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ABSTRACT

Length generalization (LG) is a challenging problem in learning to reason. It
refers to the phenomenon that when trained on reasoning problems of smaller
lengths/sizes, the model struggles with problems of larger sizes or lengths. Al-
though it has been proven that reasoning can be learned if the intermediate reason-
ing steps (also known as chain-of-thought (CoT)) are given in the training data,
existing studies only apply to within a given length (interpolation), while LG is
about extrapolation beyond the given length. This paper begins by presenting a
theorem that identifies the root cause of the LG problem. It then defines a class
of reasoning problems for which achieving LG with Transformers can be theoreti-
cally guaranteed, provided the CoT schemes are constructed to meet a proposed
condition called (n, r)-consistency. In the empirical study, we introduce the CoT
schemes for reasoning problems like arithmetic, parity, addition, multiplication,
and division to train a Transformer to achieve LG for these problems.

1 INTRODUCTION

Large language models (LLMs) have been shown to perform reasoning tasks remarkably well (Brown
et al., 2020; Suzgun et al., 2022; Saparov & He, 2022; Liu et al., 2023; Xu et al., 2023b). However,
evaluations also revealed some limitations. For example, LLMs often have difficulties in simple
addition and multiplication of large numbers (Nogueira et al., 2021; Qian et al., 2022; He et al.,
2024). A popular solution to improve reasoning is to use Scratchpad (Nye et al., 2021) or Chain of
Thought (CoT) (Wei et al., 2022). Their idea is to add intermediate steps for each reasoning problem
in the training data. For example, the training sample for calculating 3 + 2 × 1 may be presented
as 3 + 2× 1 = 3 + 2 = 5 rather than 3 + 2× 1 = 5 (CoT is not needed at testing). CoT has been
used to improve reasoning (Anil et al., 2022; Liu & Low, 2023; Lee et al., 2023). However, Dziri
et al. (2023) and Kazemnejad et al. (2023) reported that even with detailed CoT steps, the learned
models still fail to generalize for several reasoning problems. For example, they showed that when
trained with smaller problem instances, e.g., multiplication of two smaller numbers like 1234× 135
based on the CoT training data, the model cannot generalize to solve larger problem instances (e.g.,
235469× 44562). This problem is called length generalization (LG) or length extrapolation (Anil
et al., 2022; Zhang et al., 2022; Kazemnejad et al., 2023). Note that we distinguish a problem, e.g.,
multiplication of two numbers) and an instance of the problem, e.g., 1234× 135.

This paper proposes a theoretical study of LG in learning to reason given a step-by-step CoT process
for each training problem instance. We will not study the case where the CoT steps are not given
but only the direct input and output (e.g., 3 + 2 × 1 = 5) are provided as it has been proven that
this case isn’t learnable in general (Wies et al., 2023; Feng et al., 2023; Malach, 2023). Although
the learnability based on CoT has been proven for neural networks in (Wies et al., 2023; Feng et al.,
2023; Malach, 2023), these studies are all under i.i.d and given problem length/size N . They do
not cover LG. Their statements are like “for a given dataset with training instances of a problem
with length no longer than N , a suitable neural network can learn to solve any instances of the
problem with length N ′ ≤ N under a PAC upper bound.” The key limitation of their studies is that
the training problem instance length and testing problem instance length are in the same range, or the
upper bound depends on the testing problem instance length. We will also see in the experiments in
Sec. 4 that if the test instance length is within the training instance length range, the model learns
very well, but fails badly when the test instances have longer lengths.
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This paper aims to overcome this limitation to achieve LG. Our statement is: “for a given dataset
with training instances of a problem with lengths no longer than N , learning can solve problem
instances of any length N ′ if the CoT scheme of the problem can be constructed to satisfy a proposed
condition.” This condition is called (n, r)-consistency. Note that for the same problem, there can
be many ways to provide the intermediate steps, which we call different CoT schemes. Some CoT
schemes may fail to meet the (n, r)-consistency condition and struggle to achieve LG, while others
may satisfy the condition and can achieve LG.

This paper makes the following contributions:

1. It first introduces a theorem to show the root cause of the LG problem. It then presents the
condition (n, r)-consistency, which formally defines a problem class whose problems can
have CoT schemes that satisfy the (n, r)-consistency condition. We prove that for this class
of problems, LG can be achieved with a Transformer. To our knowledge, little theoretical
analysis has been done about LG in the existing literature.

2. Empirically, we validate the theory by using a Transformer to learn complex tasks like
arithmetic, parity, addition, multiplication, and division, achieving perfect LG for the
tested lengths. To the best of our knowledge, no current method attains perfect LG for
multiplication for those lengths, and no reported results exist for division, which presents an
even greater challenge.

2 RELATED WORK

Our related work includes out-of-distribution (OOD) generalization, theories about using CoT for
reasoning, and empirical work on LG. There is also a body of work that evaluates the reasoning
capabilities of LLMs, which is indirectly related to our work and is reviewed in Appendix A.

OOD generalization of reasoning was studied in (Abbe et al., 2023). It assumes that some value
combinations are missing during training and that can result in wrong predictions on OOD data.
They also analyzed LG and used curriculum learning to improve the performance of the parity
problem. Our work is different as we identify a condition for achieving LG. LG is a type of OOD
generalization. However, there is a key difference. Since the maximal length of the training problems
is always finite, a larger size/length problem can always appear in testing, which can be seen as OOD.
But such an OOD is unavoidable regardless of how much data is used in training as long as it is finite.
OOD generation in (Abbe et al., 2023) is solvable with more diverse training data.

Wies et al. (2023) proved that when sufficient intermediate steps (or CoT) are available, a neural
network can efficiently learn any function in the P time complexity class. In addition, there exist
functions in the P time complexity class that cannot be learned by any polynomial time learning algo-
rithm without CoT. Feng et al. (2023) showed why CoT works on problems that can be decomposed
into sub-problems. They also proved that it is not learnable directly without CoT. Li et al. (2023b)
showed that CoT can enable the model to identify each step and then work on the step before moving
to the next step in the CoT chain. Prystawski & Goodman (2023) studied why and how CoT works in
LLMs. Malach (2023) proved that with some assumptions, even simple models like linear next-token
predictors trained on CoT data are universal learners. The paper also introduces the length complexity
to measure how many intermediate tokens are required to learn a function. However, as discussed in
Sec. 1, the theorems in these papers are based on the given length/size N . They do not cover LG. An
analysis was also done about mathematical reasoning in (Hu et al., 2024) and it shows that reasoning
is done more like case-based reasoning rather than based on learned rules.

Many empirical attempts tried to modify the Transformer and learning biases to solve the LG problem
better. Duan & Shi (2023), Zhou et al. (2024) and He et al. (2024) proposed bias calibration or
position encoding methods to enable the model to learn better. However, their methods are unable
to solve addition perfectly or multiplication at all. Jelassi et al. (2023) proposed to add a small
number of long sequences in the training to help solve long sequences, but still could not solve
multiplication. Chi et al. (2023) proposed a Transformer variant with weight-sharing, a working
memory, etc, to improve LG for regular languages, but it still cannot solve multiplication or addition.
Different attentions and new architectures are also proposed in (Nangia & Bowman, 2018; Bowman
et al., 2015; Tay et al., 2021; Chowdhury & Caragea, 2023a;b). However, they don’t use CoT but
only the direct input and output in training. Their methods work on various text copying and list
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operations but don’t solve these problems and do not work on more complex large-number addition
and multiplication. Theoretically, learning to reason without intermediate steps (or CoT) in training
has been shown not learnable (Wies et al., 2023; Feng et al., 2023). Our work needs no specialized
architectures for different problems, but just a vanilla Transformer with relative position encoding.

LG is also studied for text generation using Transformers, which have the problem when training on
short text while evaluating on longer text (Sun et al., 2023; Press et al., 2022; Ruoss et al., 2023; Han
et al., 2023). However, this body of work is very different from the LG problem in reasoning.

3 PROPOSED THEORETICAL STUDY OF LG

Let S be a reasoning problem and the sequence (or string) S = s1 . . . s|S| be an instance of the
problem, i.e., S ∈ S . We use |S| to denote the length of S and S[i] = si to denote the i’th element
of S, where si ∈ V and V is a finite vocabulary space.

A CoT scheme for a reasoning problem is a sequence of intermediate steps for solving the problem.1
We use St to denote the input of the t’th CoT step of S and St+1 as the output of the step, which is
also the input of the (t+ 1)’th CoT step. For simplicity, we use (S0, S1, . . . , ST ) to denote the CoT
process of S (S0 is the same as S here), where ST represents the end. Note that T is a function of
S0, i.e. T = T (S0), but again for simplicity, we simply write T . For instance, given S as 3 + 2× 1
(an instance of the arithmetic problem), S0 is also 3+ 2× 1, S1 is 3+ 2, and S2 is 5, which form the
CoT process of S. We use Sk to represent the k’th instance of the problem S , and St

k the input of the
t’th CoT step of Sk. Similarly, we use St

k[i] to denote the i’th element of St
k. An element St

k[i] can
also have multiple dimensions. Below, we will also use S0

k to represent the kth problem instance Sk.

Problem Statement of Length Generation (LG): For a problem S , ∀N > 0, when we learn a func-
tion f̂ that performs perfectly on the problem instances of length ≤ N , i.e., f̂(St) → St+1, ∀ |S| ≤
N, ∀ 0 ≤ t < T ,2 we want the learned function f̂ to also perform perfectly on problem instances of
arbitrary length N ′ (i.e., f̂(St) → St+1, ∀N ′ > N orN ′ ≤ N, ∀ |S| = N ′, ∀ 0 ≤ t < T ). Note
that N ′ is of arbitrary size, and T is also of arbitrary size as it is a function of S0.

We propose a condition called (n, r)-consistency that is sufficient for achieving LG. This defines
a class of problems whose CoT schemes can be designed to satisfy the condition.3 We prove the
existence of a parameterized Transformer with a mask following the condition to achieve LG.

3.1 ROOT CAUSE OF THE LG PROBLEM

Before introducing the proposed condition, we present the following theorem to give the root cause
of the LG problem, which also highlights what is necessary to resolve the problem. Without loss
of generality, we represent a CoT step as a multivariate function that maps tokens to tokens. For
simplicity in analysis, we assume it to be a single-valued function, mapping a set of tokens to a
single token. The LG problem involves observing the function’s behavior with up to N tokens and
predicting how it behaves with more than N tokens.

Theorem 3.1 Define V as a metric space. Denote 0 ∈ V to be the empty token. For gN :
V N → [−1, 1], ∀ N ′ > N , there exists infinitely many continuation fN ′ : V N ′ → [−1, 1] s.t.
fN ′(v1, . . . , vN , 0, . . . , 0) = gN (v1, . . . , vN ).

See the proof in Appendix C. Here V represents the vocabulary. The number of the input tokens
(the length) is represented by N . Let the ground truth function reasoning on arbitrarily many tokens
be g∞ :

∏∞
i=1 V → V . The ground truth function reasoning on up to N tokens is represented by

gN , which restricts g∞ onto the first N tokens, i.e. gN (v1, . . . , vN ) = g∞(v1, . . . , vN , 0, 0, 0, . . . ).
Theorem 3.1 states that there exists an infinite number of continuation fN ′ of a higher dimension N ′

that can achieve the effect of the function gN of a lower dimension N .

1There can be many CoT schemes for the same problem as we discussed earlier and will see shortly.
2 Notice the slight difference from the existing CoT modeling, which is f̂(S0) = S1, S2, ..., ST .
3 This does not claim that (n, r)-consistency is necessary for achieving LG or that it is possible to design

CoT schemes for all reasoning problems to satisfy (n, r)-consistency.
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The LG problem is to attain gN ′ (N ′ > N ) when observing gN , which is the constraint that gN ′

restricted on N dimensions is gN . However, Theorem 3.1 shows that there exist infinitely many
functions fN ′ that can produce the effect of gN when restricted on N dimensions. This means that,
with only the continuity bias and the input and output data of gN , it is almost impossible to predict
the correct gN ′ as there exist infinitely many fN ′ (which are not gN ′ ) that satisfy the same constraint.

This analysis shows that with only the input and output data of gN , it is insufficient to achieve LG, i.e.
predicting gN ′ . We propose the following necessary condition for achieving LG for a problem:

• Sufficient bias needs to be introduced to the problem s.t. with the bias, fN ′ in Theorem 3.1
is made equal to gN ′ uniquely (or with high concentration).4

In what follows, we propose a specific bias, namely the (n, r)-consistency, which is sufficient to
achieve LG. This bias is pattern-based and requires the consistency condition to ensure that gN ′ is
uniquely determined when its pattern matches the corresponding pattern in gN .

3.2 (n, r)-CONSISTENCY: THE INTUITIVE IDEA

We now intuitively discuss the proposed (n, r)-consistency. Denote S as a problem and S0 ∈ S as
an instance of the problem. In a CoT step t, we have the input St and output St+1. Our goal is to
find a solver (or learn a function) f that predicts St+1 given St, i.e. St+1 = f(St).5 The problem
of predicting St+1 can be decomposed into sub-problems of predicting each element of St+1, i.e.,
St+1[i] for each position index i. To do so, we further ensure that the lengths St and St+1 are the
same by adding blank space elements in suitable positions. (n, r) basically means a context with n
r-length intervals (or subsequences) in St can predict St+1.

For example, let us consider one instance, 123+567, of the problem, addition. We consider the
CoT step with the input S0 = ‘123+567= $0’ and output S1 = ‘123+567=?90’, where ?
indicates that 0 is carried and $ indicates that 1 is carried. To ensure that the input and the output are
of the same length, a blank space (or empty) element is added after ‘=’ in S0 in the CoT scheme.
We call this CoT scheme of addition as addition-[1].

Let us consider the prediction of the 10’s element 9 in the output S1, i.e., S1[10] = 9. The 10’s
position of S0 is $. Let us say that we use the three elements interval or subsequence ‘ $0’ in
S0 (i.e., r = 3 and $ is the central element of the interval) as the context to predict 9 in the 10’s
position of S1, which is clearly insufficient as 9 can only be calculated by using 2, 6, and $ in S0.
This means that we need at least three intervals in S0 as a context to predict 9 in S1, i.e., ‘123’,
‘567’, and ‘ $0’, where 2, 6, and $ are central elements in the intervals respectively, and then
n = 3. We call ‘ $0’ the anchor interval as the position (10) of its central element $ is the one
that we want to predict in S1 with this set of intervals, which we call a (3, 3)-context for predicting
the value (i.e., 9) in the 10’s position of S1. (3, 3)-context represents three 3-length intervals.

We now introduce the concept of (n, r)-consistency with regard to a problem, (3, 3)-consistency with
regard to addition in our case above. Consistency here means that 9 should be predicted for the
position of the central element of the anchor interval (the position of $ in ‘ $0’ in S0) whenever
the three intervals (‘ $0’: ‘123’, ‘567’) appear in an instance of the addition problem. Note
that we put the anchor interval first and separate it from the other intervals using ‘:’ to indicate
what we want to predict. This (3, 3)-context is not consistent for the addition problem. This is
because we can easily find another problem instance that contains the (3, 3)-context but does not
predict ‘9’ for the position of the central element of the anchor interval. For example, the input
S0 = ‘12342+45678= $0’ and output S1 = ‘12342+45678=$20’. Obviously, S0 here
contains the above (3, 3)-context, but the prediction for the position of the central element of the
anchor interval (the position of ‘$’) in the input S0 should be 2 in the output S1, not 9. These two
scenarios result in a conflict in learning. Thus, addition-[1-line] is not (3, 3)-consistent for n = 3
and r = 3. The intuition of (n, r)-consistency is that we want to learn and predict the same element
value with the same context with no conflict or uncertainty.

We can design a different CoT scheme for addition using two lines to achieve (3, 3)-consistent. We
call this scheme addition-[2], which uses tags to indicate the digits to be calculated next (see the CoT

4We still don’t have a complete set of biases contributing to the necessary condition. This paper provides one
such bias, i.e., (n, r)-consistency, that is sufficient for achieving LG.

5For simplicity, we omit N in fN , where N represents the length of the problem instance.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

process in Fig 2 of Appendix E). The two CoT examples above become,

123 + 567 = $0 ⇒
(
123 + 567 = $0

I J K

)
, and

12342 + 45678 = $0 ⇒
(
12342 + 45678 = $0

I J K

)
,

where I and J indicate the digits to be added next and K indicates the position of the output. In
this case, each element has 2 dimensions and when the second dimension is not I , J , or K, it is an
empty token, which is also significant. In this 2-dimensional case, the corresponding (3, 3)-context
of S0 = ‘123+567= $0’ becomes (notice the anchor interval in the first position),(

‘ $0’ : ‘123’, ‘567’
K I J

)
.

In this case, the (3, 3)-context is not contained in the above CoT step of 12342 + 45678. In fact,
no other possible problem instance can have the same three 2-dimensional intervals whose central
elements are not the elements to be calculated next because I , J , and K indicate the elements to be
calculated next. Thus, addition-[2] is (3, 3)-consistent, meaning that for any instance of the addition
problem if it contains the above (3, 3)-context, the output element at position K will always be 9.

To summarize, the (3, 3)-context example implies that (1) a context is independent of the positional
distances between any pair of intervals in it and (2) the same or consistent output is obtained if any
CoT step input of a problem instance contains the same context. Thus, this example introduces a
bias that if a local context in the input always implies the same output without requiring any dynamic
information depending on the length or position (e.g., position encoding in the Transformer), it’s
possible to achieve LG. Based on this idea, we propose (n, r)-consistency and show it is one special
bias that is sufficient to achieve LG by a parameterized Transformer.

3.3 (n, r)-CONSISTENCY: DEFINITION AND PROPERTIES

We now formally define (n, r)-consistency. For simplicity of notations, we will use S0 to represent St

and S1 to represent St+1. Similarly, we can also call any St a problem instance. We now introduce
the concept of consistent context.

Definition 3.2 (Consistent Context) Denote a context h = (a1 : a2, . . . , a|h|) as a sequence of
|h| intervals, where a1 is called the anchor interval and each interval consists of a sequence of r
elements, i.e. aj = sj,1 . . . sj,r, sj,l ∈ V , 1 ≤ j ≤ |h|, 1 ≤ l ≤ r, where V is a finite vocabulary.6

(i) For a problem instance S0 = s1 . . . s|S0|, we say h ⊏ S0 (contained in) if there exists 1 ≤
m1, . . . ,m|h| ≤ |S0|,7 s.t. smj

. . . smj+r−1 = aj , 1 ≤ j ≤ |h|.

(ii) We say h is a context of a problem S if there exists a problem instance S0 ∈ S s.t. h ⊏ S0.

(iii) We define c(h, S0) = m1+ ⌊ r
2⌋ as the position index of the central element of the anchor interval

a1 = sm1
. . . sm1+r−1 in S0 (due to the flooring, r does not have to be odd). For example, given

r = 3, S0 = 1+2× 1 and a1 = 2× 1, then m1 = 3, ⌊ r
2⌋ = 1, c(h, S0) = 4, and S0[c(h, S0)] = ×.

(iv) We say h is a consistent context if for any S0
1 , S

0
2 ∈ S and their respective CoT step outputs

S1
1 , S

1
2 , when h ⊏ S0

1 , h ⊏ S0
2 , they always have the same element at the central element position

of a1 of h, i.e., S1
1 [c(h, S

0
1)] = S1

2 [c(h, S
0
2)]. To ensure the equal length of S0

k and S1
k , blank space

elements are inserted in suitable positions (see below).

(v) For a consistent context h, define ψ(h) = S1[c(h, S0)], ∀S0 ∈ S s.t. h ⊏ S0.

When h = (a1 : a2, . . . , a|h|), h′ = (a′1 : a′2, . . . , a
′
|h′|)), |h

′| > |h| and ai = a′i, 1 ≤ i ≤ |h|, we
say h is the prefix of h′ and write h ≺ h′. We write h ⪯ h′, when h ≺ h′ or h = h′.

6 It is not important where the intervals other than the anchor interval are located.
7 It is not required that m1 < m2 < · · · < m|h| and every aj in h = (a1 : a2, . . . , a|h|) doesn’t contain

any positional information in S0.
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Definition 3.2 constrains only the anchor interval a1 of h and it seems to leave the other intervals
unconstrained except h is contained in S0. As indicated in Sec. 3.2, the other intervals usually contain
the other elements involved in a reasoning step. This leads to our (n, r)-consistency definition.

Definition 3.3 ((n, r)-Consistent Problem) We say a problem S is (n, r)-consistent, if for every
problem instance S0 in S , i.e., ∀S0 ∈ S , denote S1 as the CoT step output of S0, for every index
or position i of S1 (i.e. ∀ 1 ≤ i ≤ |S1|), there exists a consistent context h[i] s.t. (i) c(h[i], S0) = i,
(ii) |h[i]| ≤ n, (iii) all intervals in h[i] is r-length.

For simplicity, we omit (ii) and (iii) of Def. 3.3 in the following discussions unless necessary. When
S is (n, r)-consistent, for S0 ∈ S , determining the output S1 of the CoT step can be decomposed
into determining every element S1[i] for every index i. Given a particular index i, if we can find
some consistent context h[i] s.t. c(h[i], S0) = i, where the existence of h[i] is guaranteed by Def. 3.3,
then we have S1[i] = ψ(h[i]) by Def. 3.2. By concatenating S1[i]’s, we achieve the objective of
determining S1. Intuitively, as discussed in Sec. 3.2, we want the CoT scheme to have a consistent
context h[i] to predict the element S1[i] in each output position i with no uncertainty.

Both the consistency property of h and the (n, r)-consistency property of S are monotonic.

Property 3.4 If h is a consistent context and h ⪯ h′, then h′ is also a consistent context.

Property 3.5 If S is (n, r)-consistent, then for ∀n′ ≥ n, ∀ r′ ≥ r, S is (n′, r′)-consistent.

The proofs are given in Appendix C. It is easy to see that different intervals in the same context h
may have different lengths (number of tokens). We use the same size r in our theory for simplicity. It
is also important to note that in practice, when we design a CoT scheme, we don’t need to design a
minimal consistent context. It’s enough as long as the context is consistent.

3.4 (n, r)-CONSISTENCY IMPLIES LENGTH GENERALIZATION (LG)

We now show that when a problem is (n, r)-consistent, LG can be achieved (see the problem statement
at the beginning of Sec. 3). That is, there always exists a solver (e.g., model or algorithm) that can
learn to predict the CoT step output for an arbitrary problem instance of any length.

Here we propose one solver that can achieve LG. It is a Transformer-based model. The model takes a
problem instance as the input and output of the CoT step of the problem instance. We show that there
exists a proper parameterization of the model, s.t. the CoT step output prediction is correct for input
problem instances of arbitrary length.

Theorem 3.6 If a problem S is (n, r)-consistent, then there exists an n-layer Transformer model f ,
for ∀ S0 ∈ S with CoT process (S0, . . . , ST ), we always have St+1 = f(St), 0 ≤ t < T .

[Proof Sketch.] For ∀ S0 ∈ S with (S0, . . . , ST ), for ∀ 0 ≤ t < T , we construct a n-layer
Transformer model f s.t. St+1 = f(St). For simplicity, we denote St as S0 and St+1 as S1. Since
S is (n, r)-consistent, for each 1 ≤ i ≤ |S1|, there exists a consistent context h[i] s.t. c(h[i], S0) = i.
The key idea to construct f is to extract h[i] for each i, so that S1[i] = ψ(h[i]) is determined.
The 1st layer applies a local padding mask with relative position encoding, where the local mask
guarantees that the token at index i can only observe the interval that centers at i. The 1st attention
layer aggregates a1 for each h[i]’s. The 1st feed-forward layer lists the contexts that are potentially
consistent when concatenating a1 to the end. The 2nd attention layer has no mask, which seeks for
potential a2’s that (a1, a2) is the prefix of some consistent context h. The 2nd feed-forward layer
produces an indicator if (a1, a2) is already a consistent context. The process continues. Since S is
(n, r)-consistent, there must exists a consistent h[i] for each i after n layers. The last layer maps h[i]
to ψ(h[i]) for each i.

The full proof is given in Appendix C. This theorem shows (n, r)-consistency implies the existence
of a Transformer model that can achieve LG.8 The interplay of the problem complexity and the
network capacity (e.g., the number of parameters and layers) is discussed as part of the proof.

8This does not imply that (n, r)-consistency guarantees the LG learnability of the Transformer. However,
while our theory only establishes that (n, r)-consistency implies the existence of a Transformer model capable
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3.5 HOW TO DESIGN COT SCHEMES TO (n, r)-CONSISTENCY

It’s challenging to create a universal procedure that can generate CoT schemes across reasoning
problems to satisfy (n, r)-consistency. Each problem is likely to require a tailored method as different
problems have entirely different computation steps. However, as demonstrated by the examples in
Sec. 3.2 and those in the experiments in Sec. 4, the general approach is quite clear. We use tags
to inform the learner what positions or elements are involved in calculating each CoT step, which
naturally creates consistent local contexts to ensure that each output element in a reasoning step can
be learned and predicted without conflicts across all possible instances of the problem. For example,
the tags I , J , and K in the addition problem in Sec. 3.2 tell the learner about which digit (I) from
one number should be added to which digit (J) from the second number, and what the result should
be in the output position (K) in each reasoning step. In a nutshell, the tags implicitly inform the
learner how the calculations are done in solving the problem. With such tags, the learner can learn the
underlying reasoning rules without ambiguity or conflict. The (n, r)-consistency condition checks
whether the provided tag information is sufficient for learning to achieve LG.

Apart from defining tags manually and then checking (n, r)-consistency, there exists an automatic
method that can transform a problem into (n, r)-consistent, which is induced by Def. 3.3. However,
its high computational complexity makes it impractical. We outline it in Appendix. B.

4 EXPERIMENTS

Our experiments verify (1) for a CoT scheme of a problem, if it is (n, r)-consistent, it is solvable for
LG, and (2) for the same problem, one CoT scheme may not be solvable for LG, but another may.
The code of our system has been submitted in Supplementary Materials.

4.1 EXPERIMENTAL PROBLEMS, COT SCHEMES, AND (n, r)-CONSISTENCY

Experimental Problems. We use 5 reasoning problems in our experiment. (1) arithmetic in F7 (the
finite prime field with seven elements, i.e., F7 = {0, 1, 2, 3, 4, 5, 6}, where the calculations are under
the sense of ‘mod 7’, (2) parity, which is the problem of deciding whether there are an even or odd
number of 1’s in a sequence of 0’s and 1’s, (3) addition of two integer numbers, and (4) multiplication
of two integer numbers. (5) division of two integer numbers.

CoT Schemes for the Problems. As mentioned earlier, each CoT step is a pair (Input[i], Output[i]).
Fig. 2 in Appendix E gives an example for each CoT scheme. Below, we detail the CoT schemes.

(1) arithmetic in F7. It is formulated in the usual way and represented as input and output pairs. A
detailed training example is given in Fig. 2 in Appendix E. This CoT scheme achieves LG, as it is
(1, 17)-consistent. Each element belongs to at most one calculation step, and the distance between
the elements that are calculated together is at most 4, e.g., between ‘(’ and ‘)’ in (3 + 2). Therefore,
to determine whether the i’th element might be calculated next, we consider i’th neighbors of radius
4, i.e. si−4 . . . si+4. To check whether si−4, . . . , si+4 are in other higher priority calculations, we
further consider each neighbor of radius 4, i.e. si−8 . . . si+8. Therefore, every 17-length interval
determines the next central element, regardless of problem instance and position index. Note that we
pad blank or empty elements in the training data to ensure that every element in any problem instance
S0 can be a center element in a context of length 17.

(2) parity. It is formulated in 2 lines, i.e., parity-[2]. On the 2nd line, ? indicates the current
position of the CoT process, 1 represents odd and 0 represents even. See Fig. 2 in Appendix E for
an example. This CoT scheme can achieve LG as it is (1, 2)-consistent. For any problem instance
S0, any position/index i, if c(h, S0) = i, where h = (a1) and a1 = s1s2, then (1) when ? is not
in a1, S1[i] = s2, (2) when ? is in s1or s2, it’s not difficult to check that S1[i] is determined by a1
without ambiguity. Therefore, every 2-length interval context determines an output central element,
regardless of the problem instance and position index.

of achieving LG, our experiments show that Transformer-based models can learn to achieve LG for challenging
mathematical reasoning tasks. This suggests that (n, r)-consistency may lead to a stronger conclusion, such as
the learnability of a Transformer-based model capable of achieving LG or extrapolation, beyond the traditional
i.i.d. assumption. We leave this for future investigation.
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(3) addition. It is formulated in CoT in two ways: addition-[1] and addition-[2]. As discussed in
Sec. 3.2, addition-[1] is not (n, r)-consistent, and addition-[2] is (3, 3)-consistent. See Fig. 2 in
Appendix E for a full training example for each formulation in the CoT input and output format.

(4) multiplication. It is formulated in two ways: multiplication-[1] (one line) and multiplication-[11]
(11 lines). multiplication-[1] is not (n, r)-consistent, but multiplication-[11] is (12, 3)-consistent.

For multiplication-[1], we decompose the problem into two stages. In the 1st stage, we transform
multiplication into a summation of multiple integers. In the 2nd stage, we solve the summation
recursively. An example is shown in Fig. 2 in Appendix E. The 2nd stage is not (n, r)-consistent
as addition-[1] is not. The 1st stage is also not (n, r)-consistent. For instance, let input[k] =
‘a× b = a+ · · ·+ a︸ ︷︷ ︸

k

+?’. When k < b− 1, output[k] = ‘a× b = a+ · · ·+ a︸ ︷︷ ︸
k+1

+?’. when k = b− 1,

output[k] = ‘a× b = a+ · · ·+ a︸ ︷︷ ︸
k+1

’. In this example, whether to add ‘+?’ or to go to the second stage

depends on b and the number of existing a’s. For ∀ (n, r), there always exists a large enough a and
b s.t. n r-length intervals cannot cover all a’s as well as distinguishing all a’s. It’s not difficult to
exploit this fact to construct inconsistent instances for arbitrary context h.

Table 1: Descriptions of indicator tokens for multiplication-[11].
Indicator Dynamic Description

E, S do not move start and end of a
e, s do not move start and end of b
I move left when J moves back to s digit of a to multiply
J move left; when J reaches e, J moves back to s digit of b to multiply

F, T move left when J moves back to s start and end of K; T is aligned with I,
distance between F and T is the same as distance between e and s

K move left; when K reaches F, K moves back to T indicator of output position index
?, c move left; ? appears after multiplication ? carries 0 and c carries 1 in addition
# appear when addition is done # indicates next CoT step to be multiplication

For multiplication-[11] (each element has 11-dimensions), an example is given in Fig. 2 in Appendix E.
When calculating a× b, since addition-[2] solves LG, we only need to multiply each digit of a and
each digit of b and add the product to the result by merging addition-[2] into the CoT process. Table 1
lists all the indicator tokens.

Multiplication-[11] is (12, 3)-consistent. For any h = (a1 : a2, . . . , a12), (1) when a1 doesn’t contain
any indicator, the output of the central element of a1 is simply identical to the input, (2) when a1
contains at least one of the indicators, by letting a2, . . . , a12 containing other 11 indicators at the
center, it’s not difficult to find that the output of the central element of a1 is determined by context h.

(5) division. It is formulated in 12 lines, i.e. division-[12]. It’s almost the same as multiplication-[11]
except that multiplication does addition but division does subtraction. The numerator may fail to
subtract the denominator (numerator is smaller than the denominator) and the numerator has to
be restored before the subtraction. An example is given Fig. 2 in Appendix E. Table 2 lists all the
indicator tokens. For the same reason as multiplication-[11], division-[12] is (10, 3)-consistent.

Table 2: Descriptions of indicator tokens for division-[12].
Indicator Dynamic Description

E, S do not move start and end of c (c÷ a = b)
e, s do not move start and end of a
I move right when J moves back to s digit of a to subtract
J move left; when J reaches e or subtraction fails, J moves back to s digit of b to be subtract

F, T move right when J moves back to s start and end of K; T is aligned with I,
distance between F and T is the same as distance between e and s

K move left; when K reaches F or subtraction fails, K moves back to T indicator of output position index
b appear when subtraction needs to borrow 1 b borrows 1 in subtraction

4.2 DATA GENERATION

Training Set. The model for each problem is trained with a training set of 50k batches. Each batch
contains 256 CoT steps. For each problem, we first randomly generate an instance of the problem
and then its detailed CoT steps. Each CoT step is a pair (Input[i], Output[i]), as shown in Fig. 2 in
Appendix E. We put the CoT steps of each generated problem instance into a batch until it reaches
256. The steps of the last problem instance that overflow the 256 batch go to the next batch.
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Table 3: Experimental settings. Train Length: Training length. LG Test i: Length generalization test
with longer lengths. We have one training set and 6 test sets for each problem. The test set 0 has
the same length setting as the Training Length setting and is thus omitted in this table. L stands for
length. For addition-[1/2] (a+ b), multiplication-[1/11] (a× b) and division-[12] (c÷ a = b), L is
the number of digits in a or b.

Train Length LG Test 1 LG Test 2 LG Test 3 LG Test 4 LG Test 5

arithmetic in F7 L ∈ [3, 20) L ∈ [3, 30) L ∈ [3, 40) L ∈ [3, 50) L ∈ [3, 60) L ∈ [3, 100)
parity-[2] L ∈ [1, 8) L ∈ [1, 30) L ∈ [1, 40) L ∈ [1, 50) L ∈ [1, 60) L ∈ [1, 100)

addition-[1/2] L ∈ [1, 8) L ∈ [1, 9) L ∈ [1, 10) L ∈ [1, 11) L ∈ [1, 16) L ∈ [1, 21)
multiplication-[1/11] L ∈ [1, 6) L ∈ [1, 7) L ∈ [1, 8) L ∈ [1, 9) L ∈ [1, 10) L ∈ [1, 11)

division-[12] L ∈ [1, 6) L ∈ [1, 7) L ∈ [1, 8) L ∈ [1, 9) L ∈ [1, 10) L ∈ [1, 11)

Test Sets. We use 6 test sets to evaluate the model learned for each problem. The 5 columns marked
‘LG Test i’ in Table 3 give the length ranges of the 5 test sets for each problem, where the maximum
lengths of the test sets increase gradually. The first test set has the same length range as that of the
training set and thus shares the ‘Train Length’ column. Every test set consists of 1k questions (test
problem instances), which are in sequence format with no CoT steps, e.g., 3 + 2× 2.

Training and Test Data Generation. Every training or test set is generated independently. The
training set and each test set are generated in the same way for each problem except that for the
training set, we also need to generate its CoT steps for each problem instance based on individual
CoT schemes, but for each test set, we do not. For each training instance, the CoT steps end with an
“EOS” token. The additional data generation details are as follows:

(1) arithmetic in F7. The length (number of elements L) of a problem instance in the dataset is
generated to be as close to the maximum length as possible (see Table 3).

(2) parity. The length L (number of elements) of a problem instance is uniformly sampled from 1 to
the maximum length (see Table 3). Each element in the sequence is sampled randomly from {0, 1}.

(3) addition. The number of digits (or length L) in a or b as in a + b of each problem instance is
uniformly sampled from 1 to the maximum length (see Table 3). Each digit in a or b is sampled from
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, while the left-most digit is removed when it’s 0.

(4) multiplication. The number of digits (or length L) in a or b as in a×b of each problem instance is
uniformly sampled from 1 to the maximum length (see Table 3). Each digit in a or b is also sampled
from {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, while the left-most digit is removed if it is 0.

(5) division. The number of digits (or length L) in a or b as in c÷ a = b of each problem instance is
uniformly sampled from 1 to the maximum length (see Table 3). Each digit in a or b is also sampled
from {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, while the left-most digit is removed when it is 0. Then c = a× b and
a are given as numerator and denominator, and b is the correct answer. This setup ensures that the
answer b is an integer. But our formulation can be easily extended to allow decimal answers.

4.3 IMPLEMENTATION DETAILS

The models for arithmetic, parity, addition-[1], and multiplication-[1] have 3 Transformer encoders
with relative position encoding. The models for addition-[2], multiplication-[11] and division-[12]
have 6 Transformer encoders, as they are (n, r)-consistent and n > 1. By the proof of Thm. 3.6, both
the attention layer with relative position encoding and the attention layer without position encoding
are needed. The 1st, 3rd, and 5th encoders use relative position encoding with padding masks, which
for the i’th token is {j| r2 ≤ j − i < r

2}, i.e. the r-length interval. The 2nd, 4th, and 6th encoders
don’t use position encoding, which exchanges information of the n intervals. The optimizer is Adam
and the learning rate is 0.00001. The training data for each task contains 12.8M CoT steps.

When a CoT scheme has multiple lines, e.g., multiplication-[11], each element has multiple dimen-
sions and each dimension has a token, including the blank/empty token. The model first maps each
token into an embedding vector and then concatenates the vectors at the same position index. Then a
fully connected layer maps the concatenated vector into a vector via a linear transformation. The
remaining model is a standard Transformer with masks and position encoding described above.

We pad empty tokens ‘ ’ at the beginning and/or at the end to guarantee that each position (or
element) can be the central element of a sequence or interval of length r if the problem formulation is

9
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Figure 1: Test results in accuracy.
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arithmetic parity-[2] addition-[1] addition-[2] multiplication-[1] multiplication-[11] division-[12]

Train Length LG Test 1 LG Test 2 LG Test 3 LG Test 4 LG Test 5

(n, r)-consistent. Specifically, we pad ⌊ r
2⌋ empty tokens at the beginning and ⌊ r−1

2 ⌋ tokens at the
end. For addition-[2], we further pad an empty token on the right of = to align input and output (see
Sec. 3.2 and Fig. 2 in Appendix E). For CoT schemes that are not (n, r)-consistent, we don’t pad as it
is unclear where and how many empty tokens to pad.

Training: As mentioned above, the model for each problem is trained with 50k batches and each
batch contains 256 CoT steps. The training is done only in one epoch.

Testing: We solve each test question using the trained model. The output generation stops when the
termination token “EOS” is predicted.

For all problems, the final output is considered correct only when it is identical to the ground truth.
The accuracy is the number of correctly answered instances divided by the total number of instances.

4.4 EXPERIMENTAL RESULTS

arithmetic in F7. Fig. 1 shows the problem achieves 100% accuracy for all test sets as the problem
is (1, 17)-consistent.

parity. It is formulated in 2 lines (parity-[2]), and achieves 100% accuracy in LG for all test sets (see
Fig. 1) as the problem is (1, 2)-consistent.

addition. It is formulated in two ways: addition-[1] and addition-[2]. Fig. 1 shows that addition-[1]
fails to achieve LG as it is not (n, r)-consistent. But addition-[2] achieves 100% accuracy for all test
sets (Fig. 1) as it’s (3, 3)-consistent (Sec. 3.2).

multiplication. It is formulated in two ways: multiplication-[1] and multiplication-[11]. Since
multiplication-[1] is not (n, r)-consistent, Fig. 1 shows poor LG accuracy. Since multiplication-[11]
is (12, 3)-consistent, it is solvable for LG with 100% accuracy for all test sets (Fig. 1).

Division. It is formulated as division-[12]. Since it’s (10, 3)-consistent, it achieves 100% accuracy
for all test sets (Fig. 1).

Note that we don’t compare with existing systems because, as we discussed in Sec. 2, no existing
reported system can solve multiplication and no reported system has even attempted division.

5 CONCLUSION

Length generalization (LG) is a challenging problem in learning reasoning skills. There is little
theoretical understanding so far. This paper first introduced a theorem to show the root cause of
the LG problem. The paper then formally defines a class of problems where achieving LG with
Transformers can be theoretically proven. Specifically, the problem class’s CoT schemes can be
designed to satisfy a proposed condition called (n, r)-consistency. Empirical results align well with
the theory, showing perfect LG for the large tested lengths on several challenging reasoning problems,
including arithmetic, parity, addition, multiplication, and division.

Limitations: The proposed (n, r)-consistency can be seen as a sufficient condition for achieving LG.
However, regarding necessary conditions, we only know that sufficient biases are needed, but not
a complete set of biases contributing to the necessary condition. Further research is needed. In the
current approach, we need to manually design a CoT scheme to satisfy the (n, r)-consistency for a
reasoning problem. An important future research is to automate the design of CoT schemes. Another
future direction is to study the learnability with extrapolation capabilities.
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REPRODUCIBILITY STATEMENT

Data generation and implementation details are presented in Sections 4.2 and 4.3 respectively. The
code and the experimental data have been uploaded as Supplementary materials.
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A RELATED EMPIRICAL WORK

Here we review the related empirical work, which includes the evaluation of LLMs in reasoning,
chain-of-thoughts for reasoning, dealing with length generalization (LG) in learning to reason, and
dealing with LG in text generation.

Evaluations and limitations of LLMs in reasoning. Continuing with the discussion about evalua-
tions of the reasoning capabilities of LLMs in Sec. 1, we present a more extensive literature survey
here. In general, evaluations conducted on several latest LLMs showed that they struggled with many
reasoning tasks Gendron et al. (2023); Tang et al. (2023).

In Sec. 1, we discussed empirical works about LG Anil et al. (2022); Dziri et al. (2023); Zhang et al.
(2022). In these papers, the authors also tried to mitigate the problem through improved training
and CoT Anil et al. (2022), improved prompting and fine-tuning of LLMs Zhang et al. (2022), and
curriculum learning Abbe et al. (2023). An evaluation of the deductive reasoning capability of LLMs
was also conducted in Prystawski & Goodman (2023), which shows that CoT helps improve the
results, but does not achieve perfect accuracy. None of them studied the LG problem theoretically as
we do. Below, we focus on surveying other empirical works. Many of them identified limitations of
LLMs in solving different reasoning problems, but few have characterized the limitations in a formal
manner to facilitate theoretical investigation.

Meadows et al. (2023) created a dataset specifically for mathematical reasoning that can be perturbed.
They showed that perturbations of the tasks heavily affect the results, reducing F1 score from 97% to
17%, which suggests that inference is likely to be dominated by surface-level patterns unrelated to the
deeper understanding of the mathematical operators. However, this evaluation was done using only
BERT Devlin et al. (2018) based models, but not on more recent LLMs like ChatGPT and GPT4. Wu
et al. (2023) used “counterfactual” tasks that deviate from the standard reasoning tasks to evaluate
LLMs. It was found that the performance degrades substantially compared to the default conditions,
which again suggests that while LLMs can perform reasoning to some extent, they often rely on
narrow, non-transferable procedures or surface patterns for task-solving. A counterfactual-based
evaluation was also done in (Li et al., 2023a), which reached the same conclusion.

Liu et al. (2023) evaluated ChatGPT and GPT-4 on logical reasoning. The results showed that they
do relatively well on well-known public domain datasets, but their performances drop substantially
when newly released and out-of-distribution datasets are used. Xu et al. (2023b) also evaluated
LLMs using logical reasoning (deductive, inductive, abductive, and mixed-form reasoning) and gave
pros and cons of LLMs. She et al. (2023) created a dataset for reasoning involving negations and
evaluated LLMs and showed poor results. Ando et al. (2023) created a dataset, originally designed
for psychological experiments to assess human logical abilities in syllogistic reasoning. The authors
examined three types of biases observed in human syllogistic reasoning: belief biases, conversion
errors, and atmosphere effects. The evaluation on LLMs showed that they struggle with problems
involving these biases too. Tan et al. (2023) created a dataset to evaluate LLMs on temporal reasoning
and showed some weaknesses of LLMs. They then proposed an approach to improve the results.

Chain of thoughts (CoT) and variants. Earlier prompting for solving reasoning problems using
LLMs only states the question and the answer. They found that these two pieces of information
are insufficient for LLMs to learn to perform effective reasoning. Then chain of thought (CoT)
prompting (Wei et al., 2022) was proposed to improve the situation. CoT basically contains the
detailed intermediate reasoning steps between the question and the answer for fine-tuning the LLMs,
which significantly enhance LLMs’ reasoning capabilities Chung et al. (2022); Hsieh et al. (2023);
Mukherjee et al. (2023); Fu et al. (2023). Saparov & He (2022) created a synthetic dataset generated
based on first-order logic. They then parsed the generated CoT into symbolic proofs for formal
analysis. It was shown that LLMs are capable of reasoning. The success of CoT has encouraged
researchers to refine the technique and also propose variations of the technique.

For example, Chen et al. (2023) proposed a metric to measure the effectiveness of CoT and a technique
to improve CoT for vision-language models. Wang et al. (2023c) studied using multiple reasoning
paths and positive and negative answers to improve CoT reasoning. Zhang et al. (2023) proposed
cumulative reasoning, which employs LLMs in a cumulative and iterative manner to emulate the
human thought process. Qi et al. (2023) proposed a divide-and-conquer algorithm that simulates
the self-questioning and recursive thinking process of humans to improve CoT. Wang & Lu (2023)
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investigated how to incorporate into relatively small LMs the capabilities of multi-step reasoning
and CoT. Wang et al. (2022a) found that even logically invalid CoT also helps to reason. This was
confirmed in (Schaeffer et al., 2023). To deal with unsound inferences, Poesia et al. (2023) introduced
a class of external tools for LLMs called guides that use states and incremental constraints to guide the
generation in reasoning. A related work on using external tools was done in Xu et al. (2023a). Wang
et al. (2022b) improved CoT using multiple paths and consistency checks. Ling et al. (2023) studied
the verification of CoT. Stolfo et al. (2023) identified part of an LLM responsible for reasoning. In a
different direction, Yang et al. (2022) argued that the prevailing approach to CoT prompt selection
through trial and error is unsatisfactory. They then proposed a principled approach for multi-domain
LLM CoT prompt selection.

Several researchers also broadened the CoT method and proposed the neural symbolic code prompt-
ing (Hu et al., 2023b), program of thoughts (Chen et al., 2022; Cheng et al., 2023), tree-of-
thoughts (Yao et al., 2023b; Long, 2023), tree-of-mixed-thoughts (Hu et al., 2023a), tree of uncertain
thoughts (Mo & Xin, 2023), hypergraph-of-thoughts (Yao et al., 2023a), recursion of thoughts (Lee
& Kim, 2023), chain of knowledge (Wang et al., 2023b), chain of simultaneous thoughts (Shao
et al., 2022), graph-of-thoughts (Yao et al., 2023c), faithful chain of thoughts (Lyu et al., 2023),
and thought expansion Kim et al. (2023). Further, Bi et al. (2023) proposed a complexity measure
and chose the optimal complexity to improve the program of thoughts (Chen et al., 2022). Wang
et al. (2023a) proposed a method to improve the generation of equations from natural language
questions as the intermediate step to answer the original question. Gao et al. (2023) combined CoT
and Program-Aided Language Models (PAL) for improved reasoning.

Empirical work on LG in reasoning. Many empirical attempts have been made to modify the
Transformer and/or learning biases to better solve the LG problem. Duan & Shi (2023) and Zhou et al.
(2024) proposed some bias calibration methods to enable the model to learn suitable attention biases.
However, their methods are still unable to solve addition perfectly or multiplication at all. Jelassi et al.
(2023) proposed to add a small number of long sequences in the training to help solve long sequences,
but still could not solve the multiplication problem. Chi et al. (2023) proposed a Transformer variant
with weight-sharing, a working memory, etc, to improve LG for regular languages. It can solve
some problems but is still unable to deal with multiplication or addition. Different attention and
new architectures are also proposed in Nangia & Bowman (2018); Bowman et al. (2015); Tay et al.
(2021); Chowdhury & Caragea (2023a;b). However, they don’t use CoT but only the direct input
and output in training. Their methods work on various text copying and list operations but don’t
solve these problems and do not work on more complex large-number addition and multiplication.
Theoretically, learning to reason without intermediate steps (or CoT) in training is not learnable Wies
et al. (2023); Feng et al. (2023). Our work needs no specialized architectures for different problems,
but just a vanilla Transformer with relative position encoding.

B A METHOD TO (n, r)-CONSISTENCY

We first introduce a measure induced by Def. 3.3 that describes how far a problem is from (n, r)-
consistency. Let h = (a1 : a2, . . . , a|h|) be a context. For problem instances ≤ N , let µN be a
measure of h’s.9 Let p(ψ(h)|h) be the probability density of ψ(h) conditioned on h, where ψ(h) is
the central element of the next CoT step of the anchor interval of h (Def. 3.3 (v)). Denote E as the
entropy function and E(p(ψ(h)|h)) the entropy of p(ψ(h)|h). Define

Ω(N ;n, r) =

∫
E(p(ψ(h)|h))µN (h)dh. (1)

Note that when a problem is (n, r)-consistent, by definition, ∀ h, p(ψ(h)|h) is a Dirac delta function.
Therefore, E(p(ψ(h)|h)) = 0 and Ω(N ;n, r) = 0. It’s not difficult to see that a problem is (n, r)-
consistent if and only if lim supN→+∞ Ω(N ;n, r) = 0.

Therefore, when a problem is not (n, r)-consistent, i.e,. Ω(N ;n, r) > 0, there exists a method to
transform it into (n, r)-consistent. When Ω(N ;n, r) > 0, there exists h s.t. E(p(ψ(h)|h)) > 0. For
this h, let (A,B) to be a separation of the vocabulary, i.e. A ∪B = V and A ∩B = ∅. It’s obvious

9E.g. let u to be a uniform measure over all problem instances ≤ N and let v to be a uniform measure of all
context given a problem instance S. Then µN (h) =

∫
v(h|S)µ(S)dS defines a measure of h’s.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

that
E(p(ψ(h)|h, ψ(h) ∈ A)) + E(p(ψ(h)|h, ψ(h) ∈ B)) ≤ E(p(ψ(h)|h)), (2)

where = holds iff {ψ(h)|h} ∩ A = ∅ or {ψ(h)|h} ∩ B = ∅. Therefore, whenever |{ψ(h)}| > 1,
there always exists a separation s.t. E(p(ψ(h)|h)) decreases strictly. Therefore, we could add a
tag (A, h) for ψ(h) ∈ A and a tag (B, h) for ψ(h) ∈ B. Repeating adding tags for h will finally
decrease E(p(ψ(h)|h)) to 0. Repeating dealing with all possible h with E(p(ψ(h)|h)) > 0 will
finally decrease Ω(N ;n, r) to 0.

This method adds different tags for different h’s. This is inefficient for most problems, as many tags
could have been shared among h’s. Listing all tags for all h’s without reduction makes this method
computationally intractable. It’s unknown whether there exists a more computationally efficient
method to transform a problem into (n, r)-consistent.

C PROOFS

In the section, we provide proofs. For ease of reading, we state the same property/theorem again.

For simplicity, denote Hc(r) as the set of all consistent contexts composed of r-length intervals.

For simplicity, denote Hc
n(r) = {h||h| ≤ n, h ∈ Hc(r)}.

Theorem C.1 (Thm. 3.1) Define V to be a metric space. Denote 0 ∈ V to be the empty token.
Denote |v1 − v2| to be the metric on V , ∀ v1, v2 ∈ V . For gN : V N → [−1, 1], ∀ N ′ > N , there
exists infinitely many fN ′ : V N ′ → [−1, 1] s.t. (i) fN ′(v1, . . . , vN , 0, . . . , 0) = gN (v1, . . . , vN ), (ii)
fN ′ is Lipchitz-continuous in the neighborhood of (v1, . . . , vN , 0, . . . , 0) if gN is Lipchitz-continuous
in the neighborhood of (v1, . . . , vN ).

[Proof.] Denote v[1:N ] = (v1, . . . , vN ). ∀ ϵ > 0, let u : V → [−1, 1], u(0) = 0 to be an ϵ-Lipschitz
continuous function i.e.

|u(v)− u(v′)| < ϵ|v − v′|.
There exists infinitely many u’s, e.g. u(v) = sign(|v − 0|) · ϵ|v − 0|α, α ≤ 1.

Let

fN+1(v[1:N+1]) =


1, u(vN+1) > 1− gN (v[1:N ]),

− 1, u(vN+1) < −1− gN (v[1:N ]),

gN (v[1:N ]) + u(vN+1), else.

Since u(0) = 0, we have fN+1(x[1:N ], 0) = gN (x[1:N ]).

Note that
|fN+1(v[1:N+1])− fN+1(v

′
[1:N+1])|

≤|(gN (v[1:N ]) + u(vN+1))− (gN (v′
[1:N ]) + u(v′N+1))|

≤|gN (v[1:N ])− gN (v′
[1:N ])|+ |u(vN+1)− u(v′N+1)|

≤|gN (v[1:N ])− gN (v′
[1:N ])|+ ϵ|vN+1 − v′N+1|.

When gN is Lipschitz continuous in the neighborhood of v[1:N ], we have

|gN (v[1:N ])− gN (v′
[1:N ])| < ϵgN |v[1:N ] − v′

[1:N ]|.

Therefore, |fN+1(v[1:N+1]) − fN+1(v
′
[1:N+1])| ≤ (ϵgN + ϵ)|v[1:N+1] − v′

[1:N+1]|. Thus, fN+1 is
Lipschitz continuous in the neighborhood of (v[1:N ], 0).

By induction, ∀ N ′ > N , there exist infinitely many fN ′ satisfying the condition (i) and (ii).

Property C.2 (Prop. 3.4) If h is a consistent context and h ⪯ h′, then h′ is also a consistent context.

[Proof.] Denote Sh = {S|h ⊏ S} and Sh′ = {S|h′ ⊏ S}. Let S0 ∈ Sh′ , and the CoT step
output S1. Since h ⪯ h′, h′ ⊏ S0 implies h ⊏ S0, which means S0 ∈ Sh. Since h is consistent,
we have S1[c(h, S0)] = ψ(h). Since h ⪯ h′ again, we have c(h, S0) = c(h′, S0), which implies
S1[c(h′, S0)] = S1[c(h, S0)] = ψ(h). Therefore, for any S0 ∈ Sh′ , S1[c(h′, S0)] is always ψ(h),
which means that h′ is also consistent.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Property C.3 (Prop. 3.5) If S is (n, r)-consistent, then for ∀n′ ≥ n, ∀ r′ ≥ r, S is (n′, r′)-
consistent.

[Proof.] Since S is (n, r)-consistent, by definition, for S0 ∈ S and S1 to be the CoT step output,
∀ 1 ≤ i ≤ |S1|, there exists h[i] ∈ Hc

n(r) s.t. c(h[i], S0) = i. Denote h[i] = (a1 : a2, . . . , a|h[i]|).
since h[i] ⊏ S0, there exists 1 ≤ m1, . . . ,m|h[i]| ≤ |S0| s.t. smj

. . . smj+r−1 = aj , 1 ≤ j ≤ |h[i]|.

(i) For ∀n′ ≥ n, since |h[i]| ≤ n ≤ n′, which means h[i] ∈ Hc
n′(r), S is (n′, r)-consistent.

(ii) For ∀ r′ ≥ r, we construct h′[i] ∈ Hc
n(r

′). Let left = ⌊ r′

2 ⌋ − ⌊ r
2⌋ and right = ⌊ r′−1

2 ⌋ − ⌊ r−1
2 ⌋.

Let a′j = smj−left . . . smj . . . smj+r−1 . . . smj+r−1+right, 1 ≤ j ≤ |h[i]|, then it’s not difficult to
verify that the central element of a′j is the central element of aj . Let h′[i] = (a′1 : a′2, . . . , a

′
|h[i]|).

If h′[i] is inconsistent, the inconsistent instances containing h′[i] must also contain h[i]. However,
all central elements of h′[i] and h[i] are the same, which contradicts the fact that h[i] is consistent.
Therefore, h′[i] is consistent, i.e. h′[i] ∈ Hc

n(r
′). S is (n, r′)-consistent.

Combining (i) and (ii), S is (n′, r′)-consistent.

Theorem C.4 (Thm. 3.6) If a problem S is (n, r)-consistent, then there exists an n-layer Trans-
former model f , for ∀ S0 ∈ S with CoT process (S0, . . . , ST ), we always have St+1 = f(St), 0 ≤
t < T .

[Proof.] Our key idea is to construct a Transformer model that the predicted CoT step output is free
from the length of the input problem instance, which thus achieves LG.

To finish our proof, we borrow 2 lemmas from (Feng et al., 2023). We briefly state them below.

Lemma C.5 (LOOKUP. Lemma C.5 in (Feng et al., 2023)) For any lookup table g :
[1, . . . , d]k → [1, . . . , d], for ∀ ϵ > 0, there exists a two-layer MLP with GeLU activation
f : [1, . . . , d]k → [1, . . . , d] s.t. |f(x)− g(x)| < ϵ,∀x ∈ [1, . . . , d]k.

Lemma C.6 (COPY. Lemma C.7 in (Feng et al., 2023)) For sequence x1, . . . , xn with scores
r1, . . . , rn, denote qi = Wqxi, ki = Wkxi, vi = Wvxi, for ∀ ϵ > 0, ∀ δ > 0, the output of a
single head attention layer o1, . . . , on satisfies |oi − vargmaxj{rj |qi·kj<δ}| < ϵ, 1 ≤ i ≤ n.

Let’s first formulate the structure of Hc
n(r), which helps apply Lemma C.5 and Lemma C.6 in

constructing the Transformer model. Given h = (a1 : a2, . . . , a|h|) and an interval/sequence a, we
denote the operation that concatenates a to the end of h as

h · a = (a1 : a2, . . . , a|h|, a).

Let a be an arbitrary r-length interval. Denote

λ(a) = {h| ∃h′ ∈ Hc
n(r), h · a ⪯ h′}.

Note that the context in λ(a) needn’t be consistent. If Hc
n(r) only contains contexts that have at most

n r-length intervals, which is a finite set, then λ(a) is also finite. For an arbitrary a, we could order
h’s in λ(a) and denote

λo(a) = (h1, h2, . . . , h|λ(a)|), {h|h ∈ λo(a)} = λ(a),

where λo(a) represents the ordered λ(a). Denote

Nλ = max
a

|λo(a)|.

Let h be an arbitrary context. Denote

β(h) = {a| ∃h′ ∈ Hc
n(r), h · a ⪯ h′}.

Similarly, β(h) could be ordered for each h, which is

βo(h) = (a1, a2, . . . , a|β(h)|), {a| a ∈ βo(h)} = β(h).
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Denote
Nβ = max

h
|βo(h)|.

Transformer Construction

Now we construct a Transformer model. Denote the input problem instance as S0 = s1 . . . s|S0| and
the CoT step output as S1. Since S is (n, r)-consistent, for 1 ≤ i ≤ |S1|, there exists h[i] ∈ Hc

n(r)

s.t. c(h[i], S0) = i and S1[i] = ψ(h[i]).

For simplicity, we denote the r-length interval that centers at i as

a[i] = si−⌊ r
2 ⌋ . . . si . . . si+⌊ r−1

2 ⌋.

Layer 1. The 1st attention layer applies a padding mask with relative position encoding. For each i,
the padding mask only exposes the r-length interval a[i]. Denote

h[i] = (a[i]).

Then, after the 1st attention layer, each vector at position index i contains

ei = (a[i], h[i]).

We further make Nβ copies of h[i] and write

p[i] = (h[i], . . . , h[i]), |p[i]| = Nβ .

Then, each vector at position index i contains

ei = (a[i], p[i]),

where p[i] contains Nβ potential contexts, and we use p[i],j to represent the j-th context of p[i].

The 1st feed-forward (FFD) layer maps a[i] to λo(a[i]). Since λo(a[i]) = (h1, . . . , h|λ(a[i])|), it
induces a lookup table

(a[i], j) → hj , 1 ≤ j ≤ |λ(a[i])| ≤ Nλ,

where hj is represented by any form that could be distinguished from other h’s (e.g. one-hot for
|h| ≤ n). Therefore, by Lemma C.5, we could construct at most Nλ lookup tables that maps a[i] to
λo(a[i]). Then after the 1st FFD layer, each vector at position index i contains

ei = (a[i], λo(a[i]), p[i]).

Note that λo(a[i]) contains Nλ contexts, and we use λo(a[i])j to represent the j-th context of λo(a[i]).

Layer 2 to Layer n. The following layers share the same procedure. We describe the construction of
the 2nd layer in detail, and the remaining layers are the same.

The 2nd attention layer has Nβ ×Nλ attention heads. For the (j1, j2)-th head, let Wq,Wk,Wv be

qi =Wkei = p[i],j1 , ki =Wqei = λo(a[i])j2 , vi =Wvei = a[i].

Then it’s not difficult to find that in Lemma C.6, the matching set {qi1 · ki2 < δ} has at most 1
element only when p[i1],j1 = λo(a[i2])j2 . By Lemma C.6, the (j1, j2)-th head’s output for position
index i is

oi =

{
p[i],j1 · a[i′], p[i],j1 = λo(a[i′])j2 ,

p[i],j1 , otherwise.

Among these Nβ ×Nλ heads, by definition of Nβ , there exist at most Nβ heads that concatenate a
new interval. Denote the output of these heads as p[i] again. Then, after the 2nd attention layer, p[i] is
updated, and each vector of position index i is

ei = (a[i], λo(a[i]), p[i]).

The 2nd FFD layer verifies whether one of p[i] has already been a consistent context. For any |h| ≤ n,
h is either in Hc

n(r) or not, which induces a lookup table h → {0, 1}. Therefore, by Lemma C.5,
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there exists Nβ FFD layers to verify whether each context of p[i] has already been consistent. Then,
after the 2nd FFD layer, each vector of position index i is

ei = (a[i], λo(a[i]), p[i],1[i]),

where 1[i] has Nβ boolean, and the j-th boolean indicates whether p[i],j is consistent.

For the remaining Transformer layers, the attention layer updates p[i] and the FFD layer updates 1[i].

Output After n Transformer layers, since S is (n, r)-consistent, for each position index i, there
must exist at least one consistent context h in p[i], i.e. at least one positive boolean in 1[i]. Since
h→ ψ(h) induces a lookup table, by Lemma C.5, we simply map the consistent context h into ψ(h)
by a FFD layer. When h is consistent and c(h, S0) = i, by definition, ψ(h) is exactly S1[i].

D COMPUTING RESOURCES

Each experiment is running on a machine with 8 CPU cores. Each experiment takes less than 24
hours.

E COT EXAMPLES

Fig. 2 shows some examples of CoT schemes of the experimental reasoning problems. Note that the
parity problem uses ‘?’ in the second line of the input and output to represent the position to be
calculated next, 1 to represent odd, and 0 to represent even. The first line in the input is the input
bit sequence. The addition problems use ‘?’ to represent 0 being carried from the right and ‘$’ to
represent 1 being carried from the right. In all problems, * is equivalent to ×. We use * instead of
× for ease of aligning chars. The orange lines in the output, which are for easy reading, are not
predicted in practice, as they are identical to lines in the input.

Figure 2: Examples of the CoT schemes in Sec. 4. Note that the figure covers multiple pages.
multiplication-[11] and division-[12] appear in the next three pages.

(a) arithmetic in prime field F7 (note, this is
not the normal arithmetic)

Input[0]: (0 + 4 - ( 2 - 3 * 6)) * (4 + 0)
Output[0]: ( 4 - ( 2 - 4 )) * 4

Input[1]: (4 - (2 - 4)) * 4
Output[1]: (4 - 5 ) * 4

Input[2]: (4 - 5) * 4
Output[2]: 6 * 4

Input[3]: 6 * 4
Output[3]: 3

(b) parity-[2]

Input[0]: 1011
?

Output[0]: 1011
1?

Input[1]: 1011
1?

Output[1]: 1011
11?

Input[2]: 1011
11?

Output[2]: 1011
110?

Input[3]: 1011
110?

Output[3]: 1101
1011

(e) multiplication-[1]

Input[0]: 1 * 3 = ?
Output[0]: 1 * 3 = 1 + ?

Input[1]: 1 * 3 = 1 + ?
Output[1]: 1 * 3 = 1 + 1 + ?

Input[2]: 1 * 3 = 1 + 1 + ?
Output[2]: 1 * 3 = 1 + 1 + 1

Input[3]: 1 * 3 = 1 + 1 + 1
Output[3]: 1 * 3 = 2 + 1

Input[4]: 1 * 3 = 2 + 1
Output[4]: 1 * 3 = 3

(c) addition-[1]

Input[0]: 285+9805= ?
Output[0]: 285+9805=$0

Input[1]: 285+9805= $0
Output[1]: 285+9805=?90

Input[2]: 285+9805= ?90
Output[2]: 285+9805=$090

Input[3]: 285+9805= c090
Output[3]: 285+9805=10090

(d) addition-[2]

Input[0]: 285 + 9805 = ?
I J K

Output[0]: 285 + 9805 = $0
I J K

Input[1]: 285 + 9805 = $0
I J K

Output[1]: 285 + 9805 = ?90
I J K

Input[2]: 285 + 9805 = ?90
I J K

Output[2]: 285 + 9805 = $090
I J K

Input[3]: 285 + 9805 = c090
I J K

Output[3]: 285 + 9805 = 10090
I J K
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Input[0]: 1 2 Input[2]: 1 2 Input[4]: 1 2 Input[6]: 1 2 Input[8]: 1 2

E S E S E S E S E S

I I I I I

3 4 3 4 3 4 3 4 3 4

e s e s e s e s e s

J J J J i

8 6 8 0 8 1 0 8

F T F T F T F T F T

K K K K K

3

# # # c ?

Output[0]: 1 2 Output[2]: 1 2 Output[4]: 1 2 Output[6]: 1 2 Output[8]: 1 2

E S E S E S E S E S

I I I I I

3 4 3 4 3 4 3 4 3 4

e s e s e s e s e s

J J J J J

F T F T F T F T F T

K K K K K

8 6 4

? ? ? # #

8 6 8 1 0 8 4 0 8

Input[1]: 1 2 Input[3]: 1 2 Input[5]: 1 2 Input[7]: 1 2

E S E S E S E S

I I I I

3 4 3 4 3 4 3 4

e s e s e s e s

J J J J

8 6 8 1 0 8

F T F T F T F T

K K K K

8 6 4

? ? ? #

Output[1]: 1 2 Output[3]: 1 2 Output[5]: 1 2 Output[7]: 1 2

E S E S E S E S

I I I I

3 4 3 4 3 4 3 4

e s e s e s e s

J J J J

F T F T F T F T

K K K K

3

# # c ?

8 6 8 0 8 1 0 8

(f) multiplication-[11]
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Input[0]: 4 0 8 Input[2]: 4 0 8 Input[4]: 4 0 8 Input[6]: 4 0 8

E S E S E S E S

3 4 3 4 3 4 3 4

e s e s e s e s

4 0 8 4 0 8 4 0 8 6 8

4 0 8 4 0 8 6 8 2 8

I I I I

J J J J

F T F T F T F T

K K K K

0 0 0 0 0 0 0 0 0 0 1 0

Output[0]: I Output[2]: I Output[4]: I Output[6]: I

J J J J

F T F T F T F T

K K K K

4 0 8 4 0 8 6 8 6 8

8 4 6 8 6 8 6 8

b

0 0 0 0 0 0 0 1 0 0 1 0

Input[1]: 4 0 8 Input[3]: 4 0 8 Input[5]: 4 0 8 Input[7]: 4 0 8

E S E S E S E S

3 4 3 4 3 4 3 4

e s e s e s e s

4 0 8 4 0 8 6 8 6 8

8 4 6 8 6 8 6 8

I I I I

J J J J

F T F T F T F T

K K K K

b

0 0 0 0 0 0 0 1 0 0 1 0

Output[1]: I Output[3]: I Output[5]: I Output[7]: I

J J J J

F T F T F T F T

K K K K

4 0 8 4 0 8 6 8 6 8

4 0 8 6 8 2 8 6 4

0 0 0 0 0 0 0 1 0 0 1 0

(g) division-[12] (i)

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Input[8]: 4 0 8 Input[10]: 4 0 8 Input[12]: 4 0 8 Input[14]: 4 0 8

E S E S E S E S

3 4 3 4 3 4 3 4

e s e s e s e s

6 8 3 4 3 4 0

6 4 3 4 0 6

I I I I

J J J J

F T F T F T F T

K K K K

b

0 1 0 0 1 1 0 1 1 0 1 2

Output[8]: I Output[10]: I Output[12]: I Output[14]:

J J J J

F T F T F T F

K K K

6 8 3 4 0 0

3 4 3 0 0 0

0 1 0 0 1 1 0 1 2 0 1 2

Input[9]: 4 0 8 Input[11]: 4 0 8 Input[13]: 4 0 8

E S E S E S

3 4 3 4 3 4

e s e s e s

6 8 3 4 0

3 4 3 0 0

I I I

J J J

F T F T F T

K K K

0 1 0 0 1 1 0 1 2

Output[9]: I Output[11]: I Output[13]: I

J J J

F T F T F T

K K K

3 4 3 4 0

3 4 0 6

b

0 1 1 0 1 1 0 1 2

(g) division-[12] (ii)
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