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ABSTRACT

Multimodal regression aims to predict a continuous target from heterogeneous input sources and
typically relies on fusion strategies such as early or late fusion. However, existing methods lack
principled tools to disentangle and quantify the individual contributions of each modality and their
interactions, limiting the interpretability of multimodal fusion. We propose a novel multimodal
regression framework grounded in Partial Information Decomposition (PID), which decomposes
modality-specific representations into unique, redundant, and synergistic components. The basic
PID framework is inherently underdetermined. To resolve this, we introduce inductive bias by en-
forcing Gaussianity in the joint distribution of latent representations and the transformed response
variable (after inverse normal transformation), thereby enabling analytical computation of the PID
terms. Additionally, we derive a closed-form conditional independence regularizer to promote the
isolation of unique information within each modality. Experiments on six real-world datasets, in-
cluding a case study on large-scale brain age prediction from multimodal neuroimaging data, demon-
strate that our framework outperforms state-of-the-art methods in both predictive accuracy and in-
terpretability, while also enabling informed modality selection for efficient inference.

1 INTRODUCTION

Multimodal regression has become increasingly important due to its ability to effectively integrate heterogeneous data
sources to predict a continuous target, and has found applications across a wide range of domains. In healthcare
diagnostics, for example, it leverages medical imaging and clinical text data to predict patient outcomes such as
survival time and disease severity scores (Soenksen et al., 2022). In sentiment analysis, models combine audio,
visual, and textual information to assess human emotions and opinions more accurately (Soleymani et al., 2017). To
support such tasks, various multimodal fusion paradigms have been proposed, ranging from widely used attention-
based mechanisms (Hori et al., 2017; Tsai et al., 2019) to more recent methods grounded in the information bottleneck
(IB) principle (Tishby et al., 2000; Mai et al., 2022). Despite its performance gains, multimodal regression often faces
substantial interpretability challenges, particularly at the modality level. For example, in sentiment prediction, several
critical questions arise: Does the audio modality contribute more predictive power than text? Do audio and video
modalities create a synergistic effect that enhances the final decision, or are they largely redundant, such that a single
modality is sufficient for reliable predictions? The lack of clarity regarding the specific contributions and interactions
of modalities undermines model trustworthiness, transparency, and practical applicability in real-world settings (Das
& Rad, 2020; Tsankova et al., 2015).

The partial information decomposition (PID) framework (Kraskov et al., 2004; Kolchinsky, 2022; Williams & Beer,
2010), originally developed in neuroscience, offers a formal approach to quantify how two random variables x1 and x2

interact with a third variable y by decomposing the mutual information I(x1, x2; y) between (x1, x2) and y into four
non-negative components: two unique information terms, U1 and U2, which capture the individual contributions of x1

and x2; a synergy term S, representing information that emerges only from the joint knowledge of both variables; and a
redundancy term R, which reflects information about y that is attainable by either x1 or x2. This elegant decomposition
makes PID a promising tool for analyzing how multimodal interactions contribute to predictive outcomes. However,
its application in multimodal learning remains limited and underexplored (Liang et al., 2023; Xin et al., 2025), largely
due to the underdetermined nature of the decomposition, which leads to intractable optimization when dealing with
continuous and high-dimensional variables.

This work presents PIDReg, a novel multimodal regression framework that enables the computation of PID and seam-
lessly integrates it into an end-to-end learning process. The key idea is to enforce the joint distribution of the learned
modality-specific representations and the target response variable (after the inverse normal transformation (Conover,
1999)) to follow a multivariate Gaussian, thereby enabling an analytical PID solution even in high-dimensional set-
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tings. To support this, we introduce two regularization terms: one that promotes Gaussianity and another that en-
courages the uniqueness of information captured by each modality-specific encoder. Both are formulated using the
recently re-emerged Cauchy–Schwarz (CS) divergence (Yu et al., 2025; 2024b). To summarize:

1. We propose a generic PID-based multimodal regression framework that ensures interpretability by revealing
the contributions of individual modalities and their high-order interactions to the output.

2. We develop an analytically tractable optimization scheme for PIDReg for continuous and high-dimensional
variables, incorporating Gaussianity enforcement via the Shapiro–Wilk test (Shapiro & Wilk, 1965) and a CS
divergence-based conditional independence regularization.

3. Extensive experiments on six real-world applications from diverse domains, including healthcare, physics,
affective computing, and robotics, and covering both univariate and multivariate prediction tasks, demonstrate
that PIDReg outperforms six state-of-the-art methods in terms of both predictive accuracy and interpretability.

2 RELATED WORK

2.1 FUSION STRATEGIES IN MULTIMODAL LEARNING

Various fusion paradigms have been proposed for multimodal learning (Li & Tang, 2024). Early fusion, also known
as feature-level fusion, combines modalities either by concatenating raw features (Ortega et al., 2019) or integrating
modality-specific embeddings (Mai et al., 2022; Tsai et al., 2019; Zadeh et al., 2017). Late fusion, or decision-level
fusion, trains separate models per modality and aggregates their predictions (Huang et al., 2020). In addition, hybrid
fusion strategies combine the merits of early and late fusion to exploit their complementary advantages (Hemker et al.,
2024).

Among these, feature-level fusion is widely used in multimodal learning, as it captures rich semantic interactions
between modalities before prediction. Beyond simple concatenation, advanced techniques compute tensor products of
modality-specific representations to model higher-order interactions (Fukui et al., 2016; Zadeh et al., 2017), or apply
gating and attention mechanisms (Hori et al., 2017; Kiela et al., 2018; Tsai et al., 2019). However, feature-level fusion
methods can be vulnerable to noisy or corrupted modalities, which may significantly degrade overall performance (Ma
et al., 2021). To mitigate this issue, our framework constructs the joint representation as a linear combination of
modality-specific embeddings, complemented by a pseudo representation explicitly designed to capture high-order
(i.e., synergistic) interactions. The use of linear fusion weights offers full interpretability, enabling dynamic modality
selection: when a modality is unreliable, its contribution to the final prediction is naturally suppressed.

2.2 INTERPRETABILITY IN MULTIMODAL LEARNING

The heterogeneity of multimodal data, combined with their complex interdependencies, makes it challenging to in-
terpret the prediction process and disentangle the contribution of each modality to the final decision (Liang et al.,
2024; Binte Rashid et al., 2024). Several conventional explainable artificial intelligence (XAI) approaches can be
straightforwardly extended to the multimodal setting (Rodis et al., 2024). For example, DIME (Lyu et al., 2022) ap-
plies LIME (Ribeiro et al., 2016) separately to each unimodal contribution and their interactions, assuming that the
multimodal model is formed as an aggregation of these components. In another study (Wang et al., 2021), image
data and metadata are jointly used for skin lesion diagnosis, where Grad-CAM (Selvaraju et al., 2017) is employed
to interpret the image features, while kernel SHAP (Lundberg & Lee, 2017) is applied to explain the contribution of
metadata. Recently, Zhu et al. (2025) and Wang et al. (2023) apply the information bottleneck (IB) principle (Tishby
et al., 2000) to cross-modal feature attribution, improving interpretability in vision-language models (Radford et al.,
2021) by filtering task-irrelevant information. However, these methods are fundamentally limited by their reliance on
post-hoc explanations, applied only after model training. This creates a risk of inconsistency between the explanations
and the model’s actual decision-making process, raising concerns about their faithfulness (Das & Rad, 2020).

In contrast to existing methods that primarily offer instance-level interpretability in a post-hoc fashion, our approach
emphasizes intrinsic interpretability by embedding explanatory mechanisms directly into the model design. This en-
ables more transparent decision logic and direct explanations. Specifically, our method focuses on modality-level
interpretability, identifying which modalities or cross-modal interactions are most critical to the decision-making pro-
cess.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Target

Variables

𝑝 𝑋2 𝑝 𝑍2

𝑝 𝑌

𝑝 𝑋1

𝑋1 𝑍1

𝑋2 𝑍2

𝑌𝑌(𝑅𝑎𝑤)

Gaussianization

𝑝 𝑌

Gaussian PID Module

𝑍1 𝑍2 𝑌

Joint Distribution

Fusion

𝑍

⊙+ +
𝑊1 𝑊3 𝑊2

Predictor

෠𝑌

𝑝 𝑋1

𝑝 𝑋2

𝑝 𝑍1

𝒩
Joint

Distribution

Correlation

Extraction

Leakage
ℒ𝐶𝑀𝐼
1

ℒ𝐺𝑎𝑢𝑠𝑠

𝑝 𝑋2

𝑝 𝑋1

𝑝 𝑍1

ℒ𝐶𝑀𝐼
2

Correlation

Extraction

Leakage

Audio

Video

Encoder

Encoder

Encoder

ℎϕ1

ℎϕ2 𝑓𝜃 

𝑝 𝑍1

𝒩

ℒc𝑠
1

ℒc𝑠
2

𝒩

𝑺

𝑼𝒁𝟏 𝑹 𝑼𝒁𝟐

Encoder 

𝐼 Y 𝑍1, 𝑍2

𝑝 𝑍1, 𝑍2, 𝑌

Regularizations

Figure 1: Framework of Partial Information Decomposition for Multimodal Regression (PIDReg), illustrated with
video and audio modalities, where P (X1), P (X2), and P (Y ) denote empirical data distributions that may deviate
from Gaussianity (e.g., skewed or heavy-tailed).

3 PIDREG: PARTIAL INFORMATION DECOMPOSITION FOR MULTIMODAL REGRESSION

3.1 OVERALL FRAMEWORK

Our PIDReg framework shown in Fig. 1 comprises two stochastic, modality-specific encoders, hφ1
and hφ2

; an inter-
pretable PID-guided feature fusion module; and a predictor fθ operating on the fused features. Additional regularizers,
including uniqueness information regularization and joint Gaussian regularization, are applied to ensure a rigorous im-
plementation.

Given two modality–specific embeddings R1 = hϕ1
(X1), R2 = hϕ2

(X2) in Rd, we introduce an adaptive linear–noise
information bottleneck (IB) (Schulz et al., 2020) to regulate the information flow in each modality and enhance gen-
eralization. For each modality m ∈ {1, 2}, we compute empirical batch statistics mean vector µRm

and covariance
matrix ΣRm

and sample Gaussian noise ϵm ∼ N (µRm
,ΣRm

) matched to Rm. The bottleneck output is then defined
by a convex interpolation:

Zm = λmRm + (1− λm)ϵm, (1)

where λm ∈ (0, 1) is a trainable scalar. When λm ≈ 1, Rm is preserved; when λm ≈ 0, it is replaced by homoscedas-
tic noise with identical first and second moments, effectively pushing I(Zm;Xm) toward zero. This formulation elim-
inates the need for reparameterization (Kingma et al., 2014) and enables an end-to-end learning of bottleneck strength
while maintaining input variance for stable training. Further analysis on the effectiveness of this IB regularization,
together with an ablation study, is provided in Appendix D.3.

After extracting modality-specific embeddings Z1 and Z2, we aim to construct a fused representation Z as a linear
combination of Z1, Z2, and Z̃:

Z = w1Z1 + w2Z2 + w3Z̃, s.t. Z̃ = Z1 ⊙ Z2, (2)

where Z̃ captures the synergistic effect that emerges only from the joint interaction between the two modalities. We
expect the weights w1, w2, and w3 to accurately reflect the contributions of Z1, Z2, and Z̃, respectively, thereby
enhancing interpretability. The estimation of these weights is detailed in Section 3.1.1. The fused representation Z is
passed through a predictor fθ to generate final output.

In this work, we model the synergistic effect using the Hadamard (i.e., element-wise) product, defined as Z̃ = Z1⊙Z2.
When synergy arises from feature-specific dependencies, and Z1 and Z2 are regularized to encode primarily unique
information (see Section 3.1.3), their element-wise product highlights cross-dimensional couplings between these
unique components, which aligns with the concept of synergy. In practice, the Hadamard product is widely used to
model interactions between two drug representations for drug synergy prediction (Al-Rabeah & Lakizadeh, 2022; Yang
et al., 2023). It has also been employed to fuse image and text representations in visual question answering (Fukui
et al., 2016; Kim et al., 2016) and multimodal sentiment analysis (Zadeh et al., 2017).
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3.1.1 EXPLAINABLE FEATURE FUSION WITH GAUSSIAN PID

Given two random variables Z1 and Z2, and a target variable Y with joint distribution PZ1Z2Y , the total information
that (Z1, Z2) provides about Y is quantified by the mutual information I(Y ;Z1, Z2). The PID framework further
decomposes this quantity into four non-negative components (Williams & Beer, 2010):

I(Y ;Z1, Z2) = UZ1 + UZ2 +R+ S

I(Y ;Z1) = UZ1
+R

I(Y ;Z2) = UZ2
+R,

(3)

where UZ1
and UZ2

denote the information uniquely provided by Z1 and Z2, respectively. The term S captures the
synergistic information that arises only through the joint interaction of Z1 and Z2, and cannot be obtained from either
alone. The term R represents the redundant information that is available in both Z1 and Z2 and can be extracted from
either. Note that the redundancy in PID should not be confused with redundancy in decision-making contexts. Instead,
it means that the same informative content about Y is accessible through either Z1 or Z2, so once one source provides
it, the other does not need to do so.

Although Eq. (3) provides a framework for interpretability through information decomposition, it defines four com-
ponents with only three equations, resulting in an underdetermined system that admits infinitely many non-negative
solutions. To resolve this ambiguity, one of the partial information components must be formally specified. In this
work, we adopt the concept of union information I∪(Y : Z1;Z2) := UZ1

+ UZ2
+ R (Bertschinger et al., 2014),

which introduces an additional equation constraining the sum of unique information and redundancy through a con-
strained optimization problem. This additional constraint renders the system fully determined and enables a unique
decomposition.
Definition 1 (Union Information (Bertschinger et al., 2014)). The union information about Y present in both Z1 and
Z2 is given by:

Ĩ∪(Y : Z1;Z2) := min
Q∈∆P

IQ(Y ;Z1, Z2), (4)

where ∆P := {QY Z1Z2
: QY Z1

= PY Z1
, QY Z2

= PY Z2
}, and IQ is the mutual information under the joint

distribution QY Z1Z2
. The remaining PID terms follow Eq. (3).

However, optimizing Eq. (4) for high-dimensional variables is computationally infeasible. To simplify the problem,
we restrict the search space of ∆P in Eq. (4) and assume that the joint distribution PZ1Z2Y ∼ N (µ,ΣP ) is mul-
tivariate Gaussian, which enables closed-form expressions for mutual information terms in Eq. (3). For instance,
I(Y ;Z1, Z2) =

1
2 log

(
det(ΣZ1Z2

)

det(ΣZ1Z2|Y )

)
. Note that this Gaussian assumption is not imposed on the original input data

X1, X2, or Y , but rather on the latent representations. Consequently, PIDReg fully accommodates real-world phe-
nomena such as heavy tails, skewness, and even highly multimodal distributions, as demonstrated in our experiments.
Further clarification of the Gaussian assumption rationale is provided in the Appendix A.1. This Gaussian assumption
greatly simplifies the optimization and allows the problem in Eq. (4) to be reformulated as (Venkatesh et al., 2023):

Ĩ∪G(Y : Z1;Z2) := min
Σ

Q
Z1Z2|Y

1

2
log det

(
I + σ−2

Y

[
ΣP

Y Z1

ΣP
Y Z2

]T (
ΣQ

Z1Z2|Y

)−1
[
ΣP

Y Z1

ΣP
Y Z2

])
s.t. ΣQ

Z1Z2|Y ⪰ 0, (5)

which is amenable to projected gradient descent (Riedmiller & Braun, 1993) and admits an analytical gradient. We
refer interested readers to (Venkatesh et al., 2023) for more details.

After solving Eqs. (3) and (5), the fusion weights in Eq. (2) are computed based on the PID components. Since
the redundancy R can be attributed to either modality-specific representation, we introduce a binary variable ξ ∼
Bernoulli(0.5) during training to stochastically control the assignment. The weights are computed as:

w1 =
UZ1 + ξR

T
, w2 =

UZ2
+ (1− ξ)R

T
, w3 =

S

T
, where T = UZ1 + UZ2 + S +R. (6)

This stochastic formulation ensures symmetric sharing of redundancy, reduces bias toward either modality. Note that,
the above mechanism can be naturally extended to more than two modalities, as further discussed in the Appendix F.

3.1.2 GAUSSIAN REGULARIZATION OF THE JOINT DISTRIBUTION PZ1Z2Y

To encourage the marginal distribution p(Zm) to resemble a Gaussian, we adopt the CS divergence (Jenssen et al.,
2006; Yu et al., 2025), which has recently gained renewed attention in representation learning (Tran et al., 2022; Yu
et al., 2024b). It is defined as:

DCS(p(z); q(z)) = log

(∫
q(z)2 dz

)
+ log

(∫
p(z)2 dz

)
− 2 log

(∫
p(z)q(z) dz

)
. (7)
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The motivation for using CS divergence, rather than the popular Kullback-Leibler (KL) divergence and maximum
mean discrepancy (MMD) (Gretton et al., 2012), is discussed in the Appendix A.2.

In our setting, p(z) denotes the probability density function of Zm, q(z) ∼ N (0, I) represents an isotropic Gaussian.
Empirically, given M samples {zpi }Mi=1 drawn from p(zm) and N samples {zqj }Nj=1 drawn from N (0, I), the CS
divergence DCS(p(z);N (0, I)) can be estimated as (Jenssen et al., 2006):

D̂CS(p(z);N (0, I)) = log

(∑M
i,j=1 κ(z

p
i , z

p
j )

M2

)
+ log

(∑N
i,j=1 κ(z

q
i , z

q
j )

N2

)
− 2 log

(∑M
i=1

∑N
j=1 κ(z

p
i , z

q
j )

MN

)
, (8)

where κ is a kernel function with width σ such as Gaussian κ(zi, zj) = exp
(
−∥zi−zj∥2

2σ2

)
. Owing to the symmetry of

the CS divergence, the regularization on p(Z1) and p(Z2) is formulated as:

LCS = D̂CS(p(z1);N (0, I)) + D̂CS(p(z2);N (0, I)). (9)

Additionally, we apply a rank-based, outlier-aware inverse normal transformation (Conover, 1999) to the target vari-
able Y to approximate a normal distribution. However, regularizing the marginal distributions PZm and PY does not
ensure that the joint distribution PZ1Z2Y of Z1, Z2, and Y is multivariate Gaussian. To address this, we further intro-
duce a regularization term LGauss to promote joint normality. Following Palmer et al. (2018), we apply whitening and
vectorization to convert the multivariate Gaussianity test into a univariate Shapiro-Wilk (SW) test (Shapiro & Wilk,
1965).

We construct a feature matrix F = {fi}ni=1 with fi = [Yi, Z1,i, Z2,i]
⊤ ∈ R2d+1, compute its sample mean f̄ and

covariance matrix S, and apply the whitening transformation:

fw
i = S− 1

2 (fi − f̄). (10)

Under the Gaussian assumption, the whitened samples fw
i should follow fw

i ∼ N2d+1(0, I).

We then vectorize the whitened matrix Fw = [fw
1 , . . . , fw

n ]⊤ ∈ Rn×(2d+1) as:

fvec = vec(Fw) =
(
fw
11, f

w
12, . . . , f

w
1(2d+1), f

w
21, . . . , f

w
n(2d+1)

)⊤
∈ Rn(2d+1)×1. (11)

The final SW test statistic is given by:

W =

n(2d+1)∑
i=1

aif
w
(i)

2 / n(2d+1)∑
i=1

(fw
i − f̄w)2 (12)

where fw
(i) is the i-th order statistic and ai are coefficients under the standard normal distribution. If W < Wα(n(2d+

1)) at significance level α, the null hypothesis H0 (normality) is rejected.

The regularization term is defined as:
LGauss = − log(W ), (13)

which approaches zero as W → 1 (ideal Gaussianity), and increases otherwise.

3.1.3 REGULARIZING FOR UNIQUE INFORMATION EXTRACTION

To ensure that Z1 and Z2 primarily capture unique information from their respective modalities, we introduce an
additional regularization term that explicitly minimizes the conditional mutual information (CMI) I(Z1;X2|X1) and
I(Z2;X1|X2). For example, minimizing I(Z1;X2|X1) reduces the information that Z1 retains about X2 beyond what
is already explained by X1. This encourages Z1 to encode only information specific to X1 that is independent of X2.

From a probabilistic perspective, the conditional independence between Z1 and X2 given X1 implies that
p(Z1|X1, X2) = p(Z1|X1). By the definition of conditional probability, this can be reformulated as the identity
p(X1, X2, Z1)p(X1) = p(X1, X2)p(X1, Z1). This observation again motivates the use of the CS divergence in
Eq. (7) to measure the closeness between these two joint distributions as a proxy for conditional independence:

ICS(Z1;X2|X1) = DCS(p(X1, X2, Z1)p(X1); p(X1, X2)p(X1, Z1)). (14)

Importantly, this approach enables a closed-form estimation of CMI, as demonstrated in Proposition 1.

5
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Proposition 1. Given N observations {x1,i,x2,i, z1,i}Ni=1 drawing from an unknown and fixed joint distribution
p(X1, X2, Z1) in which x1,i ∈ Rd1 , x2,i ∈ Rd2 , and z1,i ∈ Rd. Let M ∈ RN×N be the Gram (a.k.a., kernel) matrix

for variable X1, that is, Mji = exp
(
−∥x1,j−x1,i∥2

2

2σ2

)
, in which σ is the kernel width. Likewise, let K ∈ RN×N and

L ∈ RN×N be the Gram matrices for variables X2 and Z1, respectively. The empirical estimator of Eq. (14) is given
by:

ÎCS(Z1;X2|X1) = −2 log

(
N∑

j=1

((
N∑
i=1

Mji

)(
N∑
i=1

KjiMji

)(
N∑
i=1

LjiMji

)))
+

log

 N∑
j=1

( N∑
i=1

KjiLjiMji

)(
N∑
i=1

Lji

)2
+ log

 N∑
j=1


(∑N

i=1 KjiLji

)2 (∑N
i=1 LjiMji

)2(∑N
i=1 KjiLjiMji

)

 .

(15)

Estimator to I(Z2;X1|X2) can be derived similarly. Our final regularization is expressed as:

LCMI = Î(Z1;X2|X1) + Î(Z2;X1|X2). (16)

3.2 OPTIMIZATION AND ALGORITHM

The overall loss function of our PIDReg framework is expressed as follows:

L = Lpred + λ1LCS + λ2LCMI + λ3LGauss, (17)

where λ1, λ2, and λ3 are regularization weights. Here, Lpred denotes the mean squared error (MSE) between the
ground-truth y and the prediction ŷ, while LCS, LCMI, and LGauss are defined earlier.

Formally, the optimization problem can be expressed as:

min
θ,φ1,φ2,w

L(fθ, hφ1
, hφ2

,w), (18)

where w = [w1, w2, w3]
T denotes fusion parameters (see Eq. (6)).

We design a two-stage optimization strategy based on the observation that the fusion parameter w typically converges
faster than the network parameters. In Stage I, all parameters are updated in an end-to-end manner. Once w stabilizes
or exhibits temporal consistency, we move to Stage II, where we optimize the following objective:

min
θ,φ1,φ2

L(fθ, hφ1 , hφ2 ,w
∗), (19)

where w∗ denotes the optimal fusion weight obtained at the end of Stage I.

In Stage II, the predictor fθ and modality-specific encoders hφm
are updated according to Eq. (20) and Eq. (21),

respectively:
f
(t+1)
θ = f

(t)
θ − ηpred∇fθLpred, (20)

and,
h(t+1)
φm

= h(t)
φm
− ηencoder∇hφm

(λ1Lm
CS + λ2Lm

CMI + λ3LGauss). (21)

We refer interested readers to Appendix C for a detailed description of the full algorithm, and to Appendix D.1 for an
ablation study of the regularization components.

4 EXPERIMENTS

4.1 EXPERIMENTS ON SYNTHETIC DATA

We first demonstrate the properties of our model on synthetic data, where the trade-offs between redundancy, synergy,
and unique information are controllable. First, latent variables representing redundancy and unique information are
independently sampled from a standard normal distribution: R, U1, U2 ∼ N (0, 1). The latent pair [R, U1] is then
nonlinearly projected into a higher-dimensional observation space via a multi-layer perceptron (MLP):

X1 = tanh
(
[R,U1]W

(1) + b(1)
)
W (2) + b(2) + ε1, ε1 ∼ N (0, σ2

1Id1), (22)
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Figure 2: Estimated PID values when (a) wu1 = 0, wu2 = 0, ws = 0.75, wr = 0.25; (b) wu1 = 0, wu2 = 0,
ws = 0.50, wr = 0.50; (c) wu1 = 0, wu2 = 0, ws = 0.25, wr = 0.75; (d) wu1 = 0, wu2 = 0.80, ws = 0.10,
wr = 0.10; (e) wu1 = 0.80, wu2 = 0, ws = 0.10, wr = 0.10.

where the weights and biases are defined as W (1) ∈ R2×h1 , b(1) ∈ Rh1 , W (2) ∈ Rh1×d1 , and b(2) ∈ Rd1 , with all
parameters initialized from N (0, α2). The second modality X2 is generated analogously by applying an independent
MLP to the latent pair [R, U2], producing X2 ∈ Rd2 .

The target variable Y is then constructed from these informational components through:
Y = wr tanh(R) + wu1 sin(U1) + wu2 sin(U2) + ws U1U2 + ε, ε ∼ N (0, σ2

ε), (23)
where the product U1U2 synergistically influence Y . By adjusting the weights wr, wu1, wu2, and ws, the relative
contributions of redundancy, uniqueness, and synergy can be explicitly controlled. Experimental results in Fig. 2 show
that PIDReg accurately estimates the relative strengths of the underlying generative factors, as reflected by the positive
correlation with the true weights (i.e., the monotonic trend of S/R with respect to ws/wr) and the near-zero value of
U when wu ≈ 0. Please refer to Appendix G.4.3 for a significance test and a detailed description.

4.2 REAL-WORLD MULTIMODAL REGRESSION

To rigorously evaluate the effectiveness and interpretability of the proposed PIDReg framework, we conduct compre-
hensive experiments on six real-world datasets spanning diverse domains, including healthcare, physics, affective com-
puting, and robotics, covering both univariate and multivariate prediction tasks. For empirical comparison, PIDReg is
evaluated against state-of-the-art multimodal learning methods, including MIB (Mai et al., 2022), MoNIG (Ma et al.,
2021), MEIB (Zhang et al., 2022), and DER (Amini et al., 2020). For large-scale datasets, we additionally compare
with CoMM (Dufumier et al., 2025), a recent method that incorporates PID into multimodal contrastive learning. The
performance of different approaches is evaluated on the test set using Root Mean Square Error (RMSE) and Pearson
Correlation Coefficient (Corr). Experimental details are provided in the Appendix E.

CT Slices (Graf & Cavallaro, 2011) is a medical imaging dataset that integrates two modalities derived from 53,500
CT slices across 74 patients: bone structure histograms (240 features) and air inclusion histograms (144 features).
The regression target is the axial position along the cephalocaudal axis, ranging from 0 (cranial vertex) to 180 (plantar
surface). The dataset is split into 70% training, 10% validation, and 20% test sets. As shown in Table 1, our PIDReg
achieves the lowest RMSE and highest correlation.

Metric MIB MoNIG MEIB DER PIDReg

RMSE ↓ 1.801 1.490 1.258 0.847 0.626
Corr ↑ 0.997 0.996 0.999 1.000 1.000

Metric MIB MoNIG MEIB DER PIDReg

RMSE ↓ 15.18 14.59 14.04 12.37 10.37
Corr ↑ 0.907 0.913 0.917 0.936 0.952

Table 1: CT Slice (left) and Superconductivity (right) regression (best results are shown in bold; second-best results
are underlined. The same convention applies in all subsequent tables).

Superconductivity (Hamidieh, 2018) is a superconductivity dataset from physics, containing 21,263 material samples,
each represented by two modalities: an 81-dimensional vector of chemical properties and an 86-dimensional vector
derived from chemical formulas. The regression target is the superconducting critical temperature, a continuous vari-
able ranging from 0 to 185. As shown in Table 1, our PIDReg achieves the lowest RMSE and highest correlation,
further demonstrating its effectiveness.

CMU-MOSI (Zadeh et al., 2016) and CMU-MOSEI (Zadeh et al., 2018) contain 2,199 and 23,454 human-annotated
sentiment labels, respectively, derived from short monologues and movie review video clips collected from YouTube.
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Figure 3: (a) Bias-corrected predicted age difference; (b, c) convergence curves of PID components.

Both datasets provide three pre-extracted modalities: audio (A), text (T), and vision (V). The target variable is senti-
ment, represented as a continuous value in the range [−3, 3]. In each experiment, we select two modalities as input.
Following the evaluation protocols in Pham et al. (2019); Liang et al. (2018), model performance is measured using
7-class accuracy (Acc7), binary accuracy (Acc2), F1-score, mean absolute error (MAE), and Corr. As shown in Ta-
ble 2, our PIDReg consistently outperforms all baselines with Audio&Text and Visual&Text modalities, and achieves
the second-best performance with the Audio&Visual modalities, where all competing methods exhibit a performance
drop.

Method CMU-MOSI CMU-MOSEI

A7 ↑ A2 ↑ F1 ↑ MAE ↓ Corr ↑ A7 ↑ A2 ↑ F1 ↑ MAE ↓ Corr ↑

MIB♡ 28.9 70.7 70.8 1.088 0.578 45.8 78.9 77.9 0.736 0.653
MoNIG♡ 31.9 79.1 79.1 0.976 0.671 43.1 79.2 79.0 0.687 0.603
MEIB♡ 23.9 60.6 60.5 1.246 0.415 40.3 62.4 64.0 0.789 0.414
DER♡ 30.9 78.5 78.4 1.086 0.637 48.5 79.9 80.0 0.637 0.655
PIDReg♡ 32.0 80.0 79.7 0.938 0.662 47.4 80.2 80.0 0.634 0.662

MIB♠ 27.4 73.2 73.3 1.092 0.601 46.7 79.4 78.8 0.733 0.656
MoNIG♠ 29.9 78.1 78.0 1.046 0.627 44.2 80.2 80.2 0.680 0.606
MEIB♠ 24.2 60.1 60.8 1.301 0.374 41.8 63.2 64.8 0.777 0.424
DER♠ 33.2 80.5 80.7 0.969 0.666 46.6 79.8 80.2 0.651 0.630
PIDReg♠ 37.2 80.8 80.9 0.947 0.664 47.0 80.6 80.2 0.642 0.661

MIB♢ 14.4 47.7 40.7 1.511 0.146 41.4 62.2 63.2 1.004 0.149
MoNIG♢ 15.9 52.7 55.6 1.428 0.224 42.5 65.6 67.0 0.808 0.262
MEIB♢ 15.2 45.0 52.2 1.478 0.152 41.7 53.9 58.1 0.825 0.178
DER♢ 15.7 44.5 58.5 1.476 0.212 41.4 63.2 65.6 0.827 0.185
PIDReg♢ 16.4 52.3 51.8 1.400 0.149 41.7 63.4 63.7 0.828 0.228

Table 2: Human sentiment analysis on CMU-MOSI and CMU-MOSEI (modality combinations are represented by
symbols: ♡ (Audio-Text), ♠ (Visual-Text), and ♢ (Audio-Visual).

Metric MIB MoNIG MEIB DER CoMM PIDReg

MSE ↓ (×10−4) 3.00 3408 6.19 498 1.34 1.53
Corr∗ ↑ 0.97 0.82 0.96 0.85 0.98 0.98

Metric MIB MoNIG MEIB DER CoMM PIDReg

MAE ↓ 6.75 8.70 7.83 9.96 9.46 6.29
Corr ↑ 0.64 0.59 0.65 0.54 0.27 0.75

Table 3: Vision&Touch (left) and Brain-Age regression (right).

Vision&Touch (Lee et al., 2020) is a large-scale raw multimodal robotics dataset consisting of 150 trajectories of a
triangular-peg-insertion task using a 7-DoF Franka Emika Panda robot. Each trajectory includes 1,000 synchronized
time steps of visual, haptic, and proprioceptive signals. Following Liang et al. (2021), we formulate a regression task
where selected proprioceptive dimensions at time t+ 1 are predicted from other modalities at time t. Specifically, we
use a four-dimensional subset (x, y, z, yaw) that represents the end-effector’s spatial position and yaw angle, thereby
forming a multivariate prediction problem. To obtain modality-specific embeddings, we follow Dufumier et al. (2025):
visual inputs are processed using a ResNet-18 backbone pretrained on ImageNet, while force/torque sequences are
encoded using a five-layer causal convolutional network (Bai et al., 2018) applied directly to the raw sensor readings.
The results are shown in Table 3, evaluated via MSE and RV coefficient (Corr∗) (Robert & Escoufier, 1976).

REST-meta-MDD (Yan et al., 2019) is the largest multimodal neuroimaging dataset for major depressive disorder
(MDD), comprising 848 MDD patients and 794 healthy controls from 17 hospitals across China, along with metadata
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such as age and gender. We use T1-weighted sMRI and resting-state fMRI (rs-fMRI) as two input modalities to predict
brain age. For 3D sMRI volumes, we use a 3D CNN encoder with channel and spatial attention. For rs-fMRI, we apply
a Graph Isomorphism Network (GIN) (Xu et al., 2019) enhanced with graph attention and hierarchical pooling. We
conduct nine groups of experiments, where in each group, data from 15 hospitals are randomly selected for training
and the remaining 2 hospitals are used for testing, ensuring that each test site contains more than 100 samples to avoid
biased evaluation. The results in Table 3 are averaged across all groups.

Fig. 3(a) shows the histogram of predicted age difference (PAD), defined as the deviation between the predicted
and true chronological age, for patients and healthy controls, following standard linear bias correction (Smith et al.,
2019). PAD is commonly regarded as a robust biomarker for psychiatric diagnosis, as patients with conditions such
as Alzheimer’s disease (Cole et al., 2017; Ly et al., 2020) and MDD (Han et al., 2021) often exhibit accelerated brain
aging, resulting in a larger PAD. Our findings are consistent with existing medical evidence (Han et al., 2021; Luo
et al., 2022). The joint use of structural and functional brain connectivity offers a new way for brain age estimation.

4.3 INTERPRETABILITY ANALYSIS

Comp. CT SC MOSI♡ MOSI♠ MOSI♢ MOSEI♡ MOSEI♠ MOSEI♢ V&T MDD

Bone† Air‡ prop.† form.‡ A† T‡ V† T‡ A† V‡ A† T‡ V† T‡ A† V‡ Visual† Touch‡ fMRI† sMRI‡

UZ1 0.045 0.375 0.103 0.053 0.023 0.021 0.023 0.012 10.90 0.000
UZ2 0.067 0.001 0.209 0.058 0.152 0.025 0.030 0.042 0.000 7.240
R 1.675 0.878 9.147 1.375 9.148 0.192 0.318 0.206 0.824 0.412
S 1.147 0.394 0.312 4.228 0.331 0.298 0.690 0.290 0.575 0.140

Table 4: Gaussian PID convergence values († and ‡ indicate X1 and X2, respectively).

Figs. 3(b) and 3(c) depict the learning dynamics of each PID term over the entire training process for the V&T and
MDD datasets. Table 4 summarizes the final converged values of the PID components. In CT Slice (CT), bone-density
and air-content histograms encode nearly identical information about axial position, and thus redundancy dominates.
In Superconductivity (SC), elemental physicochemical vectors provide the primary unique signal, while formula
strings add little. This aligns with (Stanev et al., 2018), which highlights composition-aware features as key to Tc

prediction.

In both MOSI and MOSEI, the presence of both high redundancy and high synergy across modality combinations
suggests that sentiment analysis should not rely on a single modality alone. Moreover, Vision+Text is consistently
dominated by synergy, as facial cues help disambiguate linguistic content. For example, (Castro et al., 2019) found
that visual cues, such as neutral facial expressions or eye rolls, are critical for detecting sarcasm that cannot be captured
by text alone. In contrast, Audio+Text typically exhibits notable redundancy. This aligns with the strong coupling
between language and audio via word intonation (Zadeh et al., 2018); e.g., prosody often reflects the emotional valence
of lexical content.

In Vision&Touch (V&T), vision serves as the primary predictive engine, while tactile signals contribute little unique
or synergistic information. This finding aligns with the visuo-tactile ablation study (Lee et al., 2019), suggesting that
the visual modality alone may be sufficient to achieve reliable predictive performance. In REST-meta-MDD (MDD),
sMRI is the dominant modality for brain age prediction, while rs-fMRI contributes minimally. This aligns with clinical
evidence (Sun et al., 2024; Jónsson et al., 2019), which shows that sMRI is more informative than fMRI for brain age
estimation. It is also consistent with (Cole et al., 2017; Liem et al., 2017), where morphometry alone achieves sub-5-
year MAE and multimodal improvements are marginal. We refer interested readers to the Appendix D for additional
ablation study results.

5 CONCLUSION

We propose PIDReg, a framework that seamlessly integrates PID into multimodal regression to improve both pre-
diction accuracy and interpretability. PIDReg identifies the individual contributions of each modality and determines
whether their interaction is dominated by redundancy or synergy. It is applicable to a wide range of data types, includ-
ing vector data, 3D volume images, and graph-structured data, spanning diverse application domains. In particular,
our results in brain age prediction align with current clinical evidence, highlighting the strong potential of PIDReg in
biomedical science. PIDReg can be extended to three or more modalities, as detailed in the Appendix F. Limitations
and future work are discussed in Appendix H. Reproducibility Statement. Theoretical proofs and experimental details
are provided in Appendices B and E, respectively. Source code is included in the supplementary material.
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Rosin. The multi-modal nature of trustworthiness perception. In Proceedings of the international speech communi-
cation association (ISCA), pp. 147–152. ISCA, 2015.

Praveen Venkatesh, Corbett Bennett, Sam Gale, Tamina Ramirez, Greggory Heller, Severine Durand, Shawn Olsen,
and Stefan Mihalas. Gaussian partial information decomposition: Bias correction and application to high-
dimensional data. Advances in Neural Information Processing Systems, 36:74602–74635, 2023.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Sutong Wang, Yunqiang Yin, Dujuan Wang, Yanzhang Wang, and Yaochu Jin. Interpretability-based multimodal
convolutional neural networks for skin lesion diagnosis. IEEE transactions on cybernetics, 52(12):12623–12637,
2021.

Ying Wang, Tim GJ Rudner, and Andrew G Wilson. Visual explanations of image-text representations via multi-modal
information bottleneck attribution. Advances in Neural Information Processing Systems, 36:16009–16027, 2023.

Paul L Williams and Randall D Beer. Nonnegative decomposition of multivariate information. arXiv preprint
arXiv:1004.2515, 2010.

Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. Cbam: Convolutional block attention module. In
Proceedings of the European conference on computer vision (ECCV), pp. 3–19, 2018.

Jiayi Xin, Sukwon Yun, Jie Peng, Inyoung Choi, Jenna L Ballard, Tianlong Chen, and Qi Long. I2moe: Interpretable
multimodal interaction-aware mixture-of-experts. In Forty-second International Conference on Machine Learning,
2025.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? In Interna-
tional Conference on Learning Representations, 2019.

Chao-Gan Yan, Xiao Chen, Le Li, Francisco Xavier Castellanos, Tong-Jian Bai, Qi-Jing Bo, Jun Cao, Guan-Mao
Chen, Ning-Xuan Chen, Wei Chen, et al. Reduced default mode network functional connectivity in patients with
recurrent major depressive disorder. Proceedings of the National Academy of Sciences, 116(18):9078–9083, 2019.

Xinxing Yang, Jiachen Li, Xiao Kang, Guojin Pei, Keyu Liu, Genke Yang, and Jian Chu. Alnsynergy: a graph convo-
lutional network with multi-representation alignment for drug synergy prediction. arXiv preprint arXiv:2311.16207,
2023.

Shujian Yu, Xi Yu, Sigurd Løkse, Robert Jenssen, and Jose C Principe. Cauchy-schwarz divergence information
bottleneck for regression. In 12th International Conference on Learning Representations, ICLR 2024, 2024a.

Shujian Yu, Xi Yu, Sigurd Løkse, Robert Jenssen, and Jose C Principe. Cauchy-schwarz divergence information
bottleneck for regression. In The Twelfth International Conference on Learning Representations, 2024b.

Shujian Yu, Hongming Li, Sigurd Løkse, Robert Jenssen, and José C Prı́ncipe. The conditional cauchy-schwarz
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The appendix is organized into the following topics and sections:

Outline

A Design Motivation of PIDReg
A.1 Gaussian Assumption in Latent Space
A.2 The Motivation of CS Divergence

B Proof of Proposition on Conditional Mutual Information Estimator
B.1 Definition
B.2 Estimator

C Algorithm
D Ablation Study

D.1 Regularization Component Ablation
D.2 Modality Ablation
D.3 Linear-Noise Information Bottleneck Ablation

E Experimental Details
E.1 Raw Feature Encoder Architecture
E.2 Predictor Architecture
E.3 Training Strategies and Hyperparameter

F Extension to Multivariate Gaussian and More than Two Modalities
F.1 Pragmatic Simplification for Three Modalities
F.2 Tractable Optimization Objective
F.3 Gradients and Optimization
F.4 Network Implementation
F.5 Experimental Results of Tri-Modal PIDReg

G Extended Results
G.1 Computational Efficiency
G.2 Fine-Grained Results on Rest-meta-MDD
G.3 Large Scale Bimodal MNIST Regression Benchmark
G.4 Evaluation of PIDReg under Extreme Scenarios and Gaussian Distribution Shifts

H Limitations and Future Work
I LLM Usage Statement

A DESIGN MOTIVATIONS OF PIDREG

A.1 GAUSSIAN ASSUMPTION IN THE LATENT SPACE

PIDReg does not impose any distributional assumptions on the original, complex input data X1, X2, or Y , fully
accommodating real world phenomena such as heavy-tailedness and skewness. Instead, the Gaussian assumption is
imposed in the joint latent space formed by the transformed representations Z1, Z2 (obtained via the deep nonlinear
encoders hϕm

) together with the transformed target variable Y . Note that, this Y refers to the rank-based, outlier-aware
inverse normal transformation of the target (rather than the raw Y ), a procedure commonly adopted in neuroscience
applications.

The role of the encoder hϕm
is precisely to extract task-relevant, more structured, and compact information from raw

inputs that may follow arbitrarily complex distributions. This design is conceptually aligned with modern generative
models such as variational autoencoders (VAEs) (Kingma et al., 2019), which enforce a simple prior distribution (e.g.,
Gaussian) in the latent space to achieve regularization, disentanglement, and generative capability. In PIDReg, the
Gaussian assumption serves as an inductive bias to guide the learning process, rather than as a rigid constraint.
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We further introduce two differentiable regularization terms, designed based on the CS divergence, which actively
guide the system toward Gaussianity. Notably, this active regularization mechanism is independent of any distribu-
tional assumption on the raw data itself.

In particular, our regularization based on the CS divergence is inspired by the well-known MMD-VAE (Zhao et al.,
2019), where we replace the MMD with CS divergence to match the aggregated posterior p(z) with a Gaussian prior
q(z). Compared to the traditional VAE regularization term Ep(x)[KL(pϕ(z|x)∥q(z))], the CS-based (or MMD-based)
penalty CS(pϕ(z), q(z)) is operated on marginals and less restrictive, and notably helps mitigate the problem of
uninformative latent codes, as discussed in Zhao et al. (2019).

A.2 THE MOTIVATION OF CS DIVERGENCE

A central challenge in comparing probability distributions lies in selecting a divergence measure that is both theoret-
ically sound and practically robust. Classical approaches such as the MMD and KL divergence divergence represent
two dominant paradigms: the integral probability metric (IPM) family and the f -divergence family, respectively.
However, both exhibit critical limitations when applied to empirical distributions with limited support overlap or when
robustly measuring distance between complex, high-dimensional densities.

A.2.1 CS DIVERGENCE AGAINST KL DIVERGENCE: STABILITY AND SYMMETRY

First, although both the KL divergence and the CS divergence can be employed to measure the difference or similarity
between two entities (such as probability distributions or vectors), the CS divergence is considerably more stable than
the KL divergence in that it relaxes the constraints on the supports of the distributions (Yu et al., 2024a). For any two
densities p and q, DKL(p; q) has finite values only if supp(p) ⊆ supp(q) (otherwise, p(x) log

(
p(x)
0

)
→∞); whereas

DKL(q; p) has finite values only if supp(q) ⊆ supp(p). In contrast, DCS(p; q) is symmetric and always yields finite
values unless the supports of p and q have no overlap, i.e., supp(p) ∩ supp(q) = ∅ (see Fig. 4 for an illustration).

p q

supp(p)⊆ supp(q)

(a)

p q

supp(p)∩ supp(q) ∅
(b)

p q

supp(p)∩ supp(q) = ∅
(c)

Figure 4: (a) DKL(p; q) → ∞, DKL(q; p) → ∞, DCS(p; q) → ∞; (b) DKL(p; q) → ∞, DKL(q; p) → ∞,
DCS(p; q) finite; (c) DKL(p; q)→∞, DKL(q; p)→∞, DCS(p; q) finite.

Second, CS divergence is symmetric, eliminating the need to choose between DCS(p(z);N (0, I)) and
DCS(N (0, I); p(z)).

A.2.2 CS DIVERGENCE AGAINST MMD: EFFICIENCY IN ESTIMATOR

MMD measures the difference in kernel mean embeddings:

MMD2(P,Q) =
∥∥µP − µQ

∥∥2
H, (24)

where µP and µQ are the kernel mean embeddings of distributions P and Q in the reproducing kernel Hilbert space
H.

By contrast, the empirical CS divergence estimator reduces to the cosine similarity between kernel-mean embeddings
of two sample sets (Yu et al., 2024b):

D̂CS(p; q) = −2 log
(
⟨µp, µq⟩H
∥µp∥H∥µq∥H

)
= −2 log cos(µp, µq). (25)

While MMD admits closed-form estimators with clear physical interpretations when comparing marginal distributions
P and Q, its extension to conditional distributions p(Y |X) remains both theoretically unsettled and practically cum-
bersome: RKHS conditional-embedding (and related operator-based) approaches hinge on the conditional covariance
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operator:
CY |X = CY X

(
CXX + λI

)−1
, (26)

which presupposes invertibility of the (uncentered) covariance CXX and idealized stationarity—assumptions that
routinely fail in high-dimensional or finite-sample regimes—and, more broadly, no universally accepted estimator for
conditional MMD has emerged, forcing costly kernel-matrix inversions or heavy regularization (Song et al., 2009;
2013; Park & Muandet, 2020; Ren et al., 2016).

In contrast, the CS divergence yields equally concise sample-based expressions for both marginal- and conditional-
distributions comparison under far weaker hypotheses and with straightforward computation, motivating our choice to
adopt CS divergence for simultaneous measurement of marginal and conditional distribution discrepancies.

B PROOF OF PROPOSITION ON CONDITIONAL MUTUAL INFORMATION ESTIMATOR

B.1 DEFINITION

Consider an unknown but fixed joint distribution

p(X1, X2, Z1), (27)

from which we draw N observations {(x1i, x2i, z1i)}Ni=1, where x1i ∈ Rd1 , x2i ∈ Rd2 , and z1i ∈ Rd. We are
interested in the following CS divergence between two product distributions constructed from p(X1, X2, Z1):

DCS

(
p(X1, X2, Z1) p(X1); p(X1, X2) p(X1, Z1)

)
. (28)

A more explicit expression of this divergence is:

DCS

(
p(X1, X2, Z1) p(X1) ; p(X1, X2) p(X1, Z1)

)
= − 2 log

(∫
p(X1, X2, Z1) p(X1) p(X1, X2) p(X1, Z1)

)
+ log

[
(

∫
p2(X1, X2, Z1) p

2(X1))(

∫
p2(X1, X2) p

2(X1, Z1))
]
.

(29)

In section B.2, we provide a kernel-based empirical estimator for Eq.( 29).

B.2 ESTIMATOR

Approximation of the first integral. We start with the integral:∫
(p(X1, X2, Z1) p(X1); p(X1, X2) p(X1, Z1), (30)

which can be written as:
Ep(X1,X2,Z1)

[
p(X1) p(X1, X2) p(X1, Z1)

]
. (31)

Given the N i.i.d. samples {(x1i, x2i, z1i)}Ni=1, a simple Monte Carlo approximation yields:

1

N

N∑
j=1

p
(
x1j

)
p
(
x1j , x2j

)
p
(
x1j , z1j

)
. (32)

Next, we approximate each density term by a Gaussian kernel estimator. For instance,

p
(
x1j , z1j

)
≈ 1

N (
√
2π σ)d1+d

N∑
i=1

exp
(
−∥x1j − x1i∥2

2σ2

)
exp
(
−∥z1j − z1i∥2

2σ2

)
, (33)

with analogous forms for p(x2j , z1j) and p(z1j). Substituting these estimates into Eq.( 32) and expanding the sums
leads to a triple sum.

To simplify notation, define the following Gram (kernel) matrices:

• M ∈ RN×N , the Gram matrix for X1, with

Mji = exp
(
−∥x1j−x1i∥2

2σ2

)
.
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• K ∈ RN×N , the Gram matrix for X2, with

Kji = exp
(
−∥x2j−x2i∥2

2σ2

)
.

• L ∈ RN×N , the Gram matrix for Z1, with

Lji = exp
(
−∥z1j−z1i∥2

2σ2

)
.

In these terms, the integral Eq.( 30) can be approximated as (up to a constant factor involving N and σ):∫
p(X1, X2, Z1) p(X1) p(X1, X2) p(X1, Z1)

≈ 1

N4(
√
2π σ)d1+d2+3d

×
N∑
j=1

( N∑
i=1

Mji

)( N∑
i=1

KjiMji

)( N∑
i=1

LjiMji

)
.

(34)

Approximation of the remaining integrals. Similarly, we evaluate the two terms inside the large bracket of the
CSn divergence:

• For
∫

p2(X1, X2, Z1) p
2(Z1) the same procedure yields:∫

p2(X1, X2, Z1) p
2(Z1) ≈

1

N4 (
√
2π σ)d1+d2+3d

N∑
j=1

( N∑
i=1

Kji Lji Mji

)( N∑
i=1

Lji

)2
. (35)

• For
∫

p2(X1, Z1) p
2(X2, Z1) we obtain:∫

p2(X1, Z1) p
2(X2, Z1) ≈

1

N4 (
√
2π σ)d1+d2+3d

N∑
j=1

[(∑N
i=1 Kji Lji

)2 (∑N
i=1 Lji Mji

)2∑N
i=1 Kji Lji Mji

]
. (36)

Final Format. By combining these three approximations Eq.( 34), Eq.( 35) and Eq.( 36), and omitting the common
normalization factor, we obtain the following empirical estimator for Eq.( 29):

D̂CS

(
p(X1, X2, Z1) p(X1) ; p(X1, X2) p(X1, Z1)

)
=

−2 log
( N∑
j=1

( N∑
i=1

Mji

) ( N∑
i=1

KjiMji

) ( N∑
i=1

LjiMji

))

+ log
( N∑
j=1

( N∑
i=1

KjiLjiMji

) ( N∑
i=1

Lji

)2)
+ log

( N∑
j=1

(∑N
i=1 KjiLji

)2 (∑N
i=1 LjiMji

)2∑N
i=1 KjiLjiMji

)
.

(37)

□

C ALGORITHM

The pipeline of PIDReg is illustrated in Algorithm 1. In Stage 1, we initialize modality-specific encoders and employ a
Gaussian PID-guided procedure to iteratively refine the weighting parameters, ensuring stable contributions from each
modality. Once convergence is achieved, we fix these weights and move to Stage 2, where the network is fine-tuned
under the current-static weighting scheme. Throughout the process, a parallel optimization step evaluates and updates
the fused representation, ultimately yielding a robust, interpretable prediction.

Regarding the PID-converged check in Algorithm 1, it is defined as follows: let Gt = {U t
Z1
, U t

Z2
, Rt, St} denote the

average of the four parameters computed for each batch in the i-th iteration. Subsequently, we apply:
δt =

∥∥Gt −Gt−1
∥∥
∞ < ϵ, (38)

when δt < ϵ for K consecutive epochs, we establish w∗ = wt as the optimal fusion weights. In practice, we set
K = 5 and ϵ = 0.01 to ensure stable convergence across stochastic minibatches while avoiding unnecessary training
overhead.
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Algorithm 1 PIDReg Algorithm

Require: Multimodal inputs {X1, X2}, target Y
Ensure: Prediction ŷ, information decomposition {UZ1 , UZ2 , R, S}

1: Initialize encoders hϕm
, predictor fθ, learnable IB parameters λb

m, fusion weights w = [w1, w2, w3] and PID
convergence flag Converged← false

2: while not converged do
3: for each batch do
4: for m ∈ {1, 2} do
5: Rm = hϕm

(Xm) ▷ Raw Representations
6: Zm = λb

m ·Rm + (1− λb
m) · N (µRm

, σ2
Rm

) ▷ IB Mechanism
7: LCS =

∑2
i=1 D̂CS

(
p(zi) ; N (0, I)

)
▷ Marginal Gaussianity

8: end for
9: Lcmi = Î(Z1;X2 | X1) + Î(Z2;X1 | X2) ▷ Unique Information Guarantee

10: if not PID-converged then
11: ΣP ← Estimate covariance matrix for (Z1, Z2, Y )
12: {UZ1 , UZ2 , R, S} ← Gaussian PID decomposition of ΣP

13: w← [
UZ1

+R

T ,
UZ2

T , S
T ]

T where T = UZ1 + UZ2 +R+ S
14: LGauss = Gaussian normality deviation of (Z1, Z2, Y )
15: Check PID convergence criteria, update convergence flag if stable
16: end if
17: Z = w1Z1 + w2Z2 + w3(Z1 ⊙ Z2) ▷ Information-weighted Fusion
18: ŷ = fθ(Z) ▷ Prediction
19: Lpred = MSE(ŷ, y) ▷ Prediction Loss
20: Update network parameters and λb

m using respective optimizers
21: end for
22: Validate and adjust learning rates
23: end while
24: return Trained model with fixed optimal fusion weights w∗

D ABLATION STUDY

D.1 REGULARIZATION COMPONENT ABLATION

In our work, we introduce three regularization terms, LCS, LGauss, and LCMI, which serve two distinct purposes.
The LCS and LGauss terms impose constraints on the marginal and joint distributions, respectively, to ensure that
the resulting latent representation P (Z1, Z2, Y ), closely approximates a Gaussian distribution. In contrast, LCMI

penalizes information leakage between Z1 and X2 as well as between Z2 and X1, thereby guaranteeing that the
feature fusion guided by the PID module’s learned weights remains interpretable and faithful. In section D.1, we
perform two ablations (section D.1.1, section D.1.2) to evaluate.

D.1.1 JOINT GAUSSIAN GUARANTEE

Taking the Superconductivity as an example, the empirical distributions of the raw inputs X1 and X2 are shown in
Fig. 5, where one can observe severe skewness and non-Gaussianity. It is worth emphasizing that PIDReg does not
rely on any distributional assumptions about the input data itself, rather, it aims to learn a Gaussian representation in
the latent space. For visualization, the latent features of X1 and X2 are individually projected into two dimensions
using Principal Component Analysis (PCA) with whitening, while the target variable Y , being one-dimensional, is
directly shown without projection.

To further illustrate how PIDReg learns such a Gaussian system from highly non-Gaussian real world data, and to
highlight the role of each Gaussianity regularizer, we ablated one or both Gaussianity regularizers (LCS, LGauss),
recorded the joint latent representations (Z1, Z2, Y ) at the epoch when the PID module converged. To enable con-
sistent visual comparison across different ablation settings and the full-loss baseline, we apply PCA with whitening
on the joint representations to obtain two-dimensional projections. The resulting 2D distributions are overlaid with
reference circles at 1σ, 2σ, and 3σ radii of a standard normal distribution. This enables an intuitive assessment of
distributional concentration, isotropy, and deviation from Gaussianity, as illustrated in Fig. 6.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

4 2 0 2 4
0.0

0.5

Modality prop.

4 2 0 2 4
PC1

4

2

0

2

4

PC
2

0.0 0.5
4

2

0

2

4 4 2 0 2 4
0.0

0.5

Modality form.

4 2 0 2 4
PC1

4

2

0

2

4

PC
2

0 1
4

2

0

2

4

4 2 0 2 4
0.0

0.2

0.4

0.6

0.8

Target Variable y

Empirical (X1) Empirical (X2) Empirical (y) Standard Gaussian

Figure 5: Distributions of P (X1), P (X2) and raw P (Y ).
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Figure 6: Visualization of the ablation study on joint latent distributions P (Z1, Z2, Y ) under different loss configura-
tions: (a) full loss; (b) without the LCS term; (c) without the LGauss term; (d) without both LCS and LGauss terms.

, and denote the 1σ, 2σ and 3σ contours of a standard Gaussian distribution.

In Fig. 6(a), the full-loss embeddings cluster tightly at the origin. Removing LCS (b) shifts the cloud along PC-1
with heavy tails beyond 2σ and 3σ. Removing LGauss (c) preserves centering but produces a diagonally elongated
distribution. Omitting both (d) yields a highly anisotropic cloud with tails scattered well beyond 3σ. LCS enforces
mean zero and unit covariance, while LGauss corrects skewness and kurtosis; dropping any component causes mean
shifts, anisotropic scaling, and non-Gaussian distortions as the encoder focuses on prediction error.

D.1.2 UNIQUE INFORMATION EXTRACTION GUARANTEE

LCMI does not act directly on the joint distribution, it ensures that each modality’s latent encoding captures only
the unique information of that modality, preventing irrelevant cross-modal redundancy from leaking into the other
modality’s representation. If the LCMI is effective, then, in theory, Z1 (resp. Z2) should contain no or less information
about X2 (resp. X1). Theoretically, consider the conditional mutual information I(X1;Z2 | X2). If I(X1;Z2 | X2) ≈
0, then by the identity I(X1;Z2 | X2) = I(X1;Z2, X2)−I(X1;X2), we obtain I(X1;Z2, X2) ≈ I(X1;X2), i.e., the
combined pair (Z2, X2) provides no additional information about X1 beyond X2 alone. Consequently, the mapping
(Z2, X2)→ X1 behaves almost identically to X2 → X1.

Full Loss –LCMI

Prediction MSE↓ R2↑ MSE↓ R2↑
X2→X1 0.073 0.928 0.073 0.928
Z2→X1 0.670 0.334 0.155 0.846
(Z2, X2)→X1 0.089 0.911 0.089 0.912
X1→X2 0.619 0.380 0.619 0.380
Z1→X2 0.779 0.166 0.664 0.407
(Z1, X1)→X2 0.642 0.311 0.620 0.388

Table 5: Cross-prediction performance under Full Loss and without LCMI .
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To verify this empirically, we record—for both the best-performing full-loss model and the model trained without
LCMI—latent codes Z1, Z2 alongside their corresponding inputs X1, X2, and apply the cross-prediction schemes
listed in Table 5. We then employ identical three-layer MLP probes (256 hidden units, LayerNorm, ReLU, dropout)
for each of the six cross-modal regression tasks. The results align with our theoretical analysis: under full loss,
Z2→X1 and Z1→X2 yield R2 ≈ 0.34 and 0.17, respectively, indicating minimal information leakage; omitting
LCMI causes R2 to rise to 0.846 and 0.407, demonstrating severe leakage. Moreover, joint regressors (Z2, X2)→X1

and (Z1, X1)→X2 confirm that any leaked information is redundant with each modality’s raw input.

The incorporation of LCS, LGauss, and LCMI underpins the reliability of the PIDReg framework from both distribu-
tional alignment and information-theoretic interpretability perspectives, rendering each component indispensable.

D.2 MODALITY ABLATION

As presented in the main paper’s Interpretability Analysis section, we quantify each modality’s contribution to predic-
tion performance via PIDReg on multiple datasets. Notably, on the Vision&Touch dataset, Visual provides substantial
unique information while Touch’s unique contribution is nearly zero; similarly, on Rest-meta-MDD, sMRI yields sig-
nificant unique content whereas fMRI does not. We thus hypothesize that (i) using only Visual on Vision&Touch will
match the dual-modality baseline, but using only Touch will degrade performance markedly, and (ii) on Rest-meta-
MDD, sMRI alone will suffice, whereas fMRI alone will fail. To test this, we conduct modal ablations by disabling the
PID computation and fusion mechanism in PIDReg and instead assigning a fixed weight of 1 to the chosen modality,
with all other components held constant.

Metric Full Visual-only Touch-only

MSE↓ (×10−4) 1.53 1.84 93.5
Corr∗ ↑ 0.98 0.98 0.05

Metric Full sMRI-only fMRI-only
MAE↓ 6.29 6.56 10.3
Corr↑ 0.75 0.75 0.04

Table 6: Modality ablation experiments results: Vision&Touch (left) and Rest-meta-MDD (right).

The results in Table 6 fully validate our hypothesis, demonstrating that the PIDReg-derived information decomposition
provides valuable guidance for both modality fusion and modality selection.

D.3 LINEAR-NOISE INFORMATION BOTTLENECK ABLATION

The linear noise injection in the information bottleneck framework, as formulated in Eq.( 1), serves three fundamental
purposes in our multimodal learning architecture:

• Ensuring meaningful computation of information-theoretic terms. The injection of noise effectively
transforms a deterministic mapping X̄ → Z into a stochastic transformation. This stochasticity is essential
for enabling meaningful and robust information-theoretic estimation, as purely deterministic mappings can
exhibit pathological behavior, including infinite mutual information values under continuous variable settings,
as previously established by Saxe et al. (2019).

• Enhancing generalization capability. The Information Bottleneck mechanism has been demonstrated, both
empirically and theoretically (Kawaguchi et al., 2023), to discard irrelevant or noisy details in the input X̄ ,
thereby improving the model’s generalization performance.

• Facilitating PID computation. The injection of Gaussian noise into Rm shifts the marginal distribution of
Zm toward a Gaussian distribution, which is a prerequisite for our Gaussian PID component optimization
framework.

Rather than manually selecting the noise parameter, λm is optimized through gradient-based learning. In our imple-
mentation, we introduce an unconstrained real-valued latent parameter λ′

m and define the bounded noise parameter
as:

λm = σ(λ′
m) =

1

1 + e−λ′
m
, λ′

m ∈ R, λm ∈ (0, 1), (39)

where σ denotes the sigmoid function. This reparameterization enables the utilization of unconstrained optimizers
(e.g., Adam) to train the bounded variable λm indirectly. The gradient of λ′

m is computed with respect to the total loss
Ltotal, yielding the update rule:

λ′
m,(t+1) = λ′

m,(t) − ηλAdamUpdate

(
∂Ltotal

∂λ′
m,(t)

)
, (40)
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where ηλ represents the learning rate for λm. Through this adaptive mechanism, the contributions of Rm and ϵm
are dynamically balanced, enabling the information bottleneck to discover the optimal trade-off between preserving
predictive information and satisfying regularization and interpretability constraints.

Table 7 presents the convergence values of λm across different datasets and modality configurations. The results
demonstrate that noise injection consistently plays a significant role in MOSI and MOSEI datasets, particularly for the
X1 modality.

Comp. CT SC MOSI♡ MOSI♠ MOSI♢ MOSEI♡ MOSEI♠ MOSEI♢ V&T MDD

Bone† Air‡ prop.† form.‡ A† T‡ V† T‡ A† V‡ A† T‡ V† T‡ A† V‡ Visual† Touch‡ fMRI† sMRI‡

λ1 0.99 0.99 0.69 0.98 0.99 0.85 0.77 0.80 0.99 0.98
λ2 0.99 0.99 0.89 0.99 0.95 0.99 0.99 0.99 0.99 0.98

Table 7: λ convergence values († and ‡ indicate X1 and X2, respectively).

To further substantiate the necessity of the information bottleneck component, we conducted an ablation study wherein
λm was fixed to 1 for both CT Slice and Superconductivity datasets, with all other hyperparameters held constant. The
comparative results are presented in Table 8.

Metric CT CT(λm = 1) SC SC(λm = 1)

RMSE↓ 0.626 0.843 10.37 10.44
Corr↑ 1.000 0.999 0.940 0.912

Table 8: Linear-noise information bottleneck ablation results.

These experimental findings confirm that even when λm is set to a relatively large value, the linear noise information
bottleneck remains essential for enabling the critical deterministic-to-stochastic transition and maintaining the robust-
ness of the PIDReg framework. The degradation in performance metrics when the information bottleneck is disabled
(λm = 1) further substantiates the necessity of this component within our proposed methodology.

This empirical evidence reinforces the theoretical importance of the linear noise information bottleneck mechanism in
achieving effective multimodal representation learning through information-theoretic regularization.

E EXPERIMENTAL DETAILS

E.1 RAW FEATURE ENCODER ARCHITECTURE

All comparative experiments in this paper adopt a consistent encoder architecture to ensure fairness of comparison.
The specific encoder used for each dataset is detailed as follows:

For both CT Slice and Superconductivity, each raw feature encoder is a symmetric three-stage MLP that successively
compresses the original D-dimensional input into a dm-dimensional embedding via D → HL → HL

2 → dm,
where HL is the hidden-layer dimensionality (a tunable hyperparameter controlling model capacity). Each linear
projection is followed by BatchNorm1d, in-place ReLU, and dropout (with dropout rate p = 0.3 after the first layer
and p = 0.2 after the second), and the final dm-dimensional output is again normalized via BatchNorm1d to stabilize
feature statistics. This uniform, modality-agnostic design yields compact embeddings, ensures robust gradient flow,
and mitigates overfitting.

For both CMU-MOSI, CMU-MOSEI, following Pennington et al. (2014); Degottex et al. (2014); Ma et al. (2021), we
employ an identical two-stage raw feature encoder that maps the input sequence X ∈ RT×din for each modality (text,
audio, vision) to a compact, context-aware embedding. First, a point-wise convolution projects each time step via

U = Dropout
(
LeakyReLU

(
BatchNorm1d

(
Conv1d din→dm

(X)
)))

. (41)

Next, we transpose U to shape (T, batch, dm), add fixed sinusoidal positional embeddings, and feed the sum into L
stacked Transformer-encoder layers—each comprising H-head self-attention, residual connections, layer normaliza-
tion, and a two-layer feed-forward network. Finally, the raw embedding is obtained by extracting the feature vector at
the last time step, hT ∈ Rdm .
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For Vision&Touch, we employ two modality-specific raw encoders that map the native sensor readings directly into
feature vectors prior to information bottleneck mechanism: Vision Encoder uses a ResNet-18 pretrained on ImageNet
(He et al., 2016) (truncated before the final classification layer): Conv1 (7 × 7 kernel, stride 2, padding 3 → 64
channels; BatchNorm; ReLU), MaxPool (3× 3, stride 2), four residual stages (each with two basic blocks of conv 3×
3→BatchNorm→ReLU and downsampling at the start of stages 2–4), a global average pool to yield a 512-dimensional
vector, and a final linear projection (512→ d1) with BatchNorm1d. Touch Encoder : raw force trajectories F ∈ RT×6

are processed by a sequence of 1D convolutions over time (kernel size 5), each with BatchNorm1d and ReLU, then
collapsed via global max- or average-pooling, and finally mapped to d2 dimensions by a linear layer (Lee et al., 2020;
Dufumier et al., 2025).

For Rest-meta-MDD, fMRI is modeled as G = (V,E) with Fisher-z edges. An optional E-dim node-ID embedding
(per emb style) is concatenated to features (Bullmore & Sporns, 2009). We apply L GIN layers

x(l+1)
v = MLP

(
x(l)
v +

∑
u∈N (v)

x(l)
u

)
, (42)

(hid. size H , out O, with dropout/BatchNorm), followed by two residual GATConv layers (4 heads, head-dim O/4),
a node-wise MLP + sigmoid attention, and two SAGPooling stages (ratios 0.8, 0.6) each with global mean-pooling.
Pooled vectors are summed and passed through Linear(O→O) – BN – ReLU – Dropout to yield the raw O-dim embed-
ding. Normalized sMRI volumes feed a six-stage 3D CNN: the first L−1 blocks use either standard conv (33, stride-2
pool, BN, ReLU) or depthwise-separable conv; the final block is a 13 conv. After each conv (except last) we op-
tionally apply ChannelAttention (avg/max→MLP→sigmoid) and SpatialAttention (avg/max→conv→sigmoid) (Woo
et al., 2018). A final 3D avg-pool over [5× 6× 5] produces a C-dim vector, then Linear(C→C)–BN–ReLU–Dropout
yields the raw C-dim embedding.

E.2 PREDICTOR ARCHITECTURE

The regression head is a three-stage MLP that nonlinearly maps the fused latent embedding of dimension d to a scalar.
The first stage applies Linear(d→H), followed by BatchNorm1d, in-place ReLU, and Dropout(p = 0.3) to cap-
ture high-capacity feature interactions. The second stage performs Linear(H→H/2), plus BatchNorm1d, ReLU,
and Dropout( p = 0.2), thereby compressing the representation. The final stage is Linear(H/2→ prediction),
which produces the scalar output. This wide→ narrow→ scalar design balances expressive power and regularization
for downstream regression.

E.3 TRAINING STRATEGIES AND HYPERPARAMETER

E.3.1 EVALUATION PROTOCOL

The reported results are averaged over three independent runs. Statistical tests for the synthetic data are provided
in Appendix G.4.3. To further assess robustness on the largest REST-meta-MDD dataset, we additionally adopt the
leave-two-site-out evaluation protocol, which is commonly used in the medical domain. Detailed results for REST-
meta-MDD are reported in Appendix G.2.

E.3.2 DATA PREPROCESSING

Prior to training, all input features (both modalities) and targets are independently standardized to zero mean and unit
variance using scikit-learn’s StandardScaler. For the synthetic data experiment, we generate a dataset of 10 000
samples following the prescribed formulation. The Synthetic, CT Slice, and Superconductivity datasets are each split
into training, validation, and test sets using a fixed random seed. For CMU-MOSI, CMU-MOSEI, and Vision&Touch,
we employ the official train/val/test partitions, while Rest-meta-MDD is divided by site.

E.3.3 MODEL INITIALIZATION & LATENT DIMENSIONS

We initialize all Linear and Conv layer weights using Kaiming initialization and set biases to zero (He et al., 2015).
For all experiments, the latent dimensions of Z1 and Z2 are set to 64 to provide sufficient representational capacity
while controlling the computational overhead of PID decomposition.

E.3.4 OPTIMIZER & LEARNING RATE SCHEDULING

We employ two Adam optimizers: one for the predictor and projection networks, and one for the information-
bottleneck coefficient λb. A ReduceLROnPlateau scheduler is attached to the predictor optimizer, monitoring
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validation prediction loss with factor = 0.5, patience = 10 epochs, and min lr = 10−6. The initial learning rates are
1× 10−3 for the predictor/projection optimizer and 0.1 for the λ optimizer.

E.3.5 LOSS WEIGHTS

We empirically observe that setting λ1 = λ2 = λ3 = 0.1 delivers consistently robust performance across all datasets;
and each regularizer’s contribution is confirmed by our ablation studies. We do not consider any additional perfor-
mance gains from dataset-specific λ hyperparameter tuning to ensure concise and consistent.

E.3.6 REGULARIZATION & GRADIENT MANAGEMENT

Dropout (rates between 0.2 and 0.5) is interleaved with BatchNorm in all MLP layers. We apply L2-norm gradient
clipping with a maximum norm of 1.0 to the predictor subnetwork.

E.3.7 EARLY STOPPING & CHECKPOINTING

Training is halted when the validation total loss fails to decrease for 30 consecutive epochs. Whenever the validation
loss reaches a new minimum, we save the model weights, optimizer state, the λb parameter, and PID fusion weights.
After training completes, the best checkpoint is reloaded for final test evaluation.

E.3.8 BATCH SIZE & MEMORY REQUIREMENTS

We use a batch size of 32 for CMU-MOSI, 20 for Rest-meta-MDD, and 256 for all other datasets. Experiments on
Rest-meta-MDD require at least 24 GB of GPU memory (e.g., NVIDIA RTX 4090 or equivalent).

F EXTENSION TO MULTIVARIATE GAUSSIAN AND MORE THAN TWO MODALITIES

Extending the PID framework to more than two input sources is a widely recognized open problem in information
theory. Even with three sources, the complete Williams–Beer (Williams & Beer, 2010) lattice already comprises 18
distinct partial-information atoms that enumerate all unique, redundant, and synergistic interactions. the number of
such atoms increases super-exponentially with the number of inputs. In what follows, we introduce a practical formu-
lation for three modalities and outline two complementary optimization strategies, further highlighting the potential of
PIDReg.

F.1 PRAGMATIC SIMPLIFICATION FOR THREE MODALITIES

Given this combinatorial complexity, we can adopt a pragmatic simplification. Specifically, we aggregate all
redundancy-related atoms into a single overall redundancy term, and similarly, group all synergy-related atoms into
a single overall synergy term (please refer to Fig.1(b) in Griffith & Koch (2014)). This enables us to decompose the
total mutual information I(Z1, Z2, Z3;Y ) as:

I(Z1, Z2, Z3;Y ) = R+ UZ1
+ UZ2

+ UZ3
+ S, (43)

where R represents the common information redundantly available in all three sources, UZi represents the information
uniquely available in source Zi, S captures all synergistic interactions that are only present when multiple sources are
considered together.

In the meantime, we also have: 
I(Z1;Y ) = R+ UZ1

I(Z2;Y ) = R+ UZ2

I(Z3;Y ) = R+ UZ3

(44)

However, Eqs. (43) and (44) involve five variables but only four equations, making the system underdetermined. To
resolve this ambiguity, we formally specify the Union Information (the sum of all unique information and redundancy)
as:

IU := min
Q∈∆P

IQ(Z1, Z2, Z3;Y ). (45)

Importantly, this aggregation not only alleviates the combinatorial complexity of the full PID lattice but also admits a
natural optimization-based formulation, as elaborated in Appendix F.2.
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F.2 TRACTABLE OPTIMIZATION OBJECTIVE

The above definitions generalize the two-source definition from Venkatesh et al. (2023); Bertschinger et al. (2014).
In the special case where Z1, Z2, Z3, Y are jointly Gaussian, the optimization defining union information and unique
information becomes particularly tractable. We take IU as an example, since mutual information and conditional
mutual information admit closed-form expressions over Gaussian variables, the optimization of IU reduces to the
following convex optimization over covariance matrices:

min
ΣQ⪰0

IΣQ
(Z1, Z2, Z3;Y ) s.t. ΣZi,Y

Q = ΣZi,Y
P , i = 1, 2, 3, (46)

where ΣQ is the candidate joint covariance matrix, and ΣZi,Y
Q denotes its (Xi, Y ) marginal block.

By definition:

I(Y ;Z1, Z2, Z3) =
1

2
log

(
det(ΣZ1Z2Z3

)

det(ΣZ1Z2Z3|Y )

)
. (47)

According to Venkatesh et al. (2023), the optimization problem can be reformulated as follows:

IU := min
ΣQ

Z1Z2Z3|Y

1

2
log det

I + σ−2
Y

ΣP
Y Z1

ΣP
Y Z2

ΣP
Y Z3

(ΣQ
Z1Z2Z3|Y

)−1

ΣP
Y Z1

ΣP
Y Z2

ΣP
Y Z3

T
 s.t. ΣQ

Z1Z2Z3|Y ⪰ 0, (48)

which has the same optimization form as Eq.( 5) and is likewise amenable to projected gradient descent.

F.3 GRADIENTS AND OPTIMIZATION

For compactness, denote:

M := I + σ−2
Y

 ΣP
Y Z1

ΣP
Y Z2

ΣP
Y Z3

(ΣQ
Z1Z2Z3|Y

)−1

 ΣP
Y Z1

ΣP
Y Z2

ΣP
Y Z3

⊤ , f
(
ΣQ

Z1Z2Z3|Y

)
:=

1

2
log detM. (49)

The differential of f with respect to ΣQ
Z1Z2Z3|Y is:

df =
1

2
tr
(
M−1dM

)
= −1

2
σ−2
Y tr

((
ΣQ

Z1Z2Z3|Y
)−1

 ΣP
Y Z1

ΣP
Y Z2

ΣP
Y Z3

⊤ M−1

 ΣP
Y Z1

ΣP
Y Z2

ΣP
Y Z3

(ΣQ
Z1Z2Z3|Y

)−1
dΣQ

Z1Z2Z3|Y

)
. (50)

Consequently,

∇ΣQ
Z1Z2Z3|Y

f = −1

2
σ−2
Y

(
ΣQ

Z1Z2Z3|Y
)−1

 ΣP
Y Z1

ΣP
Y Z2

ΣP
Y Z3

⊤ M−1

 ΣP
Y Z1

ΣP
Y Z2

ΣP
Y Z3

(ΣQ
Z1Z2Z3|Y

)−1
. (51)

Starting from any feasible initialization Σ
Q(0)
Z1Z2Z3|Y ⪰ 0, we apply a projected gradient descent scheme:

Σ̃Q(t+1) = Σ
Q(t)
Z1Z2Z3|Y − ηt∇ΣQ

Z1Z2Z3|Y
f
(
Σ

Q(t)
Z1Z2Z3|Y

)
, Σ

Q(t+1)
Z1Z2Z3|Y = ΠS+

(
Σ̃Q(t+1)

)
, (52)

where ηt > 0 is the step size. The operator ΠS+ denotes the projection onto the cone of positive semi-definite
(PSD) matrices, ensuring that the constraint ΣQ ⪰ 0 is preserved at every iteration. Specifically, if X =
U diag(λ1, . . . , λd)U

⊤ is the eigendecomposition of X , then:
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ΠS+(X) = U diag
(
max{λ1, 0}, . . . ,max{λd, 0}

)
U⊤ + εI, (53)

with a small ε > 0 added as a safeguard for numerical stability. To select a suitable step size ηt, we adopt a
backtracking line search based on the Armijo rule, which guarantees a sufficient decrease of the objective (Nocedal
& Wright, 2006), i.e., f(ΣQ(t+1)) ≤ f(ΣQ(t)). The iteration terminates once the progress becomes negligible,
|f(ΣQ(t+1))− f(ΣQ(t))| < δ, or when a budget of steps is reached. For robustness, all matrix inverses in Eq. (51) are
evaluated via linear solves, and log det(·) is computed using slogdet to avoid numerical overflow or underflow.

Synergy. With the optimizer ΣQ⋆
Z1Z2Z3|Y obtained by the projected gradient scheme in Eqs.( 51) to( 53), we derive

the corresponding IU⋆. Together with the total mutual information given by Eq. (47), the synergy component can then
be expressed as:

S = I(Z1, Z2, Z3;Y ) − IU⋆. (54)

Redundancy. For each i ∈ {1, 2, 3}, the pairwise mutual information is computed directly from the empirical
covariance ΣP :

I(Zi;Y ) =
1

2
log det

(
I + σ−2

Y ΣP
Y Zi

(ΣP
ZiZi

)−1 ΣP
ZiY

)
. (55)

Under the pragmatic three modality decomposition and the definition of union information for three modalities, we
have:

IU = R+ UZ1
+ UZ2

+ UZ3
, I(Zi;Y ) = UZi

+R (i = 1, 2, 3), (56)

which leads to the following expression for redundancy:

R =
I(Z1;Y ) + I(Z2;Y ) + I(Z3;Y ) − IU⋆

2
. (57)

By substituting Eq.( 55) into Eq.( 57), the redundancy can be numerically evaluated.

Uniqueness. Each unique information term admits a closed-form expression:

UZi = I(Zi;Y )−R = I(Zi;Y )− I(Z1;Y ) + I(Z2;Y ) + I(Z3;Y ) − IU⋆

2
, i ∈ {1, 2, 3}. (58)

F.4 NETWORK IMPLEMENTATION

In terms of network implementation, we can introduce a new modality-specific encoder for X3 to generate Z3. The
final fused representation can then be formulated as

Z = w1Z1 + w2Z2 + w3Z3 + w123(Z1 ◦ Z2 ◦ Z3), (59)

similar to Eq.( 2), the last term explicitly captures the synergistic effect. The weights w1, w2, w3 and w123 are adjusted
by the computed PID terms accordingly.

F.5 EXPERIMENTAL RESULTS OF TRI-MODAL PIDREG

We further evaluate on the CMU-MOSI and CMU-MOSEI, both of which are inherently tri-modal (text, audio, and
video), comparing the tri-modal extension of PIDReg against its bi-modal counterpart. The predictive results are
reported in Table 9, while the corresponding information decomposition is provided in Table 10.
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Method CMU-MOSI CMU-MOSEI

A7 ↑ A2 ↑ F1 ↑ MAE ↓ Corr ↑ A7 ↑ A2 ↑ F1 ↑ MAE ↓ Corr ↑

PIDReg♡ 32.0 80.0 79.7 0.938 0.662 47.4 80.2 80.0 0.634 0.662
PIDReg♠ 37.2 80.8 80.9 0.947 0.664 47.0 80.6 80.2 0.642 0.661
PIDReg♢ 16.4 52.3 51.8 1.400 0.149 41.7 63.4 63.7 0.828 0.228
PIDReg♣ 38.2 81.6 81.6 0.899 0.699 48.7 81.7 81.5 0.620 0.679

Table 9: Tri-Modal PIDReg results (♣ denotes modality combination of Text–Vision–Audio).

Component CMU-MOSI CMU-MOSEI

U△
1 U□

2 U◦
3 R S U△

1 U□
2 U◦

3 R S

Value 0.110 0.052 0.077 0.817 6.108 0.083 0.070 0.081 0.496 6.372

Table 10: Tri-modal Gaussian PID decomposition. △Text modality, □Vision modality, ◦Audio modality.

It is noteworthy that the high synergy observed in Table 10 aligns with the inherent logic of multimodal sentiment
prediction in CMU-MOSI and CMU-MOSEI. This further explains why the performance improvement from Table 2
to Table 9 primarily stems from the synergistic information across different modalities in predicting sentiment.

G EXTENDED RESULTS

G.1 COMPUTATIONAL EFFICIENCY

PIDReg introduces no additional trainable parameters compared to standard fusion models and therefore does not in-
crease model complexity. The encoder and predictor networks follow conventional architectures (e.g., MLPs, ResNet),
as detailed in Appendices E.1 and Appendix E.2. PIDReg performs one PID optimization per iteration in the first
phase, slightly increasing training time, but remains comparable to other methods. Table 11 reports the average train-
ing time per epoch across representative baselines on same device (all require 200 epochs of training).

Method DER MoNIG PIDReg

Time 1.756 3.280 4.641

Table 11: Average training time per epoch (in seconds).

G.2 FINE-GRAINED RESULTS ON REST-META-MDD

In Table 3 of the main paper, we present brain age regression results averaged across all sites. Detailed, site-specific
performance metrics are reported in Table 12 (We have preserved the site-labeling conventions from Yan et al. (2019)
and related works, no adjustments have been made). In brain-age prediction, models commonly exhibit a regression-
to-the-mean effect—overestimating young subjects’ ages and underestimating older subjects’. To eliminate this sys-
tematic bias and thereby ensure that the corrected age estimates yield more reliable and interpretable outcomes, we
first fit a simple linear model on the training set (Beheshti et al., 2019; Cole et al., 2017):

ŷi = α+ β yi + εi, (60)

where yi is the chronological age and ŷi the raw model prediction. The estimated intercept α and slope β quantify the
overall offset and compression of the prediction relative to true age.

Any new prediction ŷraw is then bias-corrected via:

ŷcorr =
ŷraw − α

β
, (61)

so that, by construction, ŷcorr ≈ y lies on the identity line within the training distribution (Smith et al., 2019).
Equivalently, one may report the residual brain-age gap:

∆i = ŷrawi −
(
α+ β yi

)
, (62)
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which is inherently uncorrelated with chronological age.

To avoid information leakage, this correction is performed independently. The resulting age-adjusted predictions
(or brain-age gaps) are thus independent of true age, enhancing both interpretability and the validity of downstream
associations with biological or clinical variables.

Fig. 7 further provides an intuitive visual summary of PIDReg’s raw versus linear bias-corrected age predictions across
all sites.

Test Site(s) Age Gender(M/F) Sample(MDD/HC) MV MIB MoNIG NIG CoMM PIDReg

MAE Corr MAE Corr MAE Corr MAE Corr MAE Corr MAE Corr

S20 39.0± 13.9 157/322 250/229 7.900 0.794 9.048 0.608 7.960 0.792 7.498 0.628 7.749 0.592 7.518 0.797
S7,S9 33.5± 11.4 79/89 83/85 9.497 0.479 6.374 0.679 9.591 0.379 10.619 0.107 10.187 −0.131 7.776 0.723
S14,S19 31.7± 8.4 53/89 79/63 6.793 0.824 5.103 0.633 8.232 0.611 8.912 0.579 10.438 −0.037 4.284 0.751
S1,S8 31.7± 9.2 106/156 127/135 7.946 0.592 6.696 0.513 9.223 0.426 9.855 0.364 9.574 0.253 5.967 0.687
S17,S10 26.5± 9.0 65/88 86/67 7.292 0.637 5.757 0.739 6.610 0.785 6.872 0.773 7.316 0.675 4.687 0.776
S23,S15 37.5± 14.3 44/68 52/60 7.759 0.764 7.727 0.708 9.454 0.761 17.693 0.771 11.375 0.357 6.678 0.849
S22,S13 31.1± 9.8 34/40 38/36 10.123 0.334 8.476 0.448 11.250 0.525 9.901 0.456 8.476 0.373 6.553 0.562
S21,S11 34.3± 11.9 79/102 99/82 7.959 0.622 7.039 0.657 9.894 0.446 11.932 0.313 9.825 0.373 7.977 0.754
S2,S4 35.7± 11.1 24/47 34/37 5.196 0.847 4.556 0.790 6.130 0.580 6.931 0.825 10.229 −0.034 5.172 0.843

Table 12: Cross-site results on Rest-meta-MDD.
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Figure 7: Brain age prediction results.

G.3 LARGE SCALE BIMODAL MNIST REGRESSION BENCHMARK

Given the scarcity of large-scale, high-quality benchmarks for bimodal regression with known information contribu-
tions, we additionally design a new benchmark derived from the MNIST dataset. Specifically, starting from the 70,000
grayscale images of size 28× 28, we construct a dataset of 140,000 samples as follows:

For each original image, sample a rotation angle θ ∼ U(−90◦, 90◦), which serves as the regression target. Rotate
the image by θ degrees, add Gaussian noise whose standard deviation is drawn from U(0, 0.05), and apply a ran-
dom contrast scaling sampled from U(0.8, 1.2). For each augmented image, we extract two heterogeneous feature
modalities:

Raw - pixel modality: Flatten the 28 × 28 image into a 784-dimensional vector X1, preserving all low-level visual
information.

Structured - feature modality: Concatenate four classes of handcrafted descriptors, statistical moments, edge and
gradient features, shape-contour descriptors, and frequency-domain features, into a 278-dimensional vector X2, aimed
at capturing higher-order structural information.

Each sample is thus associated with a scalar target θ and two modalities X1 ∈ R784 and X2 ∈ R278. We then compare
PIDReg against baseline methods in terms of predictive performance and information decomposition. The results are
reported in Table 13.
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Metric MIB MoNIG MEIB DER PIDReg
MAE↓ 7.70 9.28 10.17 10.01 5.90
R2 ↑ 0.95 0.94 0.86 0.91 0.97

Component U∗
1 U◦

2 R S

Value 0.866 0.000 0.250 0.076

Table 13: MNIST regression (left) and Gaussian PID decomposition values (right), ∗Pixel modality, ◦Feature modality.

The raw-pixel modality retains the complete visual content of each image. Because the structured-feature modality is
derived solely from descriptors that encode the same rotation-angle information present in the raw pixels, it does not
contribute substantial additional information. The PID decomposition therefore unambiguously reveals the intrinsic
relationship between these two modalities (redundant and no unique information from X2). The results on MNIST
further underscore the effectiveness and robustness of PIDReg on real world data.

G.4 EVALUATION OF PIDREG UNDER EXTREME SCENARIOS AND GAUSSIAN DISTRIBUTION SHIFTS

To further validate the superiority of PIDReg in terms of predictive accuracy and information decomposition, we
conduct additional experiments from two perspectives: (i) extreme boundary cases of information components (sec-
tion G.4.1), and (ii) severely skewed non-Gaussian information components (section G.4.2). All results are further
subjected to statistical tests in section G.4.3 to rule out potential confounding effects.

G.4.1 EXTREME SCENARIOS EXTENSION

First, we follow the same setup as in section 4.1, where synthetic data are generated according to Eq.( 22) and Eq.( 23).
Here, however, we additionally consider cases with purely single information components. We repeat the experiments
under this setting, and the results, shown in Fig. 8, demonstrate that PIDReg can still accurately capture the information
components even in such extreme cases.
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Figure 8: Estimated PID values when (f) wu1 = 1.00, wu2 = 0.00, ws = 0.00, wr = 0.00; (g) wu1 = 0.00,
wu2 = 1.00, ws = 0.00, wr = 0.00; (h) wu1 = 0.00, wu2 = 0.00, ws = 1.00, wr = 0.00; (i) wu1 = 0.00,
wu2 = 0.00, ws = 0.00, wr = 1.00.

G.4.2 GAUSSIAN DISTRIBUTION SHIFTS

Furthermore, instead of drawing R,U1, U2 ∼ N (0, 1), we sample them from a chi-squared distribution, R,U1, U2 ∼
χ2
4, such that the variables significantly deviate from Gaussianity, the results are shown in Fig. 9. This allows us to

provide an additional validation of PIDReg from the perspective of known ground truth, thereby assessing its reliability
under skewed data distributions that often arise in real-world scenarios.

Furthermore, we retain the experimental protocol and apply the scalable procedure of Liang et al. (2023), which
quantifies interaction information fordatasets or pre-trained models. In contrast to PIDReg’s intrinsic interpretability
(built-in, training-time decomposition), Liang et al. (2023) is a post-hoc diagnostic. We replicate the experiments and
compute the resulting information-decomposition estimates, with outcomes summarized in Fig. 10. Notably, under
severely skewed, non-Gaussian distributions, the post-hoc method exhibits limited ability to capture the dynamics of
information components.
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Figure 9: Estimated PID values when (a) wu1 = 0.00, wu2 = 0.00, ws = 0.75, wr = 0.25; (b) wu1 = 0.00,
wu2 = 0.00, ws = 0.50, wr = 0.50; (c) wu1 = 0.00, wu2 = 0.00, ws = 0.25, wr = 0.75; (d) wu1 = 0.00,
wu2 = 0.80, ws = 0.10, wr = 0.10; (e) wu1 = 0.80, wu2 = 0.00, ws = 0.10, wr = 0.10; (f) wu1 = 1.00,
wu2 = 0.00, ws = 0.00, wr = 0.00; (g) wu1 = 0.00, wu2 = 1.00, ws = 0.00, wr = 0.00; (h) wu1 = 0.00,
wu2 = 0.00, ws = 1.00, wr = 0.00; (i) wu1 = 0.00, wu2 = 0.00, ws = 0.00, wr = 1.00.
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Figure 10: Post-hoc diagnostic estimated PID values.

G.4.3 STATISTICAL TEST

We further employ statistical tests to examine the significance of PIDReg in capturing and decomposing information
components. Specifically, we validate the estimation of ωR/ωS by fixing ωu1 = ωu2 = 0.2 and varying ωR/ωS ∈
{0, 0.5, 1, 1.5, 2.0}, with 10 trials conducted for each ratio. The Pearson correlation between the ground-truth ratio
and the estimated Rest/Sest yields:

r = 0.996, p = 3.02× 10−4 < 0.05,

demonstrating a significant positive correlation and confirming the reliability of PIDReg’s decomposition capability.
Remark 1 (Interpretation of estimated PID components). The true weights ωu1, ωu2, ωR, ωS and the estimated PID
components U1, U2, R, S differ in both their physical units and the mathematical spaces they inhabit, so numerical
discrepancies are expected. In Eq.( 23), ωu1, ωu2, ωR, ωS are linear scaling factors applied to latent variables in the
generative process. For example, modality 1 follows

X1 = fgen([R,U1]), Z1 = hϕ1
(X1),

so that ω modulates the composite function hϕ1
◦ fgen. This makes the true contributions of unique information and

redundancy highly nonlinear, and the estimated components U1, U2, R, S capture the resulting influence after such
transformations. Hence, exact numerical consistency with the original linear weights is not expected.

Nevertheless, we design our experiments to test whether the estimated PID components reliably reflect the relative
strengths of the underlying generative factors, which we expect to be positively correlated with the true weights. The
results in Fig. 2, Fig. 8 and Fig. 9 confirm two main objectives:
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1. Detection of information — channel existence. When a generative channel is switched off, the model should
detect its absence, e.g.,

ωu1 = 0 =⇒ U1 ≈ 0.

2. Trend tracking of relative contributions. When the relative strengths of information components change, the
estimated PID components should reflect the correct monotonic trend, e.g.,

w(2)
s > w(1)

s , w(2)
r < w(1)

r =⇒ S
(2)
est > S

(1)
est , R

(2)
est < R

(1)
est .

H LIMITATIONS AND FUTURE WORK

The current PIDReg framework provides modality-level or dataset-level interpretability by revealing how different
higher-order modality interactions contribute to the final prediction. For future work, we aim to extend this capabil-
ity toward sample-level (instance-level) interpretability. In this setting, when making inference for a specific sample,
PIDReg would be able to identify the most informative unique modality or modality interaction that drives the predic-
tion.

I LLM USAGE STATEMENT

This study does not incorporate LLMs as a key, novel, or unconventional component of the proposed approach, nor
in any experiments. Any use of LLMs was limited to writing refinement and had no influence on the fundamental
methodology or the results.
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