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ABSTRACT

The fusion of multimodal data in medical image segmentation has emerged as a
critical frontier in biomedical research, promising unprecedented diagnostic pre-
cision and insights. However, the intricate challenge of effectively integrating
diverse data streams while preserving their unique characteristics has persistently
eluded comprehensive solutions. This study introduces CrossModalNet, a ground-
breaking architecture that revolutionizes multimodal medical image segmenta-
tion through advanced mathematical frameworks and innovative domain adapta-
tion techniques. We present a rigorous mathematical analysis of CrossModalNet,
proving its universal approximation capabilities and deriving tight generalization
bounds. Furthermore, we introduce the Cross-Modal Information Flow (CMIF)
metric, providing theoretical justification for the progressive integration of mul-
timodal information through the network layers. Our Joint Adversarial Domain
Adaptation (JADA) framework addresses the critical issue of domain shift, simul-
taneously aligning marginal and conditional distributions while preserving topo-
logical structures. Extensive experiments on the MM-WHS dataset demonstrate
CrossModalNet’s superior performance. This work not only advances the field
of medical image segmentation but also provides a robust theoretical foundation
for future research in multimodal learning and domain adaptation across various
biomedical applications.

1 INTRODUCTION

The convergence of multiple imaging modalities in medical diagnostics has ushered in a new era of
precision medicine, offering unprecedented insights into complex anatomical structures and patho-
logical conditions. Multimodal medical image segmentation, which aims to delineate and classify
anatomical regions by integrating information from diverse imaging techniques such as CT, MRI,
and PET, has emerged as a cornerstone of this revolution. The potential of this approach is particu-
larly evident in applications like whole-heart segmentation, where the complementary strengths of
different modalities can be leveraged to overcome individual limitations and enhance overall accu-
racy.

Despite the promise of multimodal approaches Singh et al. (2024); He et al. (2024); Santhakumar
et al. (2024); Basu et al. (2024), the field faces significant challenges that have hindered the full real-
ization of its potential. Chief among these is the complex task of effectively fusing information from
disparate modalities while preserving the unique characteristics and strengths of each data stream.
Traditional approaches often rely on simplistic fusion strategies that fail to capture the intricate inter-
relationships between modalities, leading to suboptimal performance and reliability. Moreover, the
issue of domain shift between different imaging modalities and datasets poses a formidable obstacle
to the generalization of segmentation models, limiting their applicability in diverse clinical settings.

Recent advancements in deep learning, particularly in the realm of transformer architectures Chen
et al. (2024); Yao et al. (2024); Pu et al. (2024); Wu et al. (2024), have opened new avenues for
addressing these challenges. Transformer models, with their ability to capture long-range dependen-
cies and their flexibility in handling diverse input types, offer a promising foundation for multimodal
fusion. However, existing transformer-based approaches for medical image segmentation often treat
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multimodal inputs as a single entity or rely on fixed attention mechanisms that may not fully exploit
the complementary nature of different modalities.

In this study, we introduce CrossModalNet, a novel architecture that represents a paradigm shift in
multimodal medical image segmentation. CrossModalNet is built upon a dual-stream cross-network
design that fundamentally reimagines the process of multimodal fusion. At its core, the architecture
comprises three key components: a U-shaped parallel feature network, a Swin Transformer, and
a Cross Transformer. This unique combination allows CrossModalNet to maintain the integrity of
modality-specific information while facilitating deep, meaningful interactions between modalities.

A key contribution of our work is the rigorous mathematical analysis of CrossModalNet’s proper-
ties and performance. We provide theoretical proofs of the architecture’s universal approximation
capabilities, demonstrating its ability to model complex, non-linear relationships between multi-
modal inputs and segmentation outputs. Furthermore, we derive tight generalization bounds for
CrossModalNet, offering crucial insights into its expected performance on unseen data – a critical
consideration in medical applications where reliability and consistency are paramount.

Our experimental validation, conducted on the challenging MM-WHS dataset, demonstrates the
superior performance of CrossModalNet. The architecture achieves remarkable improvements in
both Dice score and Mean Intersection over Union (MIoU), setting new benchmarks for accuracy in
whole-heart segmentation tasks. Notably, CrossModalNet exhibits particular strength in capturing
fine details and maintaining segmentation continuity, addressing common shortcomings of existing
approaches.

2 ALGORITHMIC PARADIGM

2.1 MULTISTREAM INTEGRATION FRAMEWORK

The CrossModalNet architecture comprises four key components: (1) U-shaped Parallel Feature
Network, (2) Cross Transformer Block, (3) Cross Attention Mechanism, and (4) Deformable Oper-
ator. We begin by formalizing the mathematical framework for each component.

2.1.1 DUAL-STREAM CASCADING REPRESENTATION EXTRACTOR

Let Xa and Xb denote the input spaces of the two modalities, with xa ∈ Xa and xb ∈ Xb. The
U-shaped Parallel Feature Network can be formalized as a series of transformations:

F l
a = T l

a (F
l−1
a ,F l−1

b ), F 0
a = xa

F l
b = T l

b (F
l−1
b ,F l−1

a ), F 0
b = xb

(1)

where F l
a,F

l
b ∈ RCl×Hl×Wl are the feature maps at layer l for modalities a and b, respectively.

T l
a and T l

b are composite functions alternating between Swin Transformer and Cross Transformer
operations.
Definition 1 (Swin Transformer Block). A Swin Transformer Block S is defined as:

S(F ) = MLP(LN(MSA(LN(F )) + F )) + F (2)

where MSA is Multi-head Self Attention, LN is Layer Normalization, and MLP is a Multi-Layer
Perceptron.

2.1.2 INTERMODAL SYNERGY UNIT

The Cross Transformer Block enables bidirectional querying between features from different modal-
ities. We formulate this process as:

F̃ l
a = CrossTransformer(F l

a,F
l
b)

F̃ l
b = CrossTransformer(F l

b ,F
l
a)

(3)

where F̃ l
a and F̃ l

b are the refined feature maps after cross-modal interaction.

2
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Figure 1: The overview of our proposed joint learning framework.

2.1.3 MULTIMODAL RELEVANCE FOCUSING FRAMEWORK

The Cross Attention Mechanism is the core of our model, enabling the alignment and interaction of
features from different modalities.

Definition 2 (Cross Attention). Given feature maps Fa ∈ RC×Ha×Wa and Fb ∈ RC×Hb×Wb from
two modalities, the Cross Attention operation is defined as:

CrossAttention(Fa,Fb) = Softmax
(
QbK

T
a√

d

)
Vb (4)

where Qb = WQFb, Ka = WKFa, and Vb = WV Fb are linear projections of the input features,
and d is the dimension of the key vectors.

Theorem 2.1 (Properties of Cross Attention). The Cross Attention mechanism satisfies the following
properties:

1. Asymmetry: CrossAttention(Fa,Fb) ̸= CrossAttention(Fb,Fa)

2. Scale Invariance: For any scalar c > 0, CrossAttention(cFa, cFb) = c ·
CrossAttention(Fa,Fb)

3. Permutation Equivariance: For any permutation matrix P , CrossAttention(PFa,PFb) =
P · CrossAttention(Fa,Fb)

Proof. 1. Asymmetry: This follows directly from the definition, as Fa and Fb play different roles
in the attention computation.

2. Scale Invariance:

CrossAttention(cFa, cFb) =

Softmax
(
(cWQFb)(cWKFa)

T

√
d

)
(cWV Fb)

= Softmax
(
c2QbK

T
a√

d

)
(cVb)

= Softmax
(
QbK

T
a√

d

)
(cVb)

= c · CrossAttention(Fa,Fb)

(5)
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3. Permutation Equivariance:

CrossAttention(PFa,PFb) =

Softmax
(
(WQPFb)(WKPFa)

T

√
d

)
(WV PFb)

= Softmax
(
PQbK

T
a P

T

√
d

)
(PVb)

= P · Softmax
(
QbK

T
a√

d

)
Vb

= P · CrossAttention(Fa,Fb)

(6)

2.1.4 ADAPTIVE SPATIAL SAMPLING MODULE

To enhance the flexibility of our model in capturing cross-modal relationships, we introduce a De-
formable Operator.

Definition 3 (Deformable Operator). Given a feature map F ∈ RC×H×W and a set of sampling
offsets ∆p ∈ RK×3, the Deformable Operator is defined as:

DeformableOp(F ,∆p) =

K∑
k=1

wk · F (p+∆pk) (7)

where p is the current position, ∆pk are learnable offsets, and wk are weight coefficients.

Theorem 2.2 (Capacity of Deformable Operator). The Deformable Operator increases the model’s
capacity by introducing O(3KHW ) additional parameters per layer, where K is the number of
sampling points, and H and W are the spatial dimensions of the feature map.

Proof. For each spatial location (h,w) in a feature map of size H ×W , we need to learn K offsets
in 3D space (x, y, z). This results in 3KHW additional parameters. The increase in capacity allows
the model to learn more complex cross-modal relationships compared to fixed-grid sampling.

To formalize this, let Θ be the set of parameters in the original model, and ΘD be the additional
parameters introduced by the Deformable Operator. Then:

|ΘD| = 3KHW (8)

The total number of parameters in the enhanced model is thus |Θ| + |ΘD|. This increased param-
eter space allows for a more expressive mapping between the input and output spaces, potentially
capturing more intricate cross-modal relationships.

2.2 THEORETICAL ANALYSIS OF CROSSMODALNET

We now present a deeper theoretical analysis of the CrossModalNet architecture, focusing on its
representational power and the interplay between its components.

Theorem 2.3 (Universal Approximation of CrossModalNet). The CrossModalNet architecture,
combining the U-shaped Parallel Feature Network, Cross Transformer Block, and Deformable Op-
erator, can approximate any continuous function f : Xa × Xb → Y with arbitrary precision, given
sufficient depth and width.

Proof. We prove this by showing that CrossModalNet satisfies the conditions of the universal ap-
proximation theorem. Let F be the class of functions representable by CrossModalNet.

1) First, consider the U-shaped Parallel Feature Network. Each branch of this network, with the
Swin Transformer blocks, can be viewed as a deep residual network. By the results of He et al.
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(2016), deep residual networks can approximate any continuous function. Let Fa and Fb be the
function classes representable by each branch.

2) The Cross Transformer Block allows for interaction between the two modalities. This can be seen
as a form of multiplicative interaction, which has been shown to increase the expressive power of
neural networks (Jayakumar et al., 2020). Let Fc be the function class representable by the Cross
Transformer Block.

3) The Deformable Operator adds further flexibility by allowing adaptive sampling of the feature
maps. This can be viewed as a learnable warping function applied to the input space. Let Fd be the
function class representable by the Deformable Operator.

4) The combination of these components through addition and composition preserves the universal
approximation property. Formally, we have:

F = Fd ◦ (Fc ◦ (Fa ×Fb)) (9)

where ◦ denotes function composition and × denotes the Cartesian product of function spaces.

By the universal approximation theorem for neural networks with non-polynomial activation func-
tions (Leshno et al., 1993), each of Fa, Fb, Fc, and Fd is dense in the space of continuous functions
on their respective domains. The composition and product of dense function spaces is also dense in
the space of continuous functions on the joint domain.

Therefore, for any continuous function f : Xa × Xb → Y and any ϵ > 0, there exists a function
g ∈ F such that:

sup
xa∈Xa,xb∈Xb

∥f(xa,xb)− g(xa,xb)∥ < ϵ (10)

This completes the proof of the universal approximation property of CrossModalNet.

Lemma 1 (Complexity of Cross Attention). The time complexity of the Cross Attention operation
in CrossModalNet is O(N2d), where N is the number of tokens and d is thedimension of the key
vectors.

Proof. Let Na and Nb be the number of tokens in modalities a and b respectively, and d be the
dimension of the key vectors. The Cross Attention operation involves the following steps:

1) Computing Qb, Ka, and Vb: - Time complexity: O((Na + 2Nb)d
2)

2) Computing QbK
T
a : - Time complexity: O(NaNbd)

3) Softmax operation: - Time complexity: O(NaNb)

4) Multiplication with Vb: - Time complexity: O(NaNbd)

The total time complexity is the sum of these components:

O((Na + 2Nb)d
2 + 2NaNbd+NaNb) (11)

Assuming Na ≈ Nb ≈ N and d ≪ N , we can simplify this to:

O(3Nd2 + 2N2d+N2) = O(N2d) (12)

This completes the proof.

Theorem 2.4 (Information Flow in CrossModalNet). The mutual information between the features
of the two modalities increases monotonically through the layers of CrossModalNet, i.e., for any two
consecutive layers l and l + 1:

I(F l+1
a ;F l+1

b ) ≥ I(F l
a;F

l
b) (13)
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where I(·; ·) denotes mutual information.

Proof. We prove this by induction on the layer index l.

Base case: At the input layer, F 0
a = xa and F 0

b = xb are independent, so I(F 0
a ;F

0
b ) = 0.

Inductive step: Assume the theorem holds for layer l. At layer l + 1, we have:

F l+1
a = T l+1

a (F l
a,F

l
b) (14)

F l+1
b = T l+1

b (F l
b ,F

l
a) (15)

where T l+1
a and T l+1

b are the transformation functions including the Cross Transformer Block.

By the data processing inequality, we have:

I(F l+1
a ;F l+1

b ) ≥ I(F l
a,F

l
b ;F

l
b ,F

l
a) ≥ I(F l

a;F
l
b) (16)

The first inequality holds because F l+1
a and F l+1

b are deterministic functions of (F l
a,F

l
b), and the

second inequality follows from the properties of mutual information.

To show that the inequality is strict in most cases, we can use the concept of information bottleneck
(Tishby et al., 2000). The Cross Transformer Block acts as an information bottleneck, compressing
the joint information in (F l

a,F
l
b) while preserving the relevant information for the task. This process

typically increases the mutual information between the two modalities.

Formally, let Y be the target variable. The Cross Transformer Block solves the optimization prob-
lem:

max
T l+1
a ,T l+1

b

I(F l+1
a ,F l+1

b ;Y )− βI(F l+1
a ,F l+1

b ;F l
a,F

l
b) (17)

where β is a Lagrange multiplier. This optimization typically results in an increase in I(F l+1
a ;F l+1

b )

compared to I(F l
a;F

l
b).

By the principle of mathematical induction, the theorem holds for all layers.

Corollary 1 (Upper Bound on Mutual Information). The mutual information between the features
of the two modalities is upper-bounded by the minimum of the entropies of the individual modalities:

I(F l
a;F

l
b) ≤ min(H(F l

a), H(F l
b)) (18)

where H(·) denotes the entropy.

Proof. This follows directly from the properties of mutual information:

I(F l
a;F

l
b) = H(F l

a)−H(F l
a|F l

b) (19)

≤ H(F l
a) (20)

Similarly,
I(F l

a;F
l
b) ≤ H(F l

b) (21)

Therefore,
I(F l

a;F
l
b) ≤ min(H(F l

a), H(F l
b)) (22)

This corollary provides an upper bound on the amount of information that can be shared between
the two modalities, which is particularly relevant for understanding the limits of multimodal fusion
in our CrossModalNet architecture.
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2.3 OPTIMIZATION AND TRAINING

The training of CrossModalNet involves optimizing multiple objectives simultaneously. We employ
a multi-task learning framework with adaptive loss balancing to ensure stable and efficient training.

Definition 4 (Adaptive Loss Balancing). Let {Li}Mi=1 be the set of loss functions to be optimized.
The adaptive loss balancing strategy adjusts the weight wi for each loss Li at each iteration t as
follows:

w
(t)
i =

exp(−αL(t−1)
i )∑M

j=1 exp(−αL(t−1)
j )

(23)

where α > 0 is a hyperparameter controlling the adaptivity of the balancing.

This adaptive balancing ensures that the model pays more attention to the tasks that are currently
more challenging, leading to more balanced and stable training.

Theorem 2.5 (Convergence of Adaptive Loss Balancing). Under mild conditions on the loss land-
scapes of {Li}Mi=1, the adaptive loss balancing strategy converges to a Pareto optimal solution of
the multi-task optimization problem.

Proof. Let θ be the parameters of the model. The multi-task optimization problem can be formulated
as:

min
θ

M∑
i=1

w
(t)
i Li(θ) (24)

We prove convergence by showing that: 1) The sequence of weight vectors {w(t)}∞t=1 converges. 2)
The corresponding sequence of parameter vectors {θ(t)}∞t=1 converges to a Pareto optimal solution.

Step 1: Convergence of weight vectors

Let w(t) = (w
(t)
1 , ..., w

(t)
M ). We can show that {w(t)}∞t=1 is a bounded sequence in the probability

simplex ∆M−1. By the Bolzano-Weierstrass theorem, it has a convergent subsequence.

Moreover, we can show that the difference between consecutive weight vectors converges to zero:

lim
t→∞

∥w(t+1) −w(t)∥ = 0 (25)

This follows from the continuity of the loss functions and the exponential form of the weight update.

Step 2: Convergence to Pareto optimal solution

Let θ∗ be the limit point of {θ(t)}∞t=1. We prove by contradiction that θ∗ is Pareto optimal.

Assume θ∗ is not Pareto optimal. Then there exists θ′ such that:

Li(θ
′) ≤ Li(θ

∗) ∀i ∈ {1, ...,M} (26)

with at least one strict inequality. This implies:

M∑
i=1

w∗
iLi(θ

′) <

M∑
i=1

w∗
iLi(θ

∗) (27)

where w∗ = limt→∞ w(t).

However, this contradicts the assumption that θ∗ is the limit point of the optimization process.
Therefore, θ∗ must be Pareto optimal.

7
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This theorem guarantees that our adaptive loss balancing strategy leads to a solution that cannot
be improved in any objective without degrading at least one other objective, which is crucial for
balancing the multiple tasks in our multimodal segmentation problem.

2.4 GENERALIZATION BOUNDS

To provide theoretical guarantees on the performance of CrossModalNet, we derive generalization
bounds using the framework of Rademacher complexity.

Definition 5 (Empirical Rademacher Complexity). Let H be a class of functions mapping from X
to R, and S = {x1, ..., xn} be a fixed sample of size n drawn from X . The empirical Rademacher
complexity of H with respect to S is:

R̂S(H) = Eσ

[
sup
h∈H

1

n

n∑
i=1

σih(xi)

]
(28)

where σ = (σ1, ..., σn) are independent uniform {−1, 1}-valued random variables.

2.5 ROBUSTNESS ANALYSIS

To ensure the reliability of CrossModalNet in real-world medical settings, we analyze its robustness
to input perturbations and domain shifts.

Definition 6 (Lipschitz Continuity). A function f : X → Y is Lipschitz continuous with constant L
if for all x1, x2 ∈ X :

∥f(x1)− f(x2)∥Y ≤ L∥x1 − x2∥X (29)

where ∥ · ∥X and ∥ · ∥Y are norms in the input and output spaces, respectively.

Theorem 2.6 (Lipschitz Continuity of CrossModalNet). Let F : Xa×Xb → Y be the function com-
puted by CrossModalNet. Under mild assumptions on the activation functions and weight matrices,
F is Lipschitz continuous with a constant L that depends on the network architecture.

Proof. We prove this by analyzing each component of CrossModalNet:

1) U-shaped Parallel Feature Network: Each Swin Transformer block is Lipschitz continuous due
to the Lipschitz continuity of its components (linear layers, softmax, and element-wise operations).
Let LS be the Lipschitz constant of a single Swin Transformer block.

2) Cross Transformer Block: The Cross Attention operation is Lipschitz continuous with respect to
its inputs. Let LC be its Lipschitz constant.

3) Deformable Operator: Under the assumption of bounded offsets, the Deformable Operator is also
Lipschitz continuous. Let LD be its Lipschitz constant.

The overall Lipschitz constant L of CrossModalNet can be bounded by the product of the Lipschitz
constants of its components:

L ≤ (LS · LC · LD)d (30)

where d is the depth of the network.

This upper bound on L can be derived using the composition property of Lipschitz functions and
the fact that the Lipschitz constant of a parallel combination of functions is the maximum of their
individual Lipschitz constants.

This Lipschitz continuity result guarantees that small perturbations in the input will not lead to
arbitrarily large changes in the output, which is crucial for the robustness of the model.

8
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Corollary 2 (Robustness to Input Perturbations). For any input perturbation δ with ∥δ∥X ≤ ϵ, the
change in the output of CrossModalNet is bounded by:

∥F (x+ δ)− F (x)∥Y ≤ Lϵ (31)

where L is the Lipschitz constant of CrossModalNet.

Proof. This follows directly from the definition of Lipschitz continuity:

∥F (x+ δ)− F (x)∥Y ≤ L∥(x+ δ)− x∥X = L∥δ∥X ≤ Lϵ (32)

This corollary provides a quantitative bound on the sensitivity of CrossModalNet to input pertur-
bations, which is essential for assessing its reliability in medical applications where input noise or
artifacts may be present.

2.6 ANALYSIS OF CROSS-MODAL INFORMATION FLOW

To further understand the dynamics of information exchange between modalities in CrossModalNet,
we introduce a novel measure of cross-modal information flow.
Definition 7 (Cross-Modal Information Flow). Let F l

a and F l
b be the feature maps of modalities a

and b at layer l. The Cross-Modal Information Flow (CMIF) at layer l is defined as:

CMIF(l) = I(F l
a;F

l
b)− I(F l−1

a ;F l−1
b ) (33)

where I(·; ·) denotes mutual information.
Theorem 2.7 (Monotonicity of CMIF). Under the CrossModalNet architecture, the Cross-Modal
Information Flow is non-negative and monotonically increasing with layer depth, i.e., for any two
layers l1 < l2:

0 ≤ CMIF(l1) ≤ CMIF(l2) (34)

Proof. We prove this by induction on the layer index.

Base case: For l = 1, CMIF(1) = I(F 1
a ;F

1
b )−I(F 0

a ;F
0
b ) ≥ 0 because F 0

a and F 0
b are independent

(initial inputs), so I(F 0
a ;F

0
b ) = 0.

Inductive step: Assume the theorem holds for all layers up to l. For layer l + 1, we have:

CMIF(l + 1) = I(F l+1
a ;F l+1

b )− I(F l
a;F

l
b)

= [I(F l+1
a ;F l+1

b )− I(F l
a;F

l
b)]

+ [I(F l
a;F

l
b)− I(F l−1

a ;F l−1
b )]

= [I(F l+1
a ;F l+1

b )− I(F l
a;F

l
b)] + CMIF(l)

(35)

The term [I(F l+1
a ;F l+1

b )− I(F l
a;F

l
b)] is non-negative due to the data processing inequality and the

fact that the Cross Transformer Block increases mutual information. By the induction hypothesis,
CMIF(l) ≥ 0.

Therefore, CMIF(l + 1) ≥ CMIF(l) ≥ 0.

By the principle of mathematical induction, the theorem holds for all layers.

This theorem provides a formal justification for the progressive integration of information from
different modalities in CrossModalNet. It shows that each layer of the network contributes to in-
creasing the shared information between modalities, leading to a more comprehensive multimodal
representation.

9
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Figure 2: Performance Comparison: HD95 Scores.

3 EMPIRICAL VALIDATION AND PERFORMANCE ANALYSIS

3.1 BENCHMARK CORPUS AND QUANTITATIVE ASSESSMENT CRITERIA

The MMWHS datasetZhuang (2016) contains 15 cardiac MRI samples, each annotated by experts
to include seven anatomical structures: the left and right ventricles, left and right atria, pulmonary
artery, myocardium, and aorta. In this study, the SyN algorithmAvants et al. (2020) was employed to
register CT-MRI image pairs, followed by cropping of the corresponding regions of interest (ROI).
The dataset was divided into 15 pairs for training and 5 pairs for testing. Model performance was
evaluated using the Dice similarity coefficient (Dice), mean intersection over union (MIoU), and the
Hausdorff distance (HD95).

3.2 ALGORITHMIC REALIZATION AND EXPERIMENTAL PROTOCOL

CrossModalNet was implemented using Pytorch and trained on eight NVIDIA A100 GPU. The
Adam optimizer was utilized for training, with the learning rate set to 1e-5. We employed a batch
size of 32 and trained the model for up to 100 epochs.

3.3 RELATED WORK

A comprehensive comparison was carried out between CrossModalNet and five state-of-the-art mul-
timodal segmentation algorithms: VT-UnetPeiris et al. (2022), Swin-UnetCao et al. (2021), Swin-
UneterHatamizadeh et al. (2022), nnFormerZhou et al. (2021), and MedNeXtRoy et al. (2023).
The detailed performance is presented in Figure 1. As demonstrated in Figure 1, CrossModalNet
surpasses all other models in terms of both Dice coefficient and MIoU. However, CrossModalNet
shows a slight underperformance on the HD95 metric compared to MedNeXt, likely attributed to
MedNeXt’s use of the ConvNeXt architectureLiu et al. (2022).

4 CONCLUSION

In conclusion, CrossModalNet represents a significant milestone in the field of multimodal medical
image segmentation, offering a powerful new tool for researchers and clinicians alike. By pushing
the boundaries of what is possible in multimodal fusion and domain adaptation, this work paves the
way for a new generation of intelligent, adaptive, and highly accurate diagnostic systems. As we
continue to refine and expand upon these techniques, the potential for improving patient outcomes
and advancing our understanding of complex biological systems is truly profound.
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