Published as a conference paper at COLM 2025

E>-RAG: Towards Editable Efficient RAG by
Editing Compressed KV Caches

Tongxu Luo'* Wenyu Du?* Hanwen Hao> Min Zhang* Hao Yang*
Benyou Wang!

!The Chinese University of Hong Kong, Shenzhen

2The University of Hong Kong 3Beihang University *Huawei
tongxuluo@gmail.com wenyu.du@dualityrl.com wangbenyou@cuhk.edu.cn

Abstract

Retrieval-Augmented Generation (RAG) demonstrates remarkable capabil-
ities for enhancing the performance of Large Language Models (LLMs) by
integrating external knowledge. RAG introduces additional computations
due to the extra retrieved context. To improve efficiency, recent studies
propose compressing chunk tokens into compact forms, such as key-value
(KV) caches. However, maintaining these compressed KV caches in an
updated state presents a significant challenge, undermining the primary
goal of RAG: acquiring up-to-date knowledge. In this work, we propose
E2-RAG, the first Editable Efficient-RAG method designed to efficiently
edit compressed KV caches for knowledge updates in fast updating sce-

narios. E>-RAG features an encoder-decoder architecture as efficient RAG
module, along with an additional editor. The encoder-decoder compresses
chunk tokens into KV caches and generates responses. The editor takes old
KV caches and new knowledge tokens as inputs, enabling efficient updates
to the KV caches. To formalize knowledge updating, we define three op-
erations: INSERT, DELETE, and UPDATE. We create three sets of datasets for
each operation. Through extensive experiments, E>-RAG achieves nearly
40x faster editing compared to recomputing KV caches while maintaining
3x faster generation efficiency than standard RAG, with a performance
downgrade of 1%-5%. We also conduct ablation studies such as multi-turn
editing, multi-chunk capability, and knowledge conflicts, to explore the

capabilities of E2-RAG. Our code, datasets, and models are available at
https://github.com/tongxuluo/e2rag.

1 Introduction

Large Language Models (LLMs) exhibit impressive text generation capabilities; however,
their knowledge is limited to the dataset used during pre-training. Retrieval-Augmented
Generation (RAG) emerges as a promising method to address this limitation by enabling the
retrieval of new knowledge from an external database (Borgeaud et al., 2022; Lewis et al.,
2020; Kandpal et al., 2023). This knowledge database typically consists of numerous short
chunks. When a user inputs a query, relevant chunks are fetched and combined with the
user’s query to generate the answer (Lewis et al., 2020; Tao et al., 2021; Mao et al., 2024).

A critical challenge in standard RAG systems lies in the substantial computational overhead
introduced by processing additional retrieved chunks in input prompts (Tay et al., 2020;
Yu et al., 2024). Recent efforts in efficient RAG focus on compressing text chunks into
model-specific intermediate representations, such as key-value (KV) caches (Lu et al., 2024;
Sun et al., 2024). This compression enables LLMs to process knowledge through these
compact representations rather than raw text, significantly accelerating generation speeds.

* Equal Contributions.
T Corresponding Author.

https://github.com/tongxuluo/e2rag

Published as a conference paper at COLM 2025

However, world knowledge is constantly evolving. For scenarios such as news and finance,
which strongly rely on the timeliness of knowledge, maintaining up-to-date databases for
RAG systems is crucial. However, for standard RAG systems, updating their databases
with new world knowledge requires either manual curation or LLM-assisted modifica-
tion. Efficient RAG systems, in addition, must regenerate compressed representations
from edited texts. This process incurs substantial computational costs, as evidenced by
Wikipedia’s 0.6 million daily edits (Wikimedia Foundation, 2025), which would require ap-
proximately 32.8 A100 GPU hours for LLM-assisted modification and KV cache regeneration
(see Appendix B).

In this work, we introduce E2-RAG, an editable efficient RAG framework that directly
modifies compressed knowledge representations. Inspired by fundamental database oper-
ations (ISO/IEC, 2023), we define three core edit operations: INSERT, DELETE, and UPDATE.
The architecture incorporates an efficient RAG module and an editor module for modifying KV
caches. The editor is a frozen LLM equipped with trainable LoRA (Hu et al., 2021) and an
editing embedding, which generates offset KV caches to update the old KV cache based on
the three operations.

We evaluate E>-RAG using modified versions of QA datasets (HotpotQA (Yang et al., 2018),
ASQA (Stelmakh et al., 2022), SciQ (Welbl et al., 2017), SQuAD (Rajpurkar, 2016), Drop (Dua
et al., 2019)) containing 10,000 knowledge edits per operation type. Figure 1 shows one
example. We compare E2-RAG against two baselines: a standard RAG (Mao et al., 2024)

and our efficient RAG module. The results indicate that E>-RAG is three times faster in
generation than the standard RAG and achieves an editing speed that is 40 times faster than
the efficient RAG that re-computes KV caches, with only a 1%-5% performance degradation

across five QA benchmarks. Furthermore, we extend E2-RAG to multi-turn editing and
multi-chunk inference settings and discuss knowledge conflicts.

Our analysis extends to multi-edit scenarios and multi-chunk inference, revealing insights
into knowledge conflict resolution during DELETE and UPDATE operations. As RAG systems

increasingly adopt compressed knowledge representations, E>-RAG provides a scalable
solution for efficient knowledge maintenance.

Our contributions can be summarized as follows:

1. We focus on the efficient editing of RAG databases in compressed KV form and
provide insights into this challenge.

2. We propose E2-RAG, the first editable efficient RAG architecture that achieves both
efficiency in editing and inference.

3. We construct three datasets designed to evaluate three core operations: INSERT,
DELETE, and UPDATE.

4. We conduct comprehensive experiments evaluating the editability and efficiency of
the proposed methods, along with further ablations and discussions.

2 RAG and Knowledge Updating

RAG. RAG is a "Retrieve-Read” framework (Gao et al., 2023). The standard RAG system
first splits a document into n chunks {D;}! ;, which are then encoded into embedding
vectors {E;}'_; using an embedding model. These vectors and chunks construct a database
D = {(E;, D;)}} ;. When a user inputs a query g, the RAG system converts it into a vector
E; using the same embedding model and computes its similarity with {E;}. The top k
chunks with the highest similarity, {D1,~ -, ﬁk}, are retrieved (Karpukhin et al., 2020).
These k chunks, along with g, are then input into the LLM to generate the response.

However, a significant drawback of standard RAG is the increased computational costs
during the generation phase due to the additional RAG chunks integrated into the input
prompts (Khandelwal et al., 2019; Izacard & Grave, 2020; Qin et al., 2023). Consequently,
various efficient RAG approaches have been proposed to alleviate this overhead (Yan

Published as a conference paper at COLM 2025

et al., 2024). Among these, state-of-the-art methods compress chunk tokens into compact
intermediate components in LLMs, such as KV caches (Li et al., 2024b), resulting in databases
of the form ID = {(E;, (K;, V;))}?_,. This allows LLMs to bypass processing chunks in their
raw text forms, significantly increasing generation speed compared to standard RAG.
However, this also means that KV caches cannot be easily edited, which contradicts the
goals of RAG. Recomputing these caches could lead to additional computational overhead.

Knowledge Update. Knowledge evolves continuously, and an active knowledge base
system should track these changes. For example, Wikipedia (Wikimedia Foundation, 2025)
maintains a comprehensive editing log that records all editing history. Based on these log
entries, we categorize them into three types: adding new knowledge, deleting obsolete
knowledge, and replacing existing knowledge . To align with basic SQL (ISO/IEC, 2023)
operations, we refer to these three knowledge operations as INSERT, DELETE, and UPDATE. For
instance, consider a document about the Olympic Games. During a major Olympic event,
the list of medalists will INSERT new entries, while some outdated items may be DELETE, and
certain records will be UPDATE.

Knowledge Update for RAG. Knowledge updates are straightforward for standard RAG
since it can integrate up-to-date texts internally. However, this process is not simple for
efficient RAG approaches that utilize compressed KV chunks. The naive method involves
using the updated text to regenerate these KV caches for future RAG generation. The
standard RAG solution allows for easy editing but is insufficient for generation, while
the opposite is true for the latter approach. Thus, instead of the above two solutions, we
investigate whether we can directly edit the existing KV caches for efficient RAG.

= — nsertedkV 7 4

8 i Relevant P

Joe Biden was born on : Knowledge

November 20, 1942, in . H

Scranton, Pennsylvania, USA. Editor Modules |

i INSERT — DeletedKV T T N N

=7 ! Deleted | i

Bi is the Presi f 1 K led!

;lt?ee U|Sd):n is the President o DELETE : nowledge

UPDATE e

Q — Updated KV i e .

Trump won the 2024 U.S. ! Outdated

election, so the current : Knowledge

President of U.S. is Trump. XY Cesite :

SN B 5 We—

The United States consists of D Tokens of original D Memory tokens

50 states... The current Encoder document

President of the United States (LLM + LoRA) Key of memory Value of memory

is Joe Biden... The total area of K tokens tokens

the United States is 9,372,610 D D [j U
square kilometers. Offset of key and value

Figure 1: The editor module. We train three separate editors for INSERT, DELETE, UPDATE re-
spectively. And the offset KV caches appends to old KV caches but functions differently.

3 E2-RAG

In this section, we detail our method, E2-RAG, which includes its efficient RAG module for
pretraining to learn compression, fine-tuning for multi-chunk question answering, and the

training of the E2-RAG editor module.

1we provide the statistics, and analysis of “Machine Learning” category in Appendix K.

Published as a conference paper at COLM 2025

3.1 Efficient RAG Module

E2-RAG employs an encoder-decoder module for efficient RAG. The encoder pre-processes
document chunks into compressed KV caches offline, which are then stored in a database.
During online inference, the module retrieves the top-k KV caches from the database and
feeds them to the decoder. The decoder generates responses based on these compressed KV
caches. Our training process consists of two stages: pretraining and fine-tuning. Pretraining
focuses on learning compression capabilities, while fine-tuning focuses on the question-
answering task.

Pretraining. In this stage, we pretrain the efficient RAG module to acquire text compres-
sion capabilities. We use a frozen LLM, denoted as @), with trainable LoRA @ng{fer
as the encoder, and the same frozen LLM as the decoder. Consider the input text to-
kens as X. After embedding, they are concatenated with trainable memory embedding
M = (my,my,--- ,my), and m; € R4, where d is the hidden size of the LLM. The outputs
are the KV caches of M, K = [k, ko, - -+ ,k;], and k; € R™<nxdy ig the “key” of i-th attention,
where | is the number of layers of the LLM, & is the number of attention heads, and d, is the
dimension of attention heads. V = [v1, vy, -+ , 7], and v; € RM1nxdn ig the “value” of i-th
attention. Formally:

E = 1xWg 1
(K, V) = encoder([E,M];@LLM,(*DE&C{}SH) ()

where 1y is the one-hot vector of X, W is the embedding parameter of the LLM, and

E € RT* is the embedding of X. KV cache (K, V) is then passed to the frozen decoder to
reconstruct the original text X. The reconstruction process minimizes the cross-entropy loss

to train the LoRA @Egﬁ‘fer:

1 I
L= -7 Zlog P(xt | x<t;K, V;Or1\m, @ng{fer) 3)
=1

Fine-tuning. For fine-tuning, we adapt the pretrained LoRA @Egﬁ‘fer to perform question

answering based on relevant chunks {D, - - - , Dy }. For each chunk D;, we feed it to the
encoder to obtain its KV cache, denoted as (K;, V;). We then concatenate these KV caches,
resulting in a combined KV cache denoted as (Kyx, Vy). Let the question be Q and the
answer be A. The loss for the fine-tuning stage can be expressed as:

1 T
L= T Y log P(A | Q; Kk, Vi O, OFRRer) “4)
=1

It is important to note that, to prevent the position embedding of the “key” from becoming
disordered (Lu et al., 2024; Sun et al., 2024), the position embedding of the “key” must be
removed when using the encoder to process chunks offline. When feeding them into the
decoder, the position encoding should be reapplied according to the sorting. Details on
repositioning can be found in Appendix C.

3.2 Editor Module

When updating the database is necessary, E2-RAG first retrieves KV caches related to
the new knowledge. The editor module then takes the new knowledge tokens as inputs
and produces the offset KV for INSERT, DELETE, and UPDATE operations. Although these
operations share the same architecture, their learning objectives differ.

Published as a conference paper at COLM 2025

The Architecture for the Editor. Our editor is a frozen LLM with trainable LoRA, designed
to append, delete, and modify by processing the new knowledge I into the offset KV cache
(AK, AV), which represents the updates to the KV cache. Formally:

E = 1;Wg ®)
(AK,AV) = editor([E, C]; Orpn, OFHS) (6)

where C € R%? where ¢ < n, represents the trainable editing embedding, and (AK,AV)
denotes the KV cache of C. The updated KV cache is obtained by concatenating the modifi-
cations to the original cache:

[K,AK] — K ?)
V,AV] — V (8)
To ensure that the edited KV caches can be used alongside other KV caches for multi-chunk
inference, we propose maintaining a queue of KV caches to store the K and V values from

previous batches. During each batch, we randomly sample from this queue and mix the
selected KV caches. The detailed algorithm is presented in Appendix C.2.

The editor is also trained to minimize the cross-entropy loss:

1¢ .
L=—=) logP(A| QK V;OLy OLRY) ©)
t=1

Different Objectives for INSERT, DELETE, UPDATE. Due to their distinct goals, all three
operations—despite using the same editor architecture—have significantly different training
objectives.

INSERT: This operation incorporates new knowledge. For a given question (related to
the old or new knowledge), the decoder is first prefilled with the updated KV caches
([K,AK],[V,AV]). The query Qjuse+ of this question then attends to both the original
knowledge in the caches and the newly appended knowledge. The attention mechanism
computes the attention scores as follows:

(10)

o RT AKT
(A, AA] = softmax (Qmsm KT, AK 1)

Nz

The resulting attention map [A, AA] assigns weights to the keys for both the original and
new knowledge, capturing their relevance to the query.

DELETE: In contrast to INSERT, the DELETE operation applies a “mask” to suppress specific
segments of old knowledge. When a question Q4elete relates to the knowledge that needs
to be removed, the new AV acts as a “mask” through the attention mechanism, effectively
erasing the corresponding content in V:

O = (AV + AAAV)W) (11)

where, O is the output of the attention mechanism and Wy is the parameter of the output
projection of the attention mechanism.

UPDATE: This operation combines the functionalities of DELETE and INSERT, as it involves
both removing outdated knowledge and introducing new information. However, unlike
INSERT, the DELETE and UPDATE operations may lead to knowledge conflicts. We discuss this in
Section 6.4.

4 Editing Dataset Construction

For simplicity, we select documents with a length bounded by 128 tokens (the length of a
single chunk) from five document QA datasets (Welbl et al., 2017; Yang et al., 2018; Dua et al.,
2019; Rajpurkar, 2016; Stelmakh et al., 2022). We first split each document into a sequence
of sentences: {s1,- - ,s,}. For each document, we create a series of questions, where the
sentence s; contains the knowledge necessary to answer the question Q.

Published as a conference paper at COLM 2025

INSERT. We select one sentence Sj from the document {s1,- - - ,s, } as the new knowledge
I, while the remaining sentences {sq, - -, Si-1,8j+1," ", sy} serve as the old context. When
i = j, the new knowledge I is necessary for answering Q. Conversely, when i # j, Q can
only be answered using the old context. For both cases, we provide the new document to
Qwen2.5-7B (Yang et al., 2024) to generate responses to the questions.

DELETE. In contrast to INSERT, s; represents the sentence to be deleted, and the full set
{s1,-+ ,sn} constitutes the old full document. When i = j, the sentence necessary for
answering Q is deleted. Therefore, we use Qwen2.5-7B to input the remaining context
{81, ,8j-1,8j41, -+ ,sn} along with the question to obtain a response indicating refusal
to answer. For i # j, we generate a normal response, similar to the INSERT operation.

UPDATE. Similar to DELETE, the full set {s1,---,s,} serves as the old context. We use
Qwen2.5-7B to generate new knowledge §; that conflicts with s; and the corresponding

question Q. When i = j, the question Q is based on $j; when i # j, the questions are based
on the old knowledge. The former requires the new knowledge sA] ; otherwise, the answer
would be incorrect.

The data construction pipeline and examples of INSERT, DELETE, and UPDATE are provided
in Appendix D. In the training set, both i = j and i # j account for 50%, ensuring that the
model learns to insert new knowledge while retaining the old knowledge. In the test set,
these two cases are separated to evaluate the model’s ability to independently retain old
knowledge and acquire new knowledge.

5 Experiments

Setup. We construct the data following the methods introduced in Section 4. Particularly,
we use three datasets of HotpotQA (Yang et al., 2018), ASQA (Stelmakh et al., 2022) and
Drop (Dua et al., 2019) for both training and testing, with two extra test sets of SciQ (Welbl
et al., 2017) and SQuAD (Rajpurkar, 2016) for out-of-distribution (OOD) evaluation. We use
Llama3.2-3B, Llama3.1-8B and Qwen?2.5-7B (We present the results in Appendix H.) to train
our models (Dubey et al., 2024; Yang et al., 2024). We train three separate editors for the
three different types of editing operations. Training details, including hyperparameters, are
provided in Appendix E. To ensure reliable evaluation, we adopt the Match metric, which
checks whether the generated answer contains the golden answer as an exact match (Rau
et al., 2024). This is particularly relevant since both the decoder in our method and the
baseline standard RAG are frozen LLMs.

Baselines. We introduce two baselines as introduced in Section 2, standard RAG that
directly updates documents in text form and our efficient RAG module that re-computes
updated KV caches from edited text. As the two baselines require the edited full context,
we come up with two setups.

(1) LLM to Edit Text In this baseline, we use an LLM to edit the old chunk based on the
new knowledge I and then answer the question. The LLM generates an updated context
by inserting, deleting, or updating parts of the old chunk. While this approach can achieve
reasonable performance, it lacks efficiency as it requires regenerating the entire context.

(2) Golden Edit For the INSERT operation, the golden edit baseline assumes access to the
complete and up-to-date information, represented by the full set of sentences {s1,- - ,s,}.
This serves as an upper bound for performance, as it directly provides the model with the
ideal context for answering the question Q. For DELETE and UPDATE, we annotate the editing
results by humans of a subset from HotpotQA. The results can be referred to in Appendix F.

5.1 Results on Editing Efficiency

We assess the KV cache editing speed in Figure 2. When using the Llama3.1-8B model with
a batch size of 16, our editor module achieves nearly a 40x speedup compared to re-compute

Published as a conference paper at COLM 2025

KV caches (LLM to edit text + compress to new KV caches). This significantly reduces the
time required for massive updates to the RAG database, as we perform editing at the KV
cache level rather than using an LLM to edit text. We also include experiments on original
document QA without editing in Appendix G, and our efficient RAG module also achieves
3x speedup in response generation than standard RAG. We next evaluate the performance
for three operations separately.

5.2 Results on INSERT Operation

Table 1: Results of INSERT operation on five document QA benchmarks and their averages.
We use “Old” and “New” to indicate whether the knowledge involved in the question is
added through the INSERT operation or is inherent to the old chunk. The results indicate
that our method achieves nearly lossless in inserting. The best results are in bold and the
second best are with underscore.

Method HotpotQA ASQA SciQ SQuAD Drop Avg.

OId (7) New (T) OId () New () OId (T) New () OId (f) New () OId () New () OId () New (T)
Standard RAG 3B
golden edit 7754 8091 7653 7853 89.29 89.86 85.86 8722 56.62 60.13 7717 79.33

LLM to edit text 73.19 74.55 74.18 75.46 88.93 89.49 83.93 85.42 56.42 58.23 75.33 76.63
E2-RAG w/o Editor (Efficient RAG 3B)

golden edit 8116 79.09 7653 79.14 8679 8551 7857 8074 7475 71.88 79.56 79.27
LLM to edit text 76.81 7273 7653 7546 8464 8261 7771 76.69 69.65 5854 77.09 7311
E2-RAG 3B 7899 8727 77.00 85.89 8250 86.59 7543 8290 7454 7911 77.69 8433

Standard RAG 8B

golden edit 76.81 77.27 74.65 75.46 88.93 90.58 89.21 89.92 80.65 79.50 82.05 82.55
LLM to edit text 74.64 75.45 72.77 72.39 88.21 86.96 88.64 88.66 78.41 79.11 80.53 80.46
E?-RAG w/o Editor (Efficient RAG 8B)

golden edit 82.61 8273 8545 8750 9143 89.13 8579 87.04 7857 7852 84.77 84.98
LLM to edit text 84.78 81.82 8216 79.75 90.00 8659 84.07 8218 7637 7120 8348 80.31
E2-RAG 8B 83.33 81.82 8028 8528 8750 87.68 8279 8353 8228 8133 83.24 83.93

We report our results on the INSERT opera-
tion in Table 1. At both the Llama 3B and - our ot e oo r et z
~—— LLM to Edit Text BS=8 4000 | —— LLM to Edit Text BS=8

8B SiZeS, our EZ'RAG achieves first Or secC- —— LLM to Edit Text BS=16 —— LLM to Edit Text BS=16

5 2500 | — LM to Edit Text + Compress BS=8 —— LLM to Edit Text + Compress BS=8

Ond place on most benchmarks' Notably’ ézooo — LMto Emtmwc;mpress BS=16 ‘émoo —— LLM to Edit Text + Compress BS=16

the average score on “New” is 84.33 (first) © // e

. . . < / 7 <

in the 3B setting and 83.93 (second) in the = . =

8B setting. The results on “Old” are slightly | ~ 1000

lower. We hypothesize that the KV cache for . N .

new kIlOWledge iS added after the Original 2000 4000 .E.OOD 8000 10000 2000 4000 .6.000 8000 10000
Number of Editing Chunks Number of Editing Chunks

KV caches, bringing it closer to the query

tokens, which causes the model to direct (a) Editing speed of 3B (b) Editing speed of 8B
more attention toward the new knowledge.) .]

Among five benchmarks, we do not observe Figure 2: Editing Time for 38/8B LLMs
significant differences, indicating that our

approach can also adapt to the two OOD benchmarks, SciQ and SQuAD. We find that
Efficient RAG sometimes outperforms standard RAG on certain benchmarks. One possible
reason for this is the vulnerability of the current standard RAG system when presented
with irrelevant or misleading information. In contrast, compressing the context into KV
caches effectively extracts and simplifies information, omitting less important details, which
enhances the model’s retrieval ability (Cheng et al., 2024).

5.3 Results on DELETE Operation

The results for the DELETE operation are presented in Table 2. Unlike INSERT, “Rm” represents
questions that require the removed knowledge. Therefore, a lower “Rm” value indicates a
higher degree of knowledge removal. From the table, we observe that both the 3B and 8B
models rank first or second in most benchmarks. For example, the average for “Rm” in the
3B model is 28.86 (second), while the average for the 8B model is 21.68 (first). However, the

Published as a conference paper at COLM 2025

Table 2: Results of DELETE operation on five document QA benchmarks and their averages.
During the experiments, we apply the DELETE operation on the context in QA as described
in the paper. We use “Old” to indicate that the QA only involves knowledge that is not
deleted. “Rm” denotes QA involving deleted knowledge, where lower scores indicate
more effective deletion.

HotpotQA ASQA SciQ SQuAD Drop Avg.
OId () Rm (J) OId () Rm (]) OId (f) Rm (]) OId (1) Rm (]) OId (T) Rm (]) OId () Rm (])

Method

Standard RAG 3B
LLM to edit text 7027 33.87 71.62 2069 87.24 4821 7892 29.75 5356 2833 7232 3217
E2-RAG w/o Editor (Efficient RAG 3B)

LLM to edit text 83.11 25.81 78.38 16.38 86.21 31.25 7754 30.66 69.75 3333 79.00 27.49
E2-RAG 3B 7838 3387 7117 1724 8483 39.29 7623 30.57 68.86 2333 75.89 28.86
Standard RAG 8B

LLM to edit text 7027 2742 70.72 1379 87.24 3482 88.74 2730 73.13 6.67 78.02 22.00
E2-RAG w/o Editor (Efficient RAG 8B)

LLM to edit text 87.16 3226 86.94 1552 88.28 25.89 87.77 29.30 7829 2333 85.69 2526
E2-RAG 8B 7838 30.65 79.28 6.03 85.17 2143 80.17 2530 7224 25.00 79.05 21.68

performance on “Old” is slightly lower, suggesting that direct concatenation of KV caches
may not be the optimal solution to retain old knowledge. We leave this for future study.

5.4 Results on UPDATE Operation

Table 3: Results of the UPDATE operation on five benchmarks. “Rp” (replace) denotes QA
involving the updated knowledge.

HotpotQA ASQA SciQ SQuAD Drop Avg.
OId () Rp () OId (P) Rp () OId () Rp () OId () Rp () OId (}) Rp () OId () Rp ()

Standard RAG 3B

LLM toedittext 76.27 57.20 64.17 6625 52.60 61.81 60.89 63.81 4930 7230 60.65 64.27
E2-RAG w/o Editor (Efficient RAG 3B)

LLM to edit text 76.27 61.86 65.69 71.94 53.64 64.19 5796 7238 51.17 7451 6095 68.98
E2-RAG 3B 84.75 8390 6847 79.86 5513 7890 60.79 79.74 4883 7136 63.59 78.75

Standard RAG 8B

LLM to edit text 84.32 70.34 67.78 7139 57.80 6478 6623 7339 6432 87.79 68.09 7354
E2-RAG w/o Editor (Efficient RAG 8B)

LLM to edit text 8432 7415 7042 7514 60.77 6835 66.63 7440 6338 7932 6910 7427

E>-RAG 8B 85.17 84.75 68.19 84.86 5750 80.53 62.00 83.27 7512 81.83 69.60 83.05

Method

For the UPDATE operation,we present the results in Table 3. As discussed earlier, UPDATE is
a combination of INSERT and DELETE, requiring both the removal of outdated knowledge
and the insertion of new knowledge. This operation is inherently more challenging as it
introduces potential knowledge conflicts. Notably, E2-RAG performs well on both “Old”
and “New” (which require updated knowledge) for both the 3B and 8B Llama models.

6 Ablation and Discussion

To provide further insights into knowledge updating for RAG, we conduct a series of
ablation studies on multi-turn editing and multi-chunk capability for INSERT. Additionally,
we discuss knowledge conflicts that arise during the editing process for DELETE and UPDATE.

6.1 Multi-turn Editing

In practical applications, it is often necessary to update a specific chunk multiple times.
Therefore, we conduct experiments on multi-turn editing using data from the INSERT op-
eration on both the 3B and 8B models. We present the average results in Appendix I. Our
findings indicate that as the number of editing iterations increases, both the old knowledge
and the newly inserted knowledge from the first round gradually fade. Consequently,

Published as a conference paper at COLM 2025

we recommend reconstructing the chunk from the original text after a maximum of three
editing operations to maintain information integrity.

6.2 Multi-chunk Ability with Edited Chunks

—— Average old o —— Average old

Real-world applications often require mod-

els to retrieve and utilize information from Averagenew | 0% *”\ Average new
multiple chunks to answer questions. As M - -
mentioned in Section 3, our editor is trained 075 \ e \
with a chunk queue to enhance its capabil-

ity of handling multiple chunks effectively.

0.725

Accuracy

0.700

Accuracy
°
3
3
/

To systematically evaluate this ability, we o5 07

conduct experiments by introducing vary- 0650

ing amounts of noisy chunks into the test * Number of Chunkis * Numberof Chunis
set, ranging from 0 to 9. This evaluation (a) 3B (b) 8B

covers scenarios where the total number of

chunks varies from 1 to 10, corresponding Figure 3: Multi-chunk Ability on (a) 3B size
to the Top-K values used in common RAG and (b) 8B size.

settings (Mao et al., 2024). This setup allows

us to assess how well the editor maintains knowledge consistency while retrieving relevant
information in multi-chunk settings. We present the average results across five benchmarks
in Figure 3, with detailed evaluation results available in Appendix J. The results indicate
that as the number of chunks increases, both “Old” and “New” knowledge performance
slightly decreases. This decline occurs because the increase in the number of chunks leads to
more frequent errors in information retrieval. Specifically, as more chunks are involved, the
model faces greater challenges in accurately retrieving relevant information. By comparing
the results of the 3B and 8B models, we observe that the multi-chunk ability of the 8B model
is significantly better than that of the 3B model, suggesting that multi-chunk capability is
correlated with model size.

6.3 Robustness on Insufficient Updating

A potential issue with updating only the top-k relevant entries in the database is that other
outdated entries (the remaining n — k) are left unchanged. These outdated entries may
degrade model performance. We conduct an experiment to investigate the robustness of our
method in this scenario. Specifically, we select approximately 100 questions from the test set
of Squad for the three operations and duplicate the associated information chunk five times.
Subsequently, the ratio of edited (updated) chunks could be varied systematically from 0.2
(1 out of 5) to 1.0 (all 5 out of 5). This would allow for an examination of model performance
under varying degrees of information conflict. We provide the results for Llama-3.2 3B and
Llama-3.1 8B in Table 4.

Table 4: Performance under different ratios of edited knowledge chunks. The results
demonstrate a reasonable robustness to incomplete updates.

Ratio of Edited Chunks
0.2 04 0.6 0.8 1.0

INSERT (1) 040 058 061 0.60 0.63
3B DELETE(J) 031 034 022 019 0.20
UPDATE (1) 0.75 0.77 0.82 0.82 0.82

INSERT (1) 069 071 075 0.81 0.81
8B DELETE () 038 039 025 0.16 0.14
UPDATE (1) 0.79 081 0.82 0.86 0.86

Model Size Operation

Firstly, all the models and operations demonstrate a similar trend where performance
slightly drops when the ratio of edited chunks is reduced from 1.0 to 0.2. This is a reasonable

Published as a conference paper at COLM 2025

result because when the number of edited chunks decreases, the model can be influenced
by the unedited chunks, which may confuse the model and lead to incorrect answers.
However, to our surprise, our method also shows a certain level of robustness in this
scenario. Especially in the UPDATE operation, even when only 20% of the chunks are
updated, the model can still notice the change and answer correctly. For instance, the
performance of the 3B model remains at 0.75 when the ratio of edited chunks is only 0.2,
compared to 0.82 when the ratio is 1.0.

We acknowledge that updating by selecting the top-k relevant outdated entries is indeed a
naive method, as it can lead to the issue of incomplete updates, as you mentioned. However,
since our work is the first to explore how to efficiently keep the RAG database up-to-date,
we believe there will be future follow-up work to better address this challenge.

6.4 Knowledge Conflicts

The DELETE and UPDATE operations may re- : °
sult in knowledge conflicts; however, our : :
model still performs decently. Therefore, it = o
is important to investigate the underlying -
reasons. For the DELETE operation, we select - ’

two types of questions: one related to old . oo
knowledge that can be answered correctly . T

(“Old”), and another solely related to the re-
moved knowledge (“Rm”), which cannot be
answered correctly by the model. We plot
the attention map of the question over the
edited chunk in Figure 4. We observe that
when the question pertains to the removed
knowledge, the attention to AK significantly
increases. We conduct the same experiment
for the UPDATE operation, and the results are
consistent with those of the DELETE operation. We hypothesize that in DELETE, when the
question requires information from offset KV caches, AV acts as a “mask” to nullify certain
portions of the old knowledge’s attention “value”, while in UPDATE, it functions to replace
the old knowledge.

(a) //Old// (b) ”Rm”

Figure 4: Attention map of the DELETE opera-
tion, (a) The question is only related to the old
knowledge. (b) The question is only related to
the removed knowledge. The red box in both
sub-figure means the attention of AK.

7 Conclusion and Future Work

This work addresses the challenge of efficient editing in compressed KV caches of RAG.
We propose E2-RAG, the first editable efficient RAG architecture that balances both editing
and inference efficiency. To evaluate our approach, we construct three datasets specifically
designed to assess the basic operations of INSERT, DELETE, and UPDATE. Our comprehensive
experiments demonstrate the editability and efficiency of the proposed methods, along
with further ablations and discussions that provide valuable insights into the challenges
associated with this problem. Our findings highlight the potential for further advancements
in the editability and efficiency of RAG.

Acknowledgment

This work was supported by Huawei, the Shenzhen Science and Technology Program
(J€YJ20220818103001002), Shenzhen Doctoral Startup Funding (RCBS20221008093330065),
Tianyuan Fund for Mathematics of National Natural Science Foundation of China (NSFC)
(12326608), Shenzhen Science and Technology Program (Shenzhen Key Laboratory Grant
No. ZDSYS20230626091302006), and Shenzhen Stability Science Program 2023, Shenzhen
Key Lab of Multi-Modal Cognitive Computing.

10

Published as a conference paper at COLM 2025

References

Reza Yazdani Aminabadi, Samyam Rajbhandari, Ammar Ahmad Awan, Cheng Li, Du Lj,
Elton Zheng, Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff Rasley, et al. Deepspeed-
inference: enabling efficient inference of transformer models at unprecedented scale. In
SC22: International Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 1-15. IEEE, 2022.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie
Millican, George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan
Clark, et al. Improving language models by retrieving from trillions of tokens. In
International conference on machine learning, pp. 2206-2240. PMLR, 2022.

Chi-Min Chan, Chunpu Xu, Ruibin Yuan, Hongyin Luo, Wei Xue, Yike Guo, and Jie Fu.
Rg-rag: Learning to refine queries for retrieval augmented generation. arXiv preprint
arXiv:2404.00610, 2024.

Xin Cheng, Xun Wang, Xingxing Zhang, Tao Ge, Si-Qing Chen, Furu Wei, Huishuai Zhang,
and Dongyan Zhao. xrag: Extreme context compression for retrieval-augmented genera-
tion with one token. arXiv preprint arXiv:2405.13792, 2024.

Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and Dangi Chen. Adapting language
models to compress contexts. arXiv preprint arXiv:2305.14788, 2023.

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning.
In International Conference on Learning Representations (ICLR), 2024.

Nicola De Cao, Wilker Aziz, and Ivan Titov. Editing factual knowledge in language models.
arXiv preprint arXiv:2104.08164, 2021.

Qingxiu Dong, Damai Dai, Yifan Song, Jingjing Xu, Zhifang Sui, and Lei Li. Calibrating
factual knowledge in pretrained language models. arXiv preprint arXiv:2210.03329, 2022.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt
Gardner. Drop: A reading comprehension benchmark requiring discrete reasoning over
paragraphs. arXiv preprint arXiv:1903.00161, 2019.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3
herd of models. arXiv preprint arXiv:2407.21783, 2024.

Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven
Truitt, and Jonathan Larson. From local to global: A graph rag approach to query-focused
summarization. arXiv preprint arXiv:2404.16130, 2024.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun,
and Haofen Wang. Retrieval-augmented generation for large language models: A survey.
arXiv preprint arXiv:2312.10997, 2023.

Tao Ge, Jing Hu, Lei Wang, Xun Wang, Si-Qing Chen, and Furu Wei. In-context autoencoder
for context compression in a large language model. arXiv preprint arXiv:2307.06945, 2023.

Edward] Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021.

ISO/IEC. Information Technology — Database Languages SQL Part 1: Framework (SQL/Frame-
work). 6 edition, June 2023. International Standard published [60.60].

Gautier Izacard and Edouard Grave. Distilling knowledge from reader to retriever for
question answering. arXiv preprint arXiv:2012.04584, 2020.

Wenqi Jiang, Shuai Zhang, Boran Han, Jie Wang, Bernie Wang, and Tim Kraska. Piperag:
Fast retrieval-augmented generation via algorithm-system co-design. arXiv preprint
arXiv:2403.05676, 2024.

11

Published as a conference paper at COLM 2025

Dongwon Jung, Qin Liu, Tenghao Huang, Ben Zhou, and Muhao Chen. Familiarity-aware
evidence compression for retrieval augmented generation. arXiv preprint arXiv:2409.12468,
2024.

Nikhil Kandpal, Haikang Deng, Adam Roberts, Eric Wallace, and Colin Raffel. Large
language models struggle to learn long-tail knowledge. In International Conference on
Machine Learning, pp. 15696-15707. PMLR, 2023.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov,
Dangi Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answer-
ing. arXiv preprint arXiv:2004.04906, 2020.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. Gen-
eralization through memorization: Nearest neighbor language models. arXiv preprint
arXiv:1911.00172, 2019.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu,
Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large
language model serving with pagedattention. In Proceedings of the ACM SIGOPS 29th
Symposium on Operating Systems Principles, 2023.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via
speculative decoding. In International Conference on Machine Learning, pp. 19274-19286.
PMLR, 2023.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rocktéschel, et al. Retrieval-
augmented generation for knowledge-intensive nlp tasks. Advances in Neural Information
Processing Systems, 33:9459-9474, 2020.

Zhen Lj, Jing Tang, Deqing Zou, Qian Chen, Shouhuai Xu, Chao Zhang, Yichen Li, and Hai
Jin. Towards making deep learning-based vulnerability detectors robust. arXiv preprint
arXiv:2108.00669, 2021.

Zhuowan Li, Cheng Li, Mingyang Zhang, Qiaozhu Mei, and Michael Bendersky. Retrieval
augmented generation or long-context llms? a comprehensive study and hybrid approach.
In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing:
Industry Track, pp. 881-893, 2024a.

Zonggqian Li, Yixuan Su, and Nigel Collier. 500xcompressor: Generalized prompt compres-
sion for large language models. arXiv preprint arXiv:2408.03094, 2024b.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic
human falsehoods. arXiv preprint arXiv:2109.07958, 2021.

Jerry Liu. Llamalndex, 11 2022. URL https://github.com/jerryjliu/llama_index.

Junyi Liu, Liangzhi Li, Tong Xiang, Bowen Wang, and Yiming Qian. Tcra-llm: Token
compression retrieval augmented large language model for inference cost reduction.
arXiv preprint arXiv:2310.15556, 2023.

Songshuo Lu, Hua Wang, Yutian Rong, Zhi Chen, and Yaohua Tang. Turborag: Accelerating
retrieval-augmented generation with precomputed kv caches for chunked text. arXiv
preprint arXiv:2410.07590, 2024.

Qianren Mao, Yangyifei Luo, Jinlong Zhang, Hanwen Hao, Zhilong Cao, Xiaolong Wang,
Xiao Guan, Zhenting Huang, Weifeng Jiang, Shuyu Guo, et al. Xrag: examining the core-
benchmarking foundational components in advanced retrieval-augmented generation.
arXiv preprint arXiv:2412.15529, 2024.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt. Advances in Neural Information Processing Systems, 35:17359-17372,
2022.

12

https://github.com/jerryjliu/llama_index

Published as a conference paper at COLM 2025

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang,
Rae Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al. Specinfer: Accelerat-
ing generative large language model serving with tree-based speculative inference and
verification. arXiv preprint arXiv:2305.09781, 2023.

Jesse Mu, Xiang Li, and Noah Goodman. Learning to compress prompts with gist tokens.
Advances in Neural Information Processing Systems, 36, 2024.

Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and Max Welling. Data-free quanti-
zation through weight equalization and bias correction. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 1325-1334, 2019.

Libo Qin, Wenbo Pan, Qiguang Chen, Lizi Liao, Zhou Yu, Yue Zhang, Wanxiang Che, and
Min Li. End-to-end task-oriented dialogue: A survey of tasks, methods, and future
directions. arXiv preprint arXiv:2311.09008, 2023.

P Rajpurkar. Squad: 100,000+ questions for machine comprehension of text. arXiv preprint
arXiv:1606.05250, 2016.

Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay, Amnon Shashua, Kevin Leyton-
Brown, and Yoav Shoham. In-context retrieval-augmented language models. Transactions
of the Association for Computational Linguistics, 11:1316-1331, 2023.

David Rau, Shuai Wang, Hervé Déjean, and Stéphane Clinchant. Context embeddings for
efficient answer generation in rag. arXiv preprint arXiv:2407.09252, 2024.

Siddhant Ray, Rui Pan, Zhuohan Gu, Kuntai Du, Ganesh Ananthanarayanan, Ravi Ne-
travali, and Junchen Jiang. Ragserve: Fast quality-aware rag systems with configuration
adaptation. arXiv preprint arXiv:2412.10543, 2024.

Sara Rosenthal, Avirup Sil, Radu Florian, and Salim Roukos. Clapng: C ohesive 1 ong-form a
nswers from p assages in natural questions for rag systems. Transactions of the Association
for Computational Linguistics, 13:53-72, 2025.

Alireza Salemi and Hamed Zamani. Evaluating retrieval quality in retrieval-augmented
generation. In Proceedings of the 47th International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 2395-2400, 2024.

Parth Sarthi, Salman Abdullah, Aditi Tuli, Shubh Khanna, Anna Goldie, and Christopher D
Manning. Raptor: Recursive abstractive processing for tree-organized retrieval. arXiv
preprint arXiv:2401.18059, 2024.

Rana Shahout, Cong Liang, Shiji Xin, Qianru Lao, Yong Cui, Minlan Yu, and Michael
Mitzenmacher. Efficient inference for augmented large language models. arXiv preprint
arXiv:2410.18248, 2024a.

Rana Shahout, Cong Liang, Shiji Xin, Qianru Lao, Yong Cui, Minlan Yu, and Michael
Mitzenmacher. Fast inference for augmented large language models, 2024b. URL https:
//arxiv.org/abs/2410.18248.

Kaize Shi, Xueyao Sun, Qing Li, and Guandong Xu. Compressing long context for enhancing
rag with amr-based concept distillation. arXiv preprint arXiv:2405.03085, 2024.

Ivan Stelmakh, Yi Luan, Bhuwan Dhingra, and Ming-Wei Chang. Asqa: Factoid questions
meet long-form answers. arXiv preprint arXiv:2204.06092, 2022.

East Sun, Yan Wang, and Lan Tian. Block-attention for efficient rag. arXiv preprint
arXiv:2409.15355, 2024.

Chongyang Tao, Jiazhan Feng, Chang Liu, Juntao Li, Xiubo Geng, and Daxin Jiang. Building

an efficient and effective retrieval-based dialogue system via mutual learning. arXiv
preprint arXiv:2110.00159, 2021.

13

https://arxiv.org/abs/2410.18248
https://arxiv.org/abs/2410.18248

Published as a conference paper at COLM 2025

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng
Rao, Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark for
efficient transformers. arXiv preprint arXiv:2011.04006, 2020.

Vinh Tong, Dat Quoc Nguyen, Trung Thanh Huynh, Tam Thanh Nguyen, Quoc Viet Hung
Nguyen, and Mathias Niepert. Joint multilingual knowledge graph completion and
alignment. arXiv preprint arXiv:2210.08922, 2022.

Enayat Ullah, Tung Mai, Anup Rao, Ryan A Rossi, and Raman Arora. Machine unlearning
via algorithmic stability. In Conference on Learning Theory, pp. 4126-4142. PMLR, 2021.

Johannes Welbl, Nelson F Liu, and Matt Gardner. Crowdsourcing multiple choice science
questions. arXiv preprint arXiv:1707.06209, 2017.

Wikimedia Foundation. Wikimedia statistics, 2025. URL https://stats.wikimedia.org/#/
all-wikipedia-projects. Accessed: 2025-01-30.

T Wolf. Huggingface’s transformers: State-of-the-art natural language processing. arXiv
preprint arXiv:1910.03771, 2019.

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas Muennighoff. C-pack: Packaged re-
sources to advance general chinese embedding, 2023.

Fangyuan Xu, Weijia Shi, and Eunsol Choi. Recomp: Improving retrieval-augmented Ims
with compression and selective augmentation. arXiv preprint arXiv:2310.04408, 2023.

Mengyi Yan, Weilong Ren, Yaoshu Wang, and Jianxin Li. A retrieval-augmented framework
for tabular interpretation with large language model. In International Conference on Database
Systems for Advanced Applications, pp. 341-356. Springer, 2024.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdi-
nov, and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop
question answering. arXiv preprint arXiv:1809.09600, 2018.

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng, Zhoubo Li, Shumin Deng, Huajun
Chen, and Ningyu Zhang. Editing large language models: Problems, methods, and
opportunities. arXiv preprint arXiv:2305.13172, 2023.

Hao Yu, Aoran Gan, Kai Zhang, Shiwei Tong, Qi Liu, and Zhaofeng Liu. Evaluation of
retrieval-augmented generation: A survey. In CCF Conference on Big Data, pp. 102-120.
Springer, 2024.

A Related Work

As the context length increases (Li et al., 2024a), the inference cost of the RAG model
increases significantly (Ram et al., 2023; Salemi & Zamani, 2024). To enhance the efficiency of
RAG, efficient RAG methods have emerged, aiming to reduce time overhead by optimizing
the entire retrieval-generation workflow.

In earlier studies, numerous approaches have been developed to enhance the efficiency
of RAG. The reduction of input context as a natural method was the first to be validated.
Initially, various text summarization techniques (Xu et al., 2023; Jiang et al., 2024; Edge
et al., 2024; Chan et al., 2024) were introduced to minimize information loss. Knowledge
distillation and filtering techniques are employed in (Shi et al., 2024; Liu et al., 2023;
Sarthi et al., 2024) and (Jung et al., 2024) to compress lengthy texts and preserve essential
knowledge. Furthermore, some works (Shahout et al., 2024a; Ray et al., 2024) controlled
the effective length of the input by addressing information redundancy. Although these

14

https://stats.wikimedia.org/#/all-wikipedia-projects
https://stats.wikimedia.org/#/all-wikipedia-projects

Published as a conference paper at COLM 2025

approaches effectively reduced context length, they resulted in semantic loss and poor
scalability.

Recent studies (Leviathan et al., 2023; Shahout et al., 2024b; Miao et al., 2023; Nagel et al.,
2019; Aminabadi et al., 2022) have aimed to enhance efficiency by focusing on the large
models themselves. We emphasize works that compress the context into LLM intermediate
components such as embeddings (Mu et al., 2024; Chevalier et al., 2023; Ge et al., 2023; Li
et al., 2024b) and KV caches (Lu et al., 2024; Sun et al., 2024). Although these methods
are effective and incur minimal loss, they are challenging to update. In contrast to prior
research, our focus is on editable efficient RAG.

Previous works (De Cao et al., 2021; Dong et al., 2022; Meng et al., 2022) on knowledge
editing focus on inserting or updating knowledge in LLMs. And many works (Li et al,,
2021; Tong et al., 2022; Yao et al., 2023; Ullah et al., 2021) on machine unlearning aim
to remove specific knowledge from LLMs. Our work applies three types of knowledge
operations—INSERT, DELETE, and UPDATE —to the RAG database, ensuring that it remains
up-to-date.

B Details of GPU hours in editing

We choose Llama-3.1-8B (Dubey et al., 2024) as the editor, utilizing vllm (Kwon et al., 2023)
and flash-attention-2 (Dao, 2024) to accelerate inference with bfloat16 precision. The token
throughput is approximately 1300 tokens/s. Each text chunk consists of 128 tokens, and the
total sum of input and output tokens is 256. Therefore, the number of tokens to be processed
is T = 0.6 x 10° x 256, and the required time is S = m = 32.8 hours. So, the total
A100 GPU time required is 32.8 hours.

C Details of Reposition and Chunks Queue

C.1 Reposition

One challenge in using KV caches as chunks for RAG is the confusion caused by the position
embedding of the “key”. To address this, we remove the position embedding of the “key”
when storing it in the database and reassign the position embedding to the key before
pre-filling. We refer to this process as “Reposition”.

Consider the “query” at position m as Q;, € RY, and the “query” with position embedding
as Q. RoPE adds position encoding to Q;, through the following formula:

Qn = Qu® cosg,, +Rotary Half(Q,,) ® sing,, (12)
q0 cos mb —q1 sin mf
q1 cos mby q0 sin mé
q2 cos mfy —q3 sin mfq
_ 3 | cos mby + g2 ® sin mbq 13)
9d—2 cosmb 21 —qd-1 sinmby >4
Gd—1 cos mbg,p_1 dd—2 sinmb/2-1

For the “key” at position m, K;;, position encoding is added in the same manner to obtain
K. However, instead of adding the position encoding, our goal is to recover K, given m
and IC,,. First, we have the formula for RoPE:

Kn = Ku® cosg,, +Rotary Half(Ky,;) ® sing,, (14)
(15)

15

Published as a conference paper at COLM 2025

Additionally, we have the basic properties of Rotary and sine-cosine functions:

Ky, = —Rotary Half(Rotary Half(Ky,))

1 = sinz@;m—i—cosz@;m

By solving the system of these three equations, we can obtain:

Ky = Kun® cosg,, —Rotary Half(KC;,) ® sing,,
In this way, we can remove the position encoding from the “key”.

C.2 Chunks Queue

(16)
17)

(18)

Algorithm 1 Chunks Queue In Editor Training

1: Input: Batch size B, queue size g, queue Q
2: Initialize an empty queue Q with maximum size q
3: for each batch b do

4: Get the compressed KV (Kj, V,) and (AK, AV) from editor, and update to (K;, V)

Randomly sample a subset (Ky.,, V1.,) € Q

Construct multi-chunk KV caches and random sort:
Sort[(Ky, V1),..., (K¢, Vi), (Kp, V)]
7. Enqueue (Ky, V) and (K, V) into Q
8 if queue size > g then

SANCY

9: Remove the oldest KV caches from Q
10: end if
11: end for

Random

D Examples of Three Type of Editing Operations

B -J]B E)
M
W - =
'
The Rams' new stadium was The document -
not ready for them when they o does not &~ ﬁ;’f
initially arrived in Missouri, ... h provide ... T g e
@ cannot answer
the question\._/.

. ([

then- Trans World Dome ...

against the Carolina Panthers. E
& & ' —
What was the first game the uj o o Ui
Rams played in St. Louis? ¥ : /——EK
© = 2
From the document, we can e o '
see ..., so the answer is @ @ @

September 10, 1995.

Figure 5: The pipeline of our data creation. (a) We use the original document QA datasets,
and (b) we first split the context into sentences. (c1) For the INSERT operation, we randomly
select one of the sentences as new knowledge and reuse the question from the original
document QA. (c2) For the DELETE operation, when the removed knowledge is related to
the question, we use an LLM to generate a response that refuses to answer the question.
(c3) For the UPDATE operation, we only use the context from the document QA, and then
create conflicting new knowledge using an LLM. On one hand, we use this new knowledge
to generate a question and its corresponding response; on the other hand, we use other

sentences to generate a question unrelated to the new knowledge and its response.

16

Published as a conference paper at COLM 2025

An Example of Insert Operation

Old Document:

Founded in 1934, the company owns and/or operates 30+ luxury hotels and two river cruise
ships in six countries, primarily under its Oberoi Hotels & Resorts and Trident Hotels brands.
The Oberoi family is an Indian family that is famous for its involvement in hotels, namely
through The Oberoi Group. Below is an example of knowledge addition.

New Knowledge:

The Oberoi Group is a hotel company with its head office in Delhi.

Question:

The Oberoi family is part of a hotel company that has a head office in what city?

Answer:

Delhi

Figure 6: An example of the data of INSERT, the question is related to the new knowledge.

An Example of Insert Operation

Old Document:

Bizarre was published by Dennis Publishing, and was a sister publication to the Fortean
Times. Fortean Times is a British monthly magazine devoted to the anomalous phenomena
popularised by Charles Fort. Previously published by John Brown Publishing (from 1991
to 2001) and then I Feel Good Publishing (2001 to 2005), it is now published by Dennis
Publishing Ltd.

New Knowledge:

Bizarre was a British alternative magazine published from 1997 to 2015.

Question:

Which publishing company has published Bizarre and a sister publication devoted to the
anomalous phenomena popularised by Charles Fort?

Answer:

Dennis Publishing

Figure 7: An example of the data of INSERT, the question is related to the old knowledge.

An Example of Delete Operation

Old Document:

Jo Ann Terry-Grissom (born August 4, 1938 in Indianapolis, Indiana) is a retired female hur-
dler from the United States, who represented her native country at two consecutive Summer
Olympics, starting in 1960. Affiliated with the Tennessee State University she won the 80 m
hurdles event at the 1963 Pan American Games. The 4th Pan American Games were held
from April 20 to May 5, 1963, in Sao Paulo, Brazil.

Removed Knowledge:

The 4th Pan American Games were held from April 20 to May 5, 1963, in Sao Paulo, Brazil.
Question:

Jo Ann Terry won the 80m hurdles event at what Sao Paulo-based event from 19637
Answer:

Pan American Games

Figure 8: An example of the data of DELETE, the question is related to the removed knowl-
edge.

17

Published as a conference paper at COLM 2025

An Example of Delete Operation

Old Document:

Nicholas Sposato serves on Chicago City Council as alderman of the 38th Ward of the City
of Chicago on the city’s Northwest Side. Sposato was elected in 2011 in an election against
incumbent alderman John Rice, who was endorsed by then Mayor-elect Rahm Emanuel.
Rahm Israel Emanuel (; born November 29, 1959) is an American politician who is the 44th
and current mayor of Chicago. A member of the Democratic Party, Emanuel was elected in
2011. He was re-elected on April 7, 2015.

Removed Knowledge:

A member of the Democratic Party, Emanuel was elected in 2011.

Question:

What side of town is the Chicago Mayer-endorsed, 38th Ward of the City of Chicago alderman
serving?

Answer:

Northwest Side

\. .

Figure 9: An example of the data of DELETE, the question is related to the old knowledge.

An Example of Update Operation

Old Document:

What Happened to Jones is a 1926 silent film comedy directed by William A. Seiter and
starring Reginald Denny. It was produced and distributed by Universal Pictures. The film
is taken from an 1897 Broadway play, What Happened to Jones by George Broadhurst.
Reginald Denny (born Reginald Leigh Dugmore, 20 November 1891, 16 June 1967) was an
English stage, film and television actor as well as an aviator and UAV pioneer. He was once
an amateur boxing champion of Great Britain.

Conflicting New Knowledge:

What Happened to Jones is a 1990 color film.

Question:

When was What Happened to Jones released?

Answer:

1990

Figure 10: An example of the data of UPDATE, the question is related to the conflicting new
knowledge.

An Example of Update Operation

Old Document:

Double Take is a 2001 action comedy film starring Eddie Griffin and Orlando Jones. Double
Take was inspired by the 1957 drama Across the Bridge, which was in turn based on a short
story by Graham Greene; the supporting cast includes Edward Herrmann, Gary Grubbs,
Garcelle Beauvais, and Daniel Roebuck. Gary Grubbs (born November 14, 1949) is an
American actor.

Conflicting New Knowledge:

Gary Grubbs was born on January 1, 1980.

Question:

When was the film Double Take released?

Answer:

2001

Figure 11: An example of the data of UPDATE, the question is related to the old knowledge.

E Training Details

We use transformers (Wolf, 2019) to train our model, and the hyperparameters are shown
in Table 5. In pretraining, we only use one chunk to train models to get the ability of
compression. During finetuning, we use multi-chunk data to cultivate the model to retrieve
from multiple chunks and answer the question. To train the editor, we use a chunk queue to
cache the chunks from previous batches which we describe in Section 3.

18

Published as a conference paper at COLM 2025

Table 5: Training Hyperparameters

Pretraining Finetuning Editor training

3B 8B 3B 8B 3B 8B
LoRA rank 64 64 64 64 64 64
Learning rate le-4 le-4 led led le4 le-4
Batch size 32 32 32 32 32 32
Steps 16000 16000 18000 12000 1600 1600
Warm-up steps 300 300 300 300 100 100
memory tokens 16 16 16 16 16 16
edit tokens - - - - 4 4
chunk size 128 128 128 128 128 128
Max chunks 1 1 10 10 10 10
Queue size - - - - 20 20

F Results of Golden Editing by Human

Table 6: Results of HotpotQA of UPDATE and DELETE with golden editing by human.

UPDATE DELETE
Method Ol Rp @ OM@M Rm(Q)
Standard RAG 3B
golden edit 85.59 80.93 69.59 24.19

LLM to edittext 7627 5720 70.27 33.87
E2-RAG w/o Editor (Efficient RAG 3B)

golden edit 86.86 74.15 81.76 19.35
LLM to edit text 76.27 61.86 83.11 25.81
E2-RAG 3B 84.75 83.90 78.38 33.87
Standard RAG 8B

golden edit 85.59 76.27 74.32 17.74

LLM to edit text 84.32 70.34 70.27 27.42
E2-RAG w/o Editor (Efficient RAG 8B)

golden edit 8898 82.63 89.86 16.13
LLM to edit text 8432 7415 87.16 32.26
E2-RAG 8B 8517 84.75 78.38 30.65

G Results on RAG benchmarks

We use five document QA benchmarks (Welbl et al., 2017; Yang et al., 2018; Dua et al., 2019;
Rajpurkar, 2016; Stelmakh et al., 2022) and two long-form QA benchmarks (Lin et al., 2021;
Rosenthal et al., 2025) to comprehensively demonstrate the RAG performance of E2-RAG.
To evaluate the efficiency of QA, we measure the Time To First Token (TTFT) and overall
latency under varying context lengths and batch sizes.

In Table 7, we present the performance of standard RAG and E?>-RAG on various document
QA benchmarks. E2-RAG shows performance comparable to standard RAG on these tasks
and even outperforms standard RAG on some benchmarks. For the long-form QA bench-
marks in Table 8, E2-RAG outperforms standard RAG in most cases. This improvement
is likely due to the addition of retrieval and reasoning steps during the finetuning stage.
For efficiency, first, we evaluate the TTFT across different batch sizes and varying context
lengths, with the results shown in Figure 12b and Figure 12a. We observe that the TTFT of
E2-RAG remains nearly constant at a very low level. This is because E2-RAG pre-processes
the context into compressed KV caches offline. Second, we present the total inference latency

19

Published as a conference paper at COLM 2025

for generating different numbers of tokens at a fixed context length of 2560 across various
batch sizes. As shown in Figure 12d, at the 8B model size and a batch size of 8, E2-RAG
achieves a 3x speedup compared to standard RAG. This speedup increases with larger batch
sizes and model sizes. The improvement is attributed to the offline prefilling process and
the significant compression of the context, which reduces the context length and accelerates
the next token generation.

Table 7: Experimental results of E2-RAG on five document QA benchmarks and their aver-

ages. The results show that E2-RAG incurs slight loss but overall maintains an advantage in
document QA.

Model Method \ HotpotQA ASQA SciQ SQuAD Drop Avg.
w /o0 contexts 21.92 38.37 609 18.28 16.22 31.14

Llama 3.2 3B standard RAG 74.38 74 82.1 85.89 68.27 76.93
' E2-RAG 74.96 79.14 856 7833 63.06 7622

A +0.58 +5.14 +35 -7.56 -5.21 -0.71

w/o contexts 27.57 49.56 66.8 24.76 18.76 37.49
standard RAG 75.88 7993 895 89.55 74.68 8191
E2-RAG 79.36 8499 87.8 83.62 67.64 80.68

A +3.48 +5.06 -1.7 -5.93 -7.04 -1.23

Llama 3.1 8B

Table 8: Experimental results of E>-RAG on two long-form QA benchmarks. The results
show that E>-RAG has a certain advantage on long-form QA benchmarks.

Truthful QA ClapNQ
F1 R-L F1 R-L

w /o contexts 9.6 10.09 9.17 8.25
standard RAG 2559 26.62 20.76 18.36

Size Method

3B E2-RAG 26.16 26.75 19.73 18.71
A +0.57 +0.13 -1.03 +0.35

w /o contexts 9.66 9.86 9.38 8.35

SB standard RAG 1938 2435 1992 17.68

E2-RAG 26.39 27.09 2023 19.09
A +7.01 +2.74 +031 +141

— NaiveBS=1 — Ours BS=1 10 — NaiveBS=1 — Ours BS=1 — NaeBS=4 —— Ours BS=4 — NaiveBS=4 — Ours BS=4
Naive BS=4 —— Ours BS=4 Naive BS=4 Ours BS=4 Naive BS=8 —— Ours BS=8 Naive BS=8 —— Ours BS=8

—— NalveBS=8 —— Ours BS=8

N

S
%
3

H

G
N
5

- - G g
2 2 o S T =
':015 [y " 10 / H —
/ 3 . 4 - 3. _
00| = s — _
: vl 02 e 5 _4-/ 10 T
0.05 P R A — B T % ////
500 1000 1500 2000 2500 o0 500 1000 1500 2000 2500 100 200 300 400 500 TR TR R —rT)
Context Lenaths Context Lenaths Number of Generated Tokens Number of Generated Tokens
(a) 3B TTFT (b) 8B TTFT (c) 3B_Latency_mem16 (d) 8B Latency

Figure 12: The TTFT and Latency of E2-RAG and standard RAG on both 3B and 8B.

H Results on Qwen

To further validate our conclusions, we conduct additional experiments on Qwen2.5-
7B (Yang et al., 2024).

20

Published as a conference paper at COLM 2025

Table 9: Results of Qwen 2.5 7B on INSERT operation.

Method HotpotQA ASQA SciQ SQuAD Drop Avg.

OId () New (7) OId (f) New () OId () New () OId (f) New (f) OId () New (7) OId (f) New (f)

Standard RAG 7B

golden context 86.96 88.18 88.26 92.02 91.79 91.30 92.43 92.62 78.00 84.18 87.49 89.66
LLM to edit text 84.06 87.27 86.85 89.57 90.71 91.30 92.43 92.17 77.19 81.96 86.25 88.45
E2-RAG w/o Editor (Efficient RAG 7B)

golden context 86.23 86.36 86.38 85.94 91.07 89.86 84.07 83.44 80.04 75.95 85.56 84.31
LLM to edit text 79.71 79.09 85.92 79.14 88.57 87.68 82.14 81.01 75.97 71.20 82.46 79.62
E2-RAG 7B 84.06 82.73 83.10 83.44 89.29 89.49 82.00 81.55 82.48 79.43 84.19 83.33

Table 10: Results of Qwen2.5-7B on DELETE operation.

HotpotQA ASQA SciQ SQuAD Drop Avg.
OId () Rm (J) OId (f) Rm () OId () Rm (]) OId () Rm (J) OId (f) Rm (J) OId (f) Rm (])

Standard RAG 7B

LLM to edittext 81.76 3548 8423 776 89.66 3571 91.09 2375 7420 2500 84.19 2554
E2-RAG w/o Editor (Efficient RAG 7B)

LLM to edit text 79.14 3226 8829 776 8897 1786 8590 2129 7740 2500 8394 20.83
E?-RAG 7B 75.00 30.65 84.88 12.07 8552 20.16 8547 19.74 7545 2333 8126 21.19

Method

Table 11: Results of Qwen 2.5 7B on UPDATE operation.

HotpotQA ASQA SciQ SQuAD Drop Avg.
OId (T) Rp (1) OId () Rp () OId () Rp () OId () Rp (}) OId (}) Rp (T) OId (T) Rp ()

Standard RAG 7B

LLM to edit text 88.14 7754 7389 8278 6553 7519 69.15 8236 7512 8826 7437 81.23
E2-RAG w/o Editor (Efficient RAG 7B)

LLM to edit text 84.32 72.88 69.72 81.11 6256 72.66 65.62 7893 7465 8451 7137 78.02
E>-RAG 7B 79.39 8729 6833 88.06 6241 8395 64.62 8448 76.06 91.08 70.16 86.97

Method

21

Published as a conference paper at COLM 2025

I Evaluation of Mult-turn Editing

—— Asqa old 08 —— Drop old
0.8 Asga new —— Drop new
0.7
0.7
5‘0 . a 0.6
© ©
e e
> 305
Sos o}
< <
0.4 0.4
0.3 0.3
0.2 0.2
1 2 3 4 5 1 2 3 4 5
Turns Turns
(a) Asqa (b) Drop
—— Sciq old —— Squad old
,_,,4\‘\ X 0.8
0.8 Scig new Squad new
0.7 \\ 0.7 \\
> 0.6
os g
o .
S =1
Jos g0
< <
0.4 0.4
0.3 0.3
0.2 0.2
1 2 3 4 5 1 2 3 4 5
Turns Turns
(d) Sciq (e) Squad

Accuracy

Accuracy

o
©

o
®

o
N

o
o

o
w»

1N
IS

o
w

o
N

o
®

e
N

o
o

o
wn

I
IS

o
w

o
N}

—— Hotpotqa old
Hotpotqa new

‘\V\]

1 2 3 4 5
Turns

(c) Hotpotqa
- — Average old
— Average new
T

\\

1 2 3 4 5
Turns

(f) Average

Figure 13: The evaluation result of multi-turn editing on 3B size.

22

Published as a conference paper at COLM 2025

0.8 o ﬁsqa old 08| == o E“’P old 08l e~ — :otpotqa o
N sqa new rop new otpotga new
\ =
07 0.7 =
0.7
306 i 306
© © @©
E E 5
Oos 0 0.5 005
QY. 1) 1%}
< < <
0.4 0.4 0.4
0.3 0.3 0.3
0.2 0.2 0.2
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Turns Turns Turns
(a) Asqa (b) Drop (c) Hotpotqa
0.9 7y
—— Sciq old —— Squad old —— Average old
. 0.8 0.8
0.8 Sciq new Squad new Average new
\ 0.7 0.7
0.7
Tos 306 0.6
© Y- © ©
e e e
3 3 3
Sos 9os Sos
< < <
0.4 0.4 0.4
0.3 0.3 0.3
0.2 0.2 0.2
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Turns Turns Turns
(d) Sciq (e) Squad (f) Average

Figure 14: The evaluation result of multi-turn editing on 8B size.

23

Published as a conference paper at COLM 2025

J Evaluation of Multi-chunk Ability with Edited Chunks

—— Asqa old Asga new 0.8 — Dmﬁ old Drop new
0.850 <\
0.825 07
0.800
3 306
e c
5 0.775 S
o 1o
1) o
< 0.750 <o5
0.725
0.4
0.700
2 4 6 8 10 2 4 6 8 10
Number of Chunks Number of Chunks
(a) Asqa (b) Drop
0.86 —— Sciq old Sciq new 0.825 —— Squad old Squad new
0.84 0.800
0.775
5,082 -
[} 1o
e ©0.750
S 0.80 S
[} v
2 & 0.725
0.78
0.700
0.76
0.675
0.74 0.650
2 4 6 8 10 2 4 6 8 10
Number of Chunks Number of Chunks
(d) Sciq (e) Squad

Accuracy
o o o
o o ~
o (%] o

o
wn
vl

—— Hotpotqa old

Hotpotqa new

e
9
a

Accuracy
o
'\‘
o

0.65

2 4 6 8 10
Number of Chunks
(c) Hotpotqa
—— Average old

Average new

2

6

4
Number of Chunks

(f) Average

Figure 15: The evaluation results of multi-chunk on 3B size.

24

8 10

Published as a conference paper at COLM 2025

A — Asqaold —— Asqanew — Dropold —— Drop new —— Hotpotqaold —— Hotpotqa new
0.0 e \ 0.80 \..\ 0825 | ST \
088 / 073 \\‘\ oo \—>§\
~N 0.70 \ »\\ 0.775
/ 0.60 \\‘ \
l\'

Accuracy
o o
[o°] ©
N B

Accuracy

o
o
&

Accuracy
o o
[

N w
w o

h\

0.700 \\

o

o

S
o
0
vl

0.78 \ 0.50 0.675
0.76 0.45 0.650
2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
Number of Chunks Number of Chunks Number of Chunks
(a) Asqa (b) Drop (c) Hotpotqa

o
)
@©

— scigold —— Sci 0.86 s =
Sciq old Scig new Squad old Squad new ‘\H\‘\‘
0.825 | *— Average old
/\\‘74/\“\\/ \ —— Average new
L) 0.84 0.800

0.86 ,/ ‘\\
0.82 0.775
>0.84 > >
[} [} [e)
© v \ © \/\ © 0.750
5 5 00 5
0.82
< £ o

o
N
©

\ 0.700

0.675

o
©
o

e
9
o

o
~
©

o

g9

N

0.650
10 2

2 10 2 10

4 6 8 4 6 8 4 6 8
Number of Chunks Number of Chunks Number of Chunks

(d) Sciq (e) Squad (f) Average

Figure 16: The evaluation result of multi-chunk on 8B size.

K Results on Wikipedia

Delete (38)

Insert (87)

74.8%
Update (372)

Figure 17: Wikipedia Edit Pattern Analysis.

To evaluate our method in more practical scenarios, we build a complete RAG pipeline
using Llamalndex (Liu, 2022). For the data, we construct the database of approximately
10,000 chunks from a portion of Wikipedia, where each chunk contains up to 128 tokens.
To construct the editing records, we conduct a case study on Wikipedia edit histories.
Specifically, we analyze the most recent 500 revisions of the "Machine Learning” entry
in English Wikipedia. Each edit operation is categorized into three types: INSERT, DELETE,
and UPDATE (Figure 17). Therefore, we construct around 1,000 editing records composed of

25

Published as a conference paper at COLM 2025

three types of operations, along with their corresponding questions. The proportions of the
operations align with the real update distributions observed in Wikipedia.

For the model, we use BGE (Xiao et al., 2023) large as the Retriever and our 3B model to
generate responses. During both the editing and querying processes, we retrieve the top-1
chunk. First, we update the database using the editing records. Specifically, we retrieve the
relevant chunk using the editing content and apply the edits. After all editing records have
been applied to the database, we input the questions for evaluation.

Table 12: Results of Three types of operations on WikiPedia.

UPDATE INSERT DELETE

Method Old(PD Rp(P OId(f) New (P OId() Rm ()

Standard RAG

LLM to edit text 45.76 28.31 51.97 37.88 54.10 22.58
E2-RAG w/o Editor (Efficient RAG)

LLM to edit text 45.23 30.34 43.31 32.58 52.46 29.03
E2-RAG 45.94 41.02 41.73 37.12 52.46 27.42

26

	Introduction
	RAG and Knowledge Updating
	E2-RAG
	Efficient RAG Module
	Editor Module

	Editing Dataset Construction
	Experiments
	Results on Editing Efficiency
	Results on darkgreenINSERT Operation
	Results on darkredDELETE Operation
	Results on darkblueUPDATE Operation

	Ablation and Discussion
	Multi-turn Editing
	Multi-chunk Ability with Edited Chunks
	Robustness on Insufficient Updating
	Knowledge Conflicts

	Conclusion and Future Work
	Related Work
	Details of GPU hours in editing
	Details of Reposition and Chunks Queue
	Reposition
	Chunks Queue

	Examples of Three Type of Editing Operations
	Training Details
	Results of Golden Editing by Human
	Results on RAG benchmarks
	Results on Qwen
	Evaluation of Mult-turn Editing
	Evaluation of Multi-chunk Ability with Edited Chunks
	Results on Wikipedia

