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Abstract

In this work, we consider solving optimization problems with a stochastic objective and deterministic
equality constraints. We propose a Trust-Region Sequential Quadratic Programming method to find
both first- and second-order stationary points. Our method utilizes a random model to represent the
objective function, which is constructed from stochastic observations of the objective and is designed
to satisfy proper adaptive accuracy conditions with a high but fixed probability. To converge to first-
order stationary points, our method computes a gradient step in each iteration defined by minimizing
a quadratic approximation of the objective subject to a (relaxed) linear approximation of the problem
constraints and a trust-region constraint. To converge to second-order stationary points, our method
additionally computes an eigen step to explore the negative curvature of the reduced Hessian matrix,
as well as a second-order correction step to address the potential Maratos effect, which arises due to
the nonlinearity of the problem constraints. Such an effect may impede the method from moving away
from saddle points. Both gradient and eigen step computations leverage a novel parameter-free de-
composition of the step and the trust-region radius, accounting for the proportions among the feasi-
bility residual, optimality residual, and negative curvature. We establish global almost sure first- and
second-order convergence guarantees for our method, and present computational results on CUTEst
problems, regression problems, and saddle-point problems to demonstrate its superiority over exist-
ing line-search-based stochastic methods.

1 Introduction

We consider constrained stochastic optimization problems of the form:

min
x∈Rd

f(x) = EP [F (x; ξ)], s.t. c(x) = 0, (1)

where f : Rd → R is a stochastic objective, F (·; ξ) : Rd → R is its realization, c : Rd → Rm are deter-
ministic equality constraints, ξ is a random variable following the distribution P , and the expectation
is taken over the randomness of ξ. Throughout the paper, we assume that the objective value f(x),
together with its gradient ∇f(x) and Hessian ∇2f(x), cannot be exactly evaluated, but can be esti-
mated based on the samples {ξi}. Constrained stochastic problems are ubiquitous in various scientific
and engineering fields, including optimal control (Betts, 2010), reinforcement learning (Achiam et al.,
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2017), portfolio optimization (Çakmak and Özekici, 2005), supply chain network design (Santoso
et al., 2005), and physics-informed neural networks (Cuomo et al., 2022).

Numerous methods have been proposed to solve constrained deterministic optimization problems,
including penalty methods, augmented Lagrangian methods, and sequential quadratic programming
(SQP) methods. While each type of method exhibits promising performance under favorable settings,
SQP methods have undoubtedly been very successful for solving both small- and large-scale problems,
particularly when the problems suffer significant nonlinearity (Bertsekas, 1982; Boggs and Tolle, 1995;
Nocedal and Wright, 2006). For problems with a stochastic objective, several Stochastic SQP (SSQP)
methods have also been developed recently (Berahas et al., 2021, 2023a,b,c; Curtis et al., 2023a,b,d,
2024; Qiu and Kungurtsev, 2023; Na et al., 2022a; Na and Mahoney, 2022; Na et al., 2023; Fang et al.,
2024). We defer a detailed literature review to Section 1.1. However, existing SSQP methods primarily
focus on first-order convergence, where the KKT residual is shown to converge to zero. This indicates
that the methods may converge to saddle points or local maxima, which violate the goal of minimizing
the objective and are less meaningful for many problems. For example, in the context of deep learning,
converging to first-order stationary points can result in high generalization errors (Dauphin et al.,
2014; Choromanska et al., 2015).

In this paper, we address the above concern by designing the first SSQP method with second-order
convergence guarantees. We term our method Trust-Region Sequential Quadratic Programming for
STochastic Optimization with RandomModels (TR-SQP-STORM), as a generalization of the STORM
method in Chen et al. (2017) to constrained problems with second-order guarantees. Our method has
the following promising features.

(a) TR-SQP-STORM employs random models to represent the objective f and its gradient and
Hessian, which are constructed from stochastic estimates of those quantities. The random models en-
force the estimates to satisfy proper adaptive accuracy conditions with a high but fixed probability in
each iteration. Moreover, the random models do not presume any parametric distribution for the esti-
mates and allow for biased estimates, thereby accommodating various problem settings and sampling
mechanisms. With random model framework, our method adaptively updates the trust-region radius
based on the ratio between predicted and actual model reductions, in a manner similar to determinis-
tic trust-region methods. As such, our method does not input any prespecified trust-region radius (or
stepsize) sequences that significantly affect algorithm performance (see, e.g., Berahas et al., 2021,
2023a,b,c; Curtis et al., 2024; Fang et al., 2024).

(b) TR-SQP-STORM performs a trial step of two types, either a gradient step or an eigen step.
The gradient step reduces the KKT residual, while the eigen step increases the negative curvature of
the reduced Lagrangian Hessian — essentially, moving away from saddle points or local maxima. Our
step computation requires overcoming an infeasibility issue, which arises from the potential contradic-
tion between the linearized problem constraints and the trust-region constraint. To resolve this, we
relax the constraint linearization with a parameter-free decomposition technique for the step and trust-
region radius, which is designed according to the proportions among the feasibility residual, optimality
residual, and negative curvature. The decomposition balances the goals of reducing the KKT residual
(i.e., feasibility + optimality) and increasing the negative curvature, and enjoys a nice scale-invariant
property.

(c) TR-SQP-STORM additionally computes a second-order correction (SOC) step to resolve the
(second-order) Maratos effect. As noted in Byrd et al. (1987), the iterates for constrained problems can
fail to move away from saddle points, regardless of the trial step length. This problematic issue often
arises when the constraints have significant curvatures that counteract the curvature of the objective.
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Our computation of SOC steps and the criteria of their activation are designed to accommodate the
inherent randomness in estimation, ensuring effectiveness for stochastic problems.

For the above method design, we establish global almost sure first- and second-order convergence
guarantees. In particular, given that the merit function parameter stabilizes and the failure probabil-
ity in random models is below a certain threshold, the iteration sequence will converge almost surely to
first-order stationary points, with a subsequence converging to second-order stationary points. This
result corroborates the findings of Chen et al. (2017) on first-order convergence and Blanchet et al.
(2019) on second-order convergence of trust-region methods designed for unconstrained stochastic op-
timization. In the context of constrained stochastic optimization, we contribute to existing literature
in the following four aspects. First, TR-SQP-STORM is the first stochastic method to achieve second-
order convergence. Second, the merit parameter in our analysis only requires to be stabilized, ensured
by a boundedness condition. This substantially relaxes the conditions of existing SSQP methods that
demand not only stabilized but also sufficiently large merit parameters. Extreme merit parameters
rely on additional model assumptions. For example, Berahas et al. (2021, 2023a,b); Curtis et al. (2024)
imposed symmetric assumptions on the noise distribution. Third, due to the trust-region constraint,
our SQP subproblems remain well-defined even with indefinite Lagrangian Hessian approximations.
In contrast, most existing SSQP methods are line-search-based, necessitating positive definite Hessian
approximations typically obtained with cumbersome computational costs (e.g., matrix factorization).
Fourth, compared to random models in Na et al. (2022a, 2023), our design is significantly simplified,
making implementation much easier (e.g., comparing (Na et al., 2022a, (17), (22)) with (13)–(15)).
We implement TR-SQP-STORM on problems in the CUTEst set and on regression problems to
demonstrate its superior performance over line-search-based methods in practice. We also investigate
its capability to escape saddle points in a saddle-point problem, a feature not shared by other existing
methods.

1.1 Literature review

Stochastic SQP methods have been a focal point of operations research in recent years, with a series of
papers reporting on algorithm designs and analyses. Within this line of literature, two primary setups
for estimating objective models are commonly discussed.

The first setup is the fully stochastic setup, where a single sample is accessed at each step. Berahas
et al. (2021) designed the first SSQP method under this setup, utilizing the ℓ1 merit function and a pre-
specified sequence {βk} to determine suitable stepsizes. Subsequently, several works have expanded
on this method to relax various problem conditions. For example, Berahas et al. (2023a) introduced
a method to handle rank-deficient constraint Jacobians; Berahas et al. (2023b) accelerated SSQP by
applying the SVRG technique; Curtis et al. (2023b) proposed an interior-point method to solve bound-
constrained problems; Curtis et al. (2023d) incorporated deterministic inequality constraints into the
algorithm design; and Curtis et al. (2024) inexactly solved the SQP subproblems. The methods devel-
oped above are all line-search-based, where the search direction and stepsize are computed separately.
As a complement, Fang et al. (2024) designed the first trust-region SSQPmethod to compute the search
direction and stepsize jointly. That trust-region method does not rely on positive definite Hessian ap-
proximations to make subproblems well-posed, which is critical for exhibiting promising performance
when solving nonlinear problems. In addition, (non-)asymptotic properties of SSQP methods and it-
eration complexities have also been established. See Curtis et al. (2023a,c); Na and Mahoney (2022);
Kuang et al. (2023); Lu et al. (2024) and references therein. Existing literature has shown global al-
most sure convergence of SSQP iterates to first-order stationary points. In line with this series of works,
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our paper designs a trust-region SSQP scheme with second-order convergence guarantees. Unlike
methods in the fully-stochastic setup, our method adaptively selects the batch size based on the
iteration progress and updates the trust-region radius according to the ratio between predicted
and actual model reductions, similar to deterministic methods. This scheme does not input any
sequence {βk} to prespecify the radius or stepsize, which significantly affects the efficacy of fully
stochastic methods in practice.

The second setup is the random model setup, where a batch of samples is accessed at each step. The
random models constructed from samples aim to enforce certain estimation accuracy conditions with
fixed probability. Na et al. (2022a) designed the first SSQP method under this setup, where random
models are employed to compute an augmented Lagrangian merit function and perform a stochastic
line search for the stepsize selection. Na et al. (2023) further introduced an active-set strategy to
accommodate inequality constraints and Qiu and Kungurtsev (2023) enhanced it to a robust SSQP de-
sign. Moreover, Berahas et al. (2022) introduced a norm test condition for the batch size selection that
was later generalized to projection-based and augmented Lagrangian methods with complexity analy-
sis (Beiser et al., 2023; Bollapragada et al., 2023; Berahas et al., 2023c). Recently, Berahas et al. (2024)
considered a finite-sum problem and designed a modified line-search-based SQP to unify the global
and local convergence guarantees as an alternative of performing a correction step.

Following the aforementioned literature, this paper designs a trust-region SSQP method within the
random model framework for constrained stochastic optimization. Our development refines existing
trust-region methods for unconstrained stochastic optimization (Conn et al., 2009a,b; Bandeira et al.,
2012, 2014; Chen et al., 2017; Blanchet et al., 2019). In particular, due to the potential contradiction
between the linearized problem constraints and the trust-region constraint, we propose a parameter-
free decomposition technique to address the infeasibility issue when computing the trial step. We also
streamline the construction of random models based on Chen et al. (2017); Blanchet et al. (2019).
Our models only require accuracy conditions at iterates, unlike some models in those references that
require accuracy conditions over all points within the trust region, a more stringent requirement.
Furthermore, we introduce a novel reliability parameter to improve an accuracy condition of objective
value estimation (see (Blanchet et al., 2019, Assumption 6) and (16) for comparison). This parameter,
without an upper limit, enhances the algorithm’s adaptivity and may reduce per-iteration batch size.

We would also like to mention the literature that studies problems where the objective function is
deterministic but evaluated with bounded noise. Sun and Nocedal (2023); Lou et al. (2024); Oztoprak
et al. (2023) designed robust methods for these (unconstrained) problems and showed that the iterates
would visit a neighborhood of (first-order) stationary points infinitely many times. Their algorithm de-
sign and analysis differ significantly from ours due to the distinction between deterministic and stochas-
tic optimization. In their setting, the upper bound of the noise is an input of the method and affects
the radius of the convergence neighborhood; that is, the upper bound is assumed to be known in
advance. Our algorithm design does not require knowledge of the upper bound of the noise.

1.2 Notation

We use ∥ ·∥ to denote the ℓ2 norm for vectors and the operator norm for matrices. I denotes the iden-
tity matrix and 0 denotes the zero vector/matrix, whose dimensions are clear from the context. For
the constraints c(x) : Rd → Rm, we let G(x) := ∇c(x) ∈ Rm×d denote its Jacobian matrix and let
ci(x) denote the i-th constraint for 1 ≤ i ≤ m (the subscript indexes the iteration). Define P (x) = I−
G(x)T [G(x)G(x)T ]−1G(x) to be the projection matrix to the null space ofG(x). Then, we let Z(x) ∈
Rd×(d−m) form the bases of ker(G(x)) such that Z(x)TZ(x) = I and Z(x)Z(x)T = P (x). Through-
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out the paper, we use an overline to denote a stochastic estimate of a quantity. For example, ḡ(x)
denotes an estimate of g(x) := ∇f(x).

1.3 Structure of the paper

We introduce the computation of gradient steps, eigen steps, and SOC steps in Section 2. We propose
TR-SQP-STORM in Section 3 and establish first- and second-order convergence guarantees in Section
4. Numerical experiments are presented in Section 5, and conclusions are presented in Section 6.

2 Preliminaries

Let L(x,λ) = f(x)+λT c(x) be the Lagrange function of Problem (1) with λ ∈ Rm representing the
Lagrangian multipliers associated with the constraints c(x). Under certain constraint qualifications,
finding a second-order stationary point of Problem (1) is equivalent to finding a pair (x∗,λ∗) such that

∇L(x∗,λ∗) =

(
∇xL(x∗,λ∗)
∇λL(x∗,λ∗)

)
=

(
∇f(x∗) +G(x∗)Tλ∗

c(x∗)

)
=

(
0
0

)
and τ(x∗,λ∗) ≥ 0,

where τ(x∗,λ∗) denotes the smallest eigenvalue of the reduced Lagrangian Hessian Z(x∗)T∇2
xL(x∗,λ∗)Z(x∗).

The Lagrangian Hessian (with respect to the primal variable x) is defined as ∇2
xL(x,λ) = ∇2f(x)+∑m

i=1 λ
i∇2ci(x). A first-order stationary point (x∗,λ∗) corresponds only to ∇L(x∗,λ∗) = 0.

Throughout the paper, we call ∥∇xL(x,λ)∥ the optimality residual, ∥∇λL(x,λ)∥ (i.e., ∥c(x)∥) the
feasibility residual, and ∥∇L(x,λ)∥ the KKT residual. Given the k-th iterate (xk,λk), we denote gk =
∇f(xk), ∇2fk = ∇2f(xk), and their estimates ḡk and ∇̄2fk. The construction of these estimates
via random models is introduced in Section 3. We denote ck, Gk, {∇2cik}mi=1 similarly. The estimated
Lagrangian gradient is defined as ∇̄Lk = (∇̄xLk, ck) with ∇̄xLk = ḡk +GT

k λk, and the estimated
Lagrangian Hessian (with respect to x) is defined as ∇̄2

xLk = ∇̄2fk +
∑m

i=1 λ
i
k∇2cik.

Given the iterate xk and the trust-region radius ∆k in the k-th iteration, we compute a trial
step ∆xk by (approximately) solving the trust-region SQP subproblem:

min
∆x∈Rd

1

2
∆xT H̄k∆x+ ḡTk ∆x, s.t. ck +Gk∆x = 0, ∥∆x∥ ≤ ∆k, (2)

where H̄k approximates the Lagrangian Hessian ∇2
xLk. The subproblem (2) performs a quadratic ap-

proximation of the nonlinear objective and a linear approximation of the nonlinear constraints in (1),
together with a trust-region constraint. When aiming to find the first-order stationary point, we only
need ∥H̄k∥ to be bounded; while when aiming to find the second-order stationary point, we let H̄k :=
∇̄2

xLk. Compared to unconstrained problems, a subtlety is that (2) will not have a feasible point if

{∆x ∈ Rd : ck +Gk∆x = 0} ∩ {∆x ∈ Rd : ∥∆x∥ ≤ ∆k} = ∅.

This infeasibility issue occurs when the radius ∆k is too short. In this work, we introduce a parameter-
free decomposition technique for the step and trust-region radius to relax the linearized constraint and
resolve the infeasibility issue. The step is decomposed into normal and tangential components, where
their lengths are controlled by respective radii that are proportional to the feasibility residual and
optimality residual (or negative curvature). Our decomposition technique does not increase the cost of
solving the SQP subproblem.
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The trial step ∆xk can be either a gradient step or an eigen step. Gradient steps aim to reduce the
KKT residual to achieve first-order convergence, while eigen steps aim to explore negative curvature of
the reduced Lagrangian Hessian to achieve second-order convergence. For the latter purpose, we also
need to compute a second-order correction (SOC) step to overcome the Maratos effect (Conn et al.,
2000). We introduce the computation of gradient steps, eigen steps, and SOC steps in Sections 2.1, 2.2,
and 2.3, respectively.

2.1 Gradient steps

Our gradient step computation follows a similar spirit to Fang et al. (2024). We decompose the trial step
∆xk into two orthogonal segments as (recall Zk ∈ Rd×(d−m) forms the bases of ker(Gk))

∆xk = wk + tk, where wk ∈ im(GT
k ) and tk = Zkuk ∈ ker(Gk) with uk ∈ Rd−m.

Here, wk is called the normal step and tk is called the tangential step. Suppose Gk has full row rank,
then we define

vk := −GT
k [GkG

T
k ]

−1ck. (3)

Without the trust-region constraint ∥∆xk∥ ≤ ∆k, the linearized constraint ck+Gk∆xk = 0 would im-
ply wk = vk since Gktk = 0. However, with the trust-region constraint, we relax the linearized con-
straint to γ̄kck+Gk∆xk = 0 for a scalar γ̄k ∈ (0, 1] defined later, which corresponds to shrinking vk by

wk = γ̄kvk.

To control the lengths of the normal and tangential steps, we define

cRS
k :=

ck
∥Gk∥

, ∇̄xLRS
k :=

∇̄xLk
∥H̄k∥

, ∇̄LRS
k := (∇̄xLRS

k , cRS
k ) (4)

to be the rescaled feasibility, optimality, and KKT residual vectors, respectively; and decompose the
trust-region radius ∆k as

∆̆k =
∥cRS

k ∥
∥∇̄LRS

k ∥
·∆k and ∆̃k =

∥∇̄xLRS
k ∥

∥∇̄LRS
k ∥

·∆k, (5)

where we implicitly assume ∥∇̄LRS
k ∥ ≠ 0 (otherwise, ḡk can be re-estimated). We use ∆̆k to control the

length of the normal stepwk and use ∆̃k to control the length of the tangential step tk = Zkuk. In par-
ticular, we let

γ̄k := min{∆̆k/∥vk∥, 1}, (6)

and solve uk through the following subproblem reduced from (2):

min
u∈Rd−m

m(u) :=
1

2
(Zku)

T H̄k(Zku) + (ḡk + H̄kwk)
TZku, s.t. ∥u∥ ≤ ∆̃k. (7)

Instead of solving (7) exactly, we only require uk to achieve a fixed fraction κfcd ∈ (0, 1] of the Cauchy
reduction, that is, a reduction in the objective model m(·) achieved by the Cauchy point (see Nocedal
and Wright (2006), Lemma 4.3):

m(uk)−m(0) ≤ −
κfcd
2
∥ZT

k (ḡk + H̄kwk)∥min

{
∆̃k,
∥ZT

k (ḡk + H̄kwk)∥
∥ZT

k H̄kZk∥

}
. (8)
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Many approaches can be applied to enforce (8), such as the dogleg method, the two-dimensional sub-
space minimization method, and the Steihaug’s algorithm. We refer to (Nocedal and Wright, 2006,
Chapter 4) for more details.

Remark 2.1. The radius decomposition (5) is based on the ratios of the rescaled feasibility and opti-
mality residuals to the rescaled KKT residual defined in (4). The motivation of rescaling is to achieve
scale invariance. When the problem objective and/or constraints are scaled by a (positive) scalar, the
solution x∗ would not change but the original residuals ∥ck∥ and ∥∇̄xLk∥ would be scaled by that
scalar. Thus, using original residuals would make the radius decomposition and further step computa-
tion scale-variant. In contrast, the decomposition (5) based on rescaled residuals is scale-invariant.

Remark 2.2. Compared to Fang et al. (2024), we relax the factor κfcd in condition (8) from κfcd = 1
to κfcd ∈ (0, 1]. This relaxation allows the model reduction achieved by our subproblem solution uk to
be even less than that achieved by the Cauchy point (corresponding to κfcd = 1), which can be com-
puted easily and efficiently. The factor κfcd is determined by the approach used to compute uk. Specif-
ically, κfcd = 1 if we compute the exact Cauchy point or apply the two-dimensional method or the dog-
leg method, while κfcd ≤ 1 if we apply the Steihaug’s algorithm with proper termination conditions.

2.2 Eigen steps

Performing gradient steps may not lead to a second-order stationary point because gradient steps do
not keep track of the eigenvalues of the reduced Lagrangian Hessian ZT

k H̄kZk, which should be posi-
tive semidefinite near a second-order stationary point. In this subsection, we introduce eigen steps to
address negative curvature (i.e., increase the most negative eigenvalue) of the reduced Lagrangian Hes-
sian. Let τ̄k be the smallest eigenvalue of ZT

k H̄kZk and let τ̄+k := |min{τ̄k, 0}|. The eigen step is taken
only when τ̄k < 0 (cf. (19) in Section 3).

Analogous to the gradient step, the eigen step ∆xk is decomposed into a normal step and a tangen-
tial step as ∆xk = wk+tk. To control their lengths, we let τ̄

RS+
k := τ̄+k /∥H̄k∥ be the rescaled negative

curvature, and decompose the radius based on the proportions of the (rescaled) feasibility residual and
negative curvature as

∆̆k =
∥cRS

k ∥
∥(cRS

k , τ̄RS+
k )∥

·∆k and ∆̃k =
τ̄RS+
k

∥(cRS
k , τ̄RS+

k )∥
·∆k. (9)

Again, we use ∆̆k to control the length of the normal step wk and use ∆̃k to control the length of the
tangential step tk = Zkuk. Specifically, the normal step is computed as wk = γ̄kvk, where vk is de-
fined in (3) and γ̄k is defined in (6) but with (9) used to compute ∆̆k. The tangential step tk = Zkuk

solves the subproblem (7), but instead of achieving the Cauchy reduction (8), we require uk to satisfy

(ḡk + H̄kwk)
TZkuk ≤ 0, ∥uk∥ ≤ ∆̃k, (Zkuk)

T H̄k(Zkuk) ≤ −κfcd · τ̄+k ∆̃2
k, (10)

which implies the curvature reduction:

m(uk)−m(0) ≤ −
κfcd
2

τ̄+k ∆̃2
k < 0. (11)

Here, we use κfcd ∈ (0, 1] to denote the fraction in both gradient steps and eigen steps for simplicity.
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Remark 2.3. We briefly discuss how to compute uk in practice. Let ζ̄k be an approximation of the
eigenvector of ZT

k H̄kZk corresponding to the eigenvalue τ̄k, and let ζ̄RS
k := ±ζ̄k ·∆̃k/∥ζ̄k∥. Then, ζ̄RS

k

satisfies the first two conditions in (10). The third condition is also satisfied with κfcd = 1 by comput-
ing the exact eigenvector. More generally, methods such as truncated conjugate gradient and trun-
cated Lanczos methods can be employed to solve (7) and satisfy (10); see (Conn et al., 2000, Chapter
7.5) for such applications.

Remark 2.4. Byrd et al. (1987); Conn et al. (2000) proposed decomposing the radius ∆k into α∆k

and (1−α)∆k, where α ∈ (0, 1) is a user-specified parameter. In contrast to their approaches, our ra-
dius decomposition is parameter-free. In particular, we define ∆̆k and ∆̃k in proportion to the rescaled
feasibility residual and negative curvature. This choice is motivated by observing that the normal step
correlates with reducing the feasibility residual:

∥ck +Gk∆xk∥ − ∥ck∥ = ∥ck +Gkwk∥ − ∥ck∥ = −γ̄k∥ck∥ ≤ 0,

while the tangential step correlates with reducing τ̄+k , or equivalently, increasing the most negative eigen-
value, as implied by (11).

2.3 Second-order correction steps

Second-order correction (SOC) steps are designed to address the Maratos effect. Byrd et al. (1987) ob-
served that when xk is a saddle point, the (gradient or eigen) step ∆xk may increase f(x) and ∥c(x)∥
simultaneously, resulting in a rejection of the step in the algorithm design. Furthermore, this issue
cannot be resolved by recursively reducing the radius ∆k, indicating that we are trapped at the saddle
point. Such a phenomenon (called the Maratos effect) is unique to constrained optimization problems
and stems from the inaccurate linear approximation of the nonlinear problem constraints.

To avoid the above situation and converge to a second-order stationary point, we correct the trial
step ∆xk by following the curvature of the constraints more closely and performing the step ∆xk+dk

when necessary. The SOC step dk is given by

dk = −GT
k [GkG

T
k ]

−1 {c(xk +∆xk)− ck −Gk∆xk} . (12)

Our SOC step dk differs from the existing one that is widely used in deterministic SQP methods (Byrd
et al., 1987), where dk = −GT

k [GkG
T
k ]

−1c(xk +∆xk). This difference is motivated by the distinct
behavior of the trust-region radius ∆k in deterministic and stochastic SQP methods. In particular, in
deterministic SQP methods, ∆k is locally bounded away from zero, so the trust-region constraint will
eventually become inactive. This property implies that γ̄k = 1 and ck+Gk∆xk = 0 for large enough k
(see (6)). However, as shown in Lemmas 4.6 – 4.9, a stochastic model is a good surrogate of the true
model only when the estimates are accurate, which holds with a fixed probability at each iteration. As
finally proved in Corollary 4.14, our stochastic SQP method exhibits ∆k → 0, implying that γ̄k may
fail to converge to 1, and we can no longer guarantee ck+Gk∆xk = 0. As such, we incorporate the re-
mainder ck +Gk∆xk in (12) to ensure that dk accounts for a higher order term of ∆xk.

3 Trust-Region SQP for Stochastic Optimization with Random
Models

We propose the TR-SQP-STORM method in this section, which is summarized in Algorithm 1. We
begin by introducing the random models used to estimate the objective value, gradient, and Hessian.
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3.1 Random models

The random models in this paper are estimates of the objective values, gradients, and Hessians at each
iteration. These estimates are constructed from random realizations of the stochastic objective func-
tion and are required to satisfy certain adaptive accuracy conditions with a high but fixed probability.
We do not specify a particular approach to obtain the estimates or assume a parametric distribution
for them (in contrast with the sub-exponential assumption in Berahas et al., 2023c; Cao et al., 2023),
which allows us to flexibly cover various problem settings. Our goal is to show that, under adaptive ac-
curacy conditions, the methods utilizing these estimates converge almost surely.

Let κh, κg, κf > 0 and ph, pg, pf ∈ (0, 1) be user-specified parameters, and let α ∈ {0, 1} be an
indicator that denotes whether the algorithm is finding a first-order stationary point (α = 0) or a
second-order stationary point (α = 1). Recall that ∆k is the trust-region radius, which will be adap-
tively adjusted in each step.

• Hessian estimate. We have to estimate the Hessian only when α = 1, i.e., when we are aiming to
find a second-order stationary point. In particular, we require

Ak =
{
∥∇̄2fk −∇2fk∥ ≤ κh∆k

}
satisfies P (Ak | xk) ≥ 1− ph. (13)

The above accuracy condition indicates that the estimation error of the Hessian is proportional to the
radius ∆k with probability at least 1− ph. This condition is not required for first-order convergence.

• Gradient estimate. We require the gradient estimate ḡk to satisfy an accuracy condition pro-
portional to ∆α+1

k with probability at least 1− pg:

Bk = {∥ḡk − gk∥ ≤ κg∆
α+1
k } satisfies P (Bk | xk) ≥ 1− pg. (14)

• Function value estimate.We estimate the function value at two points: the current iterate xk and
the trial iterate xsk , where xsk = xk+∆xk if the SOC step is not performed and xsk = xk+∆xk+dk

if the SOC step is performed. The trial iterate may not be accepted (i.e., xk+1 = xk).
We require the following accuracy conditions:

Ck =
{
max

(
|f̄k − fk|, |f̄sk − fsk |

)
≤ κf∆

α+2
k

}
satisfies P (Ck | xk,∆xk) ≥ 1− pf , (15)

and
max

{
E
[
|f̄k − fk|2 | xk,∆xk

]
,E
[
|f̄sk − fsk |

2 | xk,∆xk

]}
≤ ϵ̄2k. (16)

The first condition states that the estimation errors of f̄k and f̄sk are proportional to ∆α+2
k with prob-

ability at least 1−pf , which is more restrictive than the gradient and Hessian estimation. The second
condition indicates that the variance of the estimates is controlled by a reliability parameter ϵ̄k. Here,
ϵ̄k is updated at each step based on how reliably the reduction achieved in the random SQP model can
be applied to the true SQP model, which is quantitatively measured by the magnitude of the reduction.

We note that the above accuracy conditions (13)–(16) enable biased estimates, as long as the prob-
ability of getting a large bias is small enough. Estimates that satisfy these conditions can be obtained
through various approaches. For example, we can construct estimates via subsampling as follows:

∇̄2fk =
1

|ξkh|
∑
ξh∈ξkh

∇2F (xk; ξh), ḡk =
1

|ξkg |
∑
ξg∈ξkg

∇F (xk; ξg),
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f̄k =
1

|ξkf |
∑
ξf∈ξkf

F (xk; ξf ), f̄sk =
1

|ξkf |
∑
ξf∈ξkf

F (xsk ; ξf ),

where ξkh, ξ
k
g , ξ

k
f denote the sample sets and |·| denotes the sample size. If each realization∇2F (xk; ξh),

∇F (xk; ξh), F (xk; ξh) has a bounded variance, then the conditions (13)–(16) hold provided

|ξkh| ≥
Ch

ph {κh∆k}2
, |ξkg | ≥

Cg

pg{κg∆α+1
k }2

, |ξkf | ≥
Cf

pf min({κf∆α+2
k }2, ϵ̄2k)

(17)

for some constants Ch, Cg, Cf > 0 (by Chebyshev’s inequality). Furthermore, if the noise has a sub-
exponential tail assumption, the factor 1/ph in (17) can be relaxed to log(1/ph) (similar for 1/pg, 1/pf ),
as suggested by the (matrix) Bernstein concentration inequality (Tropp, 2011, Theorems 6.1 and 6.2).

Compared to existing literature on unconstrained problems (Chen et al., 2017; Blanchet et al.,
2019), we introduce several modifications to random models. First, our method designs random mod-
els specifically for estimates at iterates, whereas existing literature imposed accuracy conditions on all
points within the trust region — a notably more stringent requirement. Second, Blanchet et al. (2019)
adopted ∆3

k in (16) to regulate expected errors in objective value estimates. In contrast, we introduce
a reliability parameter ϵ̄k following Na et al. (2022a). This parameter provides additional flexibility to
the random model, as it is not subject to an upper bound and can be updated somewhat indepen-
dently of ∆k. As we will demonstrate in Section 4, with ∆k → 0 as k →∞, it is possible that ϵ̄k ≥ ∆3

k

for sufficiently large k. Consequently, compared to Blanchet et al. (2019), our model may require fewer
samples to meet the reliability condition expressed in (16).

3.2 Algorithm design

We require the following user-specified parameters: ph, pg, pf , η ∈ (0, 1), κfcd ∈ (0, 1], r,∆max, κh,

κg > 0, 0 < κf ≤
κfcdη

3

16max{1,∆max} , and ρ, γ > 1. We initialize the method with x0, ∆0 ∈ (0,∆max), and
ϵ̄0, µ̄0 > 0. Recall that we set α = 0 if we aim to find a first-order stationary point, while α = 1 if we
aim to find a second-order stationary point.

Given (xk,∆k, ϵ̄k, µ̄k) in the k-th iteration, our method proceeds in the following four steps.

Step 1: Gradient and Hessian estimations. We obtain the gradient estimate ḡk that satisfies

(14). Then we compute the Lagrangian multiplier λ̄k = −[GkG
T
k ]

−1Gkḡk and the Lagrangian gradient
∇̄Lk = ḡk +GT

kλk. For the Hessian estimate, we consider two cases.

• If α = 0: we generate any matrix H̄k to approximate the Lagrangian Hessian ∇2
xLk and set τ̄+k = 0.

• If α = 1: we obtain the Hessian estimate ∇̄2fk that satisfies (13). Then, we compute H̄k = ∇̄2fk+∑m
i=1 λ̄

i
k∇2cik and set τ̄k to be the smallest eigenvalue of ZT

k H̄kZk and τ̄+k = |min{τ̄k, 0}|.

Step 2: Trial step computation. With the above gradient and Hessian estimates, we compute the
trial step. In particular, if the following condition does not hold

max

{
∥∇̄Lk∥

max{1, ∥H̄k∥}
, τ̄+k

}
≥ η∆k, (18)

we say the k-th iteration is unsuccessful and let xk+1 = xk. We also decrease the radius and the
reliability parameter by ∆k+1 = ∆k/γ and ϵ̄k+1 = ϵ̄k/γ.
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Otherwise, if (18) holds, we then decide whether to perform a gradient step or an eigen step. We
check the following condition:

∥∇̄Lk∥min

{
∆k,
∥∇̄Lk∥
∥H̄k∥

}
≥ τ̄+k ∆k (∆k + ∥ck∥) . (19)

If (19) holds, we compute ∆xk as the gradient step (cf. Section 2.1); otherwise, we compute ∆xk as
the eigen step (cf. Section 2.2).

Remark 3.1. The criterion in a similar flavor to (18) is a standard practice in stochastic optimization
(see, e.g., Chen et al., 2017; Blanchet et al., 2019; Jin et al., 2024). In fact, due to the presence of esti-
mation errors, there is a potential discrepancy where the trial step leads to a sufficient reduction in the
stochastic (merit) function, suggesting a successful k-th iteration, whereas it leads to an insufficient re-
duction (or even an increase) in the actual expected (merit) function. The condition (18) guarantees
that the stepsize ∆k will not exceed a certain proportion of either ∥∇̄Lk∥ or τ̄+k , should an iteration be
deemed successful and the iterate be updated, thus mitigating the repercussions of such discrepancies.

Remark 3.2. The condition (19) compares two reductions achieved by the gradient and eigen steps.
The left-hand side represents the reduction made by the gradient step, while the right-hand side repre-
sents the reduction made by the eigen step. Instead of computing both the gradient and eigen steps in
each iteration, we always perform the more aggressive step. Certainly, when finding a first-order sta-
tionary point, we have τ̄+k = 0 and (19) holds; thus, we always perform the gradient step.

Step 3: Merit function estimation. After we compute the trial step, we then update the iterate xk.
The update is based on the reduction of the trial step achieved on an (estimated) ℓ2 merit function that
balances the objective optimality and constraints violation:

Lµ(x) = f(x) + µ∥c(x)∥. (20)

In particular, given µ̄k, we define the predicted reduction as

Predk = ḡTk ∆xk +
1

2
∆xT

k H̄k∆xk + µ̄k(∥ck +Gk∆xk∥ − ∥ck∥), (21)

which can be viewed as the reduction of the linearized merit function. We update the merit parameter
µ̄k ← ρµ̄k until

Predk ≤ −
κfcd
2

max

{
∥∇̄Lk∥min

{
∆k,
∥∇̄Lk∥
∥H̄k∥

}
, τ̄+k ∆k (∆k + ∥ck∥)

}
. (22)

(Our analysis in Section 4.3 shows that (22) is ensured to satisfy for large enough µ̄k.) On the other
hand, we let xsk = x+∆xk be the trial point and obtain the function value estimates f̄k and f̄sk that
satisfy (15) and (16). Then, we compute the actual reduction as

Aredk = L̄skµ̄k
− L̄kµ̄k

= f̄sk − f̄k + µ̄k(∥csk∥ − ∥ck∥). (23)

Step 4: Iterate update. Finally, we update the iterate by checking the following condition:

(a): Aredk/Predk ≥ η and (b): − Predk ≥ ϵ̄k. (24)

In particular, we see that (24) leads to three cases.
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• Case 1: (24a) holds.We say the k-th iteration is successful. We update the iterate and the trust-
region radius as xk+1 = xsk and ∆k+1 = min{γ∆k,∆max}. Furthermore, if (24b) holds, we say the
k-th iteration is reliable and increase the reliability parameter by ϵ̄k+1 = γϵ̄k. Otherwise, we say the
k-th iteration is unreliable and decrease the reliability parameter by ϵ̄k+1 = ϵ̄k/γ.

• Case 2: (24a) does not hold and α = 1. In this case, we decide whether to perform a SOC step
to recheck (24a). Specifically, if ∥ck∥ ≤ r, we compute a SOC step dk (cf. Section 2.3) and set xsk =
xk +∆xk + dk as a new trial point. Then, we re-estimate f̄sk to satisfy (15) and (16), recompute
Aredk as in (23), and recheck (24a). If (24a) holds, we go to Case 1 above; if (24a) does not hold, we
go to Case 3 below. On the other hand, if ∥ck∥ > r, the SOC step is not triggered and we directly go
to Case 3 below.

• Case 3: (24a) does not hold and α = 0. We say the k-th iteration is unsuccessful. We do not
update the current iterate by setting xk+1 = xk, and decrease the trust-region radius and the relia-
bility parameter by setting ∆k+1 = ∆k/γ and ϵ̄k+1 = ϵ̄k/γ.

The criterion (24a) is aligned with the deterministic trust-region methods for deciding whether the
trial step is successful (Powell and Yuan, 1990; Byrd et al., 1987; Omojokun, 1989; Heinkenschloss and
Ridzal, 2014), ensuring that the reduction in the merit function is at least a specified fraction of the re-
duction predicted by the SQP model. Based on the values of Predk and ϵ̄k, we further classify the suc-
cessful step into a reliable or unreliable step. For a reliable step, we increase the reliability parameter
to relax the accuracy condition for the subsequent iteration, thereby reducing the necessary sample
size. Conversely, for an unreliable step, we decrease the reliability parameter for the next iteration to
secure more reliable estimates.

To end this section, we introduce some additional notation. We define F−1 ⊆ F0 ⊆ F1 · · · as a fil-
tration of σ-algebras, where Fk−1 = σ({xi}ki=0), ∀k ≥ 0, contains all the randomness before perform-
ing the k-th iteration. In the k-th iteration, we first obtain ḡk and ∇̄2fk (if α = 1), and then compute
∆xk, update µ̄k, and compute dk (if SOC is triggered). Defining Fk−0.5 = σ({xi}ki=0 ∪ {ḡk, ∇̄2fk}),
we find that for all k ≥ 0, σ(xk,∆k, ϵ̄k) ⊆ Fk−1 and σ(∆xk, λ̄k, µ̄k,dk) ⊆ Fk−0.5.

4 Convergence Analysis

In this section, we establish global almost sure first- and second-order convergence properties for TR-
SQP-STORM. We begin by stating assumptions.

Assumption 4.1. Let Ω ⊆ Rd be an open convex set containing the iterates and trial points {xk,xsk}.
The objective f(x) is twice continuously differentiable and bounded below by finf over Ω. The gradient
∇f(x) and Hessian ∇2f(x) are both Lipschitz continuous over Ω, with constants L∇f and L∇2f , re-
spectively. Analogously, the constraint c(x) is twice continuously differentiable and its Jacobian G(x)
is Lipschitz continuous over Ω with constant LG. For 1 ≤ i ≤ m, the Hessian of the i-th constraint,
∇2ci(x), is Lipschitz continuous over Ω with constant L∇2c. Furthermore, we assume that there exist
constants κc, κ∇f , κ1,G, κ2,G > 0 such that

∥ck∥ ≤ κc, ∥gk∥ ≤ κ∇f , κ1,G · I ⪯ GkG
T
k ⪯ κ2,G · I, ∀k ≥ 0.

For first-order stationarity, we require the Hessian approximation ∥H̄k∥ ≤ κB for a constant κB ≥ 1.

Assumption 4.1 is standard in the SQP literature (Byrd et al., 1987; Powell and Yuan, 1990; El-
Alem, 1991; Conn et al., 2000; Berahas et al., 2021, 2023a; Curtis et al., 2024; Fang et al., 2024). For

12



Algorithm 1 TR-SQP for Stochastic Optimization with Random Models (TR-SQP-STORM)

1: Input: Initial iterate x0 and radius ∆0 ∈ (0,∆max), and parameters ph, pg, pf , η ∈ (0, 1), κfcd ∈
(0, 1], µ̄0, ϵ̄0, r, κh, κg > 0, 0 < κf ≤

κfcdη
3

16max{1,∆max} , ρ, γ > 1.
2: Set α = 0 for first-order stationarity and α = 1 for second-order stationarity.
3: for k = 0, 1, · · · , do
4: Obtain ḡk and compute λ̄k and ∇̄Lk. ▶ Step 1
5: If α = 1, obtain ∇̄2fk, compute H̄k and the smallest eigenvalue τ̄k of ZT

k H̄kZk, and set τ̄+k =
|min{τ̄k, 0}|. Otherwise, let H̄k be certain approximation of ∇2Lk and set τ̄+k = 0.

6: if (18) does not hold then ▶ Step 2
7: Set xk+1 = xk,∆k+1 = ∆k/γ, ϵ̄k+1 = ϵ̄k/γ. ▷ Unsuccessful iteration
8: else
9: Compute ∆xk as a gradient step if (19) holds; otherwise, compute ∆xk as an eigen step.

10: Perform µ̄k ← ρµ̄k until Predk satisfies (22). ▶ Step 3
11: Set xsk = xk +∆xk, obtain f̄k, f̄sk , and compute Aredk as in (23).
12: if Aredk/Predk ≥ η then ▶ Step 4 (Case 1)
13: Set xk+1 = xsk and ∆k+1 = min{γ∆k,∆max}. ▷ Successful iteration
14: if −Predk ≥ ϵ̄k then
15: Set ϵ̄k+1 = γϵ̄k. ▷ Reliable iteration
16: else
17: Set ϵ̄k+1 = ϵ̄k/γ. ▷ Unreliable iteration
18: end if
19: else if α = 1 and ∥ck∥ ≤ r then ▶ Step 4 (Case 2)
20: Compute SOC step dk, set xsk = xk+∆xk+dk, re-estimate f̄sk , and recompute Aredk.
21: If Aredk/Predk ≥ η, perform Lines 13-18; otherwise, perform Line 23.
22: else ▶ Step 4 (Case 3)
23: Set xk+1 = xk, ∆k+1 = ∆k/γ, ϵ̄k+1 = ϵ̄k/γ. ▷ Unsuccessful iteration
24: end if
25: Set µ̄k+1 = µ̄k.
26: end if
27: end for

first-order stationarity, it suffices to assume that f(x) and c(x) are continuously differentiable, with-
out continuity conditions on Hessians ∇2f(x) and ∇2ci(x). Assumption 4.1 implies that Gk has full
row rank,

√
κ1,G ≤ ∥Gk∥ ≤

√
κ2,G, and ∥GT

k [GkG
T
k ]

−1∥ ≤ 1/
√
κ1,G. Consequently, both the true La-

grangian multiplier λk = −[GkG
T
k ]

−1Gkgk and the estimated counterpart λ̄k = −[GkG
T
k ]

−1Gkḡk
are well defined. Additionally, ∥∇2f(x)∥ ≤ L∇f and ∥∇2ci(x)∥ ≤ LG for 1 ≤ i ≤ m over Ω.

The following assumption states that the merit parameter µ̄k stabilizes when k →∞.

Assumption 4.2. There exist an (potentially stochastic) iteration threshold K̄ <∞ and a deter-
ministic constant µ̂, such that µ̄k = µ̄K̄ ≤ µ̂ for all k ≥ K̄.

Assumption 4.2 is commonly imposed in advance for studying the global convergence of SSQP (Be-
rahas et al., 2021, 2023a,b; Curtis et al., 2024; Fang et al., 2024). Compared to existing literature, we
do not require µ̄K̄ to be large enough. In Section 4.3, we show that our merit parameter update scheme
for ensuring the sufficient reduction (22) will naturally make this assumption hold, provided ḡk and
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∇̄2fk are upper bounded and ∥H̄k∥ is lower bounded.

4.1 Fundamental lemmas

Our first result shows that, on the eventAk∩Bk in (13) and (14), the Hessian estimate H̄k used to reach
a second-order stationary point (i.e., constructed under α = 1) is upper bounded.

Lemma 4.3. Under Assumption 4.1 with α = 1, there exists a positive constant κB ≥ 1 such that
∥H̄k∥ ≤ κB on the event Ak ∩ Bk.

Proof. Recall that H̄k = ∇̄2fk +
∑m

i=1 λ̄
i
k∇2cik, we have

∥H̄k∥ ≤ ∥∇̄2fk −∇2fk∥+ ∥∇2fk∥+ ∥
m∑
i=1

(λ̄i
k − λi

k)∇2cik∥+ ∥
m∑
i=1

λi
k∇2cik∥

≤ ∥∇̄2fk −∇2fk∥+ ∥∇2fk∥+ ∥λ̄k − λk∥
{ m∑

i=1

∥∇2cik∥2
}1/2

+ ∥λk∥
{ m∑

i=1

∥∇2cik∥
}1/2

≤ ∥∇̄2fk −∇2fk∥+ L∇f +

√
mLG√
κ1,G

∥ḡk − gk∥+
√
mLGκ∇f√

κ1,G
, (25)

where the last inequality follows from Assumption 4.1 and the definitions of λk and λ̄k. On the event
Ak ∩ Bk, ∥∇̄2fk −∇2fk∥ ≤ κh∆k and ∥ḡk − gk∥ ≤ κg∆

2
k. Since ∆k ≤ ∆max, it follows that

∥H̄k∥ ≤ κh∆max + L∇f +

√
mLG√
κ1,G

(κg∆
2
max + κ∇f ).

We complete the proof by setting κB = max{1, κh∆max+L∇f+
√
mLG/

√
κ1,G ·(κg∆2

max+κ∇f )}. ■

We demonstrate in the next lemma that for second-order stationarity, the difference between the
true Lagrangian Hessian ∇2

xLk and its estimate H̄k is bounded by a quantity proportional to ∆k on
the event Ak∩Bk. Furthermore, the difference between the eigenvalue τ+k := |min{τk, 0}| and its esti-
mate τ̄+k is bounded by the same quantity. This lemma ensures that when both the objective gradient
and Hessian estimates are accurate, the estimate of τ+k is also precise.

Lemma 4.4. Under Assumption 4.1 with α = 1, there exists a positive constant κH > 0 such that
∥∇2

xLk − H̄k∥ ≤ κH∆k and |τ+k − τ̄+k | ≤ κH∆k on the event Ak ∩ Bk.

Proof. We have

∥∇2
xLk − H̄k∥ = ∥∇2fk − ∇̄2fk +

m∑
i=1

(λi
k − λ̄i

k)∇2cik∥ ≤ ∥∇2fk − ∇̄2fk∥+ ∥λ̄k − λk∥
{ m∑

i=1

∥∇2cik∥2}1/2

≤ ∥∇2fk − ∇̄2fk∥+
√
mLG√
κ1,G

∥gk − ḡk∥ (Assumption 4.1)

≤ κh∆k +

√
mκgLG√
κ1,G

∆2
k ≤

(
κh +

√
mκgLG∆max√

κ1,G

)
∆k =: κH∆k,

where the fourth inequality is due to the event Ak ∩Bk. Next, we show |τk − τ̄k| ≤ κH∆k. Let ζ̄k be
a normalized eigenvector corresponding to τ̄k, then

τk − τ̄k ≤ ζ̄Tk
[
ZT
k (∇2

xLk − H̄k)Zk

]
ζ̄k ≤ ∥∇2

xLk − H̄k∥ ≤ κH∆k.
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Let ζk be a normalized eigenvector corresponding to τk, then

τ̄k − τk ≤ ζTk
[
ZT
k (H̄k −∇2

xLk)Zk

]
ζk ≤ ∥∇2

xLk − H̄k∥ ≤ κH∆k.

Combining the last two displays, we have |τk − τ̄k| ≤ κH∆k, which implies |τ+k − τ̄+k | ≤ κH∆k. ■

In the following lemma, we demonstrate that when the current iterate xk is a neither first-order nor
second-order stationary point (i.e., ∥∇Lk∥ > 0 or τ+k > 0), and the estimates of both objective gradi-
ents and Hessians are accurate, then Line 6 of Algorithm 1 will not be triggered (i.e., (18) holds) for suf-
ficiently small trust-region radius. For the sake of notational consistency, we assume Ak also holds for
α = 0, although we do not use objective Hessian estimates for the design of first-order stationarity.

Lemma 4.5. Under Assumption 4.1 and the event Ak ∩ Bk, if either

∥∇Lk∥ ≥ (κg max{1,∆max}+ ηκB) ·∆k or τ+k ≥ (κH + η) ·∆k, (26)

then Line 6 of Algorithm 1 will not be triggered.

Proof. On the eventAk∩Bk, we have ∥∇Lk∥−∥∇̄Lk∥ ≤ ∥gk−ḡk∥ ≤ κg max{1,∆max}∆k, ∥H̄k∥ ≤ κB
(cf. Assumption 4.1 and Lemma 4.3), and τ+k − τ̄+k ≤ κH∆k (cf. Lemma 4.4). Consequently, (26)
results in either

∥∇̄Lk∥
max{1, ∥H̄k∥}

≥ η ·∆k or τ̄+k ≥ η ·∆k.

Thus, Line 6 will not be triggered. ■

Let us define Lskµ̄k
:= Lµ̄k

(xsk) and Lkµ̄k
:= Lµ̄k

(xk), where µ̄k is the merit parameter selected in the
k-th iteration. Here, xsk = xk+∆xk if the SOC step is not performed and xsk = xk+∆xk+dk if the
SOC step is performed. The following two lemmas examine the difference between the reduction in the
merit function (i.e., Lskµ̄k

−Lkµ̄k
) and Predk (see (21)). We first show that on the event Ak ∩Bk, when

the SOC step is not performed, the difference has an upper bound proportional to ∆2
k.

Lemma 4.6. Under Assumptions 4.1, 4.2, and the event Ak ∩ Bk, when the SOC step is not per-
formed, we have ∀k ≥ K̄, ∣∣Lskµ̄K̄

− Lkµ̄K̄
− Predk

∣∣ ≤ Υ1∆
2
k,

where Υ1 = κg max{1,∆max}+ 1
2(L∇f + κB + µ̂LG).

Proof. Since the SOC step is not performed, xsk = xk +∆xk. Combining (20) and (21), we have

∣∣Lskµ̄K̄
− Lkµ̄K̄

− Predk
∣∣ = ∣∣∣∣fsk + µ̄K̄∥csk∥ − fk − ḡTk ∆xk −

1

2
∆xT

k H̄k∆xk − µ̄K̄∥ck +Gk∆xk∥
∣∣∣∣ .

By the Taylor expansion of f(x) and the Lipschitz continuity of ∇f(x), we have

fsk − fk − ḡTk ∆xk ≤ (gk − ḡk)
T∆xk +

1

2
L∇f∥∆xk∥2.

Similarly, we have∣∣∥csk∥ − ∥ck +Gk∆xk∥
∣∣ ≤ ∥csk − ck −Gk∆xk∥ ≤

1

2
LG∥∆xk∥2.
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Recall that µ̄K̄ ≤ µ̂ (cf. Assumption 4.2) and ∥H̄k∥ ≤ κB (cf. Assumption 4.1 and Lemma 4.3), com-
bining the above two displays leads to∣∣Lskµ̄K̄

− Lkµ̄K̄
− Predk

∣∣ ≤ ∥gk − ḡk∥∥∆xk∥+
1

2
(L∇f + κB + µ̂LG)∥∆xk∥2.

On the event Bk, we have ∥gk−ḡk∥ ≤ κg max{1,∆max}∆k. Since ∥∆xk∥ ≤ ∆k, the result follows from
the display above and we complete the proof. ■

Next, we show that on the event Ak ∩Bk, when the SOC step is performed, the bound in Lemma
4.6 is strengthened to ∆3

k.

Lemma 4.7. Under Assumptions 4.1, 4.2, and the eventAk∩Bk, when the SOC step is performed, we
have ∀k ≥ K̄, ∣∣Lskµ̄K̄

− Lkµ̄K̄
− Predk

∣∣ ≤ Υ2∆
3
k,

where

Υ2 = κg +
L∇2f + κh

2
+

L2
G∆max(0.5L∇f +

√
mµ̂LG)

κ1,G

+
0.5
√
mL∇2c(L∇f∆max + κ∇f ) + 0.5

√
mLG(κg∆max + L∇f + 2µ̂LG)√

κ1,G
.

Proof. We have∣∣Lskµ̄K̄
− Lkµ̄K̄

− Predk
∣∣ = ∣∣fsk + µ̄K̄∥csk∥ − fk − ḡTk ∆xk −

1

2
∆xT

k H̄k∆xk − µ̄K̄∥ck +Gk∆xk∥
∣∣

≤
∣∣fsk − fk − ḡTk ∆xk −

1

2
∆xT

k H̄k∆xk

∣∣+ µ̂∥csk − ck −Gk∆xk∥, (27)

where we have used Assumption 4.2. First, we analyze the second term in (27). Since the SOC step is
performed, we have xsk = xk +∆xk + dk. For 1 ≤ i ≤ m, by the Taylor expansion, we obtain

|cisk − cik − (∇cik)T∆xk|
(12)
= |cisk − ci(xk +∆xk)− (∇cik)Tdk| ≤ LG(∥∆xk∥∥dk∥+ ∥dk∥2).

Therefore, ∥csk − ck −Gk∆xk∥ ≤
√
mLG(∥∆xk∥∥dk∥+ ∥dk∥2). For ∥dk∥, we have

∥dk∥ ≤ ∥GT
k [GkG

T
k ]

−1∥∥c(xk +∆xk)− ck −Gk∆xk∥ ≤
LG√
κ1,G

∆2
k. (28)

Combining the last two results and using the fact that ∆k ≤ ∆max, we have

∥csk − ck −Gk∆xk∥ ≤ mLG∥∆xk∥∥dk∥+mLG∥dk∥2 ≤
(√

mL2
G√

κ1,G
+

√
mL3

G∆max

κ1,G

)
∆3

k. (29)

Next, we analyze the first term in (27). For some points ϕ1 between [xk+∆xk,xk+∆xk+dk] and ϕ2

between [xk,xk +∆xk], we have

fsk = f(xk +∆xk + dk) = f(xk +∆xk) +∇f(xk +∆xk)
Tdk +

1

2
dT
k∇2f(ϕ1)dk
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= fk + gTk ∆xk +∇f(xk +∆xk)
Tdk +

1

2
∆xT

k∇2f(ϕ2)∆xk +
1

2
dT
k∇2f(ϕ1)dk.

Define λ̃k = −[GkG
T
k ]

−1Gk∇f(xk +∆xk). By the Taylor expansion, we have

∇f(xk +∆xk)
Tdk

(12)
= λ̃T

k [c(xk +∆xk)− ck −Gk∆xk]

=

m∑
i=1

λ̃i
k[c

i(xk +∆xk)− cik − (∇cik)T∆xk] =
1

2

m∑
i=1

λ̃i
k∆xT

k∇2ci(ϕi
3)∆xk,

where the points {ϕi
3}mi=1 are between [xk,xk +∆xk]. Recall that H̄k = ∇̄2fk +

∑m
i=1 λ̄

i
k∇2cik. We

combine the above two displays and have∣∣fsk − fk − ḡTk ∆xk −
1

2
∆xT

k H̄k∆xk

∣∣
=

∣∣∣∣(gk − ḡk)
T∆xk +

1

2
∆xT

k

(
∇2f(ϕ2)−∇2fk

)
∆xk +

1

2
∆xT

k

(
∇2fk − ∇̄2fk

)
∆xk

+
1

2

m∑
i=1

(
λi
k − λ̄i

k

)
∆xT

k∇2cik∆xk +
1

2

m∑
i=1

(
λ̃i
k − λi

k

)
∆xT

k∇2cik∆xk

+
1

2
dT
k∇2f (ϕ1)dk +

1

2

m∑
i=1

λ̃i
k∆xT

k

(
∇2ci(ϕi

3)−∇2cik
)
∆xk

∣∣∣∣
≤ ∥gk − ḡk∥∥∆xk∥+

L∇2f

2
∥∆xk∥3 +

1

2
∥∇2fk − ∇̄2fk∥∥∆xk∥2

+

√
mLG

2
(∥λk − λ̄k∥+ ∥λ̃k − λk∥)∥∆xk∥2 +

L∇f

2
∥dk∥2 +

√
mL∇2c

2
∥λ̃k∥∥∆xk∥3

≤
(
κg +

L∇2f + κh

2

)
∆3

k +

√
mLG

2
(∥λk − λ̄k∥+ ∥λ̃k − λk∥)∆2

k +
L∇f

2
∥dk∥2 +

√
mL∇2c∥λ̃k∥

2
∆3

k

(28)

≤

(
κg +

L∇2f + κh

2
+

L∇fL
2
G∆max

2κ1,G
+

√
mL∇2c∥λ̃k∥

2

)
∆3

k +

√
mLG

2
(∥λk − λ̄k∥+ ∥λ̃k − λk∥)∆2

k,

where the second inequality is by Assumption 4.1 and the third inequality is by the event Ak∩Bk and
the fact that ∆xk ≤ ∆k (note that the SOC step is performed only when α = 1). Furthermore, on the
event Bk, it follows from Assumption 4.1 that

∥λk − λ̄k∥ ≤ ∥[GkG
T
k ]

−1Gk∥∥gk − ḡk∥ ≤
κg√
κ1,G

∆2
k ≤

κg∆max√
κ1,G

∆k,

∥λk − λ̃k∥ ≤ ∥[GkG
T
k ]

−1Gk∥∥gk −∇f(xk +∆xk)∥ ≤
L∇f√
κ1,G

∆k,

∥λ̃k∥ ≤ ∥[GkG
T
k ]

−1Gk∥∥∇f(xk +∆xk∥ ≤
1

√
κ1,G

(L∇f∥∆xk∥+ ∥gk∥) ≤
L∇f∆max + κ∇f√

κ1,G
.

Combining the above results, we have
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∣∣fsk − fk − ḡTk ∆xk −
1

2
∆xT

k H̄k∆xk

∣∣ ≤ (κg + L∇2f + κh

2
+

L∇fL
2
G∆max

2κ1,G

)
∆3

k

+

(√
mL∇2c(L∇f∆max + κ∇f )

2
√
κ1,G

+

√
mLG(κg∆max + L∇f )

2
√
κ1,G

)
∆3

k. (30)

We complete the proof by combining (27), (29) and (30). ■

The next lemma demonstrates that when the current iterate xk is not a first-order stationary point
(i.e., ∥∇Lk∥ > 0), the estimates of objective models are accurate, and the trust-region radius is suffi-
ciently small, then the k-th iteration is guaranteed to be successful without performing the SOC step.
Furthermore, the reduction in the merit function is of the order O(∥∇Lk∥∆k).

Lemma 4.8. Under Assumptions 4.1, 4.2, and the event Ak ∩ Bk ∩ Ck, for k ≥ K̄, if

∥∇Lk∥ ≥ max

{
κB,

4κf max{1,∆max}+ 8Υ1

κfcd(1− η)

}
∆k + κg max{1,∆max}∆k (31)

with Υ1 defined in Lemma 4.6, then the k-th iteration is successful without computing the SOC
step. Furthermore,

Lk+1
µ̄K̄
− Lkµ̄K̄

≤ −Υ3∥∇Lk∥∆k,

where

Υ3 =
3κfcd
8
·max

{
κB

κg max{1,∆max}+ κB
,

4κf max{1,∆max}+ 8Υ1

{(1− η)κfcdκg + 4κf}max{1,∆max}+ 8Υ1

}
.

Proof. To prove the k-th iteration is successful, it suffices to show that (18) holds and Aredk/Predk ≥
η. Since (31) implies (26), Lemma 4.5 indicates that (18) holds. Now, we show Aredk/Predk ≥ η
holds without performing the SOC step (thus xsk = xk +∆xk). On the event Bk, we have ∥∇̄Lk∥ ≥
∥∇Lk∥ − κg max{1,∆max}∆k and (31) implies

∥∇̄Lk∥ ≥ max

{
κB,

4κf max{1,∆max}+ 8Υ1

κfcd(1− η)

}
∆k. (32)

Define a local model of Lkµ̄k
along the direction s ∈ Rd asmk

µ̄k
(s) = fk+ḡTk s+

1
2s

T H̄ks+µ̄k∥ck+Gks∥,
using the definitions of Aredk in (23) and Predk in (21), we have

Aredk
Predk

=
L̄skµ̄K̄

− L̄kµ̄K̄

Predk

=
L̄skµ̄K̄

− Lskµ̄K̄
+ Lskµ̄K̄

−mk
µ̄K̄

(∆xk) +mk
µ̄K̄

(∆xk)−mk
µ̄K̄

(0) +mk
µ̄K̄

(0)− Lkµ̄K̄
+ Lkµ̄K̄

− L̄kµ̄K̄

Predk

=
L̄skµ̄K̄

− Lskµ̄K̄
+ Lskµ̄K̄

−mk
µ̄K̄

(∆xk) + Lkµ̄K̄
− L̄kµ̄K̄

Predk
+ 1,

where we have used Predk = mk
µ̄K̄

(∆xk)−mk
µ̄K̄

(0) and mk
µ̄K̄

(0)− Lkµ̄K̄
= 0. Therefore,∣∣∣∣AredkPredk

− 1

∣∣∣∣ ≤
∣∣L̄skµ̄K̄

− Lskµ̄K̄

∣∣+ ∣∣Lskµ̄K̄
−mk

µ̄K̄
(∆xk)

∣∣+ ∣∣Lkµ̄K̄
− L̄kµ̄K̄

∣∣
|Predk|

. (33)
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By the algorithm design and max{1, ∥H̄k∥} ≤ κB, we have

Predk
(22)

≤ −
κfcd
2
∥∇̄Lk∥min

{
∆k,
∥∇̄Lk∥
∥H̄k∥

}
(32)
= −

κfcd
2
∥∇̄Lk∥∆k. (34)

Since |Lskµ̄K̄
− L̄skµ̄K̄

| = |fsk − f̄sk | and |Lkµ̄K̄
− L̄kµ̄K̄

| = |fk − f̄k|, on the event Ck, we have∣∣Lskµ̄K̄
− L̄skµ̄K̄

∣∣+ ∣∣Lkµ̄K̄
− L̄kµ̄K̄

∣∣ ≤ 2κf max{1,∆max}∆2
k.

Since mk
µ̄K̄

(∆xk) = Lkµ̄K̄
+ Predk, Lemma 4.6 gives∣∣∣Lskµ̄K̄
−mk

µ̄K̄
(∆xk)

∣∣∣ = ∣∣∣Lskµ̄K̄
− Lkµ̄K̄

− Predk

∣∣∣ ≤ Υ1∆
2
k. (35)

Combining the last four displays, we have∣∣∣∣AredkPredk
− 1

∣∣∣∣ ≤ (4κf max{1,∆max}+ 2Υ1)∆k

κfcd∥∇̄Lk∥
(32)

≤ 1− η,

equivalently, Aredk/Predk ≥ η. Since the k-th iteration at Line 12 of Algorithm 1 is already successful,
the SOC step will not be computed. Next, we analyze the reduction in the merit function. Combining
(34) and (35), and noting that xk+1 = xsk , we have

Lk+1
µ̄K̄
− Lkµ̄K̄

≤ Predk +Υ1∆
2
k ≤ −

κfcd
2
∥∇̄Lk∥∆k +Υ1∆

2
k

(32)

≤ −
3κfcd
8
∥∇̄Lk∥∆k. (36)

Since ∥∇̄Lk∥ ≥ ∥∇Lk∥ − κg max{1,∆max}∆k and (31) implies that

κg max{1,∆max}∆k

≤ min

{
κg max{1,∆max}

κg max{1,∆max}+ κB
,

(1− η)κfcdκg max{1,∆max}
{(1− η)κfcdκg + 4κf}max{1,∆max}+ 8Υ1

}
∥∇Lk∥, (37)

we complete the proof by combining (36) and (37). ■

Next, we consider α = 1 and prove that when the current iterate xk is not a second-order station-
ary point (i.e., τ+k > 0), the estimates of objective models are accurate, and the trust-region radius is
sufficiently small, then the k-th iteration is guaranteed to be successful. Here, we use C′k to denote the
event that the accurate estimates of objective values are regenerated when computing the SOC step.
If the SOC step is not computed, we simply assume C′k holds for consistency.

Lemma 4.9. Under Assumptions 4.1, 4.2, and the event Ak ∩Bk ∩Ck ∩C′k with α = 1, for k ≥ K̄, if

τ+k ≥ max

{
η,

4κf max{1,∆max}+ 2Υ1 + 2Υ2

(1− η)κfcdmin{1, r}

}
∆k + κH∆k, (38)

with Υ1 defined in Lemma 4.6 and Υ2 defined in Lemma 4.7, then the k-th iteration is successful.

19



Proof. We prove that Line 6 in Algorithm 1 is not triggered and Aredk/Predk ≥ η. Since (38) implies
(26), Lemma 4.5 indicates that Line 6 will not be triggered. We only need to show Aredk/Predk ≥ η.
On the event Ak ∩ Bk, we have τ̄+k ≥ τ+k − κH∆k (cf. Lemma 4.4). Thus, (38) leads to

τ̄+k ≥ max

{
η,

4κf max{1,∆max}+ 2Υ1 + 2Υ2

(1− η)κfcdmin{1, r}

}
∆k. (39)

We first consider the case when ∥ck∥ > r. By (22), we have for both the gradient and eigen steps,

Predk ≤ −
κfcd
2

τ̄+k ∥ck∥∆k ≤ −
rκfcd
2

τ̄+k ∆k.

Since α = 1, we apply the event Ck and have |Lskµ̄K̄
− L̄skµ̄K̄

|+ |Lkµ̄K̄
− L̄kµ̄K̄

| ≤ 2κf∆
3
k ≤ 2κf∆max∆

2
k.

When the SOC step is not performed, Lemma 4.6 implies (35) holds. Combined with (33), we have∣∣∣∣AredkPredk
− 1

∣∣∣∣ ≤ (4κf∆max + 2Υ1)∆k

rκfcdτ̄
+
k

(39)

≤ 1− η,

equivalently, Aredk/Predk ≥ η. Next, we consider ∥ck∥ ≤ r. If Aredk/Predk ≥ η holds when the SOC
step is not performed, there is nothing to prove. Otherwise, the condition ∥ck∥ ≤ r will trigger the
SOC step and xsk = xk+∆xk+dk. On the event Ck∩C′k, we have |L

sk
µ̄K̄
−L̄skµ̄K̄

|+|Lkµ̄K̄
−L̄kµ̄K̄

| ≤ 2κf∆
3
k.

Meanwhile, (22) implies Predk ≤ −(κfcd/2)τ̄+k ∆2
k. Combining with Lemma 4.7 and (33), we have∣∣∣∣AredkPredk

− 1

∣∣∣∣ ≤ (4κf + 2Υ2)∆k

κfcdτ̄
+
k

(39)

≤ 1− η,

which completes the proof. ■

In the following lemma, we demonstrate that for both first and second-order stationarity, if the
estimates of objective values are accurate and the k-th iteration is successful, then the reduction in the
merit function is proportional to ∆3

k.

Lemma 4.10. Under Assumptions 4.1, 4.2, and the event Ck ∩ C′k, for k ≥ K̄, if the k-th iteration
is successful, then

Lk+1
µ̄K̄
− Lkµ̄K̄

≤ −
3κfcd

8max{1,∆max}
η3∆3

k.

Proof. If α = 0, a successful iteration implies Aredk/Predk ≥ η, ∥∇̄Lk∥/max{1, ∥H̄k∥} ≥ η∆k, and

Predk ≤ −
κfcd
2
∥∇̄Lk∥min

{
∆k,
∥∇̄Lk∥
∥H̄k∥

}
≤ −

κfcd
2

η2∆2
k. (40)

On the event Ck,
∣∣fsk − f̄sk

∣∣+ ∣∣fk − f̄k
∣∣ ≤ 2κf∆

2
k. Thus,

Lk+1
µ̄K̄
− Lkµ̄K̄

≤
∣∣Lk+1

µ̄K̄
− L̄k+1

µ̄K̄

∣∣+Aredk +
∣∣L̄kµ̄K̄

− Lkµ̄K̄

∣∣
≤
∣∣fsk − f̄sk

∣∣+ η · Predk +
∣∣fk − f̄k

∣∣ ≤ 2κf∆
2
k −

κfcd
2

η3∆2
k ≤ −

3κfcd
8

η3∆2
k, (41)

where we have used the definition of κf in the last inequality. If α = 1, a successful iteration implies

max{ ∥∇̄Lk∥
max{1,∥H̄k∥}

, τ̄+k } ≥ η∆k and (22) implies

Predk ≤ −
κfcd

2max{1,∆max}
η2∆3

k. (42)
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On the event Ck ∩ C′k, we have
∣∣fsk − f̄sk

∣∣+ ∣∣fk − f̄k
∣∣ ≤ 2κf∆

3
k and

Lk+1
µ̄K̄
− Lkµ̄K̄

≤ 2κf∆
3
k −

κfcd
2max{1,∆max}

η3∆3
k ≤ −

3κfcd
8max{1,∆max}

η3∆3
k, (43)

where the last inequality is by the definition of κf . Combining (41) and (43) completes the proof. ■

In the following few lemmas, we investigate the global convergence of Algorithm 1 by leveraging the
reduction in a potential function given by

Φk
µ̄K̄

= νLkµ̄K̄
+

1− ν

2
∆3

k +
1− ν

2
ϵ̄k,

where ν ∈ (0, 1) is a constant satisfying (Υ3 is defined in Lemma 4.8)

ν

1− ν
≥ max

{
4γ3max{1,∆max}
min{η3κfcd,Υ3}

,
2γ

η

}
. (44)

We first consider the case when the estimates of objective models are accurate.

Lemma 4.11. Under Assumptions 4.1, 4.2, and the event Ak ∩ Bk ∩ Ck ∩ C′k, for k ≥ K̄, we have

Φk+1
µ̄K̄
− Φk

µ̄K̄
≤ 1− ν

2

(
1

γ3
− 1

)
∆3

k +
1− ν

2

(
1

γ
− 1

)
ϵ̄k.

Proof. We separate the analysis into two cases based on the condition (31).

Case 1: (31) holds. In this case, Lemma 4.8 suggests that the k-th iteration is successful without
computing the SOC step. We further separate a successful step into a reliable and unreliable step.

• Case 1a: reliable iteration. We have

Lk+1
µ̄K̄
− Lkµ̄K̄

Lemma 4.6
≤ Predk +Υ1∆

2
k

(24b)

≤ 1

2
Predk −

1

2
ϵ̄k +Υ1∆

2
k

(34)

≤ −
κfcd
4
∥∇̄Lk∥∆k −

1

2
ϵ̄k +Υ1∆

2
k

(32)

≤ −
κfcd
8
∥∇̄Lk∥∆k −

1

2
ϵ̄k

(37)

≤ −1

3
Υ3∥∇Lk∥∆k −

1

2
ϵ̄k.

For a reliable iteration, ∆k+1 ≤ γ∆k and ϵ̄k+1 = γϵ̄k. Since (44) implies 1−ν
2 (γ−1)ϵ̄k ≤ 1

4νϵ̄k, we have

Φk+1
µ̄K̄
− Φk

µ̄K̄
≤ −1

3
νΥ3∥∇Lk∥∆k −

1

2
νϵ̄k +

1− ν

2
(γ3 − 1)∆3

k +
1− ν

2
(γ − 1)ϵ̄k

≤ −1

3
νΥ3∥∇Lk∥∆k −

1

4
νϵ̄k +

1− ν

2
(γ3 − 1)∆3

k. (45)

• Case 1b: unreliable iteration. Combining Lemma 4.8, ∆k+1 ≤ γ∆k, and ϵ̄k+1 = ϵ̄k/γ, we have

Φk+1
µ̄K̄
− Φk

µ̄K̄
≤ −νΥ3∥∇Lk∥∆k +

1− ν

2
(γ3 − 1)∆3

k +
1− ν

2

(
1

γ
− 1

)
ϵ̄k. (46)

Combining both Case 1a and Case 1b in (45) and (46), and noting that 1
4νϵ̄k ≥

1−ν
2

(
1− 1

γ

)
ϵ̄k as

implied by (44), we have

Φk+1
µ̄K̄
− Φk

µ̄K̄
≤ −1

3
νΥ3∥∇Lk∥∆k +

1− ν

2
(γ3 − 1)∆3

k +
1− ν

2

(
1

γ
− 1

)
ϵ̄k. (47)
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Since κB ≥ 1, (31) implies ∥∇Lk∥ ≥ ∆k. Thus, we know

−1

6
νΥ3∥∇Lk∥∆k +

1− ν

2
(γ3 − 1)∆3

k ≤ −
νΥ3

6∆max
∆3

k +
1− ν

2
(γ3 − 1)∆3

k

(44)

≤ 0. (48)

Combining (47) and (48), we know for Case 1 that

Φk+1
µ̄K̄
− Φk

µ̄K̄
≤ −1

6
νΥ3∥∇Lk∥∆k +

1− ν

2

(
1

γ
− 1

)
ϵ̄k. (49)

Case 2: (31) does not hold. In this case, the k-th iteration can be successful (reliable or unreliable)
or unsuccessful.

• Case 2a: reliable iteration. We have

Lk+1
µ̄K̄
− Lkµ̄K̄

(24b),(41)

≤
∣∣fsk − f̄sk

∣∣+ ∣∣fk − f̄k
∣∣+ 1

2
ηPredk −

1

2
ηϵ̄k.

When α = 0 (i.e., first-order stationarity), we apply the event Ck and the definition of κf , and obtain∣∣fsk − f̄sk
∣∣+ ∣∣fk − f̄k

∣∣ ≤ 2κf∆
2
k ≤

κfcd
8max{1,∆max}

η3∆2
k. (50)

Since the iteration is successful, (40) holds. Using ∆k ≤ ∆max,

Lk+1
µ̄K̄
− Lkµ̄K̄

≤
κfcd

8max{1,∆max}
η3∆2

k −
κfcd
4

η3∆2
k −

1

2
ηϵ̄k ≤ −

κfcd
8max{1,∆max}

η3∆3
k −

1

2
ηϵ̄k.

When α = 1 (i.e., second-order stationarity), we apply the event Ck ∩ C′k and have∣∣fsk − f̄sk
∣∣+ ∣∣fk − f̄k

∣∣ ≤ 2κf∆
3
k ≤

κfcd
8max{1,∆max}

η3∆3
k, (51)

which together with (42) yields

Lk+1
µ̄K̄
− Lkµ̄K̄

≤ −
κfcd

8max{1,∆max}
η3∆3

k −
1

2
ηϵ̄k.

Thus, α = 0 and α = 1 share the same bound for Lk+1
µ̄K̄
−Lkµ̄K̄

. For a reliable iteration, ∆k+1 ≤ γ∆k and

ϵ̄k+1 = γϵ̄k. Since (44) implies 1−ν
2 (γ − 1)ϵ̄k ≤ 1

4νηϵ̄k, we have

Φk+1
µ̄K̄
− Φk

µ̄K̄
≤ −

νκfcd
8max{1,∆max}

η3∆3
k −

1

2
νηϵ̄k +

1− ν

2
(γ3 − 1)∆3

k +
1− ν

2
(γ − 1)ϵ̄k

≤ −
νκfcd

8max{1,∆max}
η3∆3

k −
1

4
νηϵ̄k +

1− ν

2
(γ3 − 1)∆3

k.

• Case 2b: unreliable iteration. Combining Lemma 4.10, ∆k+1 ≤ γ∆k, and ϵ̄k+1 = ϵ̄k/γ, we have

Φk+1
µ̄K̄
− Φk

µ̄K̄
≤ −

3νκfcd
8max{1,∆max}

η3∆3
k +

1− ν

2
(γ3 − 1)∆3

k +
1− ν

2

(
1

γ
− 1

)
ϵ̄k.

• Case 2c: unsuccessful iteration. Here xk+1 = xk, ∆k+1 = ∆k/γ, and ϵ̄k+1 = ϵ̄k/γ. Thus,

Φk+1
µ̄K̄
− Φk

µ̄K̄
≤ 1− ν

2

(
1

γ3
− 1

)
∆3

k +
1− ν

2

(
1

γ
− 1

)
ϵ̄k. (52)
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Since (44) implies

−
νκfcd

8max{1,∆max}
η3∆3

k +
1− ν

2
(γ3 − 1)∆3

k ≤
1− ν

2

(
1

γ3
− 1

)
∆3

k

and
1

4
νηϵ̄k ≥

1− ν

2

(
1− 1

γ

)
ϵ̄k, (53)

we combineCases 2a, 2b, 2c together and know that the result (52) forCase 2c also holds forCases
2a and 2b as well. Note that in Case 1, ∆k ≤ ∥∇Lk∥ and (44) together imply that

−1

6
νΥ3∥∇Lk∥∆k ≤

1− ν

2

(
1

γ3
− 1

)
∆3

k. (54)

The proof is complete by combining (49) for Case 1 and (52) for Case 2. ■

We now examine the reduction in Φk
µ̄K̄

when not all estimates are accurate.

Lemma 4.12. Under Assumptions 4.1, 4.2, and the event (Ak ∩Bk ∩ Ck ∩ C′k)c, for k ≥ K̄, we have

Φk+1
µ̄K̄
− Φk

µ̄K̄
≤ ν

{∣∣fsk − f̄sk
∣∣+ ∣∣fk − f̄k

∣∣}+ 1− ν

2

(
1

γ3
− 1

)
∆3

k +
1− ν

2

(
1

γ
− 1

)
ϵ̄k, (55)

where xsk = xk +∆xk if the SOC step is not performed and xsk = xk +∆xk + dk if the SOC step
is performed.

Proof. We consider the following three cases.

• Case 1: reliable iteration. The proof is similar to Case 2a in Lemma 4.11. Since Ck and C′k may
not hold, (50) and (51) are not guaranteed. Therefore, we have

Φk+1
µ̄K̄
− Φk

µ̄K̄
≤ ν

{∣∣fsk − f̄sk
∣∣+ ∣∣fk − f̄k

∣∣}− νκfcd
4max{1,∆max}

η3∆3
k −

1

4
νηϵ̄k +

1− ν

2
(γ3 − 1)∆3

k.

• Case 2: unreliable iteration. We follow the proof of Case 2b in Lemma 4.11 and Lemma 4.10,
and have

Φk+1
µ̄K̄
− Φk

µ̄K̄
≤ ν

∣∣fsk − f̄sk
∣∣+ ν

∣∣fk − f̄k
∣∣

−
νκfcd

2max{1,∆max}
η3∆3

k +
1− ν

2
(γ3 − 1)∆3

k +
1− ν

2

(
1

γ
− 1

)
ϵ̄k.

• Case 3: unsuccessful iteration: In this case, (52) holds.
Combining Cases 1, 2, and 3, and noting that (44) implies (53) and

−
νκfcd

4max{1,∆max}
η3∆3

k +
1− ν

2
(γ3 − 1)∆3

k ≤
1− ν

2

(
1

γ3
− 1

)
∆3

k,

we complete the proof. ■

Lemma 4.11 demonstrates that if all estimates are accurate, then a decrease in Φk
µ̄K̄

is guaranteed,

while Lemma 4.12 reveals that if some estimates are inaccurate, then Φk
µ̄K̄

might increase. Next, we
show that as long as the probability of obtaining an accurate objective model exceeds a deterministic
threshold, a reduction in Φk

µ̄K̄
is guaranteed in expectation.
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Lemma 4.13. Under Assumptions 4.1 and 4.2, for k ≥ K̄, if

ph + pg + 2pf ≤
(1− ν)2

16ν2

(
1− 1

γ

)2

(56)

then

E[Φk+1
µ̄K̄
| Fk−1]− Φk

µ̄K̄
≤ 1− ν

2

(
1

γ3
− 1

)
∆3

k. (57)

Proof. By the definitions of Ak,Bk, Ck (and C′k) in (13), (14), (15), we know that

P [Ak ∩ Bk ∩ Ck ∩ C′k | Fk−1] ≥ 1−
{
P (Ak | Fk−1) + P (Bk | Fk−1) + P (Ck | Fk−1) + P (C′k | Fk−1)

}
≥ 1− (ph + pg + E[E[1Ck + 1C′

k
| Fk−0.5] | Fk−1])

≥ 1− (ph + pg + 2pf ). (58)

Then, we apply Lemmas 4.11, 4.12, and (58), and have

E[Φk+1
µ̄K̄
| Fk−1]− Φk

µ̄K̄

= E[(Φk+1
µ̄K̄
− Φk

µ̄K̄
)1(Ak∩Bk∩Ck∩C′

k)
| Fk−1] + E[(Φk+1

µ̄K̄
− Φk

µ̄K̄
)1(Ak∩Bk∩Ck∩C′

k)
c | Fk−1]

≤ 1− ν

2

(
1

γ3
− 1

)
∆3

k +
1− ν

2

(
1

γ
− 1

)
ϵ̄k + ν · E[(|fsk − f̄sk |+ |fk − f̄k|)1(Ak∩Bk∩Ck∩C′

k)
c | Fk−1]

≤ 1− ν

2

(
1

γ3
− 1

)
∆3

k +
1− ν

2

(
1

γ
− 1

)
ϵ̄k + 2ν ·

√
ph + pg + 2pf · ϵ̄k,

where the last inequality uses the Hölder’s inequality and the condition (16). Since (56) implies

1− ν

2

(
1

γ
− 1

)
ϵ̄k + 2ν ·

√
ph + pg + 2pf · ϵ̄k ≤ 0,

we combine the above two displays and complete the proof. ■

The following result follows immediately from Lemma 4.13.

Corollary 4.14. Under the conditions of Lemma 4.13, limk→∞∆k = 0 with probability 1.

Proof. Taking the expectation conditional on FK̄−1 on both sides of (57), we have

E[Φk+1
µ̄K̄
− Φk

µ̄K̄
| FK̄−1] ≤

1− ν

2

(
1

γ3
− 1

)
E[∆3

k | FK̄−1].

Summing over k ≥ K̄, and noting that E[Φk
µ̄K̄
| FK̄−1] is monotonically decreasing and bounded

below by ν · finf (cf. Assumption 4.1), we have

−∞ <
∞∑

k=K̄

E[Φk+1
µ̄K̄
− Φk

µ̄K̄
| FK̄−1] ≤

1− ν

2

(
1

γ3
− 1

) ∞∑
k=K̄

E[∆3
k | FK̄−1].

Since ∆k ≥ 0, by Tonelli’s Theorem, we have E[
∑∞

k=K̄ ∆3
k | FK̄−1] <∞, which implies P [

∑∞
k=K̄ ∆3

k <
∞ | FK̄−1] = 1. Since the conclusion holds for an arbitrarily given FK̄−1, we have P [

∑∞
k=K̄ ∆3

k <
∞] = 1, which implies that limk→∞∆k = 0 with probability 1. ■
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4.2 Global almost sure convergence

The following result shows that the limit inferiors of both the KKT residual ∥∇Lk∥ and the negative
curvature of the reduced Lagrangian Hessian τ+k are zero almost surely.

Theorem 4.15 (Global first- and second-order convergence). Under the conditions of Lemma 4.13,
we have both lim infk→∞ ∥∇Lk∥ = 0 and lim infk→∞ τ+k = 0 almost surely.

Proof. We note that the stochastic process w̃k =
∑k−1

i=0 (1(Ai∩Bi∩Ci∩C′
i)
− E[1(Ai∩Bi∩Ci∩C′

i)
|Fi−1]) is a

martingale since

E[w̃k+1|Fk−1] = w̃k + E[1(Ak∩Bk∩Ck∩C′
k)
|Fk−1]− E[1(Ak∩Bk∩Ck∩C′

k)
|Fk−1] = w̃k.

Using the fact that 1(Ai∩Bi∩Ci∩C′
i)
≤ 1 and (Hall and Heyde, 2014, Theorem 2.19), we know w̃k/k → 0

almost surely. Let us define wk =
∑k−1

i=0 (2 · 1(Ai∩Bi∩Ci∩C′
i)
− 1), then

wk

k
=

2w̃k

k
+

1

k

k−1∑
i=0

(2E[1(Ai∩Bi∩Ci∩C′
i)
|Fi−1]− 1)

(58)

≥ 2w̃k

k
+ 1− 2(ph + pg + 2pf ).

Since ph+pg +2pf < 0.5 (as implied by (56)), we know from the above display that wk →∞ almost
surely. With this result, we now prove lim infk→∞ ∥∇Lk∥ = 0 almost surely by contradiction. Suppose
there exist ϵ1 > 0 andK1 ≥ K̄ such that for all k ≥ K1, ∥∇Lk∥ ≥ ϵ1. Since ∆k → 0 by Corollary 4.14,
there exists K ′

1 ≥ K1 such that for all k ≥ K ′
1,

∆k ≤ a := min

{
∆max

γ
,
ϵ1
φ

}
, with φ := max

{
κB,

4κf max{1,∆max}+ 8Υ1

κfcd(1− η)

}
+ κg max{1,∆max}.

Therefore, for all k ≥ K ′
1, we have ∥∇Lk∥ ≥ φ∆k, which combined with Lemma 4.8 shows that if

Ak ∩Bk ∩Ck ∩C′k holds, then the iteration must be successful. Since ∆k ≤ ∆max/γ, we have ∆k+1 =
γ∆k. On the other hand, if (Ak∩Bk∩Ck∩C′k)c holds, the iteration can be successful or not. In this case,

we have ∆k+1 ≥ ∆k/γ. Let bk = logγ

(
∆k
a

)
, which satisfies bk ≤ 0 for all k ≥ K ′

1. In addition, for

k ≥ K ′
1, if Ak∩Bk∩Ck∩C′k holds, then bk+1 = bk+1; otherwise, bk+1 ≥ bk−1. From the definitions of

{wk} and {bk}, we know bk−bK′
1
≥ wk−wK′

1
for all k ≥ K ′

1. Thus, bk →∞, which contradicts bk ≤ 0

for all k ≥ K ′
1. This contradiction concludes lim infk→∞ ∥∇Lk∥ = 0. Now, we prove lim infk→∞ τ+k =

0 almost surely in a similar way. Suppose there exist ϵ2 > 0 and K2 ≥ K̄ such that for all k ≥ K2,
τ+k ≥ ϵ2. Since ∆k → 0, there exists K ′

2 ≥ K2 such that for all k ≥ K ′
2,

∆k ≤ a′ := min

{
∆max

γ
,
ϵ2
φ′

}
, with φ′ := max

{
η,

4κf max{1,∆max}+ 2Υ1 + 2Υ2

(1− η)κfcdmin{1, r}

}
+ κH .

The rest of the proof combines Lemma 4.9, defines b′k := logγ

(
∆k
a′

)
, and uses the relation b′k− b′K′

2
≥

wk − wK′
2
for all k ≥ K ′

2 to arrive at a contradiction. ■

We now demonstrate that the above first-order convergence guarantee can be strengthened to limit-
type convergence, which asserts that the limit of ∥∇Lk∥ is zero almost surely. To establish this result,
we require the following lemma.
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Lemma 4.16. For any ϵ > 0, we let Kϵ = {k : ∥∇Lk∥ ≥ ϵ}. Under the conditions of Lemma 4.13, we
have

∑
k∈Kϵ

∆k <∞ with probability 1.

Proof. Let φ be as in the proof of Theorem 4.15. We first consider the reduction in Φk
µ̄K̄

when ∥∇Lk∥ ≥
φ∆k. On the eventAk∩Bk∩Ck∩C′k, (49) holds, while on the event (Ak∩Bk∩Ck∩C′k)c, (55) holds. Thus,
we have

E[Φk+1
µ̄K̄
| Fk−1]− Φk

µ̄K̄

= E[(Φk+1
µ̄K̄
− Φk

µ̄K̄
)1(Ak∩Bk∩Ck∩C′

k)
| Fk−1] + E[(Φk+1

µ̄K̄
− Φk

µ̄K̄
)1(Ak∩Bk∩Ck∩C′

k)
c | Fk−1]

≤ −E[1(Ak∩Bk∩Ck∩C′
k)
| Fk−1] ·

νΥ3

6
∥∇Lk∥∆k + E[1(Ak∩Bk∩Ck∩C′

k)
c | Fk−1] ·

1− ν

2

(
1

γ3
− 1

)
∆3

k

+
1− ν

2

(
1

γ
− 1

)
ϵ̄k + ν · E[(|fsk − f̄sk |+ |fk − f̄k|)1(Ak∩Bk∩Ck∩C′

k)
c | Fk−1]

= E[1(Ak∩Bk∩Ck∩C′
k)
| Fk−1]

{
−νΥ3

6
∥∇Lk∥∆k −

1− ν

2

(
1

γ3
− 1

)
∆3

k

}
+

1− ν

2

(
1

γ3
− 1

)
∆3

k

+
1− ν

2

(
1

γ
− 1

)
ϵ̄k + ν · E[(|fsk − f̄sk |+ |fk − f̄k|)1(Ak∩Bk∩Ck∩C′

k)
c | Fk−1]

(54),(58)

≤ −(1− ph − pg − 2pf )
νΥ3

6
∥∇Lk∥∆k + (ph + pg + 2pf )

1− ν

2

(
1

γ3
− 1

)
∆3

k +
1− ν

2

(
1

γ
− 1

)
ϵ̄k

+ ν · E[(|fsk − f̄sk |+ |fk − f̄k|)1(Ak∩Bk∩Ck∩C′
k)

c | Fk−1].

Using the Hölder’s inequality and the condition (16), we have

E[Φk+1
µ̄K̄
| Fk−1]− Φk

µ̄K̄
≤ −(1− ph − pg − 2pf )

νΥ3

6
∥∇Lk∥∆k + (ph + pg + 2pf )

1− ν

2

(
1

γ3
− 1

)
∆3

k

+
1− ν

2

(
1

γ
− 1

)
ϵ̄k + 2ν ·

√
ph + pg + 2pf · ϵ̄k

(56)

≤ −(1− ph − pg − 2pf )
νΥ3

6
∥∇Lk∥∆k. (59)

Since ∆k → 0 almost surely, for each realization of Algorithm 1, there exists a finiteK3 ≥ K̄ such that
for all k ≥ K3, we have ∆k ≤ ϵ/φ. Let K̃ϵ = Kϵ ∩ {k : k ≥ K3}. For k ∈ K̃ϵ, we have ∥∇Lk∥ ≥ φ∆k

so that the reduction (59) is achieved. Since ∥∇Lk∥ ≥ ϵ for all k ∈ K̃ϵ, we further have

E[Φk+1
µ̄K̄
| Fk−1]− Φk

µ̄K̄
≤ −1

6
(1− ph − pg − 2pf )νΥ3ϵ ·∆k.

Taking the conditional expectation with respect to FK̄−1 on both sides, and recalling that E[Φk
µ̄K̄
|

FK̄−1] is monotone decreasing in k and bounded below (cf. Assumption 4.1), we have
∑

k∈K̃ϵ
E[∆k |

FK̄−1] < ∞. By Tonelli’s theorem, we have E[
∑

k∈K̃ϵ
∆k | FK̄−1] < ∞ and thus P [

∑
k∈K̃ϵ

∆k <
∞ | FK̄−1] = 1. Since the conclusion holds for any FK̄−1, we have P [

∑
k∈K̃ϵ

∆k <∞] = 1. Since

Kϵ ⊆ K̃ϵ ∪ {k ≤ K3}, ∆k ≤ ∆max, and K3 is finite, we complete the proof. ■

Finally, we state the limit-type first-order global convergence guarantee for Algorithm 1.

Theorem 4.17 (Stronger first-order convergence). Under the conditions of Lemma 4.13, we have
limk→∞ ∥∇Lk∥ = 0 almost surely.
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Proof. We prove by contradiction. Suppose for a realization of Algorithm 1, there exist an ϵ > 0 and
an infinite index set K1 such that ∥∇Lk∥ ≥ 2ϵ for all k ∈ K1. By Theorem 4.15, we know for the real-
ization considered, there exists an infinite index setK2 such that ∥∇Lk∥ < ϵ for all k ∈ K2. Thus, there
are index sets {mi} and {ni} with mi < ni such that for all i ≥ 0,

∥∇Lmi∥ ≥ 2ϵ, ∥∇Lni∥ < ϵ, and ∥∇Lk∥ ≥ ϵ for k ∈ {mi + 1, · · · , ni − 1}.

By the algorithm design, for all j ≥ 0, we have

∥xj+1 − xj∥ ≤ ∥∆xj∥+ ∥dj∥
(28)

≤ ∥∆xj∥+
LG√
κ1,G
∥∆xj∥2 ≤

(
1 +

LG∆max√
κ1,G

)
∆max, (60)

where the last inequality is due to ∆j ≤ ∆max. Thus, by Assumption 4.1 and ∇Lk = (Pkgk, ck), there
exist constants L∇L,1, L∇L,2 > 0 such that ∥∇Lj+1−∇Lj∥ ≤ L∇L,1(∥xj+1−xj∥+∥xj+1−xj∥2) ≤
L∇L,2∥xj+1 − xj∥ for j ≥ 0. Then,

ϵ < |∥∇Lni∥ − ∥∇Lmi∥| ≤
ni−1∑
j=mi

∥∇Lj+1 −∇Lj∥ ≤ L∇L,2

ni−1∑
j=mi

∥xj+1 − xj∥

(60)

≤ L∇L,2

(
1 +

LG∆max√
κ1,G

) ni−1∑
j=mi

∆j = L∇L,2

(
1 +

LG∆max√
κ1,G

)∆mi +

ni−1∑
j=mi+1

∆j

 .

Since ∆k converges to zero, we have L∇L,2
(
1 + LG∆max/

√
κ1,G

)
∆mi ≤ ϵ/2 for i large enough. Thus,

we obtain L∇L,2
(
1 + LG∆max/

√
κ1,G

)∑ni−1
j=mi+1∆j > ϵ/2 > 0. Since

∑
i

∑ni−1
j=mi+1∆j ≤

∑
j∈Kϵ

∆j ,
we have

∑
j∈Kϵ

∆j =∞, which contradicts Lemma 4.16. This completes the proof. ■

We have finished the convergence analysis of Algorithm 1. In particular, Theorem 4.17 strengthens
the liminf-type to limit-type for the first-order convergence guarantee, and shows that the iterates gen-
erated by Algorithm 1 have vanishing KKT residuals almost surely. This result matches the first-order
conclusion in Chen et al. (2017) for trust-region methods in unconstrained problems.

We also mention that strengthening the liminf-type to limit-type for the second-order convergence
guarantee is challenging. Technically, for an eigen step, the predicted reduction of the merit function
Predk in (21) involves the term τ̄+k ∆2

k. Using a proof similar to Lemma 4.16 would lead to
∑

k∈K′
ϵ
∆2

k <

∞, whereK′
ϵ = {k : τ̄+k ≥ ϵ}. However, this fact would not lead to any contradiction with

∑
k∈K′

ϵ
∆k =

∞. That being said, Theorem 4.15 suggests that there exists a subsequence of iterates with vanishing
negative curvature of the reduced Lagrangian Hessian. This result also matches the state-of-the-art
second-order conclusion in Blanchet et al. (2019) for trust-region methods in unconstrained problems.

4.3 Merit parameter behavior

In this subsection, we investigate the behavior of merit parameter µ̄k and demonstrate the reasonabil-
ity of Assumption 4.2. We prove that Assumption 4.2 holds when the gradient estimate ḡk is bounded
above and the (Lagrangian) Hessian estimate H̄k is bounded both above and below. In particular,
we introduce the following assumption.

Assumption 4.18. For all k ≥ 0, (i) there exists M > 0 such that ∥ḡk − gk∥ ≤M ; (ii) there exists
κB > 0 such that 1/κB ≤ ∥H̄k∥ ≤ κB.
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The above assumption is consistent with (Fang et al., 2024, Assumption 4.12). The upper bound-
edness condition of ḡk is commonly imposed in the SSQP literature (see Berahas et al. (2021, 2023a);
Na et al. (2022a, 2023); Curtis et al. (2024)), and is satisfied, for example, when the objective has a
finite-sum form (i.e., sampling from the empirical distribution as in many machine learning problems).
The upper boundedness condition of H̄k is restated from Assumption 4.1 (and Lemma 4.3), which is
equivalent to assuming the upper boundedness of the objective Hessian noise ∥∇̄2fk−∇2fk∥ (cf. (25)).

In addition, the lower boundedness of H̄k is a mild regularity condition. For first-order stationarity,
we do not require H̄k to be a precise estimate of the Lagrangian Hessian ∇2

xLk. We can set H̄k as the
identity matrix, the estimated Hessian, the averaged Hessian, or the quasi-Newton update; all these
reasonable constructions are naturally bounded away from zero. For second-order stationarity, we let
H̄k = ∇̄2fk +

∑n
i=1 λ̄k∇2cik be an estimate of the Lagrangian Hessian (see Step 1 in Section 3.2). As

suggested by second-order sufficient condition (Nocedal and Wright, 2006, Chapter 12), it is also very
reasonable to have a non-vanishing Hessian estimate (especially for large k) in order to exploit the
curvature information and converge to a non-trivial second-order stationary points.

We note that, in contrast to Sun and Nocedal (2023), the upper and lower bounds for the quantities
in our study are unknown and not involved in our trust-region algorithm design.

Lemma 4.19. Assumptions 4.1 and 4.18 imply Assumption 4.2. In particular, under Assumptions 4.1
and 4.18, there exist an (potentially stochastic) iteration threshold K̄ <∞ and a deterministic con-
stant µ̂, such that µ̄k = µ̄K̄ ≤ µ̂ for all k ≥ K̄.

Proof. See Appendix A. ■

Existing line-search-based SSQP methods require the stochastic merit parameter µ̄k not only to be
stabilized but also to be stabilized at a sufficiently large value to demonstrate global (first-order) con-
vergence (Berahas et al., 2021, 2023a,b; Na et al., 2022a, 2023; Curtis et al., 2024). Without a suffi-
ciently large merit parameter, these methods cannot establish a connection between the stochastic re-
duction of the merit function and the true KKT residual. To achieve this requirement, Berahas et al.
(2021, 2023a,b); Curtis et al. (2024) additionally assumed a symmetric estimation noise, while Na
et al. (2022a, 2023) imposed a stronger feasibility condition when selecting the merit parameter. Our
method eliminates this requirement. By computing a gradient step (or an eigen step), our stochastic
reduction of the merit function (22) is proportional to the estimated KKT residual (or the negative
curvature). Then, by leveraging the design of random models, we can naturally bridge the gap between
the stochastic merit function reduction and the true KKT residual (or the true negative curvature), as
proved in Lemmas 4.11 and 4.12 and applied in Lemma 4.13.

5 Numerical Experiment

We explore the empirical performance of TR-SQP-STORM (Algorithm 1). We implement the method
both on a subset of equality-constrained problems from the benchmark CUTEst test set (Gould et al.,
2014) and on constrained logistic regression problems using synthetic datasets and real datasets from
the UCI repository. In addition, we implement a saddle-point problem to examine the capability of our
methods to escape saddle points. For all problems, our method is implemented for both first- and
second-order stationarity, referred to as TR-SQP-STORM and TR-SQP-STORM2, respectively. We
compare the performance of our method with an adaptive line-search-based SSQP algorithm (Algo-
rithm 3 in Na et al. (2022a), referred to as AL-SSQP below), which is developed under a similar ran-
dom model setup but offers only first-order guarantees. To investigate the role of the merit function,
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we also replace the augmented Lagrangian merit function in that algorithm with the same ℓ2 merit
function we used, referring to this modified algorithm as ℓ2-SSQP method.

5.1 Algorithm setups

To estimate objective values, gradients, and Hessians, batches of samples are generated in each itera-
tion with batch sizes selected adaptively. We denote the batch sizes as |ξkf |, |ξkg |, |ξkh| for the correspond-
ing estimators. In addition, for TR-SQP-STORM2, we use |ξk′f | to denote the batch size of the set ξk

′
f ,

which is only generated for re-estimating the objective value at the new trial point when the SOC step
is performed (cf. Case 2 of Step 4 in Section 3.2). We allow (ξkf , ξ

k′
f , ξkg , ξ

k
h) to be dependent and their

sizes are decided following (17). For AL-SSQP method, |ξkf | and |ξkg | are generated following the con-

clusions of Lemmas 2 and 3 in Na et al. (2022a). Analogously, we generate |ξkf | and |ξkg | for ℓ2-SSQP
method as

|ξkf | ≥
Cfunc log

(
4
pf

)
min

{[
κf ᾱ

2
k

(
ḡTk ∆xk − µ̄k∥ck∥

)]2
, ϵ̄2k, 1

} , |ξkg | ≥
Cgrad log

(
8d

pgrad

)
min

{
κ2gradᾱ

2
k∥∇̄Lk∥2, 1

} ,
where Cfunc, Cgrad are positive constants. We require all sample sizes to not exceed 104.

For both AL-SSQP and ℓ2-SSQP methods, we follow the notation in Na et al. (2022a) and set µ̄0 =
ϵ̄0 = 1, β = 0.3, ρ = 1.2, ᾱ0 = αmax = 1.5, κgrad = 0.05, κf = 0.05, pgrad = pf = 0.1, and Cgrad =
Cfunc = 5. We set the Hessian matrix H̄k = I and solve all SQP subproblems exactly.

For our method (under both first- and second-order stationarity), we set ∆0 = µ̄0 = ϵ̄0 = 1, κg =
κh = 0.05, pf = pg = ph = 0.9, Cf = Cg = Ch = 5, ∆max = 5, ρ = 1.2, γ = 1.5, η = 0.4, and r = 0.01.
We apply IPOPT solver (Wächter and Biegler, 2005) to solve (7) with κfcd = 1. Since trust-region
methods allow Hessian matrices to be indefinite, same as Fang et al. (2024), we consider four different
constructions of H̄k for first-order stationarity:

(a) Identity matrix (Id). This choice has been used in numerous existing SSQP literature due to the
simplicity (see Berahas et al. (2021, 2023a); Na et al. (2022a, 2023) and references therein).

(b) Symmetric rank-one (SR1) update. We initialize H̄0 = I and, for k ≥ 1, H̄k is updated as

H̄k = H̄k−1 +
(yk−1 − H̄k−1∆xk−1)(yk−1 − H̄k−1∆xk−1)

T

(yk−1 − H̄k−1∆xk−1)T∆xk−1
.

Here, yk−1 = ∇̄xLk−∇̄xLk−1 and ∆xk−1 = xk−xk−1. The quasi-Newton with SR1 update can
generate indefinite Hessian approximations and may converge faster to the true Hessian than
BFGS in some scenarios (Khalfan et al., 1993).

(c) Estimated Hessian (EstH). As in the second-order stationarity, we estimate the Hessian matrix
∇̄2

xLk using a single sample and set H̄k = ∇̄2
xLk.

(d) Averaged Hessian (AveH). We estimate the Hessian matrix ∇̄2
xLk using a single sample and set

H̄k = 1
B

∑k
i=k−B+1 ∇̄2

xLi with B = 50. This choice is motivated by Na et al. (2022b), which
shows that averaging the Hessians helps stochastic Newton methods achieve faster convergence.
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Figure 1: KKT residual box plots over 47 CUTEst problems with given initialization (left) and ran-
dom initialization (right). Each panel has four different noise levels. For each noise level, the first four
boxes correspond to TR-SQP-STORM with different types of H̄k; the fifth box corresponds to TR-
SQP-STORM2; and the last two boxes correspond to ℓ2-SSQP and AL-SSQP, respectively.

5.2 CUTEst set

We implement 47 problems from the CUTEst test set. All problems have a non-constant objective, only
equality constraints, and dimension d ≤ 1000. We employ two types of initializations: (i) the initial-
ization provided by the CUTEst package, and (ii) random initialization, where each entry of x0 is inde-
pendently drawn from a Gaussian distribution N (0, 100). For random initialization, all methods start
from the same initialization to ensure a fair comparison.

For objective values, gradients, and Hessians, we generate the estimates based on the true deter-
ministic quantities provided by the CUTEst package. Specifically, F (xk; ξ) ∼ N (fk, σ

2),∇F (xk; ξ) ∼
N (∇fk, σ2(I+11T )), and [∇2F (xk; ξ)]i,j = [∇2F (xk; ξ)]j,i ∼ N ([∇2fk]i,j , σ

2). Here, 1 denotes the d-
dimensional all-one vector. We consider four different noise levels σ2 ∈ {10−8, 10−4, 10−2, 10−1}. For
each method on each problem and each noise level, we perform 5 independent runs and report the
average of the KKT residuals. The stopping criteria for TR-SQP-STORM, AL-SSQP, and ℓ2-SSQP
are set as ∥∇Lk∥ ≤ 10−4 OR k ≥ 105, while the stopping criterion for TR-SQP-STORM2 is set as
max{∥∇Lk∥, τ+k } ≤ 10−4 OR k ≥ 105.

The results of the experiment are illustrated in Figure 1. From the figure, we observe that TR-SQP-
STORM2 (i.e., our method with second-order stationarity) outperforms the other methods and its su-
perior performance is robust across different noise levels and types of initializations. This advantage is
attributed to precise Hessian estimations, the ability to move along negative curvatures, and the com-
putation of SOC steps. Only this method can guarantee to escape from saddle points. Furthermore, at
low noise levels (σ2 = 10−8 or 10−4), line-search-based AL-SSQP and ℓ2-SSQP methods perform com-
parably to our trust-region methods. However, as noise levels increase, the performance of ℓ2-SSQP
deteriorates rapidly, while AL-SSQP remains competitive though still inferior to our methods. In addi-
tion, among the four types of Hessians H̄k used in TR-SQP-STORM, we observe that the SR1 update
can lead to unstable performance. It achieves small KKT residuals at low noise levels but performs well
in some problems and poorly in others at high noise levels. In contrast, the Hessians of EstH and AveH
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(a) covtype dataset (b) shuttle dataset

(c) normal dataset (d) exponential dataset

Figure 2: Trajectories of KKT residuals of four datasets. Each panel corresponds to a dataset and in-
cludes seven lines representing the seven algorithms.

consistently enhance the performance of TR-SQP-STORM across varying noise levels. Notably, AveH
demonstrates even better performance than EstH at high noise levels, as Hessian averaging generates
more accurate Hessian estimates by aggregating samples.

5.3 Logistic regression

We consider an equality-constrained logistic regression problem of the form:

min
x∈Rd

f(x) =
1

N

N∑
i=1

log
(
1 + e−yi(z

T
i x)
)
, s.t. Ax = b,

where {(zi, yi)}Ni=1 are N samples with features zi ∈ Rd and labels yi ∈ {−1,+1}. The constraint pa-
rameters A ∈ R5×d and b ∈ R5 are generated for each problem with entries drawn independently from
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a standard Gaussian distribution while ensuring that A has full row rank. We implement four datasets:
covtype and shuttle from the UCI repository, and normal and exponential that are synthetic. For
the normal and exponential datasets, we set d = 15 and N = 6×104, equally split between the two
classes. In the normal dataset, each entry of zi is generated from N (0, 1) if yi = 1 and N (5, 1) if yi =
−1. In the exponential dataset, each entry of zi is generated from exp(1) if yi = 1 and 5+exp(1) if
yi = −1. We set the initialization to a zero vector. For each algorithm and each dataset, we plot the
trajectory of the average KKT residuals over five independent runs. The stopping criteria for TR-SQP-
STORM, AL-SSQP, and ℓ2-SSQP are set as ∥∇Lk∥ ≤ 10−4 OR k ≥ 104, while similarly, the stopping
criterion for TR-SQP-STORM2 is set as max{∥∇Lk∥, τ+k } ≤ 10−4 OR k ≥ 104.

We present the results in Figure 2. From the figure, we observe that TR-SQP-STORM2 clearly out-
performs the other methods in three out of four datasets. Only in the shuttle dataset is its perfor-
mance comparable to TR-SQP-STORM. We also note that AL-SSQP and ℓ2-SSQP perform well on
covtype but poorly on shuttle and normal. For the exponential dataset, the performance of AL-
SSQP and ℓ2-SSQP is similar to that of TR-SQP-STORM with the Id and SR1 Hessian updates, both
of which are inferior to the performance with EstH and AveH updates. Overall, among the four types
of Hessian matrices tested for TR-SQP-STORM, the averaged Hessian generally performs the best,
followed by the estimated Hessian, while the SR1 update performs the worst. However, it is worth not-
ing that for the shuttle dataset, all four types of Hessians exhibit similar performance.

5.4 Saddle-point problem

To demonstrate the efficacy of TR-SQP-STORM2 in escaping saddle points compared to TR-SQP-
STORM, AL-SSQP and ℓ2-SSQP methods, we consider the following saddle-point problem:

min
(x1,x2)

f(x1, x2) = 2x1 +
1

2
x22 s.t. x21 + x22 − 1 = 0. (61)

We can check that Problem (61) has two stationary points: a local minima at (−1, 0) and a saddle point
at (1, 0). In this experiment, we initialize all methods randomly within a neighborhood of radius 0.01
around the saddle point. Following the CUTEst experiment, we generate estimates of objective values,
gradients, and Hessians based on their true deterministic quantities. Specifically, we have F (xk; ξ) ∼
N (fk, σ

2),∇F (xk; ξ) ∼ N (∇fk, σ2(I+11T )), and [∇2F (xk; ξ)]i,j = [∇2F (xk; ξ)]j,i ∼ N ([∇2fk]i,j , σ
2).

We consider four different noise levels σ2 ∈ {10−8, 10−4, 10−2, 10−1}. For each method on each noise
level, we perform 5 independent runs and report the averaged trajectories of the KKT residuals and
the smallest eigenvalue of the reduced Lagrangian Hessians. The stopping criteria for all methods are
set as max{∥∇Lk∥, τ+k } ≤ 10−4 OR k ≥ 104.

We present the trajectories of the KKT residuals in Figure 3(a)-(d) and the trajectories of the small-
est eigenvalues in Figure 3(e)-(h). To better visualize the results, we plot only the first 100 iterations
as both the KKT residuals and the smallest eigenvalues stabilize after this point. From the two figures,
we see that across all four noise levels, only TR-SQP-STORM2 successfully escapes the saddle point
and converges to the local minima. In contrast, for all other methods, the KKT residuals remain rela-
tively large and the smallest eigenvalues stay close to −1, which is precisely the negative curvature at
the saddle point (1, 0). Thus, we conclude that the other methods are trapped near the saddle point.
Moreover, TR-SQP-STORM2 demonstrates a rapid escape, consistently terminating after around 20
iterations for different noise levels.
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(a) σ2 = 10−8 (b) σ2 = 10−4 (c) σ2 = 10−2 (d) σ2 = 10−1

(e) σ2 = 10−8 (f) σ2 = 10−4 (g) σ2 = 10−2 (h) σ2 = 10−1

Figure 3: Trajectories of the KKT residuals and the smallest eigenvalue of the reduced Lagrangian
Hessians under four noise levels. The top four figures show the trajectories of the KKT residuals, while
the bottom four figures show the trajectories of the smallest eigenvalues. Each figure corresponds to a
noise level and includes seven lines representing the seven algorithms.

6 Conclusion

In this paper, we proposed a Trust-Region Sequential Quadratic Programming method called TR-
SQP-STORM to find both first- and second-order stationary points for constrained stochastic prob-
lems. Our method utilizes a random model framework to represent the objective function. At each iter-
ation, a batch of samples is realized to estimate the objective quantities, with the batch size adaptively
selected to ensure the estimators satisfy certain proper accuracy conditions with a fixed probability.
We designed two types of trial steps, gradient steps and eigen steps, both of which are computed via a
novel parameter-free decomposition of the step and the trust-region radius. The gradient steps aim to
reduce the KKT residuals to achieve first-order stationarity, while the eigen steps aim to explore the
negative curvature of the reduced Lagrangian Hessian to achieve second-order stationarity. For the
latter goal, we additionally computed second-order correction steps to overcome the potential Maratos
effect, which occurs exculsively in constrained problems. Under mild assumptions, we showed global al-
most sure convergence guarantees. Numerical experiments on CUTEst benchmark problems, con-
strained logistic regression problems, and saddle-point problems illustrate the promising performance
of our method.
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Appendix A. Proof of Lemma 4.19

It suffices to show that (22) is satisfied as long as µ̄k exceeds a deterministic threshold independent of k.
We divide our analysis into two cases, depending on whether the gradient step or the eigen step is taken.
•Case 1: gradient step is taken. By the algorithm design, a gradient step is taken if and only if (19)
holds. Thus, we only need to show

Predk ≤ −
κfcd
2
∥∇̄Lk∥min

{
∆k,
∥∇̄Lk∥
∥H̄k∥

}
(A.1)

when µ̄k is sufficiently large. Since ∥ck +Gk∆xk∥ − ∥ck∥ = −γ̄k∥ck∥, we have

Predk
(21)
= ḡTk ∆xk +

1

2
∆xT

k H̄k∆xk + µ̄k(∥ck +Gk∆xk∥ − ∥ck∥)

= (ḡk + γ̄kH̄kvk)
TZkuk +

1

2
uT
kZ

T
k H̄kZkuk + γ̄kḡ

T
k vk +

1

2
γ̄2kv

T
k H̄kvk − µ̄kγ̄k∥ck∥

≤ −
κfcd
2
∥ZT

k (ḡk + γ̄kH̄kvk)∥min

{
∆̃k,
∥ZT

k (ḡk + γ̄kH̄kvk)∥
∥H̄k∥

}
+ γ̄k∥ḡk∥∥vk∥

+
1

2
γ̄k∥H̄k∥∥vk∥2 − µ̄kγ̄k∥ck∥, (A.2)

where the inequality is due to (8) and γ̄k ≤ 1. By ∥ZT
k (ḡk+γ̄kH̄kvk)∥ ≥ ∥ZT

k ḡk∥−γ̄k∥H̄k∥∥vk∥, we have

∥ZT
k (ḡk + γ̄kH̄kvk)∥min

{
∆̃k,
∥ZT

k (ḡk + γ̄kH̄kvk)∥
∥H̄k∥

}
37



≥ ∥ZT
k ḡk∥min

{
∆̃k,
∥ZT

k ḡk∥
∥H̄k∥

− γ̄k∥vk∥
}
− γ̄k∥H̄k∥∥vk∥min

{
∆̃k,
∥ZT

k ḡk∥
∥H̄k∥

− γ̄k∥vk∥
}

≥ ∥ZT
k ḡk∥min

{
∆̃k,
∥ZT

k ḡk∥
∥H̄k∥

}
− γ̄k∥ZT

k ḡk∥∥vk∥ − γ̄k∥H̄k∥∥vk∥∆̃k. (A.3)

Combining (A.2), (A.3), the fact ∥vk∥ ≤ 1√
κ1,G
∥ck∥, and Assumption 4.1, we obtain

Predk ≤ −
κfcd
2
∥ZT

k ḡk∥min

{
∆̃k,
∥ZT

k ḡk∥
∥H̄k∥

}
+

κfcd
2
√
κ1,G

γ̄k∥ZT
k ḡk∥∥ck∥+

κfcd
2
√
κ1,G

γ̄k∥H̄k∥∥ck∥∆̃k

+
1

√
κ1,G

γ̄k∥ḡk∥∥ck∥+
κc

2κ1,G
γ̄k∥H̄k∥∥ck∥ − µ̄kγ̄k∥ck∥

≤ −
κfcd
2
∥ZT

k ḡk∥min

{
∆̃k,
∥ZT

k ḡk∥
∥H̄k∥

}
+

(
∆max

2
√
κ1,G

+
κc

2κ1,G

)
γ̄k∥H̄k∥∥ck∥

+
1.5
√
κ1,G

γ̄k∥ḡk∥∥ck∥ − µ̄kγ̄k∥ck∥,

where the second inequality uses ∥ZT
k ḡk∥ ≤ ∥ḡk∥, ∆̃k ≤ ∆max, and κfcd ≤ 1. By Assumptions 4.1 and

4.18, we know ∥ḡk∥ ≤ ∥ḡk− gk∥+∥gk∥ ≤M +κ∇f . Noting that ∥ZT
k ḡk∥ = ∥∇̄xLk∥ and ∥H̄k∥ ≤ κB

(cf. Assumption 4.18), we further have

Predk ≤ −
κfcd
2
∥∇̄xLk∥min

{
∆̃k,
∥∇̄xLk∥
∥H̄k∥

}
+

{
∆maxκB
2
√
κ1,G

+
κcκB
2κ1,G

+
1.5(M + κ∇f )√

κ1,G
− µ̄k

}
γ̄k∥ck∥.

(A.4)
• Case 1a: ∆̃k ≤ ∥∇̄xLk∥/∥H̄k∥. We note that

−
κfcd
2
∥∇̄xLk∥∆̃k −

κfcd
2
∥∇̄xLk∥∆̆k −

κfcd
2
∥ck∥∆k ≤ −

κfcd
2
∥∇̄xLk∥∆k −

κfcd
2
∥ck∥∆k

≤ −
κfcd
2
∥∇̄Lk∥∆k ≤ −

κfcd
2
∥∇̄Lk∥min

{
∆k,
∥∇̄Lk∥
∥H̄k∥

}
.

Therefore, we know from (A.4) and the above display that (A.1) holds as long as

µ̄kγ̄k∥ck∥ ≥
κfcd
2
∥∇̄xLk∥∆̆k +

κfcd
2
∥ck∥∆k +

{
∆maxκB
2
√
κ1,G

+
κcκB
2κ1,G

+
1.5(M + κ∇f )√

κ1,G

}
γ̄k∥ck∥. (A.5)

When γ̄k = 1, (A.5) holds as long as

µ̄k ≥
κfcd∥∇̄xLk∥

2∥ck∥
∆̆k +

κfcd
2

∆k +
∆maxκB
2
√
κ1,G

+
κcκB
2κ1,G

+
1.5(M + κ∇f )√

κ1,G
. (A.6)

Noting that

∆̆k
(5)
=
∥cRS

k ∥
∥∇̄LRS

k ∥
∆k

(4)
=

∥Gk∥−1∥ck∥
∥(∥H̄k∥−1∇̄xLk, ∥Gk∥−1ck)∥

∆k ≤
∥Gk∥−1∥ck∥
∥H̄k∥−1∥∇̄xLk∥

∆k,

we see (A.6) is satisfied if

µ̄k ≥
κfcd
2

∥H̄k∥
∥Gk∥

∆k +
κfcd
2

∆k +
∆maxκB
2
√
κ1,G

+
κcκB
2κ1,G

+
1.5(M + κ∇f )√

κ1,G
.
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Combining the above display with ∆k ≤ ∆max, ∥Gk∥ ≥
√
κ1,G, ∥H̄k∥ ≤ κB, and κfcd ≤ 1, we know

(A.1) holds if

µ̄k ≥
(

κB√
κ1,G

+ 0.5

)
∆max +

κcκB
2κ1,G

+
1.5(M + κ∇f )√

κ1,G
=: µ̂1.

On the other hand, when γ̄k = ∆̆k/∥vk∥, (A.5) holds provided that

µ̄k ≥
κfcd
2

∥∇̄xLk∥∥vk∥
∥ck∥

+
κfcd
2

∆k∥vk∥
∆̆k

+
∆maxκB
2
√
κ1,G

+
κcκB
2κ1,G

+
1.5(M + κ∇f )√

κ1,G

=
κfcd
2

∥∇̄xLk∥∥vk∥
∥ck∥

+
κfcd
2

∥Gk∥∥vk∥∥∇̄LRS
k ∥

∥ck∥
+

∆maxκB
2
√
κ1,G

+
κcκB
2κ1,G

+
1.5(M + κ∇f )√

κ1,G
.(A.7)

Since κfcd ≤ 1, ∥vk∥ ≤ ∥ck∥/
√
κ1,G, ∥∇̄xLk∥ ≤ ∥ḡk∥ ≤M + κ∇f , and

∥∇̄LRS
k ∥ ≤ max{∥H̄k∥−1, ∥Gk∥−1}∥∇̄Lk∥ ≤ max

{
1

κB
,

1
√
κ1,G

}
(∥∇̄xLk∥+ ∥ck∥)

≤ max

{
1

κB
,

1
√
κ1,G

}
(M + κ∇f + κc),

we know (A.7) is implied by

µ̄k ≥
2(M + κ∇f )√

κ1,G
+

√
κ2,G

2
√
κ1,G

max

{
1

κB
,

1
√
κ1,G

}
(M + κ∇f + κc) +

∆maxκB
2
√
κ1,G

+
κcκB
2κ1,G

=: µ̂2.

• Case 1b: ∆̃k > ∥∇̄xLk∥/∥H̄k∥. We note that

−
κfcd
2

∥∇̄xLk∥2

∥H̄k∥
−

κfcd
2

∥ck∥2

∥H̄k∥
= −

κfcd
2

∥∇̄Lk∥2

∥H̄k∥
≤ −

κfcd
2
∥∇̄Lk∥min

{
∆k,
∥∇̄Lk∥
∥H̄k∥

}
.

Thus, (A.4) suggests that (A.1) holds as long as

µ̄kγ̄k∥ck∥ ≥
κfcd
2

∥ck∥2

∥H̄k∥
+

{
∆maxκB
2
√
κ1,G

+
κcκB
2κ1,G

+
1.5(M + κ∇f )√

κ1,G

}
γ̄k∥ck∥

⇐⇒ µ̄k ≥
κfcd
2

∥ck∥
γ̄k∥H̄k∥

+
∆maxκB
2
√
κ1,G

+
κcκB
2κ1,G

+
1.5(M + κ∇f )√

κ1,G
. (A.8)

By (5), ∆̃k > ∥∇̄xLk∥/∥H̄k∥ = ∥∇̄xLRS
k ∥ implies ∆k > ∥∇̄LRS

k ∥. Using ∆̆k = ∥Gk∥−1∥ck∥/∥∇̄LRS
k ∥·

∆k and ∥vk∥ ≤ ∥ck∥/
√
κ1,G, we have

γ̄k = min

{
∆̆k

∥vk∥
, 1

}
= min

{
∥Gk∥−1∥ck∥∆k

∥∇̄LRS
k ∥∥vk∥

, 1

}
≥ min

{
∥ck∥

∥Gk∥∥vk∥
, 1

}
≥ min

{√
κ1,G
κ2,G

, 1

}
=

√
κ1,G
κ2,G

.

Thus, with κfcd ≤ 1, (A.8) (and hence (A.1)) is implied by

µ̄k ≥
κc
2κB

√
κ2,G
κ1,G

+
∆maxκB
2
√
κ1,G

+
κcκB
2κ1,G

+
1.5(M + κ∇f )√

κ1,G
=: µ̂3.
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• Case 2: eigen step is taken. We only need to show

Predk ≤ −
κfcd
2

τ̄+k ∆2
k −

κfcd
2

τ̄+k ∥ck∥∆k (A.9)

when µ̄k is sufficiently large. By the definition of the eigen step, we have

Predk
(21)
= ḡTk ∆xk +

1

2
∆xT

k H̄k∆xk + µ̄k(∥ck +Gk∆xk∥ − ∥ck∥)

= (ḡk + γ̄kH̄kvk)
TZkuk +

1

2
uT
kZ

T
k H̄kZkuk + γ̄kḡ

T
k vk +

1

2
γ̄2kv

T
k H̄kvk − µ̄kγ̄k∥ck∥

(10)

≤ −
κfcd
2

τ̄+k ∆̃2
k + γ̄k∥ḡk∥∥vk∥+

1

2
γ̄k∥H̄k∥∥vk∥2 − µ̄kγ̄k∥ck∥.

By Assumptions 4.1, 4.18 and ∥vk∥ ≤ ∥ck∥/
√
κ1,G, we further have

Predk ≤ −
κfcd
2

τ̄+k ∆̃2
k +

M + κ∇f√
κ1,G

γ̄k∥ck∥+
κcκB
2κ1,G

γ̄k∥ck∥ − µ̄kγ̄k∥ck∥

= −
κfcd
2

τ̄+k ∆2
k −

κfcd
2

τ̄+k ∥ck∥∆k +
κfcd
2

τ̄+k ∆̆2
k +

κfcd
2

τ̄+k ∥ck∥∆k

+

{
M + κ∇f√

κ1,G
+

κcκB
2κ1,G

− µ̄k

}
γ̄k∥ck∥.

Thus, (A.9) holds if

µ̄kγ̄k∥ck∥ ≥
κfcd
2

τ̄+k ∆̆2
k +

κfcd
2

τ̄+k ∥ck∥∆k +

{
M + κ∇f√

κ1,G
+

κcκB
2κ1,G

}
γ̄k∥ck∥

(9)
=

κfcd
2

τ̄+k ∥c
RS
k ∥2

(τ̄RS+
k )2 + ∥cRS

k ∥2
∆2

k +
κfcd
2

τ̄+k ∥ck∥∆k +

{
M + κ∇f√

κ1,G
+

κcκB
2κ1,G

}
γ̄k∥ck∥. (A.10)

When γ̄k = 1, by Young’s inequality, τ̄+k ≤ ∥H̄k∥ ≤ κB, and ∆k ≤ ∆max, we know (A.10) is implied by

µ̄k ≥
κfcd
4

τ̄+k ∥c
RS
k ∥

τ̄RS+
k ∥ck∥

∆2
max +

κfcd
2

κB∆max +
M + κ∇f√

κ1,G
+

κcκB
2κ1,G

⇐= µ̄k ≥
κfcd
4

κB√
κ1,G

∆2
max +

κfcd
2

κB∆max +
M + κ∇f√

κ1,G
+

κcκB
2κ1,G

⇐= µ̄k ≥
κB

4
√
κ1,G

∆2
max +

κB∆max

2
+

M + κ∇f√
κ1,G

+
κcκB
2κ1,G

=: µ̂4.

When γ̄k < 1, without loss of generality, we suppose ∥ck∥ ≠ 0 (otherwise (A.10) is trivial). From (9) and
γ̄k∥vk∥ = ∆̆k, we have

∆k =
γ̄k∥vk∥∥Gk∥
∥ck∥

∥(τ̄RS+
k , cRS

k )∥.

Thus, (A.10) is equivalent to

µ̄kγ̄k∥ck∥ ≥
κfcd
2

τ̄+k γ̄2k∥vk∥2 +
κfcd
2

τ̄+k γ̄k∥vk∥∥Gk∥∥(τ̄RS+
k , cRS

k )∥+
{
M + κ∇f√

κ1,G
+

κcκB
2κ1,G

}
γ̄k∥ck∥.
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Since max{γ̄k, κfcd} ≤ 1, we only need µ̄k to satisfy

µ̄k ≥
τ̄+k ∥vk∥

2

2∥ck∥
+

τ̄+k ∥vk∥
2∥ck∥

∥Gk∥∥(τ̄RS+
k , cRS

k )∥+
M + κ∇f√

κ1,G
+

κcκB
2κ1,G

.

Using τ̄+k ≤ ∥H̄k∥ ≤ κB and ∥vk∥ ≤ ∥ck∥/
√
κ1,G, and applying Assumptions 4.1 and 4.18, we know

the above display can be further implied by

µ̄k ≥
κcκB
κ1,G

+
κB
√
κ2,G

2
√
κ1,G

(
1 +

κc√
κ1,G

)
+

M + κ∇f√
κ1,G

=: µ̂5.

Combining all the results above by defining µ̃ = max{µ̂1, . . . , µ̂5}, we know (22) is satisfied if µ̄k ≥ µ̃.
Since µ̄k is increased by a factor of ρ for each update, this result suggests that µ̄k ≤ ρµ̃ =: µ̂. This
completes the proof.
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