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Abstract

We consider the problem of how many samples from a Gaussian multi-index
model are required to weakly reconstruct the relevant index subspace. Despite its
increasing popularity as a testbed for investigating the computational complexity
of neural networks, results beyond the single-index setting remain elusive. In this
work, we introduce spectral algorithms based on the linearization of a message
passing scheme tailored to this problem. Our main contribution is to show that
the proposed methods achieve the optimal reconstruction threshold. Leveraging a
high-dimensional characterization of the algorithms, we show that above the critical
threshold the leading eigenvector correlates with the relevant index subspace, a
phenomenon reminiscent of the Baik—Ben Arous—Peche (BBP) transition in spiked
models arising in random matrix theory. Supported by numerical experiments and a
rigorous theoretical framework, our work bridges critical gaps in the computational
limits of weak learnability in multi-index model.

A popular model to study learning problems in statistics, computer science and machine learning
is the multi-index model, where the target function depends on a low-dimensional subspace of the
covariates. In this problem, one aims at identifying the p-dimensional linear subspace spanned by a
family of orthonormal vectors w, 1, . . ., w,,, € R? from n independent observations (z;, y;) from
the model:

yi:g(<w*,lawi>7"'a<w*,paxi>)a 1€ [[n]] (1)

This formulation encompasses several fundamental problems in machine learning, signal processing,
and theoretical computer science, including: (i) Linear estimation, where p = 1 and g(z) = z, (ii)
Phase retrieval, where p = 1 and g(z) = |z|. (iii) Learning Two-layer neural networks, where p is
the width and g(2) = 3_,,; @j0(%;) for some non-linear activation function o : R — R, or (iv)

learning Sparse parity functions, where g(z) = sign([[;<p,; 2/)-

A classical problem in statistics [1, 2, 3], the multi-index model has recently gained in popularity in
the machine learning community as a generative model for supervised learning data where the labels
only depend on an underlying low-dimensional latent subspace of the covariates [4, 5, 6].

Of particular interest to this work are spectral methods, which play a fundamental role in machine
learning by offering an efficient and computationally tractable approach to extracting meaningful
structure from high-dimensional noisy data. A paradigmatic example is the Baik—Ben Arous—Péché
(BBP) transition [7], where the leading eigenvalue of a matrix correlates with the hidden signal
— a phenomenon that is ubiquitous in machine learning theory. Beyond their practical utility,
spectral methods often serve as a starting point for more advanced approaches, including iterative
and nonlinear techniques. This leads us to the central question of this paper:
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Can one design optimal spectral methods that minimizes the amount of data required for identifying
the hidden subspace in multi-index models?

While the optimal spectral method for single-index models are well understood [8, 9, 10, 11], and their
optimality in terms of weak recovery threshold established [12, 9] their counterparts for multi-index
models remain largely unexplored. This gap is particularly important, as multi-index models serve as
a natural testbed for studying the computational complexity of feature learning in modern machine
learning, and have attracted much attention recently [13, 5, 6, 14, 15, 16, 17].

Main contributions — In this work, we step up to this challenge by constructing optimal spectral
methods for multi-index models. We introduce and analyze spectral algorithms based on a linearized
message-passing framework, specifically tailored to this setting. Our main contribution is to present
two such constructions, establish the reconstruction threshold for these methods and to show that
they achieve the provably optimal threshold for weak recovery among efficient algorithms [18].

Other Related works — Recently, multi-index models have become a proxy model for studying
non-convex optimization [19, 14, 15]. [20] has shown that the sample complexity of one-pass
SGD for single-index model is governed by the information exponent of the link function. This
analysis was generalized in several directions, such as to other architectures [16], larger batch sizes
[21] and to overparametrised models [22]. A similar notion, known as the leap exponent, was
introduced for multi-index models, where it was shown that different index subspaces might be
learned hierarchically according to their interaction [23, 13, 24, 25]. The picture was found to be
different for batch algorithms exploiting correlations in the data [26, 27, 28], achieving a sample
complexity closer to optimal first order methods [12, 29, 18]. [18] in particular, provided optimal
asymptotic thresholds for weak recovery within the class of first order methods.

Spectral methods are widely employed as a warm start strategy for initializing other algorithms,
in particular for iterative schemes (such as gradient descent) for which random initialization is a
fixed point. Relevant to this work is the class of approximate message passing (AMP) algorithms,
which have garnered significant interest in the high-dimensional statistics and machine learning
communities over the past decade [30, 31, 32, 33]. AMP for multi-index models was discussed in
[4, 18, 34, 35]. Spectral initialization for AMP in the context of single-index models has been studied
by [36].

The interplay between AMP and spectral methods has been extensively studied in the literature, see
for example [37, 38, 39, 9, 11, 10, 40]. In particular the idea of using message passing algorithm to
derive spectral method has been very successful, leading to the non-backtracking matrix [41] and
more recently to the Kikuchi hierarchy [42, 43], and to non-linear optimal spectral methods for matrix
and tensor factorization [38, 44, 45, 46].

During the finalization of this work, an independent paper analysing a family of spectral estimators
indexed by a pre-processing function 7 for Gaussian multi-index models [47] appeared. Their results
leverage tools from random matrix theory to characterize the asymptotic spectral distribution of
this family, as well as the correlation of the top eigenvectors with the indices. They prove that a
tailored 7~ asymptotically achieves the optimal weak recovery threshold of [18] in the particular case
where G(y) is jointly diagonalizable for all y, providing an alternative proof of Conjecture 2.10 and
Theorem 2.11 for this particular case.

1 Setting and Notations

Notations — To enhance readability, we adopt the following consistent notations through the
paper: scalar quantities are denoted using non-bold font (e.g., a or A), vectors are represented in bold
lowercase letters (e.g., a), and matrices are written in bold uppercase letters (e.g., A). We further
differentiate random variables depending on the noise with non-italic font (e.g, a, a, A). We denote by
(a, b) the standard Euclidean scalar product, ||a|| the £2-norm of a vector a, || A||op the operator norm
of a matrix A and || A||r its Frobenius norm. Given n € N, we use the shorthand [n] = {1,...,n}.
We denote S, the cone of positive semi-definite p x p matrices. () := max(0, z).

The Gaussian Multi Index Model — We consider the supervised learning setting with n i.i.d.
samples (X;, y;)ie[n] With covariates x; ~ N(O, d~'1;) € R? and labels y drawn conditionally from



the Gaussian multi-index model defined by

<w*,17 X>
y~P(|[Wlx)=P ' : : 2)
<w*,pa X>
where W, := (wy1,...,Wip) € R¥*P is a weight matrix with independent columns with w, g~

N(0, 1), j € [p] and P(-|-) is a conditional probability distribution. Additionally, we define the link
Sunction g : R? > z — g(z) € R as the conditional mean

9(2) = E{y|WTx = 2} = / ydP(y]z), 3)

and the labels’ marginal distribution Z(y) = Ew, Exn0,d-11,)[P(y = y|WIx)]. Note that, in

the limit d — oo, for x ~ N(0,d~*I), the Central Limit Theorem implies W x ~ N(0, I,,) and

Z(y) = Ezno,1,) [P(y = yl2)].

We investigate the problem of reconstructing W, in the proportional high-dimensional limit
d,n=n(d) — oo suchthat 7/a > a € R, . 4

In particular we are interested in the existence of an estimator W that correlates with the weight
matrix W, better than a random estimator. This is formalized as follows.

Definition 1.1. (Weak subspace recovery) Given an estimator W of W, with [|[W||2 = ©(d), we
say we have weak recovery of a subspace V' C RP, if

WTW*U

inf
vevNsP-1

=6, )
with high probability.

Computational bottlenecks for weak recovery in the Gaussian multi-index models have been studied
by [18] using an optimal generalized approximate message passing (GAMP) scheme, see Appendix
A for a detailed discussion of the algorithm. In particular, for the appropriate choice of denoiser
functions, given in eq. (43), AMP is provably optimal among first-order methods [48, 49]. Their
work provides a classification of the directions in R? in terms of computational complexity of their
weak learnability. In particular, if and only if

E.N(o.1,)[2P(y|2)] o E[z]y] = 0 ©)

almost surely over y ~ Z, the subspace of directions that can be learned in a finite number of iterations
is empty, for AMP randomly initialized. Nonetheless, if the initialization contains an arbitrarily small
(but finite) amount of side-information about the ground truth weights W, , AMP can weakly recover
a subspace of RP, provided that o > «., where the critical sample complexity is characterized in
Lemma 1.2.

Lemma 1.2. [18], Stability of the uninformed fixed point and critical sample complexity] If
M = 0 € RP*P is a fixed point of the state evolution associated to the optimal GAMP (43), then
it is an unstable fixed point if and only if || F(M)||z > 0 and n > a.d, where the critical sample
complexity o is:

a;l = sup I (M)][e, @)

Mes?, |[M|p=1

with

F(M) =Eyz [G(y)MG(y)], ®)

and G(y) = EZNN((],IP)[ZZT — I|y]. Moreover, if || F(M)||r = 0, then M = 0 is a stable fixed
point for any n = ©(d).

The aim of our work is to close this gap, providing an estimation procedure that achieves weak
recovery at the same critical threshold a. defined in eq. (7), but crucially does not require an informed
initialization. In what follows we restrict the problem defined in (3) to the set of link functions
satisfying eq. (6). These functions (said to have a generative exponent 2 in the terminology of [29])
covers a large class of the relevant problems, with the exception of the really hard functions such as
sparse parities, which cannot be solved efficiently with a linear in d number of samples [18].



Throughout this manuscript we adopt the notation a = vec(A € R**P), b = n, d, for the vector in
R with components a;,) = A, i € [b], 1 € [p], where the double index (i) € [b] x [p] is a
shorthand for the scalar index ¢ + (1 — 1)b. Similarly, we say that mat(a) = A <= vec(A) = a.

We can now introduce the Spectral Methods we aim to investigate. Given a matrix X € R"*¢ with
rows x; ~ N(0,d"'I;) and a vector of labels y € R" with elements sampled as in (3), define

G € R™WX1P g5
é(i/_t),(jy) = 0iG (i) = 0ijBzmnqo.1,) 2020 — O lyil; )

and the following two spectral estimators Wi, Wi of the weight matrix W, as

1. Asymmetric spectral method:

WL VIV X mat (G’wl)

| X7 mat <Gw1> ||F7 4o

where w; € R™ is the eigenvector corresponding to the eigenvalue v¥ with largest real
part of the matrix L € R"P*"P defined as:

L(i,u),(jl/) = ([XXT] 4 — (51']') G,“,(y]‘) 1, € [[TL]], n, v e [[p]] . (11)
2. Symmetric spectral method:
W i VIV ) (12)
w;

where w; € R is the eigenvector associated to the largest eigenvalue v{ of the symmetric
matrix T € R defined as

T = 3 XXan [Gv) (@) + 1)7] ke ldl mv el 13)
i€n]
Note that the constant NN is arbitrary and can be chosen to fix d~!|W || = d~'|Wr||2 = N.

At first glance, these two spectral estimators may appear ad hoc or lacking a clear theoretical
justification. However, they can be motivated by a linearization of the optimal GAMP algorithm [18]
around the non-informative fixed point, which reads:

Q' = XW' — mat (évec (Qt_l)) , (14)
WtH = XTmat (é vec (Qt)> (15)
Substituting the second equation into the first, this is equivalent to vec (Qt“) = Lvec (Q).

Moreover, assuming convergence,' one ends up with vec (W) = T vec (W)

This suggests that at first leading order in the estimates, the dynamics of the algorithm is governed
by power-iteration (and respectively a variant of it) on the matrix L (respectively the symmetric
matrix T') defined previously. As power iteration converges under mild assumptions to the top
(matrix) eigenvector of the tensor, this further suggests to use the top eigenvectors Wi, Wy of the
corresponding matrices as an estimate for the weight matrix W.

Additional details on the linearized GAMP are reported in Appendix A.1. Similar approaches have
been thoroughly investigated in the context of single-index models [9, 10], community detection
[41, 37], spiked matrix estimation [38, 39], where they have been provably shown to provide a
non-vanishing correlation with the ground truth exactly at the optimal weak recovery threshold. It
is interesting to notice that the spectral estimators Wi and W correspond to the generalization
for multi-index models of the spectral methods derived in [10], respectively from the linearization
of the optimal Vector Approximate Message Passing [50, 51] and the Hessian of the TAP free energy
associated to the posterior distribution for the weights [37]. In particular, for p = 1, the matrices
proposed in our manuscript exactly reduce to the two ones (called respectively "TAP" and "LAMP")
investigated in [10].

"Here and in the rest of the paper, we drop the time index ¢ to refer to the quantities at convergence.



050
025

~
£ 000 0.0

—0.25

~0.50

-1.0

Figure 1: Distribution of the eigenvalues (dots) A € C of L at finite n = 10*, for g(z1,22) = z1292,
a. =~ 0.59375. (Left) « = 0.4 < a.. (Right) @« = 1 > «.. The dashed blue circle has radius equal to \/%/a.,
i.e. the value ~, predicted in Theorem 2.4. The dashed orange vertical line corresponds to Re A = @/a., the
eigenvalue ~s defined in Theorem 2.3. As predicted by the state evolution equations for this problem, two
significant eigenvalues (highlighted in orange) are observed near this vertical line.

2 Main Technical Results

In order to characterize the weak recovery of the proposed spectral methods, we define two message
passing schemes tailored to respectively have eigenvectors of L and T as fixed points. Similarly
to these previous works, we leverage the state evolution associated to the algorithms in order to
quantify the alignment between the spectral estimators and the weight matrix W, tracking the

overlap matrices
. 1 /an\T ‘ 1 o t\T ot
M::E<W) W, Q::E(W) W' (16)
and their value M, @, at convergence. The state evolution equations for generic linear GAMP

algorithms are presented in Appendix A.2.

2.1 Asymmetric spectral method
Definition 2.1. For ~ > 0, consider the linear GAMP algorithm (40,41)

Q= XW' = v~ 'mat (évec (Qt_l)) , 17)

WtH = 'y_lXTmat (G vec (Qt)> . (18)

When ~y is chosen as an eigenvalue of L, the correspondent eigenvector w € R™? is a fixed point of eq.
(17) for Q' = mat (w). In the high-dimensional limit, the asymptotic overlaps of the estimator W
can be tracked thanks to the state evolution equations, which follow from an immediate application
of the general result of [52] to the GAMP algorithm (2.6).

Proposition 2.2 (State evolution [52]). Let M and Q* denote the overlaps defined in eq. (16) for
the iterative algorithm (2.1). Then, in the proportional high-dimensional limit n,d — oo at fixed
a = n/d, they satisfy the following state evolution:

Mt+1 _ O[’}/il./_"(Mt); (19)
Qt+1 — Mt(Mt)T —I—a’y_2 (g(Mt) +]:(Qt)) (20)

where
F(M) =E,[Gy)MG(),  G(M):=E/J[G(y)MG(y)M"G(y)]. @n

With the state evolution equations in hand, one can derive a sharp characterization of the asymptotic
weak recovery threshold in terms of the spectral properties of the estimator by a linear stability
argument [53]



Theorem 2.3. For o > ., Vs = ¢/a. is the largest value of -y such that the state evolution 2.2 has a
stable fixed point (M, Q) with M # 0, Q € S, \ {0}. Additionally, M € S\ {0}.

Theorem 2.4. Forall « € R, y, = \/Y/a. is the largest value for -y such that the state evolution 2.2
has a fixed point (M, Q) with M = 0, Q € S’ \ {0}. The fixed point is stable for o < a. and
unstable otherwise.

The derivation of the Theorems is outlined in Appendix B, where we further show that the iterations
of Algorithm 2.1 correspond to the power-iteration on the operator L, normalized by ~y. Assuming
the convergence of Algorithm 2.1 in O(log d) iterations, Theorem 2.3 thus implies that for & > «,
the top-most eigenvector of L achieves a non-vanishing overlap along W,, with the eigenvalues
converging to ;. Analogously, Theorem 2.4 implies that for a < «, the top-most eigenvector of L
has a vanishing overlap along W,, with the eigenvalues converging to ;.

Thus, the above two results indicate a change of behavior of the operator norm of L at the critical
value a., leading to the following conjecture (a detailed sketch can be found in Appendix D):

Conjecture 2.5. In the high-dimensional limit n,d — 0o, "/d — «, the empirical spectral distribu-
tion associated to the pn eigenvalues of L converges weakly almost surely to a density whose support

is strictly contained in a disk of radius vy, = \/?/a. centered at the origin. Moreover

* for a < a,

L||Op LLIEN Yy and the associated eigenvector is not correlated with W, ;
n—o0

* for o> a, || Llop 2 ¢ > 7y, and the associated eigenvector defined in (10), weakly
n—oo

recovers the signal.

This conjecture, motivated by the results (2.3-2.4) is perfectly supported by extensive simulations, as
illustrated in Fig. 1, 2. An entire rigorous proof requires, however, a fine control of the spectral norm
of these operators, which is a notably difficult problem in random matrix theory. We emphasize that
the asymptotic characterization of the asymmetric spectral estimator is a novelty aspect of this work,
even in the single-index model setting p = 1.

2.2 Symmetric spectral method

In order to simplify the notation, define the symmetric matrices 7 (y) € RP*? and G’%— € Rwpxnp

T() =G (Gy) + 1) = I, - Cov'[z]y]. (22)
1G] = TGV ady = VT (5)VO) s i€ [l € Bl 23)
Definition 2.6. Consider the linear GAMP algorithm (40,41)

0 = XWt — mat (C;‘%:l vec (ﬂt*1)> Vi, (24)
W= (XTmat (G’%— vec (Qt)) - WtAt) Vit (25)
with
—1 -1
Vitr= (Vi = 0Byez |[TOV (@, - VTGV ]) 26)
—g1 a
Adw=d™ > [Gr] - mv el )

i€[n]

a; a parameter to be fixed and -y, chosen, a posteriori, such that || V'||,, = 1. Note that V; is symmetric
at all times given a symmetric initialization V.

In Appendix C we show that, for properly chosen a;, the fixed point for the iterate WtVt is the
eigenvector of T' with eigenvalue lim;_,, a;:. The denoiser functions chosen for this GAMP
algorithm are derived as a generalization of the ones in [54], where a similar approach has been used
to characterize the recovery properties of spectral algorithms for structured single-index models.
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Figure 2: Largest eigenvalues (magnitude, if complex) of the matrices L (triangles), n = 5000, and T' (circles),
d = 5000, for the function g(z1, 22) = 2122, versus the sample complexity . The orange and blue lines,
respectively represent the values of the largest eigenvector @/a. and the edge of the bulk y/%/a. in Conj. 2.5 for
the asymmetric spectral method. The green and purple line correspond to the values of the largest eigenvalue A,
and the edge of the bulk )\ in Conj. 2.10 for the symmetric spectral method.

Proposition 2.7 (State evolution [52, 9]). Let M and Q? denote the overlaps defined in eq. (16)
for the iterative algorithm (2.6). Then, in the proportional high-dimensional limit n,d — oo at fixed
a = n/d, they satisfy the following state evolution equations:

Mttt =aF (M a;, Vy), (28)
Q! =M (M")" + a(G(M"; a1, Vi) + F(Q; ar, V2)), (29)
where we have defined the operators
F(M;a;, Vi) :=Eyz [C: M (Cov[z|y] — I,))] , (30)
F(Qia,V) =Eyz[C: Q CY] (31)
G(M;a,V) :=Ey.z [C; M (Cov(z|y] — I,) M" C] . (32)

with Cy := V;T(y)V; (a, — ViT (y)V2) "

The complete set of state evolution equations is displayed in Appendix C.1. For a = 1, the fixed
point for eq. (26) is V' = I, and the operators F (M 1, I,,) and F(M; 1, I,) coincide with F (M)
defined in (8), having the largest eigenvalue corresponding to a;'. As a — oo, V. — I, and
F(-;a,V(a)) — 0. Therefore, since the operator depends continuously on a € [1, 00), there exists
a continuous function v{ (a) for the largest eigenvalue of the operator as a function of the parameter
a, with v{ (1) = o, and v{ (a — 00) — 0. Hence, for all > «, there exists a > 1 such that
v{ (a) = a~!. A similar argument applies to F and its largest eigenvalue v{ (a).

Theorem 2.8. For a > «., consider a; = a > 1 solution of 1/17: (at) = a~ ! and ~; such that
IV |lop = 1, with Vi1 given by eq. (26). Then, the state evolution has a stable fixed point (M, Q)
with M # 0, Q € S} \ {0}, corresponding to the eigenvalue \s = ary.

Theorem 2.9. Fora > o, a; = a > 1 solution to vi (a) = o', ~, such that IV llop = 1, with V44
given by eq. (26), the state evolution has an unstable fixed point (M, Q) with M = 0, Q € S, \{0},
corresponding to the eigenvalue \p, = a-y.

The derivation of the Theorems is outlined in Appendix C. Analogously to how Theorems 2.3, 2.4
motivate Conjecture 2.5, we show in Appendix C that Theorems 2.8, 2.9, along with a mapping to
power-iteration, lead to the following conjecture:

Conjecture 2.10. In the high-dimensional limit n,d — oo, ®/d — «, for o > «., the largest
eigenvalue of T converges to \g, defined in Theorem 2.8. In this regime, the symmetric spectral
method, defined in (12), weakly recovers the signal. Moreover, the empirical spectral distribution
of the pd eigenvalues of T' converges weakly almost surely to a density upper bounded by Ay < A4
defined in Theorem 2.9.
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Figure 3: Distribution of the eigenvalues of T', d = 10%, for the link function g(z) = p~!||z|*>, p = 4. The
critical threshold in .. = 2. The distribution is truncated on the left. (Left) o = 1 < a.. (Center) o = a.
(Right) o = 6 > a.. As predicted by the state evolution, we observe four eigenvalues (in green) separated from
the main bulk, centered around A; = 1 (green vertical line) obtained in Theorem 2.8. The vertical purple line
correspond to the value A\, provided in Theorem 2.9 as a bound for the bulk.

We emphasize that, when p = 1, the proposed symmetric estimator specializes to the method in
[9, 55, 12] for the single-index model, and therefore benefits from a fully rigorous characterization of
its weak recovery properties and spectral phase transitions. However, in multi-index models (p > 1),
the matrix T" exhibits by construction a highly structured form due to the presence of repeated
entries from the measurement matrix X. This intrinsic redundancy complicates its analysis using
standard random matrix theory tools. Conjecture 2.10 based on results (2.8-2.9) and further supported
by numerical simulations (see Fig. 2, 3), offers a novel framework for understanding the spectral
properties of such matrices.

Moreover, for any model P(-|z) such that G(y) = E[zz” — I,,|y = y] admits a common basis for all
y, with real eigenvalues {\;(y)};_,, the analysis of spectrum of T can be simplified following the
arguments in Appendix C.3.1. Indeed, the symmetric spectral method reduces to the diagonalization
of p matrices

Ak(yi) T dxd
E ———x;x; € R ke [p]. 33

Their structure allows the use of the techniques in [9, 55] to analyze the spectrum, and supports the
formalization of the results in Conjecture 2.10 for this subset of problems. In Appendix C.3 we prove
the following result

Theorem 2.11. Assume that the matrix E[zz" |y] admits a basis of orthonormal eigenvectors indepen-
dent of y. Then, in the high-dimensional limit n,d — oo, »/d — «, for a > «., the largest eigenvalue
of T converges to \s = 1. Moreover, the empirical spectral distribution of the pd eigenvalues of T
converges weakly almost surely to a density upper bounded by A\, < 1 defined in Theorem 2.9.

This class of models P(-|z) includes several examples of interest, such as those depending on z

through a quadratic form z " Az with deterministic A (e.g., the norm ||z|\2), or through the product
2122 ... zp (e.g., the embedded sparse parity).

2.3 Relation between the two spectral methods
As in the single-index setting, L and T are related by the following Proposition (proven in App. G).
Proposition 2.12. Define G' € R""*™ such that G (i), (ju) = 055G u (¥:)-
1. Given an eigenpair v, > 1,w € R™ of L, if w := vec (XTmat (G’w)) then

T, w=w, (34)
with T, € RIPXP defined as

[T’y](ku),(hy) = Z XieXin |:G(YZ) (G(yl) + VIP)_1:| v kv h e [[d]]a [N S [[p]] ) (35)
i€[n]
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Figure 4: Overlap || M||%/Tr(Q) as a function of the sample complexity a. The dots represent numerical
simulation results, computed for n = 5000 (for the asymmetric method) or d = 5000 (for the symmetric
method) and averaging over 10 instances. (Left) Link function g(z1, z2) = z122. Solid lines are obtained from

state evolution predictions (Section 3). Dashed line at a.. ~ 0.59375. (Right) Link function g(z) = p~!||z|°,
p = 4. Solid lines are obtained from state evolution predictions (Section 3). Dashed line at o, = 2

2. Given an eigenpair yr,w € R¥ of T and defining w := (I, + G)vec (Xmat(w)), then

Lw = yrw + (yr — 1)Gw. (36)

Consequently, if there exists an eigenvector w of T with eigenvalue yr = 1, then w = (I, +
G)'vec (Xmat(w)) is an eigenvector of L with eigenvalue g, = yp = 1.

In the setting of Theorem 2.11, where the largest eigenvalue of T" is Ay = 1, Proposition 2.12 implies
that the principal eigenvector of L is not the only one correlated with the signal. There exists at least
one additional informative eigenvector, whose eigenvalue is one and lies hidden within the bulk of
radius v/« /. > 1. This phenomenon is reminiscent of what has been observed for single-index
models in [10].

3 Numerical illustrations

In this section we illustrate the framework introduced in Section 2 to predict the asymptotic per-
formance of the spectral estimators (10,12) for specific examples of link functions, providing a
comparison between our asymptotic analytical results and finite size numerical simulations for the
overlap between the spectral estimators and the weights W, defined as m := IMllr/,/Tr(Q), where
M and @Q are the overlap matrices defined in eq. (16) correspondent to the fixed points in Theorems
2.3,24,2.8,29. In Figure 4 we compare these theoretical predictions to numerical simulations
at finite dimensions, respectively for the link functions g(z1,22) = 212 and g(z) = p ! z|°.
Additional numerical experiments are presented in Appendix E.

Asymmetric spectral method. We provide closed-form expressions for the overlap parameter

m = IMllr/,/Tr(Q) of the spectral estimator Wi (10), for a selection of examples of link functions.
The details of the derivation are given in Appendix E.

* g(z € R) (single-index model):

Ce = (EyNZ [(E[Z2 - 1|y]) }) , = <a + a?Ey .7 [(E[; - 1‘}’])3} >+

* 9(z) =p~ 2]

* g(z) = sign(z122):



* 9(2) = [T}z 2

Qe = (EyNZ [)‘(Y)z])_l , m'= (a + G;Eych[)‘(}’)3])+ ’

where we have used

p,0 209—p 0
Ka(ly)) 2apy (2] o) )
olly Gg;,g <y22p
D

37)
and the previous expression are written in terms of the modified Bessel function of the
second kind and Meijer G-function, with the notations 0, € R? = (0,...,0)” and e, €
RP = (0,...,0,1)7.

* g(z1,22) = zlzgl:
=1, m*=(1-a ),

Symmetric spectral method. We provide expressions for the overlap parameter m =
IMll=/,/Tr(Q) of the spectral estimator W (12), for a selection of examples of link functions.
In all the following cases, the state evolution equations simplify, allowing to write the results as
functionals of A : R — R, specific to each problem:

z € R) (single-index model): A(y) = Var[z | y] — 1;
z) =sign(z122): AM(y) = 2y/7
z)=pz|* Ay) =y - 1;

For all these examples, the value o, has been reported in the previous paragraph. For o > a.,
consider a and ~ solutions of

A(y)? 1 Cia Ay)
= ol R i v |
Then, for any «, the overlap m = IIMllr/,/Tr(Q) is given by
nﬁ<1—mmqu%mmu+Aw»—Mw>ﬂ> 39
L+ aByz[N(y) (a(l+ M) = A) 71 ),

which is strictly positive Yo > a.. In all the example the principal eigenvector is A; = 1. Additional
details can be found in Appendix F.

4 Conclusion and Perspectives

In this work, we tackled weak recovery in high-dimensional multi-index models via spectral methods,
deriving two estimators inspired by a linearization of AMP. We showed they achieve the optimal
reconstruction threshold, closing a key gap in prior approaches that required additional side infor-
mation. Our analysis establishes that above the critical sample complexity, the leading eigenvectors
of the proposed spectral operators align with the ground-truth subspace, echoing the BBP transition
in random matrix theory. This work advances our understanding of weak subspace recovery in
multi-index models and provides a principled framework for designing optimal spectral estimators. It
bridges ideas from random matrix theory, approximate message passing, and neural feature learning.

Several directions remain open. A random matrix theory analysis of our spectral analysis — which
requires a challenging control of the spectral norms — could be used to prove the two conjectures.
Extending our AMP linearization to higher-order schemes, such as the Kikuchi hierarchy, may unlock
insights into harder generative exponent problems, including the notorious sparse parity function. We
hope this work sparks further research at the intersection of spectral methods and high-dimensional
inference.
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Justification: We judge the code too simple to be released, and we provide enough informa-
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* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (
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¢ The instructions should contain the exact command and environment needed to run to
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) for more details.

* The authors should provide instructions on data access and preparation, including how
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agreement is so good that error bars are unnecessary.
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didn’t make it into the paper).

. Code of ethics
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* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All resources used from other works are properly acknowledged.
Guidelines:

e The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets,
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new assets are introduced in the paper.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This work does not involve crowdsourcing.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,

or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This work is of theoretical nature, and does not have potential risks for the
people involved.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This research does not involve LLMs as any important, original or non-standard
component.
Guidelines:
* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard component.

* Please refer to our LLM policy ( )
for what should or should not be described.
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A Generalized Approximate Message Passing algorithms

In this section we present a general version of the multi-dimensional Generalized Approximate
Message Passing (GAMP) algorithm [32], defined as the iterations

Q' =Xfi,(B') — gous (¥ y)V/, (40)
B = XTgout(Qtvy) — fh(BYATL (41)
and W' = FLFY(B?TY). The denoiser functions f!, : R? — RP and g%, : R? x R — RP are

vector-valued mappings acting row-wise respectively on b € RP = B; and w; € RP = ; and the
Onsager terms are given by

1 n d
Ar=2)  Vogou(wirvi), Zj ‘ (42)

=1

&.M—‘

Therefore, the algorithm is uniquely determined by the choice of denoisers. For instance, the optimal
GAMP for Gaussian multi-index models, derived in [4], is given by

—1
_ I
Goue(@,Y) =V, Baniw,vy)[(2—w)P(yl2)], 1 (b) = (Ip -2 > Vwigéut(wf,yi)> b,
=1
43)

A.1 Linear GAMP

In this manuscript we focus on a special type of GAMP algorithms that have linear denoiser functions

Fous(w.y) = Goy(y)w,  fi,(b) = Vb, (44)
namely
Q' =XW' -1tV (45)
[Féut] Z [GZut]#V(yi)in i € [nﬂv /1' € Hp]]v (46)
ve(p]
s t4+1 st
W= (XTT, - WAT) VL (47)
where 4
A=d" ) Goulyi) === aBynz[Gou (v)]. (48)

1€[n]
A particular example of Linear GAMP is the one obtained linearizing the denoiser functions (43)
around the uninformed fixed point of the algorithm b = 0, w = 0 and V = I,,. We obtain a Linear
GAMP with
Gow(y) =Elzz" —Ily=y], V=1I (49)
and
A =0aE; 7[Gout(y)] = a]EyNzIE[zzT|y] — ol = aE, no,1)[z2" ] — oI = 0. (50)

A.2 State Evolution of Linear GAMP

One of the main advantages provided by the Approximate Message Passing algorithm is the pos-
sibility to track the value of low-dimensional functions of the iterates at all finite times, in the
high-dimensional limit, through a set of iterative equations denoted as state evolution [52]. In
particular, we are interested to the following overlap matrices

Y- (Wt)TW*, Q' = % (Wt)Tv“vt, (51)

. . . %t . st
that characterize respectively the alignment between W' and the weights W, and the norm of W .

In this appendix we present the state evolution equations for the GAMP algorithm (45, 47) with linear
denoiser functions, while we refer to [4] for a complete derivation in more general settings:

Mt+1 VMt Qt+1 (Mt(Mt) + Qt) ‘/;T’ (52)
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with the auxiliary matrices given by
M' = aEy 7 [Gow(y) M'E[zz" - Ily]], (53)

Qt =« (Ey~Z [Gout (Y)Mt]E[ZZT - I‘Y]MTGout (Y)T] + IEy~Z [Gout (Y)QtGout (Y)TD .
(54)

B Proof Outlines for Theorems 2.3 and 2.4 — Asymmetric Spectral Method

Consider the following generalized power iteration algorithm
w'=7"'Lw'™! €R™, (55)

Wt = 4~ X T mat (G‘wt) e R¥¥?, (56)
with G defined in eq. (9) and y a parameter to be fixed. A pair w # 0, W = 'y_lXTmat (G’w),

is a fixed point of the above algorithm if and only if Lw = y€2. Thus, given the largest real y such
that the algorithm has a non-zero fixed point, the latter will correspond to the asymmetric spectral
estimator in Definition 10. Interestingly, the above algorithm is also linear GAMP A.1, with denoiser
functions g{ , (w € RP,y) = E[zz? — I|y = yJw and f! (b) = v~ 'b, Vt, and Onsager terms

n—oo

Ay 50Ey 7 [E[zz” — I]y]] =0 (57)

(as shown in (50)), and V; = v~ I. In fact, we can rewrite the generalized power iteration algorithm
as in Definition 2.1

Qf = 4 1(XXT — I, )mat (évec (Qt71)> =XW' — 7 'mat (évec (Qtil)) , (58)

B!t = XTmat (é vec (Qt)) , 59)
Wt+1 _ 7_1Bt+1. (60)

B.1 State Evolution

As an Approximate Message Passing algorithm, this algorithm enables to track low-dimensional

. . L . . . .
functions of the iterate W via the associated state evolution. Specifically, we will analyze the weak
recovery properties of the asymmetric spectral method by studying the convergence of the state
evolution equations A.2:

Mt+1 — %f(Mt) (61)
QU = MM+ 75 (G(MY) + F(Q") ()
where, recalling the notation G(y) = E[zz” — I|y],
F(M) = Ey[G(y)MG(y)], (63)
G(M) = Ey[G(y) MG (y) M G(y)] (64)

The linear operator F : RPXP — RP*P is symmetric, therefore it admits p? eigenpairs (v}, €
R, M},)re[p2) such that F(M}) = vy, My, and the (matrix) eigenvectors are an orthonormal basis of
RP*P_ In particular, Lemma 1.2 implies that v := maxy v, > 0 and M € Sf_. This eigenvalue
corresponds to the inverse of the critical sample complexity «., defined in 1.2. We can distinguish
between two kind of fixed points:

1. Informed fixed points. (Theorem 2.3) Vo, for v = avy (v # 0), M < My, is a non-zero
fixed point for eq. (61). In particular, since the asymmetric spectral estimator is the fixed
point correspondent to the largest v, we are interested to the case M oc M;. We show
now that | M||r # 0 (i.e. the fixed point is actually informative) for « > .. Given
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v = @/a, > 1, the largest eigenvalue of the operator 7y~ !a.F(-) is equal to 1 and any
M o M; is a stable fixed point. Moreover, eq. (62) at convergence:

2

Q=M+ = (IMIEG(M) + F(Q) = (65)

Y M o2
Tr(Q) = [M]jf | 1+ ¢ Tr (g(lMF)> +—<Tr(F(Q) = (66)

<nTr(Q)
>0

) a af M \\)

e > (1- ) 5@ (14 519 (g ))) 20 @)
where in eq. (66) we used
TF(Q= Y aMy|=T > auM,<nTQ. (68)
Kelp?] kelp?]

Therefore, the correspondent estimator W eq. (60) weakly recovers W,.

Note that, although it is beyond the scope of this work, the presented framework enables
the identification of additional informative eigenvectors (with real eigenvalues smaller than
a/a.), emerging from the bulk at larger sample complexities.

2. Uninformed fixed point. (Theorem 2.4) Initializing GAMP in a subspace orthogonal to the
signal, i.e. MY = 0, we have that M* = 0 at all times and eq. (62) at convergence

Q =7"?aF(Q). (69)
Therefore, for vy = Jar;, M = 0,Q = M; € Sﬂ’_ \ {0} is a fixed point of the state

evolution. Note that, since the largest eigenvalue of v~ 1aF(-) in eq. (61) is v/a/a,
M = 0 is a stable fixed point for o < a., and unstable otherwise. Since the proposed
GAMP is a generalized power iteration algorithm, normalized by the constant v € R,
it converges only if v corresponds to the absolute value of the eigenvalue with largest
magnitude in the subspace of initialization.

C Proof Outlines for Theorems 2.8 and 2.9 — Symmetric Spectral Method

Similarly to what we have done in the previous section, we introduce a GAMP algorithm that will
serve as a framework to study the properties of the spectral estimator defined in (12). We stress that
this algorithm does not offer any particular advantage for the practical computation of the spectral
estimator compared to other spectral algorithms.

Consider the Generalized Approximate Message Passing algorithm defined by the denoiser functions
Gout (1, w) = TV, (@I = VTV, lw,  fL(6) = (V" — A)~'b, (70)
where T (y) is the preprocessing function defined in (22) and ay, ; parameters to be fixed.

We first show that, for suitable choiches of a; and +;, the non-zero fixed point of this algorithm
correspond to an eigenvector of T. Dropping the time index for the fixed-point variables and

parameters, and defining Gr € R"X"P gs

{GT} o = STV (ad = VT )V s dvj€nl, prepl, D)

for i € [n], p € [p], the fixed points satisfy

Qi = [XW];,, — Z Z Z (Gl (iv). (i) Viio v (72)

J€ln] velp] relrl

;:[éT,V](i;L)~(JV>
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— Q = mat ((Inp + (;T,V) e (XW)) : (73)
and
. . -1
W(yV — AT) = Xmat (GT (L + Grv)  vee (xw)> ~WAT (74
= aryvec (WV) = T'vec (WV), (75)
where we used

. . -1
RPXP 3 [GT (Lop + Gr.v) } =65 T (y)V" (al — VT (v:)VT) ™
(),
[(aI =VT )V + VT (y)VT) (al - VT (y)V") 1]
= 5ija717'(yi)VT
Therefore, W = W1V 1 is a fixed point of the algorithm, for a; and 7, appropriately chosen, with
eigenvalue given by a;7; at convergence.

C.1 State Evolution

The state evolution equations of the overlap matrices are

M = aF (Mt a;, V;) (76)
QM = M (M"T + a(G(M'; a1, Vi) + F(Q'; a1, V7)) (77)
Vipr = (nVi" — A7, (78)
Ay =By z(y) [TV (@ = ViT»)V) 7Y (79)
with
F(M;a,V)=Eyz VT )V (a-VT(y)V")'MG(y)],
F(Q;a,V) =Eyz VTV (@ - VT )V 'Qa— VT (y)V) 'VT(y)VT]
G(M;a, V) =Eyz [VTNV (a— VT (y)V) '"MGy)M"(a - VT y)VT)'VT(y)V'].

Note that F( - ;a, V') is a symmetric linear operator on the space of p x p matrices, with respect to
the inner product (M, M) == Tr(M T M'):

(F(M;a,V),M') = EyzTr [G(y)M" (a = VT (y)V")'VT(y)V'M']  (80)
=EyzTr [(a - VT (V) 'VT(y)VIM'Gy)M"]  (81)

=TByz [VT )V (a=VT (V) 'M'Gy)M"] (82

=(F(M';a,V),M). (83)

This implies that, for a, V' fixed, (- ;a, V') has p? real eigenvalues {vy(a, V') }e[p2] and admits

an orthonormal basis { M (a, V') } ke[,2] of eigenvectors in RP*P. Moreover, note that from the state

evolution iterations, we can verify that V;, = VtT = Vi1 = Vt'zl, therefore, we consider the
matrix V; to be symmetric at all times. From the state evolution equations at convergence

1

_ /2
V= Va T (T+aBz [VTOV @-VTHV) ) = V-0 @4
Furthermore, in order to bound the operator norm of V', we choose
% = |V, + aBy [ViIT()Vi (a = VT (V)™ llop: (85)

so that || Vi 00llop = 1.
We can distinguish the following cases:

Note that the overlap matrices for this algorithm refer to W1V ! and not directly to the spectral estimator
itself. However, if || M||r > 0, the weak recovery condition is satisfied.
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* Informed fixed points. (Theorem 2.8) Choosing a; such that
max {tliglo vi(a, Vi) 1 k € [[_pQ]]} =a ! (86)

then IM # O stable fixed point of the state evolution, and, for @ > . (a > 1)

T(Q) = | M2 + o M|ZTr (g (H]f‘f” v)) AT (F(@a, V) —  (§7)

IMIE = TH(@) — aTr(F(@5a,V)) = aTr (F(Qia, V) — F(@5a,V)) >0, (38)

+ Uninformed fixed points. (Theorem 2.9) Initializing GAMP with M° = 0, which is a
fixed point of the state evolution,

Q=aF(Q;a,V),. (89)

Similarly to F( - ;a, V), the symmetric operator .7;" (- ;a,V) has p? real eigenvalues.
Defining v{ (a) as its largest one, we notice that vi (1) = a;land v{ (a - ) — 0.
Therefore, for & > a,, Ja > 1 such that { = a~! and the state evolution has a fixed
point M = 0, Q € S\ {0}. Moreover, for such a, the largest eigenvalue of F( - ;a, V)
is larger than o', hence the uninformed fixed point is unstable for o > «.. This can be
shown repeating a similar argument as the one we have applied in eq. (88). Since the GAMP
convergence equations correspond to a generalized power iteration of 1", normalized by the
eigenvalue avy, the instability of the uninformed fixed point implies that it is associated to an
eigenvector smaller than A4 defined in Theorem 2.8.

C.2  Sketch of derivation for Conjecture 2.10

These results for the fixed points of the state evolution justify Conjecture 2.10 on the weak recovery
properties of the symmetric spectral estimator. The following argument is analogous to the one
given for the asymmetric spectral method given in Appendix D. As a consequence of eq. 74,
the Algorithm in Definition 2.6 behaves as the power-iteration on the matrix T'. Suppose that
A (T) — Xo(T) = w(d=") for some £ > 0. Then, we obtain that w’ = (ay) " 'Tw'~! converges to
the top-most eigenvector of G%T in O(log d) iterations.

Moreover, based on extensive confirmations in the literature [56, 57, 58], we conjecture that the
asymetric spectral method is described by the state-evolution equations up to O(log d) iterations.

Theorem 2.8 predicts the convergence of the state evolution iterate M¢ to a fixed point corresponding
to M # 0 for o > . Since the fixed point conditions for the algorithm stipulate that w! = %T'wt,
we obtain under the validity of the state-evolution description:

1 t 1 d— oo
- — —_Tw
and consequently
1 o0
Sw! Lw' 422 )\ 91)
[[w]] P

On the other hand, the equivalence to power-iteration implies that the LHS must converge to the
top-most eigenvalue of T". We thus conclude that:

A (T) “T"% As. (92)

C.3 Random Matrix Theory analysis for the case where G(y) is jointly diagonalizable Yy

In this section, we will consider the setting of Thm. 2.11 which will analyzed using random matrix
theory tools. We first describe in Sec. C.3.1 the setting and how the constants in Conjecture 2.10
simplified in that case and then sketch the outline of the proof using random matrix theory tools in
Sec. C.3.2.
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C.3.1 Introduction to the model

For | € [p] we denote by z; = N\(y)/(Mi(y) + 1) where y ~ Z and for y € Supp(Z),
M(y) = M(G(y)) is the I-th eigenvalue of G(y) = E,uno,1,)[zz" — Ily = y]. Given the
sample (X;,;)ien]> we let Dy = Diag({\i(yi)(Ai(yi) + 1) }ieng) for I € [p]. In the rest of this

section we will restrict to a particular setting for the model introduced in the main text. We first recall
the definition.

Definition C.1 (Jointly diagonalizable). Let M (.) : R D I 3 ¢t — M (t) be a symmetric matrix-
valued function. We say that M (.) is jointly diagonalizable if for all t € I, we have M (t) =
UA(t)UT, with A(t) diagonal and the orthogonal matrix U is constant with respect to .

We will restrict to a subclass of our model such that one has

Assumption C.2. G(.) : Supp(Z) > y — G(y) is jointly diagonalizable.

Note that this subset of problems includes many cases of interest, including the ones considered

in this manuscript, such as the monomial g(z) = [[,¢[,j 2 the norm g(z) = p~Y|z||* and the
embedded sparse parity g(z1, 22) = sign(z1, 22).

By rotationally invariance of the hidden directions (W, @ OW,_ for any orthogonal matrix O)
two jointly diagonalizable multi-index models specified by the conditional distributions P(:|z)
and Po(:|z) := P(:|Oz) are equivalent up to a change basis and in particular share the same c..
Indeed with Zo(y) := E,n(o,1,)Po(y|2) one can immediately check that Zo(y) = Z(y) and

E,n(o,1,)[2Po(yl2)] = OTE,n0,1,)[2P(y]2)] and E,[22" Po(y|z)] = OTCov[z[y]O. As a
consequence, we can set G(y) to be diagonal without loss of generality.

Next, we describe how the constants in Conjecture 2.10 simplifies under this jointly diagonalizable
setting. To this end, we introduce the convex functions

Yasla) = a (1 n aE) Ll ©3)
a — 7]

and let @,; = argmin 1, ;(a) be the minima, that is @, ; solves

2
E KZZ ) ] =o' lep]. (94)
Aol — 21
For later use, we also define

Caila) = wayl(max(a,ﬁayl)) l€[p]. (95)
we have the following result.

Lemma C.3. Under Assumption C.2, the constants (cv., Ay, A.) in Conjecture 2.10 further simplifies
to

(i) ae=mingepp 1/(EN(y)?);
(ll) /\s =1,

(iii) \p = maxje p] Qﬁa’l(aa’l) .

Proof. For Part-(i) since G(y) is diagonal, the critical threshold described in Lem. 1.2 is maximized
over rank-one matrices, that is

1 .
o = 5w Eyoz(u, Ding({h(y)hiepen) ) (96)
c ueSp—1

which gives by Courant-Fisher theorem the desired result for the threshold.
We next turn to the analysis of SE of Prop. 2.2 under the jointly diagonalizable assumption C.2.
Setting 7;(y) := M\ (y)(M\i(y) + 1)1, the fixed point equations read for any (u, ) € [p]?:

My = aMyuEy [Tu(a/ Vi = To(v)) ™ A (v)] o7
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wn = 30 M2, + 0 (Guu(M30, V) + Quy [(Tu0)(@/VE = T ™)) 98)

velp]

Vi =1+ oBy [Tu()(@/ Vi = Tu(v) '] (99)
and vy = max,, (1+ oy [7,.(y)(a/V,? = T,(y))~']). The candidated for the informative eigenval-
ues AT = @puuy of T' correspond to the solutions of

a = Ey [ﬂt(awj - 771(}’))_1)‘11(3’)} y  Quy = a;wVMQ (100)
and are given by
)‘Z‘u = a;u/y = a,ulfyvi = a,uu (1 + aEy [E(Y)(a,uv - E(Y))_l]) (101)
Note that, for ;1 = v, eq. 100 has always a solution for a > a. , := Ey [\, (y)?], and V. € [p]
/\;’I;M = auu (1 + a]Ey [E(Y)(auu - E(Y>)_1]) (102)
_ _ _ 1
=y, |1+ oy [771(3’) (auu - 771(3’)) 1} g Ey P‘M(Y)] (103)
.
@y, —1 _ _
=G [ 1= 0= Z—Ey [Tu(0) M) @ = Tu(y)) '] (104)
o e
-1 (105)
These eigenvalues are informative as
_ _1N2
> M7y > Qui (1= 0By [ (Ta(0) @~ Talr) ™)) (106)
> Qua | 1= @By [Tu()Au () @ — Tu(y)) '] | =0 (107)

=a—1

Analogously, the edge of the bulk for each block of T" can be obtained solving, for o > a

_ .0 \?
a '=E (A" Lab =@, V7, (108)
Y Qy — E(Y) :
and the correspondent eigenvalues /\gvb are given by
. Tu(y)
Af’bzab7=a¢<1+aﬂ‘3 {A ! (109)
! . ‘ Y law = Tu(y)
a, — 1 (YA
:du<1—aa%, Ey{§§?%f?]> (110)
w w plY
ca, [1-ae"lg ( Auy) )2 (111)
a &H Y (&M - 1)>‘M(Y) + du
a—1
=1=\", (112)
from which we conclude Part-(ii) and (iii) of the Lemma. O]

C.3.2 Outline of the proof using RMT

We give a proof of Conjecture 2.10 with the values for the threshold ., the top outlier Ay = 1 and
the edge A\, computed in Lem. C.3.
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Assuming C.2, the symmetric spectral estimator introduced in Eq. (13) has the block-diagonal
structure

X'"DiX  Ogxa ... Ouxd
T .
7= | Q¢ X DX 7 (113)
: : 2d><d
0d><d . ded X DpX
and thus its spectral properties can be immediately obtained from its diagonal block since we have
Spec(T) = U Spec(T}) where T):=X"D;X. (114)
lefpl

In particular, the top eigenvalue of T" appearing in Conjecture 2.10 is simply the max of the top

eigenvalue of each block T; and one can restrict to the study of the spectral properties of the 77,
following closely the derivation of [55] which tackles the case p = 1.

For each T}, we will partition the column of the sensing vector x; into parts that align with the hidden
components w, and part that lives in the orthogonal complement, the only difference with the setting
considered in [55] being in that now one has to deal with p hidden directions instead of one. To do so,

we first use the Gram-Schmidt decomposition of the hidden matrix %W*:

1
—W,=VR 115
vd " .
where V' = (v1, ..., v,) is a semi-orthogonal matrix of dimension (d x p) and R;; = (u;, w;)d;i<; €

RP*P is upper triangular. Note that as w; , are iid standard Gaussian, as d — oo we have R;; — 1

. . . . d
and R;; — 0 for ¢ # j, exponentially fast. By rotationally invariance one has X @ OX for any O
orthogonal matrix, hence one can fix v; = e; (the ¢-th canonical vector) without loss of generality.
We decompose each vectors x; in this basis as follows

X; = (I@i ui)T withk; € RP andu; € R4-P (116)
or equivalently
K\" 1 uy
X = <U> with K = € RP*" and U := c R(d*p)xn (117
Kp u,

where K is by construction a matrix with iid Gaussian entries. From this partition, we can re-write
each T; as

B . R, = éKTDlK € RP*P,
T, = 1 Ql c RdXd with Ql = éU(DlKT) c R(d—P)XP7 (118)
Q P Ty1T (d—p) X (d—p)
P, :=;U DUEeR¥“™ L

Lemma C.4 (Edge and existence of outliers). As d — oo, the empirical spectral distribution
of T} converges weakly almost surely to a distribution p; with rightmost edge 7, := 10, 1(@a1)-
Furthermore, for each | € [p], there exists up to p outliers in the spectrum of T; above this edge ;.

Proof. This follows from the same proof of Proposition 3.1 in [55] (see Appendix A.4): by eigenvalue
interlacing theorem, if put the eigenvalues in increasing order, we have for any i € [(d — p)p]:

)\5/ )(Tl) < )\E/ ) (P) < )\Efp) (TQ) Furthermore the empirical distribution of P, converges strongly
to a limiting distribution y; with rightmost edge 7;, since all but the top p eigenvalues of 1} are
trapped between eigenvalues of P, one gets the desired result. O

From Eq. (114), one immediately obtains that the empirical distribution of the full matrix 7" converges
weakly almost surely to the distribution p := %Z ; 1 whose rightmost edge is given by A, in

Lem. C.3. Next, following again [55], we map the position of the top outliers in each block T to an
additive spiked matrix model.
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Lemma C.5. Let Py(p) = P, + Q(R; — puI )rQT denotes the family of spiked matrices indexed
by a parameter ;i € R\ Spec(R;) and set the function Li(p) :== A1 (P;(u)), where A1 denotes the

highest eigenvalue, then we have Ay (i‘l) = L;(u*), where p* is the unique fixed point of the equation
Li(p) = p.

Proof. This follows from the determinant lemma in the same proof of Proposition 3.1 of [55] (see
Section 3.2) with their (1 x 1) upper block replaced now by the (p x p) block R;. O

Lemma C.6. Let P, () as in Lem.C.5, then as d — oo if the largest real solution (in a) of

det <uI—1E(H,Zl){ 4% ,-mT}) =0 le[y]. (119)

a — 7

exists and we denote it by a; ;, we have L;(11) — a1, and otherwise Li(p) — 7.

Proof. Applying the determinant lemma to the matrix E(u), one finds that L; (1) is characterized as
the largest solution of the equation

det (1 — Ry, — Qf (Li()I — Px)™'Qx) = 0. (120)

Moreover, by the law of large numbers, we have the following almost sure limits as d — co:

Ry, —>d‘io E(emzikk’ (121)
2
T . 1 a.s. Z) T
Qk ()\Id,p Pk) Qk oo ]E(le) )\ o KK, (122)

where k ~ N(0, I,,). Substituting these limits into the determinant equation yields the asymptotic
equation for the position of the top outlier L(u). O

Combing Lemma C.5 with Lemma C.6, we can characterize the limiting position of the top outlier of
T; in terms of (,;: If the largest real solution (in a) of

det (Ca)l(a)I — o 1) { a4z RKT}) =0 1€ [p], (123)

a — 7

exists and call it by a, ; then we have

M(T) = Caulag,) - (124)
Otherwise, if there is no such solution to Eq.(123), we have no outliers, that is
M(T) — 7. (125)

As a consequence, the critical threshold «. for the appearance of an outlier in the full matrix 7" is given
as the minimal value of « for which there exists a solution (in a) of Eq. (123) as | € [[p]. To obtain
explicitly this threshold, we first express Eq. (123) in terms of the G(y) = E,{xs’ — Iy = y}:

A(y)Nu(y) + 17! Cm )
ya—Az(y)(Az(Y)+1)—1G(Y) Ezla—zl) =0 le[p], (126)

where we have replaced z; by its expression in the first expectation. Assuming now that « is such
that there exists a solution af, ;| > @q,; of Eq. (126), by definition (95) of Ca,1(.), the latter can be
replaced by v, ;. Next from Assumption C.2, G(y) is diagonal with eigenvalues {\;(y) };c[p) and
thus, each solution of Eq. (126) must solve for I’ € [p]:

-1
E M)A (y)(Aly) +1) _ l; (127)
a—N(y)(Aly) + 1)~ a
and the largest one is given for I’ = [ that is

NP+ ] 1
E[a—/\z(Y)(Az(y)Jrl)—l] ’ (128)

det (Ca’l(a)I —aakE

(67
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and always exists for as long as a > o := (E[N(y)?]) !, from which one gets the desired result
since o = mMinepp,] Qe,i-

To conclude, we need to show that for o > «., the asymptotic of max; [o] A1(T)) given by Eq. (124),
further simplifies to max;cp,y A1(77) — 1. Replacing (s by its expression, we have :

Ay)(uy) +1)7 )
o =all E, 129
o) = (102 2 (12
since by assumption of our model, we must have E, A;(y) = 0, the latter can also be expressed as
B a-1 Ay uy) + 1)1 D
Cote) =a (1o e, [ 2O ) (10

and since for a > «, the largest solution a* must solve Eq.(128), the expectation reduces to 1/«
such that one has

max(al( al):l, (131)
le[p]

which concludes the proof.

D Sketch of the derivation of Conjecture 2.5

As we saw in Equations 55, the Algorithm in Definition 2.1 is equivalent to power-iteration on the
matrix L. We may further suppose that Re(A\; (L)) — Re(A2(L)) = w(d~") for some x > 0. For
instance, Kk = % under the Tracy-Widom scalings.

Assuming such a scaling for the spectral gap, we obtain that w? = vy~ ! Lw!~! converges to the
top-most eigenvector of %L in O(log d) iterations.

Moreover, based on extensive confirmations in the literature [56, 57, 58], we conjecture that the
asymetric spectral method is described by the state-evolution equations up to O(log d) iterations.

Theorems 2.3 and 2.4 predict the convergence of the state evolution iterate M to a fixed point
corresponding to M = 0 for o < «. and M # 0 for a > .. Since the fixed point conditions for the
algorithm stipulate that w® = %Lwt, we obtain under the validity of the state-evolution description:

1

det ~ S Lwt|| L2, (132)
Vs
and consequently
1 t t d—oo

On the other hand, the equivalence to power-iteration implies that the LHS must converge to the
top-most eigenvalue of L. We thus conclude that:

d—o0

ML) S5 e (134)

E Details on examples - Asymmetric spectral method

E.1 Single-index models
The case of single-index models (p = 1) allows for significant simplifications, as
F(M €R) = ME,.7 [(Var[z|y] - 1)2] : (135)

G(M € R) = M?E, 7 [(Var[z|y] - 1)3} . (136)
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This leads to the well known expression for the critical weak recovery threshold [12, 9, 55, 10, 29]
ol =K,z [(Var[z|y] - 1)2} : (137)

and to the following result for the overlap parameter m = M/,/g

-1
2 { (a—ac) (a + By z [(Var[2|y] - 1)3D ) @2 (138)
0, a < o

E.2 G(y) jointly diagonalizable Yy

Following the arguments at the beginning of Appendix C.3, whenever we are in this setting, we
can consider without loss of generality G(y) = E[zz” — I|y = y] = diag(A1(y), ..., Ay(y)). The
eigenpairs of the operator F eq. (63) are given by

Vien) = Ey[Me(@)An(y)], M py with [M g 3] = 0kp0nu, Yk, b € [p], (139)

with the critical sample complexity o ! = v = maxye[p] Y(k,k) 3. If the maximum is achieved by
more than one pair of indices, we expect that the matrix L principal eigenvalue is degenerate, with
degeneracy given by the cardinality of the set Z = {(k,h) € {1,...,p}?[v ) = o, '}. Note that
Yk, b, V(g ) = Vngy and if Vg p) = MaXpe (k) Viu == Vi k) = Vhh)-

The generic principal eigenvector of F is given by M = |[M||p 3 ;. nyez C(k,n) M,n) With
Zc%kyh) = 1. We introduce the ansatz: Q s.t. Qi # 0iff (k, k) € Z; this implies Tr(F(Q)) =

> ENe(v)?]Qrr = o, ' Tr(Q). Eq. (66) becomes

2 2
Te(Q) = M3 [ 1+ % > G Tr(G(Mp))) + Lem(FQ) = (140)
* (kmez «
2
T (Q) = | M|[% 1+% Y B @) )] +%Tr(Q) = (141)
(k,h)eT
—1
M3 . 2
ir(c“g? :< _%) 1+2 3 B )2 n)] (142)
(k,h)€T

As a special case, we consider the example A (y) = A (y) for all h, k such that v, 1y = v, n) = V1.
One instance for this case is given by the link function g(z) = p=1 kelp] z%. Then, defining

A3 = E, [\ (v)?] for any k|(k, k) € Z, the solution for m? does not depend on the coefficients
C(k,n) and simplifies to

IME ooy (), 0 @)
) _<1_E) <1+aA > . (143)

The above expression does not depend on the coefficients c, 5), therefore it is valid for all the
degenerate directions in the principal eigenspace.

We consider now specific cases of link functions that are such that Cov [z]y] is jointly diagonalizable
Vy. We refer to [18] for the derivation of the expressions of Z(y) and Cov|[z|y] in all the examples
contained in this Appendix E.2.

Note that, in general, if P(-|z) = P(:|Qz), for Q orthogonal, then G(-) = QG(-)QT. We use this
property to find examples of jointly diagonalizable G(-). Given any P(-|z) depending on z through a
quadratic form 27 Az = 1/2 27 (A + AT)z, with A deterministic, and U, whose columns u,, are

3N0te that Vk‘, h € [[pQH, V(k,h) < max(u(kyk), ’/(h,h))-

*Without loss of generality v(,n) < V() a0d V() = Vo) < T Pinh) == Vi) < Vnh)-
Therefore v(x,k)y = V(n,n)-
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orthonormal eigenvectors of 1/2 (A + AT, such models are invariant with respect to the orthogonal
matrix Q, = U diag (((71)2*5”’”) )) U7, for any v € [p]. Therefore,

relp]

G(y) = Q.GyQ, (144)
= u,G(y)u, = uquG(y)Q?;u,, (145)
= u,G(y)u, = —u,GY)u,, pFv (146)
= u,G(y)u, =0, p#uv. (147)

Hence, G(y) is jointly diagonalizable with respect to the basis of eigenvectors U. Similarly, we can
show that any model P(:|z) depending on z through [, e[p] Zu correspond to a jointly diagonalizable

G(-). In fact, if p = 2, it depends on a quadratic form, while if p > 3 it is invariant with respect to
Q.. = diag ((( 1)2=0uv—0u, N)ue[[p]]) ), for any v # k. As in the previous example, we can show
that G,,,,(y) = 0, for any ;1 # v and G(y) is diagonal.

E21 g(z1,....%) = p! Zke[[p]] Z’%

_ by
e 2

S /2 Tiy] =
2W) = oot @) (py) Elzz" |y] = yI. (148)
For a generic M € RP*P
M) = M/ Z(y)(y — 1)*dy = %M7 (149)
0
G(M) = MMT/ Z(y)(y — 1)3dy = Z%MMT, (150)
0

therefore a,. = /2 and A3 =8 /p®. Plugging these quantities in eq. (143), the overlap matrices at
convergence satisfy

Mg _ [ 52a-p)(a+2)"" a>zp (151)
™Q) | 0 o < /2
E2.2 g(z1,22) = sign(z122)
1 2
2=y Eath=2 () §)+r (152

The matrix E[zz” — I|y] is jointly diagonalizable Yy, with eigenvalues \; (y) = 2y7 ! and Ao (y) =
—2y7 1. Therefore, the eigenvalues of F are given by

_ 4
acl =V =ven =3 Yup = (153)
and
Ey [ (y)*) = —Ey o — Z vy’ =0. (154)
y==+1

Leveraging eq. (142), the overlap matrices M and @ at convergence satisfy

| M| _ 1_%204_17 a>m/a (155)
Tr(Q) 0, a <7/
E23 g(z1,...,2p) = [Ticq 2k
Forp =2
K vl 7 4
Z(y) = Ko)  ppgpmyy) (D by |- (156)
™ y lyl 7t

33



Im A

Figure 5: Distribution of the eigenvalues (dots) A € C of L at finiten =5 - 102, for g(z1, z2) = sign(z122),
a. = 7°/a. (Left) a = 1.4 < ae. (Right) & = 7 > .. The dashed blue circle has radius equal to \/*/a.,
i.e. the value ~, predicted in Theorem 2.4. The dashed orange vertical line corresponds to Re A = @/a., the
eigenvalue ~, defined in Theorem 2.3. As predicted by the state evolution equations for this problem, two
significant eigenvalues (highlighted in orange) are observed near this vertical line. Additionally, one can observe
that our framework predicts other two degenerate eigenvalues at —+s, here highlighted in cyan.

g(z122) = sign(z122), @ = 9(a122) = sign(z122), @ > a
-— N

— A

—

— A

10t

050 0.75 100

0.6 0.25
Eigenvalue Eigenvalue

Figure 6: Distribution of the eigenvalues of T', d = 10%, for the link function g(z1, z2) = sign(z122). The
critical threshold in o, = 7 2/4. The distribution is truncated on the left. (Left) o« = a.. (Right) @ =7 > a..
As predicted by the state evolution framework, in this regime we observe two eigenvalues separated from the
main bulk, centered around A (green vertical line) obtained in Theorem 2.8. The vertical purple line correspond
to the value A\, provided in Theorem 2.9 as a bound for the bulk.

where K, (y) is the modified Bessel function of the second kind. The matrix G(y) is jointly
diagonalizable for all y, with eigenvalues A1 (y) = |y| %EBI +y—1land \2(y) = |y| %EBI —y—1

Therefore, the eigenvalues of F are given by?
at =van = e =B M®)% va = EM@M(=y)] < v, (157)

and
Ey[M(y)°] = Ey[Aa(y)?]- (158)

Leveraging eq. (142), the overlap matrices M and @ at convergence satisfy

IMIE _ | (a—ao) (a+a2Eyez [M@)?]) ", a>ac (159)
TT(Q) 0) a < Qe
If instead p > 3,
1 p,0 y2 0 T
Z(y) = (271’)17/2 GO,p or | 0,0,...,0 /)’ E[ZZ |Y] = ()‘(y) + 1)I’ (160)
where ) )
p,0 Yy 0 p,0 y_ 0 —
My) =26y, <2p o,o,...,o,1> Gop <2p o,o,...,o) 1, (161)

>In what follows, we use A1 (y) = A2(—y), the parity of Z(y) and the symmetry of the integration domain.
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and the previous expression are written in terms of the Meijer G-function. Therefore o' =
E,[A(y)?] and, leveraging eq. (143), we obtain

-1

IMIE ] (a—ac) (a+a?Byz AN)?]) T, a>ac (162)
nQ | o, a<a

E.3 A non-jointly diagonalizable case: g(z1,22) = 21/22

If the matrix G(y) is not jointly diagonalizable Vy, there is not a general simplification for equations
(61,62), and each example needs to be treated separately.
In this section we consider the Gaussian multi-index model with link function g(z1, 22) = #1/z..

1
2() = o= [ e D <y _ Zl) doydag (163)
T Jr2 22
1 .
- / 2ale 2B+ 5 (3 — 5) dsdzs (164)
™ JRr2
_ L/ e 20P DR, - L (165)
o Ju m(y? +1)

In order to verify that both directions are not trivial, we need to compute E[z|y] and verify that is
zero almost surely over y ~ Z:

E,[z|y] x / ze PG g (y — Zl) dzidzy (166)
R2 )
= Y2 ) |zle 20"+ 42 = 0, (167)
R\ 2

where the last equality is the result of the integral of an odd function over a symmetric domain. In
order to study the perfomance of the spectral method, we compute

1 2 2 z
T _ T —1/2(2{+25) 1
E[zz" |y] 2372y /R? zz"e 1T%2)§ (y zz) dzidzs (168)
1 2 2 2
_ Yy Yy 3 —1/2(y*+1)z
= 2720y ( y 1 )/Rz| e dz (169)
1 y2 —1 2y
:1+y2( 2 1y2>+1. (170)

The eigenpairs of G(y) are A1 (y) = 1, with eigenvector (y, 1), and A2 (y) = —1 with eigenvector

(—=1,y)T, which depends on y. Considering a generic M = %; %i , we have that
. TF(M) mo — M3 0 -1
FM) = ——1+— L (171)
therefore, the eigenpairs of F are
1 0
=1 M =1 vp =0, My={ o _ J; (172)
0 1 0 —1
V3:07M3:<1 0)7 1/4:—1,M4:(1 0 )7 (173)

and a. = 1. Moreover, one could easily verify that G(M;) = 0. The overlap of the spectral estimator
with the signal is therefore M o I, and, from the state evolution eq. (62) at convergence, we have
that

M2 —a! >
|| ||F{1 ol a1 174

(Q) 0, a<1

where we leverage the symmetry of Q ineq. (171) to write F(Q) = 27 'Tr(Q)I = Tr(F(Q)) =
TH(Q).
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—— Symmetric method
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Figure 7: Overlap || M||%/Tr(Q) as a function of the sample complexity a. The dots represent numerical
simulation results, computed for n = 5000 (for the asymmetric method) or d = 5000 (for the symmetric
method) and averaging over 10 instances. The link function is g(z1, z2) = 2z1/22. Solid lines are obtained from
state evolution predictions. Dashed vertical line at ac. = 1.

F Details on examples - Symmetric spectral method

In all the considered examples with p > 2, the matrix E[zz” |y = y] admits a unique orthonormal
basis of eigenvectors independent of y. Therefore, the state evolution equations can be significantly
simplified following the same considerations applied in Appendices C.3 and E.2, to which we refer
for the notation adopted in this appendix. Additionally, for all these examples, the eigenvalues \g (y)
of G(y) satisfy the additional conditions

_ Ae(y) = An(=y),
k€ [pl, Ak(y) = Anly) or {Z(y) even and defined on a symmetric domain (175
so that
kb€ [pl, Ey[Ae(v)?] = Ey [ (y)*] = By [ (y)An(y)]. (176)

It is easy to verify that these conditions implies that V' = I, and the state evolution admits stable
fixed point M, Q x I, where the proportionality constants can be numerically computed through
one-dimensional integrals, expressed in terms of A (y) (the choice of the eigenvalue is arbitrary in
this setting) and given in eq. (39). Additionally, the largest eigenvalue of 1" is always equal to one
and degenerate (see App. C.3).

Proposition 2.12 readily implies that, for all these examples, the matrix L has a correspondent
informative subspace of eigenvectors that can be computed from the subspace of leading eigenvectors
of T" with eigenvalue equal to 1 and hidden in the bulk.

G Proof of Proposition 2.12

1. By definition Lw = vypw. Applying on the right of both sides Q(WLI7LP +G)!
Gyl + G) 'Lw = v Gyl + G) tw. (177)
Recalling the definition of L (11), fori € [n], p € [p], k € [d]

R ! R R
5 [lane) | o], (e fe],
(178)
= Z [G(Yi) (’YLIp+G(Yi))_1i| Z Xin Z Xin [G‘w} = [G‘w} _
velrl held]  jelnl ) (i)
e (179)
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xT. -

= ) Xi Y, [G(Yi) (veIp + G(yi)) 1] > Xinwn) = wiiy) (180)
ic[n] velpl held]

— T, w=uw (181)

2. Defining w := (I,,, + G)~'vec (Xmat(w)), we have that, for i € [n], u € [n]

Lol = > D (XX = 0) [Glyy) T+ Gl ]S Xjnww

j€ln] velpl M held]
(182)
=Y Xin[Tw] () — [Gwli (183)
he[d]
= [('YT(Inp+G) —é) w} 4 (184)
(ip)
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