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Abstract

By querying approximate surrogate models of dif-
ferent fidelity as available information sources,
Multi-Fidelity Bayesian Optimization (MFBO)
aims at optimizing unknown functions that are
costly if not infeasible to evaluate. Existing MFBO
methods often assume that approximate surrogates
have consistently high/low fidelity across the input
domain. However, approximate evaluations from
the same surrogate can have different fidelity at
different input regions due to data availability and
model constraints, especially when considering ma-
chine learning surrogates. In this work, we inves-
tigate MFBO when multi-fidelity approximations
have input-dependent fidelity. By explicitly captur-
ing input dependency for multi-fidelity queries in
Gaussian Process (GP), our new input-dependent
MFBO (iMFBO) with learnable noise models bet-
ter captures the fidelity of each information source
in an intuitive way. We further design a new ac-
quisition function for iMFBO and prove that the
queries selected by iMFBO have higher quality
than those by naive MFBO methods, with the de-
rived sub-linear regret bound. Experiments on both
synthetic and real-world data demonstrate its supe-
rior empirical performance.

1 INTRODUCTION

Bayesian Optimization (BO) [Frazier, 2018] has been a
powerful tool to optimize black-box functions. The term
‘black-box’ here indicates that we do not have access to the
analytic form of either the objective function or its deriva-
tives. We can only gain information about them by querying
selected inputs to evaluate, where each evaluation can be

time-consuming with prohibitive costs. Usually, BO first
learns a probabilistic model, Gaussian Process (GP) [Ras-
mussen, 2003] for example, from available evaluations as
a surrogate of the black-box objective and then iteratively
selects new input(s) to query guided by some acquisition
function. The acquisition function is designed to be easier to
optimize compared to the original objective and achieve the
desired exploration and exploitation trade-off for efficient
identification of global optimum.

In Multi-fidelity Bayesian Optimization (MFBO) [Forrester
et al., 2007], instead of directly evaluating expensive objec-
tive functions, we can query their less resource-demanding
approximation models. Most of the existing works on
MFBO consider fixed fidelity for each approximation model
and optimize the underlying function within the predefined
budget of cost [Kandasamy et al., 2016]. However, the fi-
delity of different approximation models may not be always
fixed but is dependent on the input. This may arise in many
adaptive reduced-order models and especially data-driven
approximation models by recent machine learning (ML)
methods. Typically, these approximation models tend to be
more accurate in the ‘data-rich’ regions and less accurate in
the other regions with less data.

In this work, we focus on the cases where the multi-fidelity
approximations have varying fidelity for different approxi-
mation models and over the input space. We try to capture
the varying fidelity by learning the input-dependent additive
noise, usually ignored and considered as a hyper-parameter
in many BO and MFBO methods.

Our contribution in this work is three-fold:

1. We adopted the heteroscedastic Gaussian Process to
the Multi-Fidelity setup that the multi-fidelity approx-
imations have varying fidelity over the input space
as well as different input sources and proposed input-
dependent MFBO (iMFBO) framework and extend it
to cost-aware and bias-aware setups.
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2. Based on the surrogate modeling, we proposed a new
acquisition function Noise-Variant Upper Confidential
Bound (NVUCB) and theoretically derived a sub-linear
regret bound.

3. We further empirically compare our iMFBO with ex-
isting baselines on both synthetic and real-world exam-
ples and demonstrate its superiority.

2 BACKGROUND

2.1 SINGLE FIDELITY BAYESIAN
OPTIMIZATION

For single fidelity BO (SFBO), we iteratively get noisy ob-
servations y of the ground-truth objective function f : X →
R by querying selected inputs x, where y = f(x)+ δS, δ is
noise scale, and S ∼ N (0, 1) is the standard normal white
noise. BO iterates the surrogate model updating and select-
ing query evaluation, aiming to find the global optimum of
f(x) with the minimum number of queries.

In iteration i, we query one input xi in the input space X ,
and gradually build a dataset Dt = {(xi, yi)}i∈{1,2,...,t},
denoting X = [x1, x2, . . . , xt] and Y = [y1, y2, . . . , yt].
GPs are well studied probabilistic surrogate models and
are commonly chosen in BO. Given Dt, we can derive the
predictive posterior assuming the GP prior for the ground-
truth objective values;

[f(x1), f(x2), . . . , f(xt)] ∼ N (m,K),∀xi ∈ X , (1)

where m is the mean vector (usually chosen to be 0) and
K is the covariance matrix with entries Ki,j = k(xi, xj),
where k(·, ·) is a pre-defined kernel function. The prediction
at x is then

f(x)|Dt
∼ N (µt(x), σ

2
t (x)), (2)

where µt(x) = K ′K−1
t Y is the posterior mean,

σ2
t (x) = k(x, x) − K ′K−1

t K ′T is the posterior vari-
ance, Kt = K + δ2I is the covariance matrix of the
observation with the observation noise δ, and K ′ =
[k(x, x1), k(x, x2), . . . , k(x, xt)] [Rasmussen, 2003]. Al-
though the observation noise δ is usually considered sta-
tionary, there have also been works on GPs considering
heteroscedastic noise setups [Goldberg et al., 1997, Kerst-
ing et al., 2007, Liu et al., 2020], which inspired us to extend
the input-dependent noise to the BO setup.

There are many commonly used acquisition functions in BO,
such as Expected Improvement (EI) [Jones et al., 1998] and
Probability of Improvement (PI) [Kushner, 1964]. Another
widely studied acquisition function is the Upper Confidence
Bound (UCB):

αt(x) = µt(x) + β
1
2
t σt(x). (3)

There are also many other complicated acquisition functions,
especially the entropy-based ones including the Predictive
Entropy Search (PES) [Hernández-Lobato et al., 2014] and
Maximum-value Entropy Search (MES) [Wang and Jegelka,
2017]. These usually do not have analytic forms and require
approximation or sampling methods to compute.

2.2 MULTI-FIDELITY BAYESIAN OPTIMIZATION

For multi-fidelity BO (MFBO), the ground-truth objective
function f is usually not able to be directly queried or evalu-
ated without observation noise. Instead, we can query its dif-
ferent black-box approximation models, namely f j : X →
R at different cost cj , where j ∈ J = {1, 2, . . . , J} indexes
the approximation functions to query. Such situations are
ubiquitous in many real-world applications. Many complex
systems in reality, such as the climate system, are difficult
to evaluate at will. Alternative to directly measuring the
actual status, we can query different surrogate models such
as physics-based simulation models or data-driven ML sur-
rogates.

Unlike in classical BO, each iteration of MFBO necessitates
the selection of both an input and an approximation model
for querying. Let us denote the observed data DMF

t =
{(xi, y

ji
i )}i∈{1,2,...,t}, where xi represents the ith queried

input and yjii the corresponding evaluation result from the
approximation model ji ∈ J . We refer DMF

t as Dt in
the following sections for simplicity. Note that we do not
necessarily have results from all the approximation models
for a given input.

2.3 RELATED WORK

The design of MFBO also considers two critical compo-
nents as in BO: the surrogate modeling and the acquisition
function derivation.

Many different probabilistic models have been proposed as
surrogates in MFBO, including independent GPs for differ-
ent approximation models [Lam et al., 2015], Convolved
Multi-Output Gaussian Process [Zhang et al., 2017], hi-
erarchical (co-)kriging [Shu et al., 2021, Poloczek et al.,
2017], recent Bayesian Neural Networks (BNNs) [Li
et al., 2020, 2021], and the Semiparametric Latent Fac-
tor Model (SLFM) [Teh et al., 2005], which is a Gaus-
sian process-based multiple response model [Takeno et al.,
2020a]. All the surrogate models previously mentioned for
MFBO necessitate a pre-determined fixed fidelity. This can
be achieved either by establishing correlations between ap-
proximation models as hyper-parameters, as illustrated in
the works of Lam et al. [2015], Zhang et al. [2017], and Teh
et al. [2005], or by utilizing the low-fidelity approximation
results as inputs to the high-fidelity surrogates. The latter
approach is exemplified in the research by Shu et al. [2021],
Li et al. [2020], and in the later publication [Li et al., 2021].

Several MFBO acquisition functions have been derived from



their classical counterparts in BO, each tailored to different
models. While there are analytical acquisition functions,
such as MF-GP-UCB [Kandasamy et al., 2016], the majority
tend to be entropy-based. This trend stems from the inherent
nature of MFBO, where the queried evaluations originate
from multiple sources. For instance, the MF-MES [Takeno
et al., 2020a, Li et al., 2020, 2021] is derived from the MES,
and the MF-PES [Zhang et al., 2017] is adapted from the
PES used in BO.

There are also works considering different MFBO setups.
For example, Song et al. [2019] proposed MF-MI-Greedy
aiming at minimizing regret when querying high-fidelity
evaluations is mandatory after spending a specified bud-
get on lower-fidelity models. Kandasamy et al. [2017] con-
sidered approximation models with fixed but continuous
fidelity.

Considering the observation has input-dependent noise and
model it as heteroscedastic GP has previously been studied
for SFBO Makarova et al. [2021], Tautvaišas and Žilinskas
[2023], Griffiths et al. [2021], Kirschner and Krause [2018],
sometimes termed as Risk-Averse BO, aiming at optimizing
target function while restricting the risk. We extend the use
of heteroscedastic GP as the surrogate model of MFBO and
use the input-dependent noise to model the fidelity over
different approximation models as well as the input space
in this work.

Similar BO setups that allow querying different informa-
tion sources have been given different names such as
MFBO [Kandasamy et al., 2016] or Multi-Information-
Source BO [Poloczek et al., 2017]. We use MFBO for
simplicity in this paper. To contextualize our contributions
within the existing literature, we present the first-ever input-
dependent MFBO (iMFBO) methodology that takes into
account learnable input-dependent fidelity for queried evalu-
ations facilitated by heteroscedastic learnable noise models.

In this work, we are considering BO with different evalu-
ation or information sources that have different "fidelity"
compared to the ground truth, and the goal is to efficiently
utilize the information from different sources to optimize
the target function similar to the majority of MFBO work.
While the term “MFBO” in the literature usually refers to
BO problems with evaluation models with different costs
and fixed fidelity, we want to note that this work considers a
more flexible setup that is not restricted to fixed high-low
fidelity but considers input-dependent fidelity to incorporate
more complicated real-world scenarios.

3 METHOD

3.1 SURROGATE MODELING

Here we first present the surrogate modeling for BO with
evaluations from different information sources with approx-

imation models that may have input-dependent noise. We
then derive input-dependent BO methods with both single
and multiple approximation models, which we respectively
denote as iBO and iMFBO.

Similar to existing BO methods, we model the objective
function f to optimize by a GP. We would like to underscore
that this study primarily focuses on scenarios where only
evaluations from information sources with approximation
models are accessible. In these cases, different evaluations
from the corresponding approximation model may exhibit
input-dependent fidelity. Consequently, the deviation from
the underlying objective function f can vary in accordance
with the input x. We aim to capture input-dependent fidelity
of different evaluations for more efficient BO. Most of the
existing BO methods ignore the evaluation noise and model
evaluations by GPs with independent additive Gaussian
noise of the fixed variance δ2. Here, we explicitly model the
input-dependent fidelity by additive Gaussian noise with an
input-dependent variance as a random variable δ2(x).

The predictive posterior p(f(x)|Dt) with GP can be derived
by marginalizing out the noise variable δ:

p(f(x)|Dt) =

∫
δ

p(f(x)|δ,Dt)p(δ|Dt)dδ. (4)

In this setting, the GP surrogate modeling of any input-
dependent approximation model of the ground-truth objec-
tive function is f j(x) = f(x) + δ2j (x)S, where j ∈ J
is the index of information sources, and δj(x) is now an
input-dependent random variable and δ = [δ1, . . . , δJ ] and
S ∼ N (0, 1).

As stated before, to infer the posterior distribution of f ,
f(x)|δ,Dt , we need to define the prior on the queried noisy
evaluation(s), for which the covariance takes the following
form:

cov[f j(x), f j′(x′)] = k(x, x′)+I(j, j′)I(x, x′)δ2j (x), (5)

where I(a, a′) is the indicator function, and I(a, a′) = 1
when a = a′ and 0 otherwise.

At each iteration t, our prediction for the ground-truth ob-
jective f(x) on input x can be written as:

ft(x)|δ := f(x)|δ,Dt
∼ N (µt(x), σ

2
t (x)), (6)

where the posterior mean is µt(x) = K ′K̂−1
t Yt, and

Yt = [yj11 , yj22 , . . . , yjtt ] denotes the previous evaluation
results. The updated posterior variance becomes σ2

t (x) =
k(x, x) − K ′K̂−1

t K ′T , and the covariance matrix of the
observations becomes K̂t = K + Λ(δ2j1(x1), . . . , δ

2
jt
(xt)),

where Λ(δ2j1(x1), . . . , δ
2
jt
(xt)) denotes a diagonal matrix

with diagonal entries being δ2j1(x1), . . . , δ
2
jt
(xt).

Here we have the form of p(f(x)|δ,Dt). The other impor-
tant component of the posterior (4) is p(δ|Dt). Naturally,
we believe that the input-dependent fidelity should have



a certain level of continuity and, in turn, can be modeled
either parametrically or non-parametrically. An example
illustrating the performance of these surrogate modeling can
be found in Appendix B

3.1.1 Parametric Noise Model

One way to capture the input-dependent noise variance δ(x)
is by learnable parametric models, such as linear models
or MLPs, denoted by δθ(x). The posterior of the objective
function is then transformed to:

p(f(x)|Dt) =

∫
θ

p(f(x)|θ,Dt)p(θ|Dt)dθ. (7)

In this setup, we aim to learn the posterior distribution of
the parameters and use the model structure to preserve the
continuity of δ(x).

Model parameter posterior p(θ|Dt): The posterior of
the learnable parameters θ that model input-dependent fi-
delity, p(θ|Dt), is another important component in (11). By
Bayes’ rule,

p(θ|Dt) ∝ p(θ)p(Dt|θ), (8)

where p(θ) is the prior distribution of the model parameters
and p(Dt|θ) is the likelihood. While the prior distribution is
usually selected beforehand, the likelihood takes the form:

p(Dt|θ) = (2π)−
t
2 |K̂t|−

1
2 exp(−1

2
Y T
t (K̂t)

−1Yt). (9)

Sampling: Although we have the analytic forms of the
prior and likelihood in our settings, Bayesian inverse to
update the posterior of θ given queried evaluations usu-
ally does not have an analytic closed-form solution because
of the integral in (4). One of the strategies to deal with
the unnormalized distribution in (4) is by No-U-Turn Sam-
pler (NUTS) [Hoffman et al., 2014], a variant of Hamil-
tonian Monte-Carlo (HMC) [Betancourt, 2017], which en-
ables efficient sampling from unnormalized distributions.

Given the samples Θ = {θ1, θ2, . . . , θM} of the posterior
θ|Dt , the posterior distribution in (4) can be estimated by:

p(f(x)|Dt) ≈
1

M

∑
θm∈Θ

p(f(x)|θm,Dt), (10)

where m ∈ 1, 2, . . . ,M and M is the number of samples.

3.1.2 Non-parametric Noise Model

We also apply a non-parametric GP noise model, assum-
ing that the available data, δ(xi), are jointly Gaussian dis-
tributed, the posterior can be written as

p(f(x)|Dt) =

∫
δt

p(f(x)|δt,Dt)p(δt|Dt)dδt, (11)

where p(δt|Dt) ∝ p(δt)p(Dt|δt), and δt denotes the ran-
dom vector [δj1(x1), . . . , δjt(xt)].

In this non-parametric setting, we update the posterior dis-
tribution of the input-dependent variance for each input
sample, and the continuity is captured by the GP prior.

GP-modeled σ(x) will face the same intractability problem
as in the parametric setup. Furthermore, δ(x)|Dt , which
plays an important role in suggesting new samples, is also
intractable because of the non-Gaussian likelihood p(Dt|δt).

Sampling methods can be time-consuming in this case be-
cause when having a batch of M samples δ̂(x), computing
δ(x)|δ̂t has the complexity of O(Mt3) in each iteration.

In practice, we propose to apply the Maximum a Poste-
rior (MAP, Murphy [2012]) point estimate δ̄t by maximiz-
ing the posterior p(Dt|δ̄t)p(δ̄t) and then use δ(x)|δ̄t to ap-
proximate δ(x)|Dt

. The corresponding estimated posterior
becomes

p(f(x)|Dt) ≈ p(f(x)|δ̄t,Dt), (12)

and δ(x)|δ̄t can be acquired by ordinary GP updates.

Comparing the posterior distributions from our setting and
traditional BO settings, the main difference of our updated
posterior covariance matrix K̂t from the covariance Kn

in previous settings is that we have replaced the constant
noise variance δ2 with an input-dependent noise δ2(x).
By doing this, different approximation models are depen-
dent by modeling the covariance k(x, x′), instead of be-
ing mutually independent as in Kandasamy et al. [2017].
We also capture the input-dependent fidelity by observing
that the correlation of the evaluations from the approxima-
tion model(s) and the ground-truth objective function is
corr(f j(x), f(x)) = k(x,x)√

k(x,x)
√

k(x,x)+δj(x)
= 1√

1+
δj(x)

k(x,x)

,

which is again dependent on input x.

3.2 NOISE-VARIANT UCB (NVUCB)

With the previously described surrogate model updates, we
now investigate the acquisition function for iBO. To achieve
better sample efficiency, we first propose a new acquisi-
tion function—Noise-Variant UCB (NVUCB)—for single
fidelity BO when the observation noise δ(x) is dependent
on x:

αNV
t (x) = µt(x) + β

1
2

σt(x)√
σ2
t (x) + δ2(x)

σt(x). (13)

Recall that the original UCB for BO takes the form of (3),
our proposed NVUCB is basically the UCB with the stan-
dard deviation factored by γt(x) =

σt(x)√
σ2
t (x)+δ2(x)

.

Our NVUCB acquisition function can easily be extended
to multi-fidelity BO by considering multiple approximation



models, named as Multi-Fidelity NVUCB (MFNVUCB):

αMFNV
t (x, j) = µt(x) + β

1
2

σt(x)√
σ2
t (x)+δ2j (x)

σt(x). (14)

This proposed iMFBO follows the usual BO framework
with our input-dependent surrogate model and MFNVUCB
acquisition function, which is summarized in Algorithm 1
in Appendix A.

To explain the reason for the factorization of the deviation
in (13), we go back to the idea of the original UCB (3).
The first term µ(x) is designed for exploiting the surrogate
estimation of potential optimal solutions and the second
term encourages exploration into unknown regions in the
design space.

While it is natural to consider the inferred variance σ2(x)
as quantified model uncertainty to guide exploration, we
can also be more explicit to directly consider the potential
reduction of the variance after querying x with noiseless
observations.

Consider a potential candidate x, in input-dependent fi-
delity settings with N (0, δ2(x)) observation noise, our
surrogate of the ground-truth objective function at it-
eration t is ft(x) ∼ N (µ(x), σ2(x)), and the poten-
tial observation fa(x) ∼ N (ft(x), δ

2(x)). The pos-
terior when the observation is y is then ft|y ∼
N ( δ

2(x)µ(x)+σ2(x)y
δ2(x)+σ2(x) , δ2(x)

σ2(x)+δ2(x)σ
2(x)). The variance re-

duction is Var(ft) − Var(ft|y) = γ2(x)σ2(x), which is
exactly reflected in our factored variance term in NVUCB
and MFNVUCB. In a noiseless setup, i.e. δ(x) = 0,
γ(x) = σ(x)√

σ2(x)+0
= 1 so NVUCB would become orig-

inal UCB. Compared to the penalty terms applied in Grif-
fiths et al. [2021], Makarova et al. [2021], ours has similar
penalty power for noisier points, but ours is derived from
the information gain formulation and leads to our theoretical
results. An illustration of different acquisition functions can
be found in Appendix C.

Though the discussion in this section is under the unbiased
evaluations assumption and equal-cost setup, we want to
note that this iMFBO is capable of being extended to a
bias-aware and cost-aware version and we discuss such
extensions in Appendix G and F, respectively.

4 THEORETICAL RESULTS

As another way to illustrate the importance of the factor
γ(x), we show that it also shows up in the information gain
of the ground-truth after observing noisy evaluations.

Proposition 4.1. Given a set of input samples
[x1, x2, . . . , xn], the information gain of the ground-
truth function f(x) after querying approximation model
fa, with observation noise variance δ2(x), getting

F a
n = [fa(x1), f

a(x2), . . . , f
a(xn)] is

I(f ;F a
n ) = −1

2

n∑
i=1

log(1− γ2
i (xi)), (15)

where γi(xi) = σt(xi)√
σ2
i (xi)+δ2(xi)

, σ2
i (xi) is

the predictive variance after observing F a
i =

[fa(x1), f
a(x2), . . . , f

a(xi)].

With the fact that − 1
2 log(1− γ2) is monotonically increas-

ing with respect to γ, iBO guided by NVUCB, which en-
courages querying samples with larger γt values at iteration
t, is more likely resulting in more informative queries when
exploring the input space. Formally, we have the following
main theorem:

Assumption 4.2. The ground-truth target function f is sam-
pled from a Gaussian Process with a kernel k(x, x′).

Theorem 4.3. If the latent ground-truth f satisfies Assump-
tion 4.2, denote xv as the selected candidate by the proposed
NVUCB acquisition function (13), xu as the selected candi-
date by the original UCB (3). At least one of the following
statements holds true:

• S1: The information gain of ground-truth f after query-
ing approximation model fa, with observation noise
variance δ2(x) at xv can be lower bounded by that at
xu, I(f ; fa(xv)) ≥ I(f ; fa(xu));

• S2: The predictive mean of the selected sample
µ(xv) > µ(xu).

Compared to the original UCB acquisition function, the
NVUCB acquisition function would either get more infor-
mative queries (S1), tend to exploit the current model (S2),
or achieve both in SFBO setup.

A sublinear regret bound can also be derived for
MFNVUCB-guided iMFBO in the Multi-Fidelity setup
to be O(

√
βT Imax

T T ) under mild assumptions, follow-
ing Srinivas et al. [2009]. Formally, we prove the following
theorem.

Assumption 4.4. The target function f defined on D ⊂
[0, r]d is compact and convex, d ∈ N , r > 0.

Assumption 4.5. The kernel k(x, x′) defined in Assump-
tion 4.2 satisfies the following high probability bound on
the derivatives of GP sample paths f : There exist constants
a, b > 0,

Pr{sup
x∈D

|∂f/∂xk| > L} ≤ ae−(L/b)2 , k = 1, . . . , d.

Assumption 4.6. The observation noise δj(x) for any in-
formation source j satisfies δmin ≤ δj(x) ≤ δmax.



(a) Approximation models (b) 100 samples (c) Predictive mean

Figure 1: (a) The approximation model and the ground truth, though the approximation model is deterministic, we here show
that the model prediction can also benefit from considering the bias as input-dependent noise. (b) Randomly drawn 100
samples, 50 from each of the approximation model. (c) The predictive mean of the surrogate models. the curve labeled with
"GP with learnt noise" is the proposed GP with learnable noise, while "GP(1)" and "GP(2)" are GPs fitting approximation
model f1 and f2 respectively. We also plotted the average value of "GP(1)" and "GP(2)" as "GP(average)".

Theorem 4.7. For a constant ϵ ∈ (0, 1), and βt =
2 log(t2π2/(3ϵ)) + 2d log(t2dbr

√
log (4da/ϵ)), perform-

ing MFNVUCB for a target f satisfying Assump-
tions 4.2 4.4 4.5 with observation noise satisfying Assump-
tion 4.6, we have

Pr{RT ≤ (
√
Cδmin+1)

√
2δ2maxβT Imax

T T+
π2

6
} ≥ 1−ϵ,

(16)
where RT =

∑T
t=1[f(x

∗)− f(xt)], Imax
T is the maximum

information gain at iteration T , and the constant Cδmin
> 1

is related to δmin.

The proofs for Proposition 4.1, Theorem 4.3 and Theo-
rem 4.7 can be found in Appendix H.

We note that the learnt input-dependent noise δ(x) is con-
sidered as random variables and the acquisition functions
used in the experiments are computed by taking expectation
over the distribution of corresponding noise δ(x).

5 NUMERICAL RESULTS

We here first show that our surrogate modeling and acqui-
sition function can capture input-dependent fidelity and ap-
proximate the ground-truth more efficiently using a toy ex-
ample. We then illustrate the performance of our proposed
iMFBO methods with both the toy example and well-known
benchmarking optimization targets. The performance of
iBO is discussed in Appendeix D. Finally, we implement
NVUCB to a real-world materials discovery dataset [Zhuo
et al., 2018], for which we aim to maximize the band-gap
of nonmetal materials.

5.1 SURROGATE MODEL PERFORMANCE

We illustrate the effectiveness of capturing input-dependent
fidelity by our surrogate modeling strategy with a toy ex-

ample in Figure 1, where the ground truth is f(x) =
−(x2 − 1) cos(3πx), x ∈ [−1, 1], which has two local
maximums (left and right) and one global maximum (cen-
ter). Two different deterministic approximation models
are considered as f1(x) = f(x) + 0.5(x + 1) sin(32πx),
f2(x) = f(x)− 0.5(x− 1) sin(32πx) that has an observa-
tion error compared to the target. We show the predictive
mean of our proposed heteroscedastic noise GP (GP with
inferred noise) and regular GP with constant observation
noise (GP(1) and GP(2)). It can be observed that though
“GP(1)” and “GP(2)” are able to correctly identify three
peaks, they fail to identify the global maximum while our
model can as shown in Figure 1c.

5.2 ACQUISITION FUNCTION ILLUSTRATION

The performance of our acquisition function is first tested
with a toy example, where the ground truth is a sin wave
over one period, f(x) = sin(2πx), x ∈ [0, 1]. We consider
two approximation models with the corresponding linear
additive noise: f j(x) = f(x) + (ajx+ bj)S, where a1 =
0.5, b1 = 0, a2 = −0.5, b2 = 0.5, and S denotes the
standard normal distributed noise, i.e. f1 is with higher
fidelity when x is small while f2 is more precise when x is
large.

Compared with the MFBO proposed in Kandasamy et al.
[2016], which directly applies UCB on the approximation
models, we refer the acquisition function focusing only on
the approximation models here as Noise UCB (NUCB):

NUCB: αN
t (x) = µt(x) + β

1
2

√
σ2
t (x) + δ2(x). (17)

The acquisition function values with 20 randomly sampled
data trained with the parametric linear noise model are
illustrated in Figure 2. We compare the performance of
NVUCB (2a) and NUCB (2b). We also fit “Separated GPs”
for the two approximation models and compute the UCB
acquisition function values for each of them as illustrated in



(a) NVUCB (b) NUCB (c) Separated GP
Figure 2: The corresponding acquisition functions are illustrated as dashed lines based on the learned surrogate models of
the ground-truth for (a) NVUCB, (b) NUCB, and (c) Separated GP, respectively. The shaded region is 1-σ confidence region.
The number in parentheses indexes the corresponding approximation model, e.g. NVUCB(1) in (a) is by (14) with j = 1.
The solid red line illustrates the latent ground truth f(x).

(a) MFBO: sin wave (b) MFBO: toy (c) Queried samples

Figure 3: (a)(b) Identified maximal ground-truth values by iMFBO over 10 independent runs with random initialization.
The y-axis illustrates the log-regret log(1− y∗), where y∗ is the largest value queried and 1 is the optimum for both target
functions, and the shaded area represents 1-σ confidence. (c) The queried evaluations by iMFBO with different acquisition
functions: the queried evaluations from f1 are plotted in red and those from f2 are blue.

Figure 2b. The cost of evaluating either of the two approxi-
mation models is set to 1 equally.

As the approximation model f1 has higher fidelity when x
is small and f2 is more accurate when x is large, intuitively
one tends to query the evaluation from the approximation
model with higher fidelity. Our NVUCB acquisition, as in
Figure 2a, conforms to this intuition by showing NVUCB(1)
is larger when x is closer to 0 and smaller when x is closer
to 1 compared to NVUCB(2). However, NUCB has the
opposite trend and does not make use of the learnt fidelity
information as in Figure 2b. Separated GPs in Figure 2c, as
expected, do not properly handle the input-dependent noise
and result in overestimating the model uncertainty.

We then test iMFBO with the two approximation mod-
els, with the cost of querying either of the models set
to 1. We compare iMFBO with NVUCB (MFNVUCB),
NUCB (MFNUCB), separated GPs (SepGP), and MF-
MES [Takeno et al., 2020b]. SepGP indicates maintaining a
Gaussian Process for each information source and perform-
ing BO over them. We also compare a two-step method,
referred as UCBTS, in which we learn input-dependent sur-
rogates and then choose the input by UCB and query the

approximation model for the corresponding evaluation with
the lowest noise.

Figure 3a illustrates the performance assessment results of
these different iMFBO methods. It is clear that our MFN-
VUCB achieves the best MFBO performance and is more
stable than the others. Although UCBTS shows better per-
formance in the first few iterations, it fails to identify the
global optimum with the increasing number of iterations.
We have also tested the performances of the MFBO methods
with the toy example in Section 5.1, which is more compli-
cated than sin wave as illustrated in Figure 3b. We believe
that our proposed surrogate model and acquisition function
can better approximate the underlying function in this case
and query better samples.

Figure 3c plots the queried evaluations from the correspond-
ing approximation models. We can see that during iMFBO
iterations, our input-dependent fidelity GPs can capture the
observation noise of the two approximation models while
SepGP does not show a clear preference on which approxi-
mation model to query. MFNVUCB tends to query f1 near
the global optimum 0.25, which has higher fidelity and is
more informative. In contrast, MFNUCB does the oppo-



Table 1: Minimal ground-truth values among queried sam-
ples averaged over 10 independent runs.

Hartmann 6D Branin Levy
NVUCB -1.92±0.48 1.26 ±1.32 2.009 ± 2.28
NUCB -1.76 ± 0.41 7.02 ± 4.52 6.87 ± 7.49
SepGP -1.79 ± 0.33 3.73 ± 4.18 2.03 ± 1.36

MF-GP-UCB -1.80 ± 0.18 2.66 ± 1.50 2.006 ± 2.33
MF-MES –1.87 ± 0.26 2.19 ± 1.27 0.98 ± 0.80

Figure 4: Maximal band-gap (eV) for queried compositions
by different MFBO methods.

site, validating that our proposed surrogate modeling and
NVUCB can help capture input-dependent fidelity and ef-
ficiently guide the selection of inputs and approximation
models to query.

5.3 BENCHMARK OPTIMIZATION FUNCTIONS

In Table 1, we present the performance of our iMFBO
along with MF-GP-UCB [Kandasamy et al., 2016] and MF-
MES [Takeno et al., 2020b] on minimizing three benchmark
objective functions: Hartmann 6D, Branin, and Levy as
mean and standard deviation over 10 independent runs. In
all three cases, we set two approximation models with linear
additive noise, with the cost of querying either approxima-
tion model again set to 1. The detailed experimental settings
can be found in Appendix I. We initialize the experiment
with two randomly queried samples from each of the ap-
proximation models, i.e. four samples in total, and run the
experiment for 50 iterations. For Hartmann and Branin func-
tions, our iMFBO with the proposed surrogate modeling
and NVUCB acquisition function performs the best while
NUCB performs the worst, demonstrating that our surrogate
model can capture the input-dependent fidelity and NVUCB
utilizes it efficiently. Our iMFBO with NVUCB also per-
forms comparably well to MF-GP-UCB when optimizing
the Levy benchmark function.

5.4 MATERIALS DISCOVERY PROBLEM
We now test our iMFBO on a real-world materials dataset,
for which we must find the material with the largest band-

gap.

5.4.1 Data Collection

We consider the experimental dataset used and reported
by Zhuo et al. [2018] as the ground truth f . This data set con-
sists of 3,896 experimentally-characterized band-gap mea-
surements from 2,458 unique inorganic compounds. These
experimental band-gaps were obtained using a number of
experimental techniques, including diffuse reflectance, re-
sistivity measurements, surface photovoltage, photoconduc-
tion, and UV–vis measurements.

Density Functional Theory (DFT) calculations are often
used to predict a variety of material properties, including
the band-gap [Jain et al., 2013]. These predictions can vary
based on the structural and other configurations of the ma-
terial. We take the band-gap characterized by the smallest
energy per atom as reported in the open-access Material
Project (MP) dataset [Jain et al., 2013], which is considered
a suitable approximation [Ward et al., 2018] based on the
principle that the compound with the lowest energy per atom
corresponds to the predicted ground state for that particular
chemical system. By querying the MP with the composi-
tions present in the ground-truth dataset, we successfully
identified DFT band-gap calculations for 1,439 out of the
2,458 compositions. DFT band-gap values were not avail-
able in the MP for the remaining 1,019 compositions, which
we use to train another data-driven surrogate based on the
experimental measurements.

5.4.2 Preprocessing

In dealing with duplicated compositions from the dataset
provided by Zhuo et al. [2018], we opted to retain only the
first reported entry, due to the absence of corresponding
experimental conditions and energy per atom values within
the dataset.

We consider querying three approximation models: (1) the
DFT-calculated band-gap f1 in MP, (2) the band-gap pre-
dicted by a pre-trained MLP f2, and (3) the band-gap pre-
dicted by a pre-trained linear model f3. The MLP and linear
models are trained based on the 1,019 compositions with-
out DFT band-gap values recorded in MP. The objective of
iMFBO is to identify the material with the largest band-gap
among the other 1,439 compositions. The experiments are
initiated with one random sample from each approximation
model. We evaluate performance over 20 independent runs
with a budget (B) of 30, as illustrated in Figure 4. It is impor-
tant to note that all queries in this experiment can only yield
approximations (either from DFT or MLP evaluations), and
performance is assessed based on the experimental band-
gaps reported in Zhuo et al. [2018]. The details about the
pre-trained MLP are provided in Appendix J. We use the in-
put of the MLP’s final prediction layer as a feature extractor,
distilling the original features down to two. All MFBO meth-
ods are performed in this extracted 2-dimensional space.



As shown in Figure 4, our MFNVUCB outperforms other
models as anticipated. Interestingly, our UCBTS consis-
tently surpasses SepGP, and we observe that MFNUCB
yields superior final performance to SepGP within the
budget. We also reported the performance of the random
selection policy (RS) demonstrating the effectiveness of
the BO methods. This outcome likely stems from our
input-dependent fidelity surrogate modeling, which utilizes
queried evaluations more efficiently in conjunction with the
corresponding acquisition functions.

6 CONCLUSION

In this study, we have introduced iMFBO, an innovative
Multi-Fidelity Bayesian Optimization method. This ap-
proach models the input-dependent fidelity of each approx-
imation model, formulates a novel acquisition function,
NVUCB, and is capable of being extended to cost-aware
and bias-aware setups. Our framework integrates the learned
input-dependent fidelity to more effectively guide the adap-
tive query evaluation of corresponding approximation mod-
els in each iteration. Our method is particularly suited to
many scientific problems, such as materials discovery, where
multiple information sources are available, each providing
insights into the ground truth at varying levels of fidelity. We
evaluated our proposed iMFBO on both synthetic and real-
world datasets, demonstrating its proficiency in capturing
the input-dependent fidelity of multiple approximation mod-
els and its efficiency in optimizing the underlying ground-
truth objective function based on approximation evaluations.
Therefore, this work underscores the potential of iMFBO
in effectively addressing multi-fidelity optimization prob-
lems, particularly in complex scientific fields where diverse
sources of information must be synthesized.
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A IMFBO ALGORITHM

We present our proposed iMFBO pseudo-code as follows:

Algorithm 1 iMFBO

Initialize Initial dataset Dt = D0, budget B, time step t = 1;
repeat

Fit the surrogate model of the latent ground truth and input-dependent fidelity to the current dataset Dt;
Find (xt, jt) pair that maximize the equation (14);
Query the j-th approximation model on sample xt;
Update the dataset Dt+1 = Dt ∪ (xt, y

jt
t )

Update budget B = B − 1;
Update time step t = t+ 1;

until B ≤ 0

B PERFORMANCE OF THE NOISE SURROGATE

We illustrate the effectiveness of capturing input-dependent fidelity by our surrogate modeling strategy with a toy example,
where the ground truth is a sin wave over one period, f(x) = sin(2πx), x ∈ [0, 1]. We consider two approximation
surrogate models with the corresponding linear additive noise: f j(x) = f(x) + (ajx + bj)S, where a1 = 0.5, b1 = 0,
a2 = −0.5, b2 = 0.5, and S is the standard normal distributed noise, i.e. f1 is with higher fidelity when x is small while f2

is more precise when x is large.

In parametric surrogate modeling (Sec. 3.1.1), we can take a linear noise model. The priors of the bias and weights are set to
be standard normal distributions for both approximation models. The posterior of δ(x) trained with 20 and 500 random
evaluation samples are illustrated in Figures 5a and 5b. In the non-parametric setting, as illustrated in Figure 5c, the prior of
the noise model is set to be a Gaussian Process with zero mean and Radial Basis Function (RBF) covariance kernel [Seeger,
2004].

When acquiring more evaluations from approximation models, the uncertainty of the noise model reduces from Figure 5a to
Figure 5b, indicating that our model can reliably capture the model uncertainty. When we have a large queried evaluation set,
the learnt noise fits the ground truth well in Figure 5b. More importantly, even with a relatively limited number of queried
approximation evaluations, the input-dependent noise trend can still be reliably learned as in Figure 5a. The trend of noise is
also learnt reasonably well with the non-parametric surrogate modeling as shown in Figure 5c.

mailto:<mzfan@tamu.edu>?Subject=Multi-fidelity Bayesian Optimization with Multiple Information Sources of Input-dependent Fidelity


(a) 20 samples with linear model (b) 500 samples with linear model (c) 500 samples with GP prior

Figure 5: (a) The learnt noise with 20 random samples with the linear model. Each line is a sample generated by the
updated parameter posterior. (b) The learnt linear noise model with 500 random samples. (c) The MAP estimation of the
input-dependent noise over 500 random samples with the Gaussian Process prior. The number in parentheses indexes the
approximation model, e.g., “Learnt noise(1)” in (a) is the learnt observation noise of the approximation model f1.

C AN EXAMPLE TO ILLUSTRATE THE EFFECTIVENESS OF NVUCB

We here use an example to illustrate the effectiveness of our proposed acquisition function, NVUCB, in Figure 6. The
controlling parameter β is set to 1 for all of the three acquisition functions: UCB, NUCB, and NVUCB. Consider we have
three candidate samples at x1, x2, x3 to query. Comparing x2 and x3, with the same prediction mean 0 and prediction
variance 12.5 by the approximation model, NUCB will face a tie. Both UCB and NVUCB break the tie by selecting more
informative sample x3. However, x1, with predictive mean 0.5 and less observation noise variance 0.12, would have the
same UCB value as the one at x2. NVUCB would select candidate x1 which not only has higher prediction mean but also is
more informative with γ(x1) =

2√
22+0.12

> 2.5√
12.5

= γ(x3).

Figure 6: An illustration of UCB, NUCB and NVUCB acquisition functions. The predictive mean is plotted in solid black,
The red shaded region represents the 1− σ confidence of the ground-truth model and the green shaded region represents the
1− σ confidence of the approximation model. NVUCB guides towards the best selection.

D ACQUISITION FUNCTION PERFORMANCE ON SFBO

We further test the performance of our proposed iBO using the corresponding single approximation model over 10
independent runs, as illustrated in Figures 7a and 7b. In each run, we randomly select four samples in the design space of
interval x ∈ [0, 1] for the initial dataset with two queried from f1 and f2 respectively. We compare iBO with NVUCB and
NUCB to BO with UCB based on ordinary GP surrogates with constant observation noise. For an ablation study, we further



test the performance of BO with UCB based on our input-dependent GP surrogates, referred to as iUCB.

By comparing Figures 7a and 7b, we can observe that all methods perform better using f1 evaluations than using f2. This
is because f1 has higher fidelity in the relatively well-performing region (near the optimum x = 0.25) and can be more
informative for BO to find the global maximum. The better performance of iUCB compared to UCB demonstrates that our
input-dependent fidelity GP models the ground-truth objective better than constant noise GP. With only f2 evaluations,
iBO with NVUCB performs slightly worse than iUCB since NVUCB would encourage to query the inputs with smaller
observation noise of f2 evaluations, where the ground-truth objective values are smaller, hence hindering the maximization
task.

(a) With only f1 queries (b) With only f2 queries

Figure 7: Identified maximal ground-truth values by iBO with different surrogates and acquisition functions over 10
independent runs with random initialization. The error bar represents the 1− σ confidence interval.

E EXTENDED EXPERIMENTAL RESULTS FOR THE MATERIALS DISCOVERY
PROBLEM

To better demonstrate our method, we extend the previous experiments in Section 5.4 by only considering querying the first
two approximation models: (1) the DFT-calculated band-gap f1 in MP, and (2) the band-gap predicted by a pre-trained MLP
f2. Similar to the previous experiment, the MLP alse is trained based on the 1,019 compositions without DFT band-gap
values recorded in MP. The objective of iMFBO is to identify the material with the largest band-gap among the other
1,439 compositions. The experiments are initiated with one random sample from each approximation model. We evaluate

Figure 8: Maximal band-gap (eV) for queried compositions by different MFBO methods.



performance over 20 independent runs with a budget (B) of 20, as illustrated in Figure 8.

As shown in Figure 8, similar to the previous results, our MFNVUCB outperforms other models as anticipated. The
performance of other methods also performs similarly as discussed before.

F IMFBO CONSIDERING EVALUATION COST

To incorporate the fact that the information resources of different approximate evaluation models usually have different
evaluation costs, we can further modify the acquisition function to

αMFNV C
t (x, j) = µt(x) +

1

cj
β

1
2

σt(x)√
σ2
t (x) + δ2j (x)

σt(x), (18)

where ck is the cost to evaluate each of the approximation models. The reason that we put the cost on the standard deviation
term is that our surrogates of the approximation models are only different on the input-dependent noise δ(x), which only
appears in the variance reduction term in the acquisition function.

We present our proposed iMFBO considering such costs as follows:

Algorithm 2 iMFBO with cost

Initialize Initial dataset Dt = D0, budget B, time step t = 1;
repeat

Fit the surrogate model of the latent ground-truth and input-dependent fidelity to the current dataset Dt;
Find (xt, jt) pair that maximize the equation (18);
Query the j-th approximation model on sample xt;
Update the dataset Dt+1 = Dt ∪ (xt, y

jt
t )

Update budget B = B − cjt ;
Update time step t = t+ 1;

until B ≤ 0

To numerically test the performance of the iMFBO implementation considering evaluation cost, we test it with the benchmark
in the materials discovery problem (Section 5.4).

To reflect the reality that DFT computations are typically more resource-intensive than querying machine learning models,
we set the cost for querying DFT computations and MLP to be 5 and 1, respectively.

As shown in Figure 9, the performance trends of different competing models are similar as reported in Section 5.4 when the
querying costs are taken into consideration, with our MFNVUCB-based iMFBO outperforming other models as anticipated.

G IMFBO CONSIDERING EVALUATION BIAS

Though we consider unbiased evaluations in the main text, it is capable of extending the framework to multi-fidelity
evaluations with bias. By considering the surrogate model for each evaluation model or information source fi(x) as the
addition of the ground truth f(x) and a separate bias gi(x) modeled by a separate model, i.e. fi(x) = f(x)+gi(x)+δi(x)S.
The posterior of the bias gi can also be inferred based on Bayes’ rule similar to the inference of δi in the main text.

Here we use an illustrative experiment similar to the one in Section 5.2 to demonstrate the performance of iMFBO
considering bias. The target function is set to be a sine wave f(x) = sin(2πx), and the evaluation models as multiple
information sources are biased such that f1(x) = f(x) + 0.5 + 0.5xS, f2(x) = f(x)− 0.5 + (−0.5x+ 0.5)S. Similar to
the previous experiments, we use a GP to estimate the ground truth, the input-dependent noise for each information source
δi(x) is estimated by a linear model, and the bias is modeled as a constant in this case, and estimated by MAP.

We illustrate the performance in Figure 10. It can be observed that our method (MFNVUCB) constantly outperforms other
methods, indicating that our framework is capable to be extend to bias-aware versions.



Figure 9: Maximal band-gap (eV) for queried compositions by different MFBO methods.

Figure 10: Log regret for biased evaluations.

H PROOFS

Proposition H.1. Given a set of input samples [x1, x2, . . . , xn], the information gain of the ground-truth function f(x) after
querying approximation model fa, with observation noise variance δ2(x), getting F a

n = [fa(x1), f
a(x2), . . . , f

a(xn)] is

I(f ;F a
n ) = −1

2

n∑
i=1

log(1− γ2
i (xi)), (19)

Proof. By the definition of entropy, we can derive:

I(f ;F a
n ) = H(f)−H(f |F a

n ) = H(F a
n )−H(F a

n |f). (20)

By the independent observation noise assumption,

H(F a
n |f) = H(F a

n |Fn), (21)

where Fn = [f(x1), f(x2), . . . , f(xn)]; and the conditional entropy term H(F a
n |Fn) =

1
2

∑n
i=1 log(2πeδ(xi)), again by

the independent noise assumption.



The entropy term H(F a
n ) can be recursively calculated as

H(F a
n ) =H(F a

n−1) +H(fa(xn)|F a
n−1)

=H(F a
n−1) +

1

2
log[2πe(σ2

n(xn) + δ2(xn))]

=
1

2

n∑
i=1

log[2πe(σ2
i (xi) + δ2(xi))].

Combining these two terms, we get the information gain with an analytic form as in (19).

Lemma H.2. With the same setup as Theorem 4.3, the information gain can be lower bounded by

I(f ; fa(xv)) ≥ I(f ; fa(xu)) +
γ(xu)[σ(xv)− σ(xu)]

[1 + γ(xu)]σ(xv)
, (22)

where γ(x) = σ(x)√
σ2(x)+δ2(x)

.

Proof. By the assumptions that xv maximizes (13),

µ(xv) + β1/2[γ(xv)σ(xv)− γ(xu)σ(xu)] ≥ µ(xu), (23)

and xu maximizes (3),
µ(xu) ≥ µ(xv) + β1/2σ(xv)− β1/2σ(xu). (24)

Combining (23) and (24) gives us:

γ(xv)σ(xv)− γ(xu)σ(xu) ≥ σ(xv)− σ(xu), (25)

which can be rewritten as

γ(xv) ≥ γ(xu) +
σ(xv)− σ(xu)

σ(xv)
[1− γ(xu)]. (26)

With Proposition 4.1, for any x,

I(f ; fa(x)) = H(f)−H(f |fa(x)) = −1

2
log[1− γ2(x)]. (27)

By Jensen’s inequality and the fact that the function − 1
2 log(1− γ2) is convex with respect to γ,

I(f ; fa(xu)) ≥ I(f ; fa(xv)) +G(xu, xv), (28)

where G(xu, xv) =
γ(xu)

1−γ2(xu)
σ(xv)−σ(xu)

σ(xv)
[1− γ(xu)] =

γ(xu)[σ(xv)−σ(xu)]
[1+γ(xu)]σ(xv)

.

Lemma H.3. With the same setup as in Theorem 4.3, when σ(xv) ≤ σ(xu), the information gain can also be lower bounded
by:

I(f ; fa(xv)) ≥ I(f ; fa(xu)) +
γ(xu)[µ(xu)− µ(xv)]

[1− γ2(xu)]β
1
2σ(xv)

. (29)

Proof. By the assumptions that xv maximizes (13),

µ(xv) ≥µ(xu) + β1/2[γ(xu)σ(xu)− γ(xv)σ(xv)]

=µ(xu) + β1/2[γ(xu)σ(xu)− γ(xu)σ(xv)]

+ β1/2[γ(xu)σ(xv)− γ(xv)σ(xv)]

≥µ(xu) + β1/2[γ(xu)σ(xv)− γ(xv)σ(xv)]

=µ(xu) + β1/2[γ(xu)− γ(xv)]σ(xv).

(30)



The last step can be derived by the assumption that σ(xv) ≤ σ(xu). Therefore we now have:

γ(xv) ≥ γ(xu) +
µ(xu)− µ(xv)

β
1
2σ(xv)

. (31)

Similar as Lemma H.2, by Jensen’s inequality,

I(f ; fa(xv)) ≥ I(f ; fa(xu)) +
γ(xu)

1− γ2(xu)

µ(xu)− µ(xv)

β
1
2σ(xv)

. (32)

Theorem H.4. If the latent ground-truth f satisfies Assumption 4.2, denote xv as the selected candidate by the proposed
NVUCB acquisition function (13), xu as the selected candidate by the original UCB (3). At least one of the following
statements holds true:

• S1: The information gain of ground-truth f after querying approximation model fa, with observation noise variance
δ2(x) at xv can be lower bounded by that at xu, I(f ; fa(xv)) ≥ I(f ; fa(xu));

• S2: The predictive mean of the selected sample µ(xv) > µ(xu).

Compared to the original UCB acquisition function, the NVUCB acquisition function would either get more informative
queries (S1), tend to exploit the current model (S2), or achieve both.

Proof. We only need to prove that S1 holds when S2 does not.

When S2 does not hold, i.e. µ(xv) ≤ µ(xu):

1. If σ(xv) ≥ σ(xu), I(f ; fa(xv)) ≥ I(f ; fa(xu)) by Lemma H.2;

2. If σ(xv) < σ(xu), I(f ; fa(xv)) ≥ I(f ; fa(xu)) by Lemma H.3.

Therefore, we can conclude that I(f ; fa(xv)) ≥ I(f ; fa(xu)) if µ(xv) ≤ µ(xu), which proves that at least one of S1 and
S2 is true.

We would also like to first theoretically compare the performance of NUCB with our NVUCB in the single fidelity scenario.

Theorem H.5. With the same setup as Theorem 4.3, denote xv as the selected candidate by our proposed NVUCB acquisition
function (13), xn as the selected candidate by NUCB (17). At least one of the following statements holds true:

• T1: The information gain I(f ; fa(xv)) ≥ I(f ; fa(xn));

• T2: The predictive mean of the selected sample µ(xv) > µ(xn).

Proof. As xv maximizes (13),

µ(xv) + β1/2[γ(xv)σ(xv)− γ(xn)σ(xn)] ≥ µ(xn), (33)

and xn maximizes (17),

µ(xn) ≥µ(xv) + β1/2
√

σ2(xv) + δ2(xv)

− β1/2
√

σ2(xn) + δ2(xn).
(34)

The standard deviation term
√

σ2(x) + δ2(x) can also be written as σ(x)
γ(x) , combining (33) and (34), we have

γ(xv)σ(xv)− γ(xn)σ(xn)

≥
√
σ2(xv) + δ2(xv)−

√
σ2(xn) + δ2(xn)

=
σ(xv)

γ(xv)
− σ(xn)

γ(xn)
.

(35)



Rewriting (35), we have

[γ(xv)−
1

γ(xv)
]σ(xv) ≥ [γ(xn)−

1

γ(xn)
]σ(xn). (36)

Similar as in the proof of Theorem 4.3, we only need to prove that T1 holds when T2 does not.

When T2 does not hold, i.e. µ(xv) ≤ µ(xn):

1. If σ(xv) ≥ σ(xn), recall that 0 < γ(x) < 1, so γ(xv)− 1
γ(xv)

< 0, we have γ(xv)− 1
γ(xv)

≥ γ(xn)− 1
γ(xn)

from (36).
We can further have γ(xv) ≥ γ(xn) because of the monotonicity of function γ − 1

γ .

2. If σ(xv) < σ(xn),

γ(xv)− γ(xu)

=σ−1(xn)[γ(xv)σ(xn)− γ(xu)σ(xn)]

>σ−1(xn)γ(xv)σ(xv)− γ(xu)σ(xn)

≥σ−1(xn)β
− 1

2 [µ(xn)− µ(xv)]

≥0.

(37)

We can then conclude that when µ(xv) ≤ µ(xn), we have γ(xv) ≥ γ(xu), and can further get I(f ; fa(xv)) ≥ I(f ; fa(xn))
because of the monotonicity of (19).

Therefore we have proven the theorem.

Note that Theorem 4.3 can also be proven with a similar strategy as in the proof of Theorem H.5 without using Lemma H.3
and Lemma H.3. Those two lemmas, however, allow us to better understand the acquisition functions from the information-
theoretic point of view.

Theorem H.6. For a constant ϵ ∈ (0, 1), and βt = 2 log(t2π2/(3ϵ))+2d log(t2dbr
√

log (4da/ϵ)), performing MFNVUCB
for a target f satisfying Assumptions 4.2 4.4 4.5 with observation noise satisfying Assumption 4.6, we have

Pr{RT ≤ (
√

Cδmin
+ 1)

√
2δ2maxβT Imax

T T +
π2

6
} ≥ 1− ϵ, (38)

where RT =
∑T

t=1[f(x
∗)− f(xt)], Imax

T is the maximum information gain at iteration T , and the constant Cδmin > 1 is
related to δmin.

Proof. Based on Lemma 5.7 in Srinivas et al. [2009], let [x∗]t be the closest point in Dt to x∗, where Dt is the discredited
subset of D,

|f(x∗)− µt([x
∗]t)| ≤ β

1
2
t σt−1([x

∗]t) +
1

t2
(39)

holds with probability greater or equal to 1− δ. Note that our notation of time index is different from Srinivas et al. [2009].

By definition of xt and jt,

µt(xt) + β
1
2 γjt

t (xt)σt(xt) ≥ µt([x
∗]t) + β

1
2 γ

j∗t
t ([x∗]t)σt([x

∗]t), (40)



The index on the RHS j∗t can be chosen arbitrarily so we omit it in the following derivation. So regret in one iteration:

rt = f(x∗)− f(xt)

≤ µt([x
∗]t) + β

1
2
t σt([x

∗]t) + 1/t2 − f(xt) (by Equation 39)

= µt([x
∗]t) + β

1
2
t γt([x

∗]t)σt([x
∗]t) + β

1
2
t (1− γt([x

∗]t))σt([x
∗]t) + 1/t2 − f(xt)

≤ µt(xt) + β
1
2
t γt(xt)σt(xt) + β

1
2
t (1− γt([x

∗]t))σt([x
∗]t) + 1/t2 − f(xt) (by Equation 40)

≤ β
1
2
t σt(xt) + β

1
2
t γt(xt)σt(xt) + β

1
2
t (1− γt([x

∗]t))σt([x
∗]t) + 1/t2 (by Lemma 5.1 in Srinivas et al. [2009])

= β
1
2
t (1 + γt(xt))δmax

σt(xt)

δmax
+ β

1
2
t (1− γt([x

∗]t))δmax
σt([x

∗]t)

δmax
+ 1/t2

≤ β
1
2
t (1 + γt(xt))δmax

σt(xt)

δ(xt)
+ β

1
2
t (1− γt([x

∗]t))δmax
σt([x

∗]t)

δt([x∗]t)
+ 1/t2

= δmaxβ
1
2
t (1 + γt(xt))

γt(xt)√
1− γ2

t (xt)
+ δmaxβ

1
2
t (1− γt([x

∗]t))
γt([x

∗]t)√
1− γ2

t ([x
∗]t)

+ 1/t2

= δmaxβ
1
2
t γt(xt)

√
1 + γt(xt)

1− γt(xt)
+ δmaxβ

1
2
t γt([x

∗]t)

√
1− γt([x∗]t)

1 + γt([x∗]t)
+ 1/t2.

(41)

The last two steps are based on the definition of γt.

It can be shown that

γ2
t (xt)

1 + γt(xt)

1− γt(xt)
≤ −Cδmin

log(1− γ2
t (xt)) (42)

holds for some constant Cδmin > 1 related to δmin when 0 ≤ γt(x) ≤ σt(x)
σt(x)+δmin

< 1,∀x, and

γ2
t ([x

∗]t)
1− γt([x

∗]t)

1 + γt([x∗]t)
≤ − log(1− γ2

t ([x
∗]t)). (43)

Therefore,

T∑
t=1

δ2maxβtγt(xt)
2 1 + γt(xt)

1− γt(xt)
≤− Cδmin

δ2maxβT

T∑
t=1

log(1− γ2
t (xt)) (44)

=− 2Cδminδ
2
maxβT

T∑
t=1

1

2
log(1− γ2

t (xt)) (45)

=2Cδmin
δ2maxβT I(f ;F

a
T ) (46)

≤2Cδmin
δ2maxβT I

max
T . (47)

Similarly,

T∑
t=1

δ2maxβtγ
2
t ([x

∗]t)
1− γt([x

∗]t)

1 + γt([x∗]t)
≤− δ2maxβT

T∑
t=1

log(1− γ2
t ([x

∗]t)) (48)

=− 2δ2maxβT

T∑
t=1

1

2
log(1− γ2

t ([x
∗]t)) (49)

=2δ2maxβT I(f ; [F
a
T ]

∗) (50)

≤2δ2maxβT I
max
T , (51)

where [F a
T ]

∗ = [fa([x∗]1]), . . . , f
a([x∗]T )].

By Cauchy-Schwarz inequality:

T∑
t=1

δmaxβ
1
2
t γt(xt)

√
1 + γt(xt)

1− γt(xt)
≤

√
2Cδmin

δ2maxβT Imax
T T , (52)



and
T∑

t=1

δmaxβ
1
2
t γt([x

∗]t)

√
1− γt([x∗]t)

1 + γt([x∗]t)
≤

√
2δ2maxβT Imax

T T . (53)

Now we have:

RT =
∑

rt ≤
√
2Cδmin

δ2maxβT Imax
T T +

√
2δ2maxβT Imax

T T +
π2

6
, (54)

because
∑∞

t=1 1/t
2 = π2

6 .

Notes on Equations (42) and (43): Consider g(x) = x2 1+x
1−x+c log(1−x2): dg(x)

dx = − 2x2

(1−x)2(1+x) (x
3−(2+c)x−1+c).

Given any xR ∈ (0, 1), there exists a constant cxR
> 1 related to the choice of xR such thatdg(x)dx ≤ 0,∀x ∈ (0, xR), by

the nature of the cubic function x3 − (2 + cxR
)x− 1 + cxR

. Therefore, g(x) ≤ g(0) = 0, ∀x ∈ (0, xR) when c = cR.

Similarly, consider h(x) = x2 1−x
1+x + log(1 − x2), dh(x)

dx = 2x2

(1−x)(1+x)2 (x
3 − 3). We have dh(x)

dx ≤ 0,∀x ∈ (0, 1). So
h(x) ≤ h(0) = 0,∀x ∈ (0, 1).

It is now clear that Equations (42) and (43) hold, by replacing x with γt.

I EXPERIMENTAL DETAILS

All the experiments are performed on Intel Xeon 8352Y processor with 256 GB memory. The benchmark functions are
defined to be:

I.1 HARTMANN

I.1.1 Ground-truth objective function

It is a 6-dimensional function

f(x) = −
4∑

i=1

αi exp(−
6∑

j=1

Aij(xj − Pij)
2), (55)

where x = [x1, . . . , x6]
T , α = (1.0, 1.2, 3.0, 3.2)T , A =


10 3 17 3.5 1.7 8
0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

, P =

10−4


1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8228 8732 5743 1091 381

.

I.1.2 Approximation Models

We consider two approximation models with the same evaluation cost of 1:

f1(x) = f(x) + ([0.5, 0.5, 0.5, 0, 0, 0]x)S; (56)

f2(x) = f(x) + ([−0.5,−0.5,−0.5, 0, 0, 0]x+ 1)S. (57)



I.1.3 Surrogate modeling

The ground-truth objective function is modeled with a GP with the RBF kernel

k(x1, x2) = σ exp(
||x1 − x2||22

l2
). (58)

The prior of the parameters are set to σ ∼ Unif(1, 2), l ∼ Unif(0.01, 0.5), where Unif(a, b) represents a uniform
distribution from a to b. The input-dependent noise is modeled linearly with the prior of weights set to Unif(0, 1) and the
prior of biases set to Unif(−1, 1). The number of samples to approximate the posterior is 64.

The implementation of MF-GP-UCB is set with the default configurations.

I.2 BRANIN

I.2.1 Ground-truth objective function

It is a 2-dimensional function

f(x) = a(x2 − bx2
1 + cx1 − r)2 + s(1− t) cos(x1) + s, (59)

where x = [x1, x2]
T , a = 1, b = 5.1/(4π2), c = 5/π, r = 6, s = 10, and t = 1/(8π).

I.2.2 Approximation Models

We consider two approximation models with the same cost of 1:

f1(x) = f(x) + ([3.33, 3.33]x+ 16.67)S; (60)

f2(x) = f(x) + ([−3.33,−3.33]x+ 83.33)S. (61)

I.2.3 Surrogate modeling

The ground-truth objective function is modeled with a GP with the RBF kernel (58). The prior of the parameters are set to
σ ∼ Unif(100, 200), l ∼ Unif(0.15, 0.75). The input-dependent noise is modeled linearly with the prior of weights set to
Unif(0, 100) and the prior of biases set to Unif(−100, 100). The number of samples to approximate the posterior is 64.

The implementation of MF-GP-UCB is set with the default configurations.

I.3 LEVY

I.3.1 Ground-truth objective function

It is a 3-dimensional function

f(x) = sin2(πω1) +

d−1∑
i=1

(ωi − 1)2[1 + 10sin2(πωi + 1)] + (ωd − 1)2[1 + sin2(2πωd)], (62)

where d = 3, x = [x1, . . . , x3]
T , ωi = 1 + xi−1

4 , for all i = 1, . . . , d.

I.3.2 Approximation Models

We consider two approximation models with the same cost of 1:

f1(x) = f(x) + ([1, 1, 0]x+ 20)S; (63)

f2(x) = f(x) + ([−1,−1, 0]x+ 20)S. (64)



I.3.3 Surrogate Model

The ground-truth objective function is modeled with a GP with the RBF kernel (58). The prior of the parameters are set
to σ ∼ Unif(40, 80), l ∼ Unif(0.2, 1). The input-dependent noise is modeled linearly with the prior of weights set to
Unif(0, 40) and the prior of biases set to Unif(−40, 40). The number of samples to approximate the posterior is 64.

The implementation of MF-GP-UCB is set with the default configurations.

I.4 MATERIALS DISCOVERY

The approximation model and ground-truth objective have been described in the main text.

The ground-truth band-gap objective is modeled with a GP with a RBF kernel (58), in which σ = 4, l = 0.5. The
input-dependent noise is modeled with a GP with mean m = 1 and a RBF kernel parameterized by σ = 0.5, l = 0.5.

J ADDITIONAL DETAILS ON THE MATERIALS DISCOVERY PROBLEM (SEC 5.4)

J.1 DISCUSSION ON DENSITY FUNCTIONAL THEORY (DFT) CALCULATION

Density Functional Theory (DFT) calculations are often used to predict a variety of material properties, including the
band-gap [Jain et al., 2013]. These predictions can vary based on the structural and other configurations of the material.
Despite their utility, DFT computations serve only as approximations to real experimental results, especially when calculating
band-gaps. This limitation stems from the fact that DFT, strictly speaking, is a theory of the ground state of a material system,
while the band-gap is essentially a property of the excited state. Consequently, for a single composition, the DFT-computed
band-gaps can exhibit variation due to differences in material structural or other configurations. A case in point is the
material CuBr, for which six different results are reported in the open-access Material Project (MP) dataset [Jain et al., 2013].
This highlights the challenges associated with accurately predicting band-gaps using DFT.

J.2 DETAILS ON THE PRE-TRAINED MLP

The material compositions within the dataset incorporate a total of 80 distinct elements, with each material comprising two
to four of these elements. Rather than using composition percentages directly as input for surrogate modeling, we initially
generate 138 property-related features based on the material compositions. This is accomplished using the open-source
Python package, matminer [Ward et al., 2018]. However, the data samples available in this generated 138-dimensional
feature space are relatively sparse. To address this, we train a 3-layer Multilayer Perceptron (MLP) on the 1,019 samples
that lack reported DFT-calculated band-gaps. The MLP accepts the 138-dimensional feature vector generated by matminer
as input, with the two hidden layers comprising 8 and 2 neurons, respectively. The MLP is trained to minimize the mean
square error between the MLP-predicted and ground-truth (experimental) band-gap values.

We then use the input of the MLP’s final prediction layer as a feature extractor, distilling the original 138 features down
to two. All MFBO methods are subsequently performed in this extracted 2-dimensional space. This approach effectively
leverages the MLP as a tool for feature reduction, enhancing the explainability, scalability, and manageability of MFBO.
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