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Abstract

Successful out-of-distribution generalization requires environment annotations.
Unfortunately, these are resource-intensive to obtain, and their relevance to model
performance is limited by the expectations and perceptual biases of human annota-
tors. Therefore, to enable robust AI systems across applications, we must develop
algorithms to automatically discover environments inducing broad generalization.
Current proposals, which divide examples based on their training error, suffer from
one fundamental problem. These methods add hyper-parameters and early-stopping
criteria that are impossible to tune without a validation set with human-annotated
environments, the very information subject to discovery. In this paper, we propose
CROSS-RISK MINIMIZATION (XRM) to address this issue. XRM trains two
twin networks, each learning from one random xhalf of the training data, while
imitating confident held-out mistakes made by its sibling. XRM provides a recipe
for hyper-parameter tuning, does not require early-stopping, and can discover envi-
ronments for all training and validation data. Domain generalization algorithms
built on top of XRM environments achieve oracle worst-group-accuracy, solving
a long-standing problem in out-of-distribution generalization. To access the full
paper, please refer to the arXiv version.

1 Introduction

Researchers have developed a myriad of domain generalization (DG) algorithms [Zhou et al.,
2022, Wang et al., 2021]. These methods consider environment annotations to uncover invariant
(environment-generic) patterns and discard spurious (environment-specific) correlations [Arjovsky
et al., 2019]. As figure 1 shows, the DG algorithm group distributionally robust optimization [Sagawa
et al., 2019, GroupDRO] achieves a worst-group-accuracy of 87%. This outperforms ERM by over
twenty five points, a sizeable gap! While promising, DG algorithms require environment annotations.
These are resource-intensive to obtain, and their relevance to downstream model performance is
limited by the expectations, precision, and perceptual biases of human annotators.

We propose CROSS-RISK MINIMIZATION (XRM), a simple method for environment discovery that
requires no human environment annotations whatsoever. XRM trains two twin label predictors, each
holding-in one random half of the training data. During training, XRM instructs each twin to imitate
confident held-out mistakes made by their sibling. This results in an “echo-chamber” where twins
increasingly rely on bias, converging on a pair of environments that differ in spurious correlation, and
share the invariances that fuel downstream out-of-distribution generalization. After twin training, a
simple cross-mistake formula allows XRM to annotate all of the training and validation examples with
environments. As our experiments show, XRM endows DG algorithms with oracle-like performance
across benchmarks, solving a long-standing problem in out-of-distribution generalization. Returning
to figure 1, we observe that XRM+GroupDRO converges to 87% worst-group-accuracy on Waterbirds,
matching the oracle!
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Figure 1: (a) Waterbirds classification problem, containing four groups: a majority group of waterbirds
in water, landbirds in land, waterbirds in land, and a minority group of landbirds in water. Learning
machines latch onto spurious landscape features. (b) Worst-group-accuracy. (Dotted line) An
ERM baseline ignoring group annotations achieves 61%. (Dashed line) The GroupDRO domain
generalization method with human group annotations achieves 87%. (Dashdot blue line) Prior work
to discover groups requires early-stopping with surgical precision. (Solid red line) Our proposed
XRM enables an oracle performance of 87% at convergence.

2 Learning invariances across environments

In domain generalization (DG), our goal is to build learning systems that perform well beyond the
distribution of the training data. In practical applications, the information at our disposal to address
the DG problem (2) is the training dataset Dtr = {(xi, yi, ei)}ni=1, where (xi, yi) is an input-label
pair drawn from the distribution P ei associated to the training environment ei ∈ Etr. Armed with Dtr,
we approximate (2) by the observable optimization problem

f ∈ argmin
f̃

sup
e∈Etr

Re
n(f̃), (1)

where Re
n(f) =

1
|De

tr |
∑

(xi,yi)∈De
tr
ℓ(f(xi), yi) is the empirical risk [Vapnik, 1998] across the data

De
tr = {(xi, yi) ∈ Dtr : ei = e} from the training environment e ∈ Etr. In practice, the formulation

is as follows: we observe each input xi together with some attribute ei and label yi, and define one
group g ≡ e× y per attribute-label combination. (We use the terms “environment” and “attribute”
interchangeably.) Again, we assume access to one training set of triplets (xi, yi, ei) to learn our
predictor, and one similarly formatted validation set available for hyper-parameter tuning and model
selection purposes.

Despite the promise of DG, the main roadblock towards large-scale domain generalization is their
reliance on humanly annotated environments, attributes, or groups. For more discussions, see A.

Discovering environments. To discover environments, most prior work implements a pipeline
with two phases. On phase-1, train a label predictor and distribute each training example into two
environments, depending on whether the example is correctly or incorrectly classified. On phase-2,
train a DG algorithm on top of the discovered environments. Crucially, one must control the capacity
of the label predictor in phase-1 with surgical precision, such that it relies only on prominent, easier-
to-learn spurious correlations. As a result, proposals for environment discovery differ mainly in how
to control the capacity of the phase-1 label predictor. However regularized, all of these proposal suffer
from one fundamental problem. More specifically, these phase-1 strategies add hyper-parameters
and early-stopping criteria, but remain silent on how to tune them. As illustrated in figure 1 for
Waterbirds, methods like the above discover environments leading to competitive generalization only
when phase-1 is trained for a number of iterations that fall within a knife’s edge.

Prior works keep away from this predicament by assuming a validation set with human environment
annotations. Alas, this defeats the entire purpose of environment discovery. Section B provides
further insights on this topic.
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3 CROSS-RISK MINIMIZATION (XRM)

We propose CROSS-RISK MINIMIZATION (XRM), an algorithm to discover environments without the
need of human supervision. XRM comes with batteries included, namely a recipe for hyper-parameter
tuning and a formula to annotate all training and validation data. As we will show in appendix D,
environments discovered by XRM endow phase-2 DG algorithms with oracle performance.

The blueprint for phase-1 with XRM is as follows. XRM trains two twin label predictors, each
holding-in one random half of the training data (appendix C.1). During training, XRM biases each
twin to absorb spurious correlation by imitating confident held-out mistakes from their sibling (ap-
pendix C.2). XRM chooses hyper-parameters for the twins based on the number of imitated mis-
takes (appendix C.3). Finally, and given the selected twins, XRM employs a simple “cross-mistake”
formula to discover environment annotations for all of the training and validation examples (ap-
pendix C.4). Algorithm 1 serves as a companion to the descriptions below; appendix F contains a
real PyTorch implementation. The runtime of phase-1 with XRM is akin to one ERM baseline on the
training data.

Algorithm 1 CROSS-RISK MINIMIZATION (XRM)
Input: training examples {(xi, yi)}ni=1 and validation examples {(x̃i, ỹi)}mi=1
Output: discovered environments for training {ei}ni=1 and validation {ẽi}mi=1 examples

• Fix held-in training example assignments ma
i ∼ Bernoulli( 12 ) and mb

i = 1−ma
i

• Init two label predictors fa and f b at random; calibrate softmax temperatures on held-in data
• Until convergence:

– Compute held-in softmax predictions pin
i = ma

i f
a(xi) +mb

if
b(xi)

– Compute held-out softmax predictions pout
i = mb

if
a(xi) +ma

i f
b(xi)

– Update fa and f b to minimize the class-balanced held-in cross-entropy loss ℓ(pin, y)

– Flip yi into yout
i = argmaxjp

out
i,j , with prob. (pout

i,yout
i
− 1/nclasses) · nclasses/(nclasses − 1)

• Define cross-mistake function e(x, y) = J(y /∈ argmaxjf
a(x)j) ∨ (y /∈ argmaxjf

b(x)j)K
• Discover training ei = e(xi, yi) and validation ẽi = e(x̃i, ỹi) environments

4 Experiments

Table 1 shows that XRM enables oracle-like worst-group-accuracy across datasets. The performance
gains are remarkable in the challenging ColorMNIST dataset, where XRM perfectly identifies digits
appearing in minority colors, discovering a pair of environments conducive of stronger generalization
than the ones originally proposed by humans.

Table 2 shows the worst-group-accuracy of GroupDRO when built on top of environments as
discovered by different methods. As seen in the previous subsection, XRM achieves 80.4%, nearly
matching oracle performance. The second best method with no access to environment information,
JTT, drops to 58.9%. The best method accessing a validation set with human environment annotations,
AFR, lags far from XRM, with 78%. For further details and discussion on the experiments, see
Section D.

5 Discussion

We have introduced CROSS-RISK MINIMIZATION (XRM), a simple algorithm for environment
discovery. XRM provides a recipe to tune its hyper-parameters, does not require early-stopping, and
can discover environments for all training and validation data—dropping the requirement for human
annotations at all. More specifically, XRM trains two twin label predictors on random halves of the
training data, while encouraging each twin to imitate confident held-out mistakes by their sibling.
This implements an “echo-chamber” that identifies environments that differ in spurious correlation,
and endow domain generalization algorithms with oracle-like performance.
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Table 1: Worst-group-accuracies across datasets and algorithms average over ten random runs, with
XRM showing oracle-level results. Remark 1: Class labels substitute group labels when the latter are
not available. Remark 2: ERM, while not trained with group labels, can still benefit from validation
group labels for hyperparameter tuning, leading to better performance.

ERM GroupDRO RWG SUBG
None Human XRM None Human XRM None Human XRM None Human XRM

Waterbirds 70.4 76.1 75.3 71.7 88.0 86.1 74.8 87.0 84.5 73.0 86.7 76.3
CelebA 62.7 71.9 67.6 68.8 89.1 89.8 70.7 89.5 88.0 68.5 87.1 87.5
MultiNLI 54.8 65.3 65.8 69.7 76.1 74.3 69.3 71.1 73.3 53.7 72.8 71.3
CivilComments 55.1 59.7 61.4 59.3 69.3 71.3 54.0 65.8 73.4 58.7 64.0 72.9
ColorMNIST 10.1 10.1 26.9 10.0 10.1 70.5 10.1 10.2 70.2 10.1 10.0 70.8
MetaShift 70.8 67.7 71.2 70.8 73.7 71.2 66.5 70.8 69.7 70.0 73.5 69.2
ImagenetBG 75.6 76.9 76.9 73.0 76.1 75.9 76.9 76.5 77.0 75.0 75.0 76.4

Average 57.1 61.1 63.6 60.5 68.9 77.0 60.3 67.3 76.6 58.4 67.0 74.9

Table 2: Average/worst accuracies comparing methods for environment discovery. We specify access
to annotations in training data (etr) and validation data (eva). Symbol † denotes original numbers.

Waterbirds CelebA MNLI CivilComments Average
etr eva Avg Worst Avg Worst Avg Worst Avg Worst Avg Worst

✓ ✓
ERM 86.1 76.1 93.5 71.9 78.6 65.3 82.9 59.7 85.3 68.3
GroupDRO 92.6 88.0 93.3 89.1 82.0 76.1 81.4 69.3 87.3 80.6

✗ ✓

ERM† 97.3 72.6 95.6 47.2 82.4 67.9 83.1 69.5 89.6 64.3
LfF† 91.2 78.0 85.1 77.2 80.8 70.2 68.2 50.3 81.3 68.9
EIIL† 96.9 78.7 89.5 77.8 79.4 70.0 90.5 67.0 89.1 73.4
JTT† 93.3 86.7 88.0 81.1 78.6 72.6 83.3 64.3 85.8 76.2
CnC† 90.9 88.5 89.9 88.8 — — — — — —
AFR† 94.4 90.4 91.3 82.0 81.4 73.4 89.8 68.7 89.2 78.6

✗ ✗

ERM 85.3 70.4 94.5 62.7 77.9 54.8 80.9 55.1 84.6 60.8
LfF† 86.6 75.0 81.1 53.0 71.4 57.3 69.1 42.2 77.1 56.9
EIIL† 90.8 64.5 95.7 41.7 80.3 64.7 — — — —
JTT† 88.9 71.2 95.9 48.3 81.4 65.1 79.0 51.0 86.3 58.9
LS† 91.2 86.1 87.2 83.3 78.7 72.1 — — — —
BAM† 91.4 89.1 88.4 80.1 80.3 70.8 88.3 79.3 87.1 79.8
XRM 90.6 86.1 91.8 91.8 78.3 74.3 79.9 71.3 85.2 80.9

We highlight two directions for future work. Firstly, how does XRM relate to the invariance principle
Y ⊥ E | Φ(X)? What is the interplay between revealing relevant labels Y and relevant environments
E as to afford invariance? To our knowledge, XRM is the first environment discovery algorithm
tampering with labels Y , thus exploring invariance—and the violation thereof—from a new angle.
Because relabeling happens with a probability proportional to confidence, we expect model calibration
to play a role in understanding the theoretical underpinnings of XRM, as it happened with other
invariance methods [Wald et al., 2021]. Overall, the theoretical analysis of XRM will call for new
tools, because the optimal solution is a moving target that depends on the dynamic evolution of the
labels, steering away from the Bayes-optimal predictor P (Y | X).

Secondly, we would like to further understand the relationship between XRM and the multifarious
phenomenon of memorization. Good memorization affords invariance (Where did I park my car?),
and therefore depends on the collection of environments deemed relevant. Bad memorization happens
due to “structured over-fitting”, commonly incarnated as a bad learning strategy “use a simple feature
for the majority, then memorize the minority”. XRM seems to attack a similar problem but, how
does it specifically relate to these two flavours of memorization? Does XRM discover environments
that promote features that benefit all examples?
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APPENDIX

A More on Learning invariances across known environments

In domain generalization (DG), our goal is to build learning systems that perform well beyond
the distribution of the training data. To this end, we collect examples under multiple training
environments. Then, DG algorithms search for patterns that are invariant across these training
environments—more likely to hold during test time—while discarding environment-specific spurious
correlations [Arjovsky et al., 2019]. More formally, we would like to learn a predictor f to classify
inputs x into their appropriate labels y, and across all relevant environments e ∈ E :

f ∈ argmin
f̃

sup
e∈E

Re(f̃), (2)

where the risk Re(f) = E(x,y)∼P e [ℓ(f(x), y)] measures the average loss ℓ incurred by the predictor
f across examples from environment e, all of them drawn iid from P e.

In practical applications, the DG problem (2) is under-specified in two important ways. Firstly, we
only get to train on a subset of all of the relevant environments E , called the training environments
Etr ⊂ E . Yet, the quality of our predictor continues to be the worst classification accuracy across all
environments E . Secondly, and for each training environment e ∈ Etr, we do not observe its entire
data distribution P e, but only a finite set of iid examples (xi, yi, ei = e). In sum, the information
at our disposal to address the DG problem (2) is the training dataset Dtr = {(xi, yi, ei)}ni=1, where
(xi, yi) is an input-label pair drawn from the distribution P ei associated to the training environment
ei ∈ Etr. Armed with Dtr, we approximate (2) by the observable optimization problem

f ∈ argmin
f̃

sup
e∈Etr

Re
n(f̃), (3)

where Re
n(f) =

1
|De

tr |
∑

(xi,yi)∈De
tr
ℓ(f(xi), yi) is the empirical risk [Vapnik, 1998] across the data

De
tr = {(xi, yi) ∈ Dtr : ei = e} from the training environment e ∈ Etr.

Environments and groups In its full generality, domain generalization is an admittedly daunting task.
To alleviate the burden, much prior literature considers the simplified version of group shift [Sagawa
et al., 2019]. The problem formulation is equivalent: we observe each input xi together with some
attribute ei and label yi, and define one group g ≡ e× y per attribute-label combination. (We use
the terms “environment” and “attribute” interchangeably.) Again, we assume access to one training
set of triplets (xi, yi, ei) to learn our predictor, and one similarly formatted validation set available
for hyper-parameter tuning and model selection purposes. Next, we put in place one important
simplifying assumption E = Etr, namely no new environments appear during test time. Consequently,
the quality of our predictor can be directly estimated as the worst-group-accuracy in the validation
set. Because most learning algorithms focus on minimizing average training error, oftentimes the
worst-group-accuracy happens to be on the group with the smallest number of examples, also known
as the minority group.

In practice, different DG algorithms [Gulrajani and Lopez-Paz, 2020, Zhou et al., 2022, Wang et al.,
2021, Yang et al., 2023] target different types of invariance, learned across training environments Etr,
assumed to hold across testing environments Ete, and implemented as various innovations to the
objective (3). As discussed in section 1, some DG algorithms outperform, by a large margin, methods
ignoring environment (cf. attribute, group) information, such as ERM.

Despite their promise, the main roadblock towards large-scale domain generalization is their reliance
on humanly annotated environments, attributes, or groups. These annotations are resource-intensive
to obtain. Moreover, the expectations, precision, and perceptual biases of annotators can lead
to environments conducive of sub-optimal out-of-distribution generalization. Different machine
learning models fall prey to different kinds of spurious correlations. In addition, there are plenty
of complex and subtle interactions between environment definition, function class, distributional
shift, and cultural viewpoint [Lopez-Paz et al., 2022]. Therefore, environment annotations are helpful
only when revealing spurious and invariant patterns under the lens of the learning system under
consideration. Could it be possible to design algorithms for the automatic discovery of environments
tailored to the learning machine and data at hand?
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B More on Discovering environments

Nature does not shuffle data—Bottou [2019]

Let us reconsider the problem of domain generalization without access to environment annotations.
This time it suffices to talk about one training distribution P tr and one testing distribution P te. Our
training data is a collection of input-label pairs (xi, yi), each drawn iid from the training distribution.
While the training distribution P tr may be the mixture of multiple environments describing interesting
invariant and spurious correlations, this rich heterogeneity is shuffled together and unbeknown to
us. But, if we could “unshuffle” the training distribution and recover the environments therein, we
could invoke the domain generalization machinery from the previous section and hope for a robust
predictor. This is the purpose of automatic environment discovery.

To discover environments and learn from them, most prior work implements a pipeline with two
phases. On phase-1, train a label predictor and distribute each training example into two environments,
depending on whether the example is correctly or incorrectly classified. On phase-2, train a DG
algorithm on top of the discovered environments. Crucially, one must control the capacity of the label
predictor in phase-1 with surgical precision, such that it relies only on prominent, easier-to-learn
spurious correlations. If the environments discovered in phase-1 differ only in spurious correlation,
as we would like, then the DG algorithm from phase-2 should be able to zero-in on invariant patterns
more likely to generalize to the test distribution P te. On the unlucky side, if phase-1 produces a
zero-training-error predictor, we would be providing phase-2 with one non-vacuous, non-informative
environment—the training data itself!

As a result, proposals for environment discovery differ mainly in how to control the capacity of the
phase-1 label predictor. For example, the too-good-to-be-true prior [Dagaev et al., 2021] employs a
predictor with a small parameter count. Just train twice [Zheran Liu et al., 2021, JTT] and environment
inference for invariant learning [Creager et al., 2020, EIIL] train a phase-1 predictor for a limited
number of epochs. Learning from failure [Nam et al., 2020, LfF] biases the predictor towards the use
of “simple” features by applying a generalized version of the cross entropy loss. Other proposals,
such as learning to split [Bao and Barzilay, 2022, LS] and adversarial re-weighted learning [Lahoti
et al., 2020, ARL] complement capacity control with adversarial games.

However regularized, all of these methods suffer from one fundamental problem. More specifically,
these phase-1 strategies add hyper-parameters and early-stopping criteria, but remain silent on how to
tune them. As illustrated in figure 1 for Waterbirds, methods like the above discover environments
leading to competitive generalization only when phase-1 is trained for a number of iterations that fall
within a knife’s edge. Quickly after that, the performance of the resulting phase-2 system falls off a
cliff, landing at ERM-like worst-group-accuracy.

Prior works keep away from this predicament by assuming a validation set with human environment
annotations. Then, it becomes possible to simply wrap phase-1 and phase-2 into a cross-validation
pipeline that promotes validation worst-group-accuracy. Alas, this defeats the entire purpose of
environment discovery. In fact, if we have access to a small dataset with human environment
annotations, these examples suffice to fine-tune the last layer of a deep neural network towards
state-of-the-art worst-group-accuracy [Izmailov et al., 2022]. Looking forward, could we develop an
algorithm for environment discovery that requires no human annotations whatsoever, and robustly
yields oracle-like phase-2 performance?
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C Details of CROSS-RISK MINIMIZATION (XRM)

C.1 Twin setup, holding-out of data

We start by initializing two twin label predictors fa and f b. Without loss of generality, let these
predictors return softmax probability vectors over the nclasses classes in the training data. We split
our training dataset {(xi, yi)}ni=1 in two random halves. Formally, we construct a pair of training
assignment vectors with entries ma

i ∼ Bernoulli( 12 ) and mb
i = 1 − ma

i , for all i = 1, . . . , n. For
predictor fa, examples with ma

i = 1 are “held-in” and examples with ma
i = 0 are “held-out”;

similarly for f b. Therefore, we will train predictor fa on training examples where ma
i = 1, and

similarly for predictor f b. Before learning starts, we calibrate the softmax temperature of the twins
via Platt scaling [Guo et al., 2017]. See appendix F for implementation details.

By virtue of this arrangement, we may now estimate the generalization difficulty of any example
by looking at the prediction of the twin that held-out such point. This contrasts prior methods
for environment discovery, which consume the entire training data, and may therefore conflate
generalization and memorization. (Relatedly, Feldman and Zhang [2020] proposes a similar “error
when holding-out” construction as a measure of memorization.) Particularly to our interests, if a point
is misclassified when held-out, we see this as evidence of such example belonging to the minority
group. As a last remark, we recommend choosing the twins to inhabit the same function class as the
downstream phase-2 DG predictor. This allows discovering environments tailored to the point of
view of the chosen learning machine.

C.2 Twin training, flipping labels

As figure 1 shows, the test worst-group-accuracy of an ERM baseline on Waterbirds is 62%. This
suggests that, if using ERM to train our twins, each would be able to correctly classify roughly one
half of the minority examples. If using these machines to discover environments based on prediction
errors, we would dilute the spurious correlation evenly across the two discovered environments.
Consequently, it would be difficult for a phase-2 DG algorithm to tell apart between invariant and
spurious patterns. Albeit counter-intuitive, we would like to hinder the learning process of our
twins, such that they increasingly rely on spurious correlation. In the best possible case, the twins
would correctly classify all majority examples and mistake all minority examples, resulting in zero
worst-group accuracy.

To this end, we propose to steer away our twins from becoming empirical risk minimizers as follows.
Let pout

i = mb
if

a(xi) + ma
i f

b(xi) be the held-out softmax prediction for example (xi, yi). Also,
let yout

i = argmaxj p
out
i,j be the held-out predicted class label, equal to the index of the maximum

held-out softmax prediction. Then, at each iteration during the training of the twins,

flip yi into yout
i , with probability (pout

yout
i
− 1/nclasses) · nclasses/(nclasses − 1), (4)

and let each twin take a gradient step to minimize their held-in class-balanced—according to the
moving targets—cross-entropy loss.

The overarching intuition is that the label flipping equation (4) implements an “echo chamber”
reinforcing the twins to rely on spurious correlation. Label flipping happens more often for confident
held-out mistakes and early in training. These are two footprints of spurious correlations, since these
are often easier and faster to capture. (In the context of neural networks, this is often referred to as
a “simplicity bias” [Shah et al., 2020, Pezeshki et al., 2021].) Overall, the purpose of equation (4)
is to transform the labels of the training data such that they do not longer represent the original
classes, but spurious bias. Finally, the adjustment of equation (4) in terms of nclasses ensures low flip
probabilities at initialization, where most mistakes are due to weight randomness, and not due to
spurious correlation.

C.3 Twin model selection, counting label flips

Before discovering environments, we must commit to a pair of twin predictors. Since these have their
own hyper-parameters, XRM would be incomplete without a phase-1 model selection criterion [Gul-
rajani and Lopez-Paz, 2020]. We propose to select the twin hyper-parameters showing a maximum
number of label flips (4) at the last iteration, and across the training data. To reiterate, by “counting
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flips” we simply compare the vector of current labels with the vector of original labels—therefore,
we do not accumulate counts of double or multiple flips per label. To understand why, recall that
each label flip signifies one example that is confidently misclassified when held-out. Therefore, each
label flip is evidence about reliance on spurious correlation, which consequently brings us closer to a
clear-cut identification of the minority group.

C.4 Environment discovery, using cross-mistake formula

Having committed to a pair of twins, we are ready to discover environments for all of our training and
validation examples. In particular, we use a simple “cross-mistake” formula to annotate any example
(x, y) with the binary environment

e(x, y) = J(y /∈ argmaxjf
a(x)j) ∨ (y /∈ argmaxjf

b(x)j)K. (5)

where “∨” denotes logical-OR, and “J K” is the Iverson bracket. If operating within the group-shift
paradigm, finish by defining one group per combination of label and discovered environment. Notably,
the ability to annotate both training and validation examples is a feature inherited from holding-out
data during twin training. More particularly, every example—within training and validation sets—is
held-out for at least one of the two twins, as subsumed in equation (5) by the logical-OR operation.

We are now ready to train the phase-2 DG algorithm of our choice on top of the training data with
environments discovered with XRM. When doing so, we can perform phase-2 DG model selection
by maximizing worst-group-accuracy on the validation data with environments discovered by XRM.

D More on Experiments

Our experimental protocol has three moving pieces: datasets, phase-2 domain generalization algo-
rithms, and the source of environment annotations.

Datasets We consider six standard datasets from the SubpopBench suite [Yang et al., 2023]. These
are the four image datasets Waterbirds [Wah et al., 2011], CelebA [Liu et al., 2015], MetaShift [Liang
and Zou, 2022], and ImageNetBG [Xiao et al., 2020]; and the two natural language datasets
MultiNLI [Williams et al., 2017] and CivilComments [Borkan et al., 2019]. We invite the reader to
Appendix B.1 from Yang et al. [2023] for a detailed description of these. For CelebA, predictors
map pixel intensities into a binary “blonde/not-blonde” label. No individual face characteristics,
landmarks, keypoints, facial mapping, metadata, or any other information was used to train our
CelebA predictors. We also conduct experiments on ColorMNIST [Arjovsky et al., 2019], but keep a
strict protocol. More specifically, we set both training and validation data to contain two environments,
with 0.8 and 0.9 label-color correlation, while the test environment shows 0.1 label-color correlation.
This contrasts Arjovsky et al. [2019], who used the test environment for model selection.

Phase-2 DG algorithms We consider ERM, group distributionally robust optimization [Sagawa et al.,
2019, GroupDRO], group re-weighting [Japkowicz, 2000, RWG], and group sub-sampling [Idrissi
et al., 2022, SUBG]. When group information is available, we tune hyper-parameters and early-
stopping by maximizing worst-group-accuracy. Otherwise, we tune for worst-class-accuracy. Fol-
lowing standard praxis, image datasets employ a pretrained ResNet-50, while text datasets use a
pretrained BERT. For more details, see appendix D.3.

Environment annotations For each combination of dataset and phase-2 DG algorithm, we compare
group annotations from different sources. None denotes no group annotations. Human denotes
ground-truth annotations, as originally provided in the datasets, and inducing oracle performance.
XRM denotes group annotations from the environments discovered by our proposed method. In some
experiments we compare XRM to other environment discovery methods, these being learning from
failure [Nam et al., 2020, LfF], environment inference for invariant learning [Creager et al., 2020,
EIIL], just train twice [Zheran Liu et al., 2021, JTT], automatic feature re-weighting [Qiu et al., 2023,
AFR], and learning to split [Bao and Barzilay, 2022, LS].

Metrics Regardless of how training and validation groups are discovered, we always report test
worst-group-accuracy over the human group annotations provided by each dataset. The tables hereby
presented show averages with error bars over ten random seeds.
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Figure 2: XRM on the Waterbirds problem, concerning waterbirds in water, waterbirds in
land, landbirds in water, landbirds in land. The first panel shows that “percentage of XRM
label flipped at convergence” is a strong indicator of “worst-group-accuracy in phase-2”, making
flips a good criterion to select twin hyper-parameters. The two middle panels show the signed
margin of the twins on each ground-truth group. From each of these class-dependent plots, XRM
discovers two environments: one for points in the “mistake-free” white area, and one for points in
the “cross-mistake” gray areas. Notably, XRM is able to allocate the two smallest groups to
dedicated environments. The fourth panel shows that label flipping happens almost exclusively for
the two smallest groups, and stabilizes as training progresses.

(d) Misclassified deers(c) Well-classified deers(b) Misclassified planes(a) Well-classified planes

Figure 3: Randomly selected images of CIFAR-10 from groups identified by XRM. The twin net-
works show interesting patterns in their mistakes. Notably, well-classified examples are prototypical,
such as planes against blue backgrounds and deers against a green backgrounds.

D.1 Results with error bars

ERM GroupDRO RWG SUBG
None Human XRM None Human XRM None Human XRM None Human XRM

Waterbirds 70.4 ±2.99 76.1 ±2.37 75.3 ±1.96 71.7 ±4.09 88.0 ±2.61 86.1 ±1.28 74.8 ±2.50 87.0 ±1.63 84.5 ±1.53 73.0 ±2.75 86.7 ±1.00 76.3 ±8.41

CelebA 62.7 ±2.73 71.9 ±3.48 67.6 ±3.48 68.8 ±1.29 89.1 ±1.67 89.8 ±1.39 70.7 ±1.32 89.5 ±1.45 88.0 ±2.56 68.5 ±2.13 87.1 ±2.70 87.5 ±2.54

MultiNLI 54.8 ±4.04 65.3 ±3.02 65.8 ±3.41 69.7 ±2.65 76.1 ±1.29 74.3 ±1.88 69.3 ±1.77 71.1 ±1.60 73.3 ±1.56 53.7 ±2.97 72.8 ±0.66 71.3 ±1.58

CivilComments 55.1 ±3.46 59.7 ±5.77 61.4 ±4.48 59.3 ±2.05 69.3 ±2.32 71.3 ±1.35 54.0 ±4.58 65.8 ±6.30 73.4 ±0.93 58.7 ±2.56 64.0 ±7.63 72.9 ±1.12

ColorMNIST 10.1 ±0.51 10.1 ±2.40 26.9 ±2.27 10.0 ±0.51 10.1 ±2.37 70.5 ±0.98 10.1 ±0.51 10.2 ±1.85 70.2 ±1.00 10.1 ±0.51 10.0 ±2.21 70.8 ±1.09

MetaShift 70.8 ±2.99 67.7 ±4.62 71.2 ±3.95 70.8 ±3.91 73.7 ±4.42 71.2 ±4.81 66.5 ±4.55 70.8 ±4.45 69.7 ±4.86 70.0 ±3.38 73.5 ±3.49 69.2 ±5.58

ImagenetBG 75.6 ±3.04 76.9 ±1.89 76.9 ±1.93 73.0 ±3.43 76.1 ±1.40 75.9 ±1.69 76.9 ±2.42 76.5 ±2.65 77.0 ±2.66 75.0 ±3.55 75.0 ±3.55 76.4 ±1.79

D.2 Some visualizations

Figure 2 explores some of the behaviors of XRM on the Waterbirds dataset. In particular, the left
panel justifies the use of “percentage of label flipped at convergence” as a phase-1 model selection
criterion for XRM, as it correlates strongly with downstream phase-2 worst-group-accuracy. The two
middle panels showcase the clear separation of the minority group “landbirds/water” by XRM, as
no landbirds in land are in the cross-mistake area. The right panel shows that label flipping happens
almost exclusively for minority groups, and converges alongside XRM training. This provides XRM
with a degree of stability, removing the need for intricate early-stopping criteria.

Figure 3 applies XRM to the CIFAR-10 dataset [Krizhevsky et al., 2009]. While CIFAR-10 does not
contain environment annotations, the discovered environments by XRM for the “plane” and “deer”
classes reveal one interesting spurious correlations, namely background color. As a final remark,
we ablated the need for (i) holding-out data, and (ii) performing label flipping, finding that both
components are essential to the performance of XRM.
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D.3 Further Experimental details

We follow the experimental protocol of SubpopBench [Yang et al., 2023]. Therefore, image datasets
use a pretrained ResNet-50 [He et al., 2016] unless otherwise mentioned, and text datasets use a
pretrained BERT [Devlin et al., 2018]. All images are resized and center-cropped to 224× 224 pixels,
and undergo no data augmentation. We use SGD with momentum 0.9 to learn from image datasets
unless otherwise mentioned, and we employ AdamW [Loshchilov and Hutter, 2017] with default
β1 = 0.9 and β2 = 0.999 for text benchmarks. For the ColorMNIST experiment [Arjovsky et al.,
2019], we train a three-layer fully-connected network with layer sizes [2∗14∗14, 300, 300, 2] and use
ReLU as the activation function. The network is optimized using the Adam optimizer with a learning
rate of 1e− 3, and default parameters β1 = 0.9 and β2 = 0.999. For the experiment on CIFAR-10
[Krizhevsky et al., 2009], we train a VGG-16 model [Simonyan and Zisserman, 2014] using SGD
with a learning rate of 1e− 2 and a momentum of 0.9 We train XRM and phase-2 algorithms for a
number of iterations that allows convergence within a reasonable compute budget. These are 5,000
steps for Waterbirds and Metashift, 10,000 steps for ImageNetBG, 20,000 steps for MultiNLI, and
30,000 steps for CivilComments.

D.4 Phase-1 XRM model selection

For phase-1, we run XRM with 16 random combinations of hyper-parameters, each over k1 = 10
random seeds. (We repeat runs with null accuracy on one of the classes.) For each of the 16 hyper-
parameter combinations, we average the number of flipped labels appearing at the last iteration
(early-stopping is not necessary with XRM) across the 10 seeds. This will tell us which one of the 16
hyper-parameter combinations is best. For that combination, we average the training and validation
logit matrices across the 10 random seeds. Finally, we discover environments using equation (5).

D.5 Phase-2 DG model selection.

For all phase-2 domain generalization algorithms (ERM, SUBG, RWG, GroupDRO), we search
over 16 random combinations of hyper-parameters. We select the hyper-parameter combination
and early-stopping iteration yielding maximal worst-group-accuracy (or, in the absence of groups,
worst-class-accuracy). We re-run the best hyper-parameter combination for k2 = 10 random seeds
to report avg/std for test worst-group-accuracies (always computed with respect to the ground-truth
group annotations). The k1 random seeds from phase-1 do not contribute to error bars.

D.6 Hyper-parameter sampling grids

algorithm hyper-parameter ResNet BERT

learning rate 10Uniform(−4,−2) 10Uniform(−5.5,−4)

XRM, ERM, weight decay 10Uniform(−6,−3) 10Uniform(−6,−3)

SUBG, RWG batch size 2Uniform(6,7) 2Uniform(3,5.5)

dropout — Random([0, 0.1, 0.5])

GroupDRO η 10Uniform(−3,−1) 10Uniform(−3,−1)

E Learning to Split on Waterbirds

We benchmarked the official learning to split code-base https://github.com/YujiaBao/ls
on the WaterBirds dataset. We assessed the method’s sensitivity to two hyperparameters: the number
of epochs used for early stopping (patience argument in the codebase) and the pre-supposed ratio
of groups (based on the ratio argument in the code). For patience we swept over (2, 5, 10) with
5 being the default value. For ratio, we swept over (0.25, 0.5, 0.75) with 0.75 being the default
value based on the paper. We found worst group performance using a fixed GroupDRO phase-2
training varied by as much as ±7% on Waterbirds.

12

https://github.com/YujiaBao/ls


F XRM in PyTorch

1 import torch
2

3 def balanced_cross_entropy(p, y):
4 losses = torch.nn.functional.cross_entropy(p, y, reduction="none")
5 return sum([losses[y == yi].mean() for yi in y.unique()])
6

7 def xrm(x_tr, y_tr, x_va, y_va, lr=1e-2, max_iters=1000):
8 # init twins, assign examples, and calibrate (Section 4.1)
9 nc = len(y_tr.unique())

10 net_a = torch.nn.Linear(x_tr.size(1), nc)
11 net_b = torch.nn.Linear(x_tr.size(1), nc)
12 ind_a = torch.zeros(len(x_tr), 1).bernoulli_(0.5).long()
13

14 # Platt temperature scaling
15 temp_a = torch.nn.Parameter(torch.ones(1, nc))
16 temp_b = torch.nn.Parameter(torch.ones(1, nc))
17 logits_a = net_a(x_tr).detach()
18 logits_b = net_b(x_tr).detach()
19 cal = torch.optim.SGD([temp_a, temp_b], lr)
20

21 for iteration in range(max_iters):
22 logits = logits_a / temp_a * ind_a + logits_b / temp_b * (1 - ind_a)
23 cal.zero_grad()
24 balanced_cross_entropy(logits, y_tr).backward()
25 cal.step()
26

27 net_a.weight.data.div_(temp_a.t().detach())
28 net_b.weight.data.div_(temp_b.t().detach())
29

30 # training (Section 4.2)
31 opt = torch.optim.SGD(
32 list(net_a.parameters()) + list(net_b.parameters()), lr)
33

34 for iteration in range(max_iters):
35 pred_a, pred_b = net_a(x_tr), net_b(x_tr)
36 pred_hi = pred_a * ind_a + pred_b * (1 - ind_a)
37 pred_ho = pred_a * (1 - ind_a) + pred_b * ind_a
38

39 opt.zero_grad()
40 balanced_cross_entropy(pred_hi, y_tr).backward()
41 opt.step()
42

43 # label flipping, useful for model selection (Section 4.3)
44 p_ho, y_ho = pred_ho.softmax(dim=1).detach().max(1)
45 is_flip = torch.bernoulli((p_ho - 1 / nc) * nc / (nc - 1)).long()
46 y_tr = is_flip * y_ho + (1 - is_flip) * y_tr
47

48 # environment discovery (Section 4.4)
49 cm = lambda x, y: torch.logical_or(
50 net_a(x).argmax(1).ne(y),
51 net_b(x).argmax(1).ne(y)).long().detach()
52

53 return cm(x_tr, y_tr), cm(x_va, y_va)

The code above may be helpful to clarify our exposition in the main text. For an end-to-end example
running linear XRM and GroupDRO, see: https://pastebin.com/0w6gsxQw.
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