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Abstract
We introduce Jafar, an open-source Jax reimple-
mentation of Genie, a foundational world model.
Genie was the first world model trained in an unsu-
pervised manner on unlabelled internet data. We
follow the reproducibility study in the appendix
of Genie and evaluate our reimplementation on
the CoinRun environment from the procgen suite.
Jafar is implemented in JAX and produces vi-
sually consistent video generation and can be
trained on a single GPU. Jafar can be found at
https://github.com/flairox/jafar.

1. Introduction
Recent advancements in generative models have dramati-
cally enhanced our ability to create coherent and contextu-
ally relevant outputs across different modalities (Vaswani
et al., 2017; Radford et al., 2018; 2019; Brown et al.,
2020). In natural language processing, large language mod-
els achieved remarkable proficiency in generating human-
like text, benefitting from both architectural innovations and
the expansion in model scale. Similarly, vision models im-
proved dramatically, producing visually stunning images
that are both diverse and detailed, thanks to similar improve-
ments in model design and training methodologies (Ramesh
et al., 2021; Hong et al., 2022). Building on these successes,
the progression towards video generation represents a natu-
ral evolution of generative capabilities (Hu et al., 2023). The
Genie model (Bruce et al., 2024) extends the frontiers of
generative models into the dynamic and interactive domain
of video. By generating sequences of frames interactively,
Genie facilitates the creation of generative interactive expe-
riences, marking a significant milestone in the synthesis of
temporal and visual data.

Reimplementing Genie is crucial for several reasons. Firstly,
the capability to control video generation and develop world
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models holds significant interest within the research com-
munity, promising to advance both theoretical insights and
practical applications. Secondly, the high computational
costs associated with video generation have historically
restricted accessibility for academic labs with limited re-
sources. Lastly, the absence of publicly available source
code for the original Genie model necessitates a reimple-
mentation to enable broader experimentation and validation
of the reported capabilities.

In this work, we present “Jafar,” a reimplementation of the
Genie model in JAX (Bradbury et al., 2018; Heek et al.,
2023), adhering closely to the reproducibility guidelines
outlined in Bruce et al. (2024)’s appendix. We enhance the
model’s reproducibility, reporting multiple useful training
metrics. We confirm that Jafar can be efficiently trained on
a single GPU, and we demonstrate its capability to gener-
ate environments using the CoinRun benchmark from the
ProcGen suite (Summerville et al., 2018). Furthermore,
we contribute to the community by releasing our work as
an open-source repository, facilitating further research and
development in this field.

2. Background
Genie is built from three components: (1) a video tokenizer,
which compresses video patches to a discrete latent space,
(2) a latent action model (LAM), which learns an unsuper-
vised conditioning token to represent the transition between
frames, and (3) a dynamics model, which conditions on past
video tokens and latent actions to autoregressively predict
the next frame.

Video Tokenizer Genie uses a VQ-VAE (Van Den Oord
et al., 2017) to compress video frames x1:T =
(x1, x2, · · · , xT ) ∈ RT×H×W×C into discrete tokens
z1:T = (z1, z2, · · · , zT ) ∈ QT×D. This is parameter-
ized by a causal spatiotemporal (ST) transformer (Xu et al.,
2020), containing layers that attend spatially (i.e. to other
tokens from the same frame) as well as temporally (i.e. to
tokens from past frames in the same spatial position) in
order to autoregressively generate video tokens.

Latent Action Model In order to learn controllable video
generation from unlabelled data, Genie uses a LAM. Given
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Figure 1. Genie’s works as follows. A sequence of input frames are fed into the tokenizer and latent action model (LAM) respectively.
The tokenizer and the LAM output a token or latent action respectively per frame. The tokens and latent actions are combined through
additive conditioning and fed into a dynamics model. The dynamics model predicts the next frame tokens. At inference, these next frame
tokens are fed into the tokenizer decoder to generate images.

a sequence of frames x1:T and the following frame xT+1,
the LAM outputs a latent action token ã ∈ RN representing
the transition to xT+1. The LAM then conditions on x1:T

and ã to predict the next frame xT+1, using reconstruction
error to train the entire model. In doing so, the model is
trained to compress the sequence such that the latent action
contains all additional information required to generate the
next frame given previous frames.

Dynamics Model The final component of Genie is the
dynamics model, which uses the pretrained video tokenizer
and LAM to condition on past video tokens and latent ac-
tions, with which it autoregressively predicts the next video
token. The model uses MaskGIT (Chang et al., 2022), min-
imising cross-entropy loss between the predicted and real
next token, z̃T+1 and zT+1. At test time, latent actions for
an input frame or sequence of frames are frozen and the
dynamics model sequentially generates future frames.

3. Jafar
3.1. Data Collection

We followed the instructions in Appendix F1 in Bruce et al.
(2024). We collect 10M transition from the CoinRun envi-
ronment from the Procgen suite (Cobbe et al., 2020). Coin-
Run is a 2D platformer with visually diverse levels and a
15-dimensional action space. Specifically, we collect 10,000
trajectories of length 1000. We sample seeds between values
of 0 and 10,000 for each trajectory.

3.2. Training Details

We implemented Jafar in JAX (Bradbury et al., 2018), using
Flax (Heek et al., 2023) as our neural network library.

We use the hyperparameters reported in Appendix F2 and
F3 in Bruce et al. (2024), with two exceptions. First, we
use an NVIDIA L40 GPU instead of a TPU. Second, we
use a patch size of 16 instead of 4 for the tokenizer. We
found that a patch size of 4 slows down training significantly.
We were thus not able to train the tokenizer for 300k steps
within 3 days with a patch size of 4. Setting the patch size
to 16 keeps the maximum required amount of memory the
same as with patch size 4. However, we hypothesise that
the resulting smaller token vectors are more optimized for a
GPU architecture, leading to less loads from the L2 cache.
We leave it for future work to investigate this discrepancy.

As instructed in the Appendix, we train the LAM and the
dynamics model for 200k steps. Furthermore, we normalize
the inputs to a range [0, 1] for the tokenizer and the LAM.

All models take approximately 34.5GB of memory on
NVIDIA L40s, as opposed to the 16GB reported in the
Appendix. We leave it to future work to investigate this
discrepancy, as 34.5GB allows Jafar to run on a wide range
of commercially available GPUs.

4. Results
The reproducibility case study documented in Appendix
F (Bruce et al., 2024) does not report any quantitative or
qualitative results. We can therefore make no performance
comparisons to the original genie, except for visual com-
parisons. However, to ensure reproducibility of our work,
we report results for Jafar, providing training curves and
qualitative results to facilitate reproducibility.

Tokenizer For the tokenizer we identify 6 helpful metrics.
The training loss, the structural similarity index (SSIM), the
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Figure 2. We report results for the tokenizer in the leftmost column, LAM in the center column, and dynamics in the rightmost column.
The original Genie paper does not report losses for the reproducibility study. For the tokenizer, we note that we achieve a similar PSNR
than Genie (∼ 36), as reported in Appendix C.2, Table 6. There are no PSNR results reported for the LAM. For the dynamics model we
also report the Top 2 Accuracy, describing the percentage of correctly predicted tokens within the top 2 logits, across a sequence of frames.

peak signal-to-noise ratio (PSNR), the entropy of the VQ-
VAE embeddings, the code usage of the VQ-VAE and the
VQ-VAE loss, as reported in Figure 2 and Figure 4. Note
that the tokenizer achieves a PSNR of 35.7, similar to the
PSNR values reported in Appendix C.2, Table 6 in Bruce
et al. (2024). We also achieve a high SSIM of 0.94, sug-
gesting visually sound reconstructions. We show example
reconstructions of the tokenizer in Figure 3. For the VQ-
VAE, we report high entropy at 0.76 and relatively low code
usage at 0.57 in comparison to the LAM code usage at 1.0.

LAM The results for our LAM model are shown in Fig-
ure 2 and Figure 5. For our LAM, we report a PSNR of 28.5,
which is lower than the PSNR or the tokenizer. We also
report high perplexity and entropy values, i.e., 0.82 and 0.89
respectively, suggesting that the LAM struggles in learning
distinct latent actions.

Dynamics Model We report the dynamics model results
in Figure 2. The percentage of correctly predicted tokens
within the top 2 logits, across a sequence of frames, i.e., the
top 2 accuracy, is high at 0.79, suggesting that the dynam-
ics model predicts visually faithful frames. We provide an
example sequence of generated frames in Figure 6. First,
note that we sample a visually consistent sequence of frames,
where the background and environment stay the same across

the frames. Second, the agent appears to be digging itself
into a hole. Digging is not an action in the CoinRun environ-
ment, so Jafar never saw such a sequence. We hypothesise
that the down movement is more prevalent in the dataset
than left or right movements. Thus, Jafar learned that it
would be more likely for an agent to move further down
if already in a down movement and adapt the environment
accordingly. Further investigations are needed to understand
this behaviour.

5. Related Work
Genie falls under the broad class of action-conditioned se-
quence models, termed world models (Oh et al., 2015; Ha
& Schmidhuber, 2018a;b). Recently, world models surged
in popularity due to algorithmic advances and increased
compute, achieving impressive results in self-driving with
GAIA-1 (Hu et al., 2023), as well as in robotics with
UniSim (Yang et al., 2023) and RT-2 (Brohan et al., 2023).

However, world models have a long history in model-based
reinforcement learning (RL), which uses them to take opti-
mal actions in the environment under consideration. Typ-
ically, models are leveraged in one of two ways: by plan-
ning over a finite horizon to estimate the next optimal ac-
tion (Schrittwieser et al., 2020), or by rolling out the tar-
get policy in order to generate synthetic training experi-
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Figure 3. We demonstrate that our tokenizer reconstructs input images with high visual quality across diverse backgrounds.

Table 1. Genie performance metrics for the tokenizer, LAM, and
dynamics model.

Component Metric Value

Tokenizer

Log-Loss -2.8
PSNR 35.8
SSIM 0.95
VQ Code Usage 0.57
VQ Norm. Entropy 0.77

LAM

Log-Loss -1.7
PSNR 28.5
VQ Code Usage 1.0
VQ Norm. Entropy 0.89
VQ Norm. Perplexity 4.9

Dynamics Model

Log-Loss -2.8
Top-1 Accuracy 0.55
Top-5 Accuracy 0.84
Top-16 Accuracy 0.92

ence (Hafner et al., 2019). Equally, world models are a
key component in many predominant offline RL methods,
where out-of-sample generalisation is an issue. Many meth-
ods learned conservative models to mitigate distribution
shift (Yu et al., 2020; Kidambi et al., 2020), with recent
work analysing these approaches (Lu et al., 2021; Sims et al.,
2024) and leveraging diffusion models with policy guidance
to improve generation quality (Jackson et al., 2024).

Genie’s problem setting has parallels to procedural con-
tent generation (Summerville et al., 2018; Risi & Togelius,

2020; Liu et al., 2021, PCG). In contrast to RL, PCG stud-
ies the generation of engaging game content for a human
user, rather than effective training data for a policy or a
mechanism for planning. Also in contrast to traditional
RL settings, Genie learns a world model from unlabelled
training data. This requires a LAM (Edwards et al., 2019;
Ye et al., 2022; Schmidt & Jiang, 2023), which learns a
controllable parameterization of the environment dynam-
ics. In the semi-supervised setting, where a small subset
of action-labelled experience is provided, inverse dynamics
models have been used to generate synthetic labels for a
larger dataset (Baker et al., 2022).

6. Conclusion
We present “Jafar”, an open-source implementation of Ge-
nie, a method for controllable generation of video from
unlabelled training data. Training on a single GPU, we
demonstrate coherent and controllable videos of the Coin-
Run environment. By releasing our implementation and all
training details for Jafar, we provide a basis for academic
and low-budget labs to meaningfully contribute to the field
of controllable video generation. For example, can Jafar be
extended to multi-agent environments (Willi et al., 2022;
Rutherford et al., 2024)? Does Jafar demonstrate similar
few-short learning capabilities as large language models?
What are further architectural improvements to make Jafar
more capable or efficient? Can we learn policies in Jafar’s
generative environments that transfer to the original envi-
ronments?
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A. Appendix

Figure 4. We report several metrics to reproduce our tokenizer performance. The original genie paper does not report such results, except
for PSNR in Appendix C.2, Table 6, reporting values around 36, which we match. We also note that VQ Code Usage is fairly low
compared to the code usage in the LAM. We have yet to investigate the role of code usage in the tokenizer.

Component Parameter Value

Architecture num layers 8
d model 512

Sampling temperature 1.0
maskgit steps 25

Table 2. Dynamics model parameters as reported in Appendix F3, Table 17 in the original paper
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Figure 5. We report several metrics to reproduce our LAM performance. The original genie paper does not report such results. We note
that VQ Code Usage is high at 1.0, suggesting that all 6 dimensions are being used to encode latent actions. The PSNR is around 30,
which is lower than the PSNR for the tokenizer.

Figure 6. In this example, we sample 16 frames, starting at the top left. The agent starts in the air and moves down. As it hits the floor, the
agent starts digging a hole, an action that is not present in CoinRun. Note that the environment stays consistent across frames.

8



Genie Out Of The Bottle

Component Parameter Value

Encoder
num layers 8

d model 512
num heads 8

Decoder
num layers 8

d model 512
num heads 8

Codebook num codes 6
latent dim 32

Table 3. LAM hyperparameters as reported in Appendix F.3, Table 16. We use the same hyperparameters for our training.

Component Parameter Value

Encoder
num layers 8

d model 512
num heads 8

Decoder
num layers 8

d model 512
num heads 8

Codebook
num codes 1024
patch size 16
latent dim 32

Table 4. Tokenizer hyperparameters as reported in Appendix F.3, Table 15. We use the same hyperparameters for our training, except for
patch size, where we use 16 instead of 4.

Parameter Value

max lr 3e-4
min lr 3e-4
β1 0.9
β2 0.9
weight decay 1e-4
warmup steps 10k

Table 5. Optimizer hyperparameters for the tokenizer model as reported in Appendix C.2, Table 8.

Parameter Value

max lr 3e-5
min lr 3e-6
β1 0.9
β2 0.9
weight decay 1e-4
warmup steps 5k

Table 6. Optimizer hyperparameters for the LAM and dynamics model as reported in Appendix C.2, Table 9.
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