, Audio-visual stylization). We adapt the cross-modal stylization method of Li et
al. [41] to tactile-driven stylization, a task that requires learning visual-tactile associations – i.e., how
an object feels from how it looks and vice versa. This direction is also related to work in computer
graphics that synthesizes images that have specific material properties [40, 25, 26, 77]. In contrast to
these works, we synthesize images with material properties that are captured implicitly from a touch
signal.

3 The Touch and Go Dataset
We collect a dataset of natural vision-and-touch signals. Our dataset contains multimodal data
recorded by humans, who probe objects in their natural locations with a tactile sensor. To more easily
train and analyze models on this dataset, we also collect material labels and identify the frames within
the press.

3.1 Collecting a natural visuo-tactile dataset

To acquire our dataset, human data collectors (the authors) walked through a variety of environments,
probing the objects with a tactile sensor. To obtain images that show clear, zoomed-in images of
the objects being touched, two people collected data at once: one who presses the tactile sensor
onto an object, and another who records an “approximately egocentric” video (see supplement for
a visualization) of their hand. The two data collectors moved from object to object in the space as
part of a single, continuously recording video, touching the objects around them. We show examples
from our dataset in Fig. 2. The captured data varies heavily in material properties (e.g., soft/hard,
smooth/rough), geometries, and semantics.

3



Leather Paper Synthetic Fabric Natural Fabric

Materials

Brick

Grass

Plastic

Rock

Plants

Metal

Tree

Sand

Wood

Concrete

Soil

Tile

Figure 2: The Touch and Go Dataset. Human data collectors record paired visual and tactile information by
probing objects in a variety of indoor and outdoor spaces. We show a selection of images, paired with the
corresponding frame recorded by the GelSight tactile sensor. We show 16 representative categories (out of 20),
and provide the distribution of material and scene types.2

Capturing procedure. To ensure that our dataset captures the natural variation of real-world vision
and touch, we collect both rigid and deformable objects in indoor and outdoor scenes. These scenes
include rooms in university buildings, such as classrooms and hallways, apartments, hiking trails,
playgrounds, and streets. We show example footage from our model in Fig. 1, and in the supplement.
The data collectors selected a variety of objects in each scene to press including chairs, walls, ground,
sofa, table, etc. in indoor scenes, and grass, rock, tree, sand etc. in outdoor scenes, pressing each
one approximately 3 times. Each press lasted for 0.7 sec on average. If an object contains multiple
materials (e.g., a chair with a cushion and a plastic arm), collectors generally directed their presses to
each one. The data collectors also aimed to touch object parts with complex geometry, rather than
flat surfaces. To avoid capturing human faces, in public spaces the captures point the camera toward
the ground when moving between objects. Since the GelSight may provide information about force
implicitly [73], and explicit force readings are not required for many visuo-tactile tasks, we do not
use a separate force sensor.

Hardware. For the tactile sensor, we use GelSight [32], the variant designed for robotic manipula-
tion [73]. This is a vision-based tactile sensor, approximately 1.5cm in diameter, in which a camera
observes the deformation of a curved elastomer gel illuminated by multiple colored light sources, with
markers embedded inside it. When the sensor is pressed against an object, the gel deforms, which
results in changes to the reflected illumination. The color conveys the surface normal of the object
being touched, similar to photometric stereo. These black dots are “markers" that are physically
embedded within the GelSight’s elastomer gel. Thus, GelSight records a video in which surface
orientation, depth, and shear can be estimated by analyzing the appearance of each video frame. The
tactile sensor’s recordings are recorded concurrently with visual images from an ordinary webcam
(both at approximately 27 Hz). Both videos (tactile and visual) are recorded on a single computer.

3.2 Annotating the dataset

To make it easier to analyze results and train models, we provide annotations for material categories
and frames within the press.

Detecting the press. As the data collectors move between objects, the tactile sensor does not make
contact with anything. Thus, for convenience, we provide the subset of frames within the touch, so
that applications can use trimmed videos (Sec. 4). To obtain these timings, we train a detector for
press detection. We (the authors) hand-label 10k frames and train a binary ResNet-18 classifier [27]
that operates on GelSight images. On our test set of 2k hand-labeled frames, our classifier obtains
97% accuracy (chance is around 66%). To further ensure high accuracy, we hire workers to review
the frames within the touch and correct errors.

2Following common practice, the tactile images are enhanced for visualization purpose. Contrast and
sharpness are increased by 30% and saturation is increased by 20%.
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Table 1: Tactile datasets. We compare attributes of our dataset with several previously proposed datasets.

Object inst. Touches Source Real-world Environment Sensor

More Than a Feeling [8] 65 6.5k Robot ✓ Tabletop GelSight [72]
The Feeling of Success [9] 106 9.3k Robot ✓ Tabletop GelSight [72]
VisGel [42] 195 12k Robot ✓ Tabletop GelSight [72]
ObjectFolder 1.0 [21] 100 - Synthetic % - DIGIT [36]
ObjectFolder 2.0 [22] 1000 - Synthetic % - GelSight [72]
Burka et al. [7] 357 1.1k Human ✓ Mostly Indoor Multiple Sensors
Touch and Go (Ours) 3971 13.9k Human ✓ Indoor/Outdoor GelSight [72]

Labeling materials. We label the material category for all (visual) video frames that our detector
predicts within the press, using a labeling scheme similar to [51]. Online workers assign a label from
a list of categories. If an object is not in this category list, the workers will label it other material. To
ensure accuracy, we have 5 workers label each image. We show the distribution of labels in Fig. 2.

3.3 Dataset analysis

We analyze the contents of our dataset and compare it to other works.

Data distribution. In Fig. 2, we show statistics of labeled materials and scene types, and provide
qualitative results from the dataset. It contains approximately 13.9k detected touches and approxi-
mately 3971 individual object instances. Since we do not explicitly label instances, we obtain the
latter number by exhaustively counting the objects in 10% of the videos and extrapolating. Our
dataset is relatively balanced between indoor (52.2%) and outdoor (47.8%) scenes. We found that
several categories, namely synthetic fabric, tile, paper, and leather, are only present in our indoor
scenes, while tree, grass, plant, and sand are only present in outdoor scenes. The remaining materials
exist in both scenes. We provide more details in the supplement.

Comparison to other datasets. In Table 1, we compare our dataset to several previously proposed
visuo-tactile datasets collected by robots, by humans, or through simulation. Our dataset contains
approximately 4× as many object instances as the second-largest dataset, the simulation-based
ObjectFolder 2.0 [22], and 11× larger compared with the human-collected dataset by Burka et al. [7].
Compared to the existing robot-collected datasets, ours contains more touches (e.g., 1.15× more than
VisGel [42] and 1.5× more than The Feeling of Success [9]). Our dataset also contains data from
more diverse scenes than prior work, with a mixture of natural indoor and outdoor scenes. In contrast,
robot-collected datasets [8, 9, 42] are confined to a single lab space containing the robot.

Qualitative comparison to other datasets We show qualitative examples of data from other
datasets in Fig. 3 to help understand the differences between our dataset and those of previous
work: Object Folder 2.0 [22], which contains virtual objects, and two robotic datasets: Feeling
of Success [9], and VisGel [42]. We show examples from indoor scenes, since the other datasets
do not contain outdoor scenes, and with rigid materials (since the virtual scenes do not contain
deformable materials). Each row illustrates objects which are composed of similar materials, along
with their corresponding GelSight images. As can be seen, the robot-centric datasets [42, 9] are
confined to a fixed space. Their objects are also smaller than those in our dataset, since they must be
capable of being grasped by the robot’s gripper. Synthetic datasets [21, 22] do not contain complex
microgeometry, and their rigid objects do not deform when pressed.

4 Applications

To evaluate the effectiveness of our dataset, we perform tasks that are designed to span a variety of
application domains, including representation learning, image synthesis, and future prediction.

4.1 Multimodal self-supervised representation learning

We ask, first, whether we can use the multimodal data to learn representations for the tactile modality
by associating touch with sight. We then ask how well the learned representations convey material
properties from our dataset, and whether they are useful for robotic learning tasks whose data has
been collected in other works [8, 9]. The latter task requires a significant amount of generalization,
since the objects manipulated by robots while our dataset is collected by humans.
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Touch and Go (Ours)

Object Folder: 5, 60, ?, 475
Feeling of Success: 1, 179, 193, 214
VisGel: 2_2004_133, 4_4244_178, 8_8003_190, 9_9003_197

Object Folder 2.0 Feeling of Success VisGelObject Folder 2.0 [22] Feeling of Success [9] VisGel [42] Ours

Figure 3: Visuo-tactile data from other datasets. We provide qualitative examples of visual and tactile data
from other datasets (left), along with examples from similar material taken from our dataset (right).

Our goal is to learn a representation that captures the information and correspondences between visual
and tactile images, which can be useful for downstream tasks. Given the visual and tactile datasets,
XI and XT , we aim to extract the corresponding visual-tactile pairs, {xi

I ,x
i
T } and mismatched pairs

{xi
I ,x

j
T } using the Contrastive Multiview Coding (CMC) model proposed by Tian et al. [63]. The

detailed procedure is shown below.

For each visual-tactile image pair, we first encode visual images and tactile inputs as L2-normalized
embeddings using two networks, where zI = fθI (xI) for visual images and zT = fθT (xT ) for
tactile images. Recall that our goal is to find the corresponding sample of the other modality, given a
set S that contains both the corresponding example and K − 1 random examples. When matching a
visual example xi

I to tactile, the loss for matching visual images to tactile images is:

LXI ,XT

contrast = −log
exp(fθI (x

i
I) · fθT (xi

T )/τ)∑K
j=1 exp(fθI (x

i
I) · fθT (x

j
T )/τ)

(1)

where τ = 0.07 is a constant and j indexes the tactile examples in S. Analogously, we can obtain a
loss in which tactile examples are matched to images, LXT ,XI

contrast. We minimize both losses:

L(XI , XT ) = LXI ,XT

contrast + LXT ,XI

contrast (2)

The training details and hyperparameters are provided in the supplementary material.

4.2 Tactile-driven image stylization

Touch provides complementary information that may not be easily conveyed through other modalities
that are commonly used to drive image stylization, such as language and sound. For example,
touch can precisely define how smooth/rough a surface ought to be, and express the subtle shape
of its microgeometry. A model that can successfully predict these properties from visuo-tactile
data therefore ought to be able to translate between modalities. Inspired by the audio-driven image
stylization of Li et al. [41], we propose the task of tactile-driven image stylization: making an image
look as though it “feels like” a given touch signal.

Following Li et al. [41], we base our approach on contrastive unpaired translation (CUT) [53]. Given
an input image xI and a tactile example xT , our goal is to manipulate the image via a generator
such that the manipulated pair x̂I = G(xI ,xT ) is more likely to co-occur in the dataset. Our model
consists of an image translation network that is conditioned on a tactile example (a GelSight image).
The loss function encourages the model to preserve the image structure, which is enforced using an
image-based contrastive loss [53], while adjusting the image style such that the resulting textures are
more likely to co-occur with the tactile signal, which is measured using a visuo-tactile discriminator.

Making sight consistent with touch. We train the model with a discriminator D that distinguishes
between real (and fake) visuo-tactile pairs. During training time, we shuffle the dataset to generate the
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set Sn containing mismatched image-tactile pairs {xI ,x
′
T } ∈ Sn. Likewise, we define the original

dataset as Sm which contains matched image-tactile pairs {xI ,xT } ∈ Sm. In formal terms, the
visual-tactile adversarial loss can be written as:

LVT = E{xI ,xT }∼Sm
logD(xI ,xT ) + E{xI ,x′

T }∼Sn
log(1−D(G(xI ,x

′
T ),x

′
T )) (3)

Loss. We combine our visuo-tactile discriminator with the structure-preserving loss used in Li
et al. [42], which was originally proposed by CUT [53]. This loss, which we call LCUT, works
by training a contrastive learning model that puts patches in the input and predicted images into
correspondence, such that patches at the same positions are close in an embedding space. Please see
the supplement for more details. The overall loss is:

LTDIS = LVT + LCUT. (4)

4.3 Multimodal future touch prediction
Inspired by the challenges of action-conditional future touch prediction [62], we use our dataset to
ask whether visual data can improve our estimates of future tactile signals: i.e., what will this object
feel like in a moment? Visual information can help touch prediction in a number of ways, such as by
conveying material properties (e.g., deformation) and and geometry. It can also provide information
about which action is being performed. One may thus also consider it as an implicit form of action
conditioning [19], since the visual information provides information analogous to actions.

We adapt the video prediction architecture of Geng et al. [23] to this task. This model is based
on residual networks [27, 29] with 3D space-time convolutions (please see the supplement for
architecture details). We predict multiple frames by autoregressively feeding our output images
back to the original model. Given a series of paired visual and tactile images from times 1 to t,
{(x1

I ,x
1
T ), ..., (x

t
I ,x

t
T )}, our goal is to predict the subsequent tactile image, x̂(t+1)

T . We train the
model with L1 and perceptual loss, following [23].

5 Experiments

5.1 Self-supervised feature learning

We train a self-supervised model that learns to associate images with touch. We evaluate this learned
representation on two downstream tasks: robot grasping and material understanding tasks. .

Robotic grasping task. For the robot grasping task, we use the experimental setup and dataset
of Calandra et al. [9]. Thus, the task requires generalizing to data recorded in a very different
environment, and with different GelSight sensors. The goal of this task is to predict whether a
robotic arm will successfully grasp an object, based on inputs from two GelSight images recorded
before and after grasping. Since there is no standard training/test split from [9], we split their objects
randomly into training/test. The resulting dataset contains 68 objects and 5921 touches for training,
16 objects and 1204 touches for validation, and 21 objects and 1204 touches for testing. Similar to
the tactile-only model from Calandra et al. [9], we compute features for each of the 4 tactile images
(before/after images for 2 tactile sensors) using our self-supervised model. We concatenate these
features together and train a linear classifier to solve this binary classification task.

Material understanding tasks. We evaluate whether the learned features convey material proper-
ties. Given tactile features, we recognize: 1) material categories, 2) hard vs. soft surfaces, and 3)
smooth vs. rough surfaces. Following [51], we re-categorize material categories to generate soft/hard
labels and hire online workers to label the smooth/rough according to the visual image. Since the
smoothness and roughness may vary within a material category, we hire online workers to label the
smooth vs. rough according to the visual image. To avoid providing our self-supervised learning
model with object instances that appear in the linear probing experiment, we split the dataset into an
unlabeled set containing 5172 touches (51.7%), a labeled training set of 3921 touches (39.2%), and a
labeled test set of 923 touches (9.1%). We split the dataset by video (rather than by frame) to avoid
having the same (or nearly same) object appear in both training and test.
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Table 2: Comparison of pretrained models on ImageNet and other tactile datasets on different downstream tasks.
We also evaluate variations of our model trained only on subsets of the material classes.

Dataset Method Grasping
Acc(%)

Material
Acc(%)

Hard/Soft
Acc (%)

Rough/Smooth
Acc (%)

Chance - 56.1 18.6 66.1 56.3
ImageNet [15] Supervised 73.0 46.9 72.3 76.3
Object Folder 2.0 [22] Visuo-tactile CMC 69.4 36.2 72.0 69.0
VisGel [42] Visuo-tactile CMC 75.6 39.1 69.4 70.4
Ours - 25% Classes Visuo-tactile CMC 62.3 25.7 67.3 65.3
Ours - 50% Classes Visuo-tactile CMC 66.5 35.9 71.2 66.8
Ours - 75% Classes Visuo-tactile CMC 70.8 48.4 73.3 74.7
Ours - 100% Classes Visuo-tactile CMC 78.1 54.7 77.3 79.4

Implementation details. We train our model for 240 epochs, using the optimization parameters
from CMC [63], after adjusting the learning rate schedule to compensate for longer training. We set
the weight decay to be 10−4. We train our model with the batch size of 128 on 4 Nvidia 2080-Ti GPUs.
For the downstream classification tasks, we froze our network weights and obtained visual features by
performing global average pooling on the final convolutional layer. We follow the approach of [63]
for learning the linear classifier.

Comparison to other feature sets. We show downstream classification results in Table 2. To
evaluate the effectiveness of our dataset, we compare our learned features to those of several other
approaches. These include using supervised ImageNet [15] features, which are commonly used to
represent GelSight images [74, 9, 8], and visual CMC [63] features trained on ImageNet, which
treats the L and ab color channels of an image as different modalities. We see that our model obtains
significantly better performance than these models on both tasks, due to its ability to learn from real
tactile data. These results suggest that our dataset provides a useful signal for training self-supervised
tactile representations. We also show that increasing the material categories leading to much better
downstream performance.

5.2 Tactile-driven image stylization

We use our model to modify the style of an image to match a touch signal.

Implementation details. Following Li et al. [41], during training we sample a random image from
the dataset, along with a second visuo-tactile pair, and use the pair to restyle the image, using the
loss in Eq. 4. We provide architectural details in the supplement. For the discriminator we adopt
the PatchGAN architecture [28]. The architecture of discriminator follows [41], which concatenates
the two input images channel-wise, and passes the combined images to the discriminator. We train
our model on 4 Nvidia 2080-Ti GPUs for 100 epochs with a batch size of 8 and the learning rate of
0.0002. We augment the vision images with random cropping and horizontal flipping.

Table 3: Quantitative results for tactile-
driven image stylization.

Method CMC Material

Baseline 0.165 0.107
CycleGAN [78] 0.178 0.129
Ours 0.197 0.142

Experimental setup. Following [41], we evaluate our model
by restyling images in our dataset with random tactile inputs,
both of which are taken from the test set. We use evaluation
metrics that measure the consistency of the manipulated image
with the example used for conditioning. First, we measure the
similarity of the manipulated image and the tactile example
used for conditioning. Similar to [41], we use our trained CMC
model, by taking the dot product between visual and tactile
embeddings. Second, we compare material prediction consistency between the manipulated image
with the (held out) conditional image. We use our material classifier to categorize the predicted and
conditioning images, and measure the rate at which they agree. Since this is a novel task, we create a
second variation of our model for comparison, following [78]. This model performs the stylization
using CycleGAN, rather than CUT (see supplement for details).

Quantitative results. Quantitative results are shown in Table 3. Here, the “baseline” indicates
results from original image before stylization. We can see that the CUT-based method obtains higher
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Figure 4: Qualitative results of our model on tactile-driven image stylization. For each row, we show an input
image (left) and the manipulated image (to its right) obtained by stylizing with a given tactile input (right side).
For reference, we also show the image that corresponds to the tactile example at rightmost (not used by the
model). The manipulated images convey physical properties of the tactile signal, such as its roughness (e.g., first
three rows) or smoothness (e.g., row 10). Other inputs result in images that combine the properties of two inputs
(e.g., by adding grass, as in row 8). We also show failure cases in the last row. Zoom in for better view.

CMC similarity than a CycleGAN-based method [78]. In terms of material classification consistency,
our model consistently outperforms CycleGAN-based method [78].

Qualitative results. In Fig. 7, we show results from our model. Our model successfully manipulates
images to match tactile inputs, such as by making surfaces rougher or smoother, or by creating
“hybrid” materials (e.g., adding grass to a surface). These results are obtained without having access
to the tactile example’s corresponding image, suggesting that the model has learned which physical
properties are shared between sight and touch.

5.3 Multimodal video prediction
We evaluate our model for predicting future tactile signals. We compare a tactile-only model to a
multimodal visuo-tactile model, and show that the latter obtains better performance.

Experimental setting. We evaluate the effectiveness of multimodal inputs using three context
frames to predict the next frame under two different time horizons: skipping 3 and 5 frames between
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Table 4: Quantitative results for video prediction.

Time horizon Method Modality L1 ↓ SSIM ↑ LPIPS ↓

Skip 3 frames

SVG [16] Touch only 0.782 0.572 0.391
Geng et al. [23] Touch only 0.628 0.708 0.103
SVG [16] Touch + vision 0.757 0.602 0.368
Geng et al. [23] Touch + vision 0.617 0.719 0.091

Skip 5 frames

SVG [16] Touch only 0.807 0.513 0.412
Geng et al. [23] Touch only 0.691 0.698 0.279
SVG [16] Touch + vision 0.762 0.546 0.397
Geng et al. [23] Touch + vision 0.663 0.713 0.265

Time

Tactile Inputs

Ground Truth

Multimodal Prediction

Single-modal Prediction

Video Inputs

Figure 5: Future touch prediction. We show the results of tactile-only and visuo-tactile models.

contexts. Following [23], we adopt three evaluation metrics: MAE, SSIM [69] and LPIPS [76]. We
provide training hyperparameters in the supplement.

Multimodal vs. single-modal prediction. We show the quantitative results in Table 4. Here, we
adopt two video prediction baselines [16] and [23]. We can see that, by incorporating our dataset’s
visual signal, the models gain a constant performance increase under different evaluation metrics
for both model, under both experimental settings. The gap becomes larger for longer time horizon,
suggesting that visual information may be more helpful in this case.

6 Discussion
We proposed Touch and Go, a human-collected visuo-tactile dataset. Our dataset comes from real-
world objects, and is significantly more diverse than prior datasets. We demonstrate its effectiveness
on a variety of applications that involve robotic manipulation, material understanding, and image
synthesis. In the tradition of previous work [51], we see our work as a step toward human-collected
multimodal data collection, in which humans equipped with multiple sensors collect diverse dataset by
recording themselves physically interacting with the world. We hope this data will enable researchers
to study diverse visuo-tactile learning applications, beyond the “robotics-centric” domains that are
often the focus of previous efforts.

Limitations. Collecting diverse tactile data is an ongoing challenge, since it requires physically
being present in the locations where data is collected. While adding human collectors improves
diversity in many ways, our dataset was mainly collected in one geographic location (near University
of Michigan’s campus). Consequently, the data we recorded may not generalize to all spaces. The use
of humans in the data collection process also potentially introduces bias, which differs from “robotic”
or “virtual data” bias. For example, humans may choose unrepresentative parts of the objects to
probe, and do not perform actions with consistent force. The humans who recorded the dataset may
also not be representative of the general population, which may introduce bias (e.g., in skin tone).

Acknowledgements. We thank Xiaofeng Guo and Yufan Zhang for the extensive help with the
GelSight sensor, and thank Daniel Geng, Yuexi Du and Zhaoying Pan for the helpful discussions.
This work was supported in part by Cisco Systems and Wang Chu Chien-Wen Research Scholarship.
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A Project webpage

We’ve provided a webpage for our dataset, which contains a link to the dataset. We also provide
additional examples from our dataset (c.f., Fig 2 of the main paper).

B Dataset file structure

Our dataset is currently available through our webpage (and directly via this link). For long-term
maintenance, we will upload our dataset to University of Michigan’s EECS web servers after
acceptance.

The touch_and_go directory contains a dataset directory of raw videos,
extract_frame.py that convert raw videos to frames, label.txt of material labels
for frames within the press, and category_reference.txt of the name for each category in
label.txt.

Each raw video folder in the Dataset folder consists of six items:
• video.mp4: Raw RGB video recording the interaction of human probing objects.

• gelsight.mp4: Raw GelSight (tactile) video for objects.

• time1.npy: The recording time for each frame in “video.mp4”.

• time2.npy: The recording time for each frame in “gelsight.mp4”.

• video_frame: The folder containing all the frames in “video.mp4”. (Generated after
running extract_frame.py)

• gelsight_frame: The folder containing all the frames in “gelsight.mp4”. (Gener-
ated after running extract_frame.py)

We have provided qualitative examples of the videos on our project page. To view the videos at full
resolution, please download them.

C Egocentric recording setup

As shown in Fig. 6, we use a webcam to record the RGB video and a GelSight sensor to capture the
tactile signals, which are both connected to one laptop computer. To obtain images that show clear,
zoomed-in images of the objects being touched, two people collected data at once: one who presses
the tactile sensor onto an object, and another who records an “approximately egocentric” video.
Alternatively, one person may record both signals, while another holds the computer, providing them
with a view of what they are pressing via the screen. In this way, they can ensure that the objects they
are probing appear approximately in the center of the recorded images and increase the stability of
the recording.

D Category list

We conclude the objects appeared in our dataset into 20 categories according to their material property.
All these categories are listed with decreasing number of quantities in terms of the number of touches.
Label Num. denotes the number in the label.txt representing each category.

E Implementation details for self-supervised learning

When training the contrastive multiview coding (CMC) model, we use a learning rate of 0.03 and
train for 240 epochs. We use SGD as our optimizer and set the weight decay to be 10× 10−4 and the
momentum to be 0.9. We use a batch size of 128 on 4 Nvidia 2080-Ti GPUs. For the linear probing
stage in both downstream tasks, we fixed the weight of our pretrained backbone and adopt the global
average pooling at the last layer followed by a linear classifier. We use a learning rate of 0.01 for
ResNet-18 and 0.1 for ResNet-50. For both material classification and robot grasping, we train the
linear classifiers with 60 epochs and a batch size of 256.
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Figure 6: A photo of two humans collecting data in the wild.

Material Scene Quantity Label Num.
Synthetic Fabric Indoor 1.65K 8
Concrete Indoor/Outdoor 1.40K 0
Wood Indoor/Outdoor 1.24K 3
Rock Indoor/Outdoor 1.08K 15
Tree Outdoor 0.91K 12
Plastic Indoor/Outdoor 0.80K 1
Plants Outdoor 0.78K 18
Metal Indoor/Outdoor 0.76K 4
Gravel Indoor/Outdoor 0.71K 16
Sand Outdoor 0.70K 17
Tile Indoor 0.63K 6
Rubber Indoor/Outdoor 0.62K 10
Grass Outdoor 0.61K 13
Brick Indoor/Outdoor 0.60K 5
Paper Indoor 0.45K 11
Leather Indoor 0.38K 7
Glass Indoor/Outdoor 0.23K 2
Natural Fabric Indoor/Outdoor 0.22K 9
Soil Indoor/Outdoor 0.16K 14
Others Indoor/Outdoor 0.09K 19
Table 5: We provide statistics for different material categories.

F Details for Tactile-driven image stylization

Architecture. Our model consists of a multi-modal generator, a tactile-visual texture discriminator
and a patch-wise structure discriminator. We can further break up our multi-modal generator into
three components, an image encoder Genc_I, a tactile encoder Genc_T and a decoder Gdec. Given our
dataset that contains unpaired instances Sn = {xI ,x

′
T }, the output image x̂I can be expressed as

x̂I = G(xI ,x
′
T ) = Gdec(concat(Genc_I(xI),Genc_T(x

′
T))).

Structure preserving loss (LCUT). Our goal in this tactile-guided image stylization is to restyle
the source image with the textures that are associated with the target tactile input while preserving
the source structure. Following previous approaches [53, 41], we introduce an a noise contrastive
estimation (NCE) loss [53] on the image encoder Genc_I that helps preserve the structural information
between the visual input xI and the generated image x̂I .

This loss is motivated by recent contrastive learning to maximize the probability for the neural
network to select the corresponding patch in both the original image xI and the generated image
x̂I . Specifically, we select a query patch from the generated x̂I , one positive patch and N negative
patches from the original image xI . Then we encode these patches into a K dimensional vectors by a
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MLP so that query vector q, positive vector υ+ belong to RK and negative vectors υ− ∈ RN×K :

l(υ,υ+,υ−) = −log
exp(q·υ

+

τ )

exp(q·υ
+

τ ) +
∑N

n=1 exp(
q·υ−

τ )
(5)

where τ is the temperature parameter.

Since our image encoder is a multi-layer convolutional network, we take advantage of multiple
feature stacks generated from different layers. Specifically, we select L layers of feature stacks
and pass them into a MLP M and the output is M(Gl

enc_I(xI)) = {v1
l ,v

2
l , ...,v

N
l ,vN+1

l }, where
l ∈ {1, ..., L−1, L}. Here, we denotes Gl

enc_I(xI) as the feature stacks at layer l. Similarity, we apply
this to the generated image x̂I so that we get our query vector for each layer, which can be represented
as {q1

l , q
2
l , ..., q

N
l , qN+1

l }. Thus, for each sample index n at layer l, we let vn
l ∈ RN×Cl as the

positive samples and other features v(N+1)\n
l ∈ RN×Cl as negative samples, where Cl indicates the

channel of the layer l. Thus our multi-layer NCE loss can be represented as the following:

LCUT = ExI∼Sn

L∑
l=1

N+1∑
n=1

l(qn
l ,υ

n
l ,υ

(N+1)\n
l ) (6)

where Sn contains mismatched image-tactile pairs {xI ,x
′
T }, as defined in our main text.

Implementation details. Our image encoder and decoder of the generator are fully convolutional
neural networks consisting of 9 blocks of ResNet-based CNN bottlenecks. The first convolution
layer is set to 7 × 7 and the rest are set to 3 × 3. For the tactile encoder, we adopt a ResNet-
18 [27] backbone pretrained on the ImageNet [15]. For the discriminator we adopt the PatchGAN
architecture [28]. To compute the NCE loss, we extract features from five different layers: the input
image layer, the first and second downsampling convolution layer and the first and fifth residual
blocks. We train our model on 4 Nvidia 2080-Ti GPUs for 100 epochs with the batch size of 8 and
learning rate of 0.0002. For input visual images, we use a random crop and horizontal flip.
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G More results for tactile-drive image stylization

Figure 7: More visualizations of our model on tactile-driven image stylization. For each row, we show an input
image (left) and the manipulated image (to its right) obtained by stylizing with a given tactile input (right side).
For reference, we also show the image that corresponds to the tactile example at rightmost (not used by the
model). Zoom in for better view.

H Details for multimodal future touch prediction

Overall Architecture Following [23], our model adopts widely-used residual network from [68]
while replacing the 2D convolution to 3D convolution, which utilizes a encoder-decoder architecture.
To adapt for multimodal prediction, we introduce two encoders for tactile inputs and visual inputs
with identical structures but different weights. Then we concatenate these features along the channel
and feed them into the decoder consisting of transposed convolution layers, similar to the architecture
of tactile-driven stylization.

Training details For the video prediction task, we train our model using Adam Optimizer with
the learning rate of 2× 10−4 for all experiments. We utilize the batch size of 8 on 4 Nvidia 2080-Ti
GPUs and train for 30 epochs. We initialize the weights from a Gaussian distribution with the mean
0 and std of 0.02. To obtain multi-frame prediction, we recursively feed our output images back to
the original model. During this process, the loss are backward through the entire chain of recursive
functions and gradients are accumulated, following [23, 44].

Evaluation Metrics Following [23], we adopt three evaluation metrics: MAE, SSIM and LPIPS.
Structural similarity (SSIM) is a similarity metric to quantify image quality degradation. The higher
the SSIM, the better the generated frame. Learned Perceptual Image Patch Similarity (LPIPS)
measures the distance between image patches. The lower the LPIPS, the higher the similarity.
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I Datasheet

Motivation

Q1. For what purpose was the dataset created?

Answer: The goal of this dataset is to provide training data for multimodal learning systems that
learn to associate the sight of objects with their corresponding tactile data (i.e., how they “feel”). In
contrast to previous efforts, our dataset contains a large number of in-the-wild recordings from indoor
and outdoor scenes.

Q2. Who created this dataset (e.g., which team, research group) and on behalf of which entity
(e.g., company, institution, organization)?

Answer: Six researchers at the University of Michigan and Carnegie Mellon University (affiliated
as of 2022) have created the dataset: Fengyu Yang, Chenyang Ma, Jiacheng Zhang, Jing Zhu,
Wenzhen Yuan and Andrew Owens.

Q3. Who funded the creation of the dataset? If there is an associated grant, please provide
the name of the grantor and the grant name and number.

Answer: Our dataset is funded in part by Cisco Systems and The University of Michigan.

Q4. Any other comments?

Answer: No.

Composition

Q5. What do the instances that comprise the dataset represent (e.g., documents, photos,
people, countries)?

Answer: Each instance is a visuo-tactile image pair containing the visual image and its cor-
responding tactile signal, i.e. the result of someone pressing the object with a GelSight tactile
sensor.

Q6. How many instances are there in total (of each type, if appropriate)?

Answer: There are in total approximately 246k visuo-tactile image (frame) pairs of about 13.9k
touches in our dataset.

Q7. Does the dataset contain all possible instances or is it a sample (not necessarily random)
of instances from a larger set?

Answer: Yes. We have provided the full dataset.

Q8. What data does each instance consist of? “Raw” data (e.g., unprocessed text or images)
or features?

Answer: The raw data consists of videos recorded by human collectors and the corresponding
tactile videos. The RGB videos and tactile videos are synchronously recorded, and compressed with
a video codec.

Q9. Is there a label or target associated with each instance?

Answer: Yes. We label all frames where human are probing an object with its material label.

Q10. Is any information missing from individual instances?

Answer: No.

Q11. Are relationships between individual instances made explicit (e.g., users’ movie ratings,
social network links)?

Answer: Since we walk through scenes, recording objects around us, the objects in a video are
close in space. Tactile signals from the same materials or objects are likely to be similar.

Q12. Are there recommended data splits (e.g., training, development/validation, testing)?
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Answer: As illustrated in the main text, different tasks require different train/val/test splits. In
general, to avoid having the same (or nearly the same) images appear in both training and test set, we
recommend splitting the dataset by video (rather than by touch or by frame). We will provide the
splits used in our experiments.

Q13. Are there any errors, sources of noise, or redundancies in the dataset?

Answer: It is a challenging task to infer the material according to the RGB images. We have at
least 5 people label each image, though still possible to have some images correctly labeled for its
material category.

Q14. Is the dataset self-contained, or does it link to or otherwise rely on external resources
(e.g., websites, tweets, other datasets)?

Answer: The data is self-contained.

Q15. Does the dataset contain data that might be considered confidential (e.g., data that is
protected by legal privilege or by doctor-patient confidentiality, data that includes the content
of individuals non-public communications)?

Answer: No.

Q17. Does the dataset relate to people?

Answer: No.

Collection Process

Q18. How was the data associated with each instance acquired?

Answer: The data is directly collected by two people (authors) walking through a variety of
environments, probing objects with tactile sensors and simultaneously recording their actions on
videos.

Q19. What mechanisms or procedures were used to collect the data (e.g., hardware apparatus
or sensor, manual human curation, software program, software API)?

Answer: We collect our dataset using a RGB camera and a GelSight tactile sensor. Details of the
hardware is illustrated in the main text.

Q20. If the dataset is a sample from a larger set, what was the sampling strategy?

Answer: No, the dataset is not a sample from a larger set.

Q21. Who was involved in data collection process (e.g., students, crowd-workers, contractors)
and how were they compensated (e.g., how much were crowd-workers paid)?

Answer: Our dataset is collected by authors of this paper.

Q22. Over what timeframe was the data collected? Does this timeframe match the creation
timeframe of the data associated with the instances (e.g., recent crawl of old news articles)?

Answer: The dataset is collected across the winter, spring and summer (February 2022 to June
2022). The objects in our dataset are taken from scenes at the specific time (and season) in which the
data was collected.

Q23. Were any ethical review processes conducted (e.g., by an institutional review board)?

Answer: Our dataset only contains natural scenes, with no humans subjects (including no humans
on screen). It therefore does not qualify as human subjects research.

Q24. Does the dataset relate to people?

Answer: No.
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Preprocessing, Cleaning, and/or Labeling

Q25. Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or buck-
eting, tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances,
processing of missing values)?

Answer: Yes. We collect our raw data in the format of RGB and GelSight videos. To facilitate
training and downstream tasks, we preprocess the raw videos by converting them into frames,
detecting the frames within the press, and label the pressed frames by their material. Detailed
description are in the Dataset section of the main text.

Q26. Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to
support unanticipated future uses)?

Answer: Yes. We save the original videos for unanticipated future uses of other tasks.

Q27. Is the software used to preprocess/clean/label the instances available?

Answer: Yes. The source code to extract frames is available on our webpage.

Q28. Any other comments?

Answer: No.

Uses

Q29. Has the dataset been used for any tasks already?

Answer: Yes. As illustrated in the main text, we apply our dataset to a variety of multimodal
learning tasks. First, we learn tactile features through self-supervised learning, by training a model
to associate images with touch. Secondly, we use our dataset to perform material classification task
via GelSight Images. Thirdly, we propose a novel task of tactile-driven image stylization: making
an image “feel more like” a given tactile input. Finally, we study multimodal models for future
touch prediction: predicting future frames of a touch sensor’s recording, given both visual and tactile
signals.

Q30. Is there a repository that links to any or all papers or systems that use the dataset?

Answer: We do not have a repository to record all papers using our dataset. However, we can track
these papers via Google Scholar.

Q31. What (other) tasks could the dataset be used for?

Answer: Our dataset is potentially suitable for tasks that require visual, tactile, or visuo-tactile
understanding, such as visual-tactile image translation, shape/hardness estimation, etc.

Q32. Is there anything about the composition of the dataset or the way it was collected and
preprocessed/cleaned/labeled that might impact future uses?

Answer: Our dataset was mainly collected in one geographic location (near University of Michi-
gan’s campus). Consequently, the data we recorded may not generalize to all spaces. The use of
humans in the data collection process also potentially introduces bias, which differs from “robotic”
or “virtual data” bias. It was also recorded by a relatively small number of human collectors. The
way that they interacted with the objects may therefore not be fully representative.

Q33. Are there any tasks for which the dataset should not be used?

Answer: Our dataset is designed for visuo-tactile learning tasks. It may be not appropriate for
tasks outside this domain.

Q34. Any other comments?

Answer: No.

Q35. Will the dataset be distributed to third parties outside of the entity (e.g., company,
institution, organization) on behalf of which the dataset was created?

Answer: Yes. Our dataset is publicly available.
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Q36. How will the dataset will be distributed (e.g., tarball on website, API, GitHub)

Answer: Our dataset contains a link to a Google Drive directory that contains all of the raw videos,
a “extract_frame.py” file to convert videos into frames and a separate “label.txt” file
containing all material labels for frames within the press (See B for more details).

Q37. When will the dataset be distributed?

Answer: We have currently provided all raw data, including videos, tactile recordings, labels, and
code. Our dataset will be officially released starting by October 2022 (e.g., in an easy-to-download
format and with full documentation).

Q38. Will the dataset be distributed under a copyright or other intellectual property (IP)
license, and/or under applicable terms of use (ToU)?

Answer: Our dataset is distributed under the license of CC BY.

Q39. Do any export controls or other regulatory restrictions apply to the dataset or to
individual instances?

Answer: No.

Q40. Any other comments?

Answer: No.

Maintenance

Q41. Who will be supporting/hosting/maintaining the dataset?

Answer: Our dataset is currently hosted on a public Google Drive directory. We will also mirror
the dataset using a web server provided by The University of Michigan, so that it will be available
indefinitely.

Q42. How can the owner/curator/manager of the dataset be contacted (e.g., email address)?

Answer: The email of authors of our dataset is available on the project webpage.

Q43. Is there an erratum?

Answer: No. If we notice errors in the future, we will put them in an erratum.

Q44. Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete
instances)?

Answer: There is no routine update plan for our dataset. To correct labeling errors, please contact
authors of our dataset.

Q45. If the dataset relates to people, are there applicable limits on the retention of the data
associated with the instances (e.g., were individuals in question told that their data would be
retained for a fixed period of time and then deleted)?

Answer: No. Our dataset is not related to people.

Q46. Will older versions of the dataset continue to be supported/hosted/maintained?

Answer: No. We only maintain the latest dataset unless there is a significant update.

Q47. If others want to extend/augment/build on/contribute to the dataset, is there a mecha-
nism for them to do so?

Answer: We have provided information about how the data was collected, including the sensors
and the dataset collection procedure. Thus, those who want to collect similar data can easily do so.
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