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ABSTRACT

Causal discovery in time series is crucial for downstream tasks such as tracing the
root causes of anomalies. Structural Causal Models (SCMs) provide a principled
way to formalize the generative processes of observed data. However, learning
generalized causal models for time series remains challenging due to the lack of
detailed modeling and limited generalization ability. In this paper, we propose
T-Caus, a novel pretraining framework designed to improve the generalization of
Time series Causal models across diverse downstream tasks. To capture complex
temporal causal dependencies, T-Caus introduces a hierarchical instance-specific
temporal causal discovery framework that employs a dual-scale iterative atten-
tion to enhance window-level causal relationships, and a Gaussian mixture with
an instance-level routing mechanism to handle heterogeneous exogenous distri-
butions. To further address distribution shifts across time series, T-Caus adopts
generalizable causal learning with causal invariance, which explicitly leverages
intervention-based learning and a causal mixup strategy to promote stable causal
discovery and stronger generalization. Extensive experiments on multiple real-
world out-of-distribution (OOD) datasets demonstrate that T-Caus exhibits strong
generalization, achieving superior performance in both causal discovery and root
cause identification. The code and datasets are available at the link.

1 INTRODUCTION

Accurate causal discovery from observed time series is fundamental to many real-world applications.
For instance, it can reveal the drivers of stock price fluctuations (Li et al., 2024) or the factors influ-
encing river water levels (Stein et al., 2025), thereby enabling actionable insights and more robust
decision-making. In root cause diagnosis (Han et al., 2025; Nagalapatti et al., 2025), constructing a
causal graph facilitates the identification of the source of system failure and allows tracing how these
failures propagate. Similarly, in anomaly detection (Liu et al., 2025; Kim et al., 2025), monitoring
changes in causal relationships can effectively reveal anomalous events.

Recent studies have explored pre-training for causal inference. CInA(Zhang et al., 2024) proposes
a foundation model for treatment effect estimation, while Causal Pretraining(Stein et al., 2024)
adopts a supervised approach to predict the existence of edges in causal graphs. Leveraging the
generalization ability of this paradigm, we investigate pre-training for discovering window causal
graphs from time series data. Although pre-training has shown promise for causal graph inference,
advances in model architecture and generalization remain necessary to fully realize its potential.

Challenge 1: Inherent complexity of temporal causal dependencies. As shown in Figure 1, channel
3 at time t is influenced by channel 1 at t− 2, which in turn is influenced by channel 2 at t− 4. This
reveals an iterative, cascading dependency across time steps. Existing methods (Cheng et al., 2023;
Han et al., 2025) suffer from insufficient modeling of such cross-channel interactions and cascading
temporal dependencies. It is crucial to capture causal relationships not only within individual win-
dows but also across multiple time windows. Furthermore, in a structural causal model, observed
time series (endogenous variables) are influenced not only by other endogenous variables but also
by unobserved factors (exogenous variables). These exogenous variables, as external factors inde-
pendent of the system’s internal structure, provide critical signals for root cause identification (Han
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et al., 2025). Accurately modeling their influences is thus essential for reliable discovery of causal
graphs. However, the distributions of exogenous variables are diverse across different time series.
Existing approaches (Han et al., 2025), which typically assume a fixed Gaussian prior, lack the
flexibility to adapt to such diversity and cannot model exogenous factors across multiple series.
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Figure 1: Intra- and inter-window causal depen-
dencies in multivariate time series x. Solid lines
indicate true causal dependencies and dashed
lines represent spurious correlations.

Challenge 2: Causality-Aware Generalization
under Distribution Shifts. In real-world sce-
narios, continuously generated data streams of-
ten exhibit non-stationarity, leading to distri-
butional shifts over time. Such shifts break
the alignment between historical data and fu-
ture out-of-distribution (OOD) data. Pretrained
models are generally expected to handle OOD
cases under the Vicinal Risk Minimization prin-
ciple (Chapelle et al., 2000), which emphasizes
modeling the neighborhood of each training ex-
ample to achieve robustness against unseen vari-
ations. However, existing time series causal dis-
covery methods fail to account for both the diver-
sity of individual series and the variability of causal relationships across different series. Addi-
tionally, in causal discovery, distinguishing between correlation and causation is crucial (Pearl &
Mackenzie, 2018). As shown in Figure 1, both channel 3 at time t (x3,t) and channel 2 at t − 1
(x2,t−1) are influenced by channel 1 at t − 2, which induces correlation between them. However,
this does not imply a direct causal link from x2,t−1 and x3,t. What truly matters is determining
whether a causal relationship exists. Unfortunately, existing deep learning methods lack effective
constraints to identify and differentiate spurious correlation from causation.

For Challenge 1, we propose a hierarchical instance-specific temporal causal discovery frame-
work that models window-level features at multiple scales and captures the instance-level distribu-
tions of exogenous variables. Our framework features two key components: (1) Dual-scale itera-
tive representation enhancement, which employs an attention-based mechanism to iteratively model
both intra-window and inter-window dependencies, capturing fine-grained causal dynamics within
windows while preserving coarse-grained long-range causal propagation across windows; and (2)
Instance-specific exogenous variable estimation, which employs an adaptive mixture-of-Gaussians
model with a routing mechanism to enable instance-specific approximation of exogenous variable
distributions, thereby enhancing the reliability of causal discovery across diverse time series.

For Challenge 2, we propose generalizable causal learning with causal invariance to enhance the
model’s ability to perceive causal relationships and improve its OOD robustness. Causal pretext task
introduces carefully designed interventions within the time series to eliminate spurious correlations,
thereby mitigating their influence on causal structure identification. By treating the prediction of the
intervened window as a pretext task, the model is encouraged to exploit discrepancies across varying
time series and learn which conditional distributions remain invariant. This invariance serves as a
strong signal for identifying the underlying causal relationships, even under distributional shifts or
hidden confounders. Furthermore, Time series causal mixup mixes both raw time series and their
associated causal graphs, generating augmented sequences that exhibit causal dependencies with
varying strengths and patterns. This not only enriches the training data with diverse causal scenarios
but also forces the model to generalize beyond seen correlation structures.

Specifically, we make the following contributions:

• We propose a hierarchical instance-specific temporal causal discovery framework that cap-
tures both inter-window and intra-window dependencies in individual time series, while
flexibly handling instance-specific exogenous noises across multiple series.

• We enhance generalization through a pretraining strategy that employs intervention-based
pretext tasks to differentiate causation from correlation and reveal causal invariance in time
series, alongside causal mixup to achieve smoother gradients and improved robustness.

• Extensive experiments on multiple datasets, covering both causal discovery and root cause
identification, demonstrate the superior generalization ability of our method. Experimental
results show that T-Caus consistently outperforms existing methods in both tasks.
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2 RELATED WORK

Table 1: Comparison of causal discovery meth-
ods. The symbol ✓ indicates that a component is
used in the model, × indicates that it is not used.

Methods Fine-grained Coarse-grained Exogenous Generalization

CDMI (Ahmad et al., 2024) ✓ × × ×
CUTS (Cheng et al., 2023) ✓ × × ×
TCDF (Nauta et al., 2019) ✓ ✓ × ×

CP (Stein et al., 2024) × ✓ × ✓
AERCA (Han et al., 2025) ✓ × ✓ ×

T-Caus ✓ ✓ ✓ ✓

Causal Discovery for Time Series. Granger
causality-based methods assume that if past
values of X improve the prediction of fu-
ture values of Y , then X is a Granger cause
of Y . This idea has been extended through
various neural architectures. For example,
cLSTM (Tank et al., 2021) leverages RNNs to
infer Granger causal structures; TCDF (Nauta
et al., 2019) utilizes attention-based CNNs
for efficient and interpretable causal discovery;
GVAR (Marcinkevics & Vogt, 2021) adopts a
vector autoregressive model with generalized coefficient matrices to increase modeling flexibility;
and CUTS (Cheng et al., 2023; 2024) constructs a causal adjacency matrix directly from the data
under sparsity regularization. However, Granger causality-based approaches share a fundamen-
tal limitation: they do not explicitly model endogenous errors or exogenous noise. As a result,
their applicability in practical scenarios can be restricted, especially in root cause diagnosis tasks
where measurement inaccuracies and stochastic disturbances are common. Structural Causal Model
(SCM) approaches explicitly characterize the functional relationships among endogenous variables
while modeling the influence of exogenous noise. Varlingam (Hyvärinen et al., 2010) represents
a restricted form of structural equation modeling (SEM), combining a non-Gaussian instantaneous
causal model with vector autoregressive dynamics. TiMINo (Peters et al., 2013) makes a stronger
assumption that exogenous noise variables are independent over time. AERCA (Han et al., 2025)
leverages an autoencoder to simulate the data generation process, explicitly modeling both the causal
relationships and the distribution of exogenous variables. As summarized in Table 1, existing meth-
ods largely overlook distribution shifts and struggle to jointly model endogenous variables and ex-
ogenous noise across multiple scales. To address these gaps, we propose a time series causal dis-
covery framework via instance-specific modeling and the intervention-based pretraining.

Pre-trained Causal Discovery. Recent efforts have integrated causal inference into pre-trained
models. CaML (Nilforoshan et al., 2023) formulates personalized effect prediction as a meta-task
for zero-shot generalization; Cond-FiP (Mahajan et al., 2024) dynamically infers structural causal
models via a Fixed-Point Approach (Scetbon et al., 2024); and CInA (Zhang et al., 2024) learns
transferable causal representations from unlabeled data, enabling zero-shot inference without fine-
tuning. However, these methods do not explicitly capture temporal causality. CP (Stein et al., 2024)
tackles time series by learning window-based causal graphs through supervised training across four
architectures, yet it overlooks key temporal properties such as multi-scale dependencies, exogenous
variable effects, distribution shifts, and evolving causal relations (see Table 1). To overcome these
limitations, we propose a pre-training framework for temporal causal discovery that (i) captures hier-
archical dynamics through dual-scale interactions at the window level and instance-specific temporal
patterns at the instance level, and (ii) enhances generalizable causal learning by leveraging causal
mixup and intervention to encode causal invariance. This framework improves OOD performance
and enhances causal perception in dynamic environments.

3 PROBLEM FORMULATION

In this work, we consider a multivariate time series x = {x1:T,i}Ci=1, where each x1:T,i represents
a sequence of T observations on the i-th channel, and C denotes the number of channels. Follow-
ing Han et al. (2025), we assume that the data are generated by a time-invariant structure causal
model (SCM) of the form:

xt,i =

n−1∑
k=0

C∑
j=1

Gt−n+k,j,i · fk,j,i(xt−n+k,j) + Zi,t, (1)

where n is the maximum time lag, G ∈ Rn×C×C is the causal graph, and Gt−n+k,j,i indicates the
impact of channel j at time step t− n+ k on xt,i, fk,j,i(·) is a function that represents a nonlinear
transformation of the past observations, and Zi,t is an exogenous term for channel i at time step t.
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The goal of causal discovery is to learn a model gθ(·) that maps the observed time series x to the
corresponding window causal graph G = gθ(x) (Assaad et al., 2023; Han et al., 2025).

4 METHODOLOGY

We propose T-Caus, a generalizable time series causal discovery framework that leverages instance-
specific modeling and interventions-based pretraining. The framework is shown in Figure 2. To
capture causal dependencies and handle exogenous variables, we introduce a hierachical instance-
specific causal discovery framework. The dual-scale iterative representation enhancement module
uncovers causal relationships through an alternating, attention-based fusion of intra-window and
inter-window features, capturing fine-grained local causal dynamics within windows while preserv-
ing long-range causal dependencies across windows. The instance-specific exogenous variable esti-
mation module utilizes an adaptive mixture-of-Gaussians model with a routing mechanism, enabling
tailored approximation of exogenous variable distributions for each instance. This enhances the ro-
bustness of causal discovery across diverse and heterogeneous time series. To enhance the general-
izability of causal discovery, we introduce generalizable causal learning with causal invariance
strategy, which consists of two components. The intervention pretext task performs interventions
on the generative process of time series and formulates a prediction task for the intervened win-
dow, thereby eliminating spurious correlations and enabling stable causal discovery across different
environments. Causal Mixup enhances the stability of the model’s causal dependencies by mixing
both time series data and their corresponding causal graphs. Finally, the observed time series is
reconstructed by jointly leveraging the learned causal structure, endogenous dynamics, and inferred
exogenous factors, ensuring a comprehensive and interpretable modeling of temporal data.

4.1 HIERARCHICAL INSTANCE-SPECIFIC TEMPORAL CAUSAL DISCOVERY FRAMEWORK

Dual-scale Iterative Representation Enhancement. In time series modeling, sequences are often
partitioned into sliding windows. Given a multivariate time series x ∈ RT×C , we divide it into m
windows of size (n + 1), denoted as s ∈ Rm×(n+1)C . Each window consists of past observations
slag ∈ Rm×nC , and the current step st ∈ Rm×C . Intra-window features capture local dynamics,
and inter-window relations provide broader context. To jointly model these complementary scales,
we propose an alternating attention mechanism that iteratively integrates features within and across
windows. First, we apply self-attention within each window. The sequence s is projected into
Qs

intra, Ks
intra, and V s

intra, and the intra-window representation is then computed as:

s̃intra = Softmax
(
Qs

intra(K
s
intra)

⊤/
√
dk

)
V s
intra (2)

Next, we perform inter-window self-attention. The intra-window outputs s̃intra ∈ Rm×(n+1)C

are reshaped into sinter ∈ R(n+1)C×m, and projected into Qs
inter, Ks

inter, and V s
inter. The inter-

window representation is then computed as:

s̃inter = Softmax
(
Qs

inter(K
s
inter)

⊤/
√
dk

)
V s
inter (3)

The output s̃inter is reshaped back to the original space and fed into the next iteration. Repeating
this alternating process for N iterations progressively refine the representation, yielding the dual-
scale enhanced representation s̃ ∈ Rm×(n+1)C . Similar to s, s̃ is partitioned into s̃lag for past
observations and s̃t for the current step. We then encode s̃lag and s̃t separately, and compute their
inner product to obtain the probability matrix G̃p and the weight matrix G̃a:

up = MLP(s̃lag), vp = MLP(s̃t), G̃p = uT
p vp, up ∈ Rm×nC , vp ∈ Rm×C (4)

ua = MLP(s̃lag), va = MLP(s̃t), G̃a = uT
a va, ua ∈ Rm×nC , va ∈ Rm×C

Here, G̃p is a binary matrix indicating the presence or absence of causal links, while G̃a quantifies
the corresponding edge weights. Finally, the causal graph is trained to align the estimated link
probability matrix G̃p and the edge weight matrix G̃a with their ground-truth matrices Gp and Ga:

LG = −(Gp · log(G̃p) + (1−Gp) · log(1− G̃p))+ ∥ G̃a −Ga ∥2 . (5)
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Figure 2: The framework of hierarchical instance-specific temporal causal discovery consists of two
main modules: (1) Dual-scale Iterative Representation Enhancement, (2) Instance-specific exoge-
nous variable estimation. Furthermore, we enhance the model’s generalization ability through gen-
eralizable causal learning with causal invariance, leveraging intervention-based learning and causal
mixup strategies.

Instance-specific exogenous variable estimation. According to Equation 1, we define a data-
generating distribution p(D), which encapsulates both the underlying causal structure and the influ-
ence of exogenous factors. The observed time x ∼ p(D) is generated by first sampling from the
causal structure distribution p(G) and the prior distribution of exogenous variable p(z), and then
iteratively generating data through the data-generating mechanism p(D|G, z):

x ∼ p(D) =

∫
G

∫
z

p(D | G, z) · p(G) · p(z)dzdG. (6)

In multivariate time series, noise and external disturbances often exhibit diverse and dynamic pat-
terns, reflecting the heterogeneity of exogenous influences. This observation suggests that a single,
globally shared Gaussian distribution is insufficient to capture the variability of exogenous factors.
To address this, we assume a prior distribution over the exogenous variables in the form of a mix-
ture of Gaussians. To further capture instance-specific variability, we adopt an adaptive Gaussian
mixture model, where the mixing coefficients π ∈ RK are computed from enhanced time represen-
tation s̃ via a routing mechanism. The means µ = 0 and variances Σ of the K Gaussian component
is treated as learnable parameters:

π = Router(s̃), p(z) =

K∑
k=1

πkN (z | µk,Σk),

K∑
k=1

πk = 1. (7)

We employ a variational encoder to approximate the posterior distribution q(z) of the exogenous
variables. Using the reparameterization trick, we sample the exogenous variable Zt from q(z) at
each time step t. The sampled variable Zt is then incorporated into the reconstruction of the current
time representation s̃t, together with the predicted causal graph G̃a, and the lagged endogenous
variables slag . In this manner, both exogenous influences and the causal dependencies are explicitly
modeled, ensuring that the learned representations are consistent with a structural causal model. The
reconstruction of s̃t is formulated as:

s̃t = G̃a · f̃(slag) + Zt, (8)

where f̃ denotes a multi-layer perceptron.

To regularize the latent space, we further introduce a KL divergence term that measures the dis-
crepancy between the learned posterior distribution q(z) and the assumed prior mixture Gaussian

5
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distribution p(z):

LKL(p(z) ∥ q(z)) =
∫

p(z) log
p(z)

q(z)
dz, (9)

4.2 GENERALIZABLE CAUSAL LEARNING WITH CAUSAL INVARIANCE

Intervention Pretext Task. Time series data often exhibit autocorrelation and interdependencies,
where past values influence the present, and multivariate series may involve cross-channel causal-
ity. Relying solely on observational data can lead to confusion between correlation and causality.
Intervening on a variable is an effective way to alter its data-generating mechanism. For example,
do(X = x) intervenes by setting X to x exogenously, cutting off all causal influences from its
parents in the causal graph, which can be proved in Theorem 1.
Theorem 1. Let X1,t−2 be a potential confounder of the causal relationship X2,t−1 → X3,t in
SCM. In the observational distribution, suppose X1,t−2 and X2,t−1 are statistically dependent.
The observational distribution induces a spurious correlation between X2,t−1 and X3,t through the
backdoor path X2,t−1 ← X1,t−2 → X3,t. This creates a biased estimate of the true causal effect.
In contrast, the interventional distribution blocks this path by replacing the conditional P (X1,t−2 |
X2,t−1) with the marginal P (X1,t−2), thereby eliminating the influence of spurious associations
and recovering the genuine causal effect of X2,t−1 on X3,t. For detailed proofs, see Appendix A.1.

We propose a method that leverages designed interventions to learn causal structure. Specifically,
we begin by randomly selecting a time interval [t1, t2]. Next, we randomly sample a value from
a lag window preceding t1 and replace it with the value at t1. Based on the underlying causal
dynamics, we iteratively compute the intervened values (x′

t1 , · · · , x
′
t2), which replace the original

segment (xt1 , · · · , xt2). This yields a modified time series xdo containing both intervened and non-
intervened windows. By examining segmented windows, we can then identify which windows are
inconsistent with the causal structure to obtain the ground-truth of binary intervention labels.

To enhance generalization and encourage the model to capture stable, invariant causal dependencies,
we train it to predict the window in which an intervention occurs. At the same time, to preserve
semantic consistency under interventions, we apply contrastive learning so that representations of
the intervened series xdo remain close to those of the original x. Specifically, we obtain intervention-
based representations udo and vdo and align them with the original u and v using Eq. 4 through
contrastive loss, while also incorporating a classification loss for intervention detection:

Ldo = −
Nu∑
i=1

log
exp

(
sim(ui, u

do,+)/τ
)

N
udo∑

j=1

exp
(
sim(ui, u

do
j )/τ

) −
Nv∑
i=1

log
exp

(
sim(vi, v

do,+)/τ
)

N
vdo∑

j=1

exp
(
sim(vi, v

do
j )/τ

)
+ E(c,ĉ) [− c log(ĉ)− (1− c) log(1− ĉ)] ,

(10)

where c and ĉ denote the ground truth and predicted intervention labels, Nu and Nv are the numbers
of u and v, Nudo and Nvdo are their intervened counterparts. τ is a temperature parameter, sim(·, ·)
is the similarity function, and udo,+ denotes the positive pair of ui from the same time series.

Time Series Causal Mixup. Inspired by the mixup (Zhang et al., 2018), we propose a time series
causal mixup strategy for causal discovery in temporal data. This operation smooths the decision
boundary, leading to more stable and continuous estimates of edge existence and causal strength.
Specifically, we randomly sample k time series instances xi and their corresponding causal relations
Gi

a from the training dataset to construct mixed combinations, formalized as:

xm =

k∑
i=1

λix
i, Gm

a =

k∑
i=1

λiG
i
a, (11)

where the mixing coefficient λi is drawn from a symmetric Dirichlet distribution (Ansari et al.,
2024). By blending samples from diverse time series and integrating causal effects of varying
strengths, Time Series Causal Mixup achieves smoother gradient flow during training, enhancing
the robustness of causal dependency modeling. To learn causal invariance, we minimize the recon-
struction loss over three types of time series: Lrecon = ∥s̃t − st∥2 + ∥s̃mt − smt ∥2 + ∥s̃dot − sdot ∥,
where st, smt , and sdot are obtained by applying a sliding window to x, xm, and xdo, respectively,
and s̃t, s̃mt , and s̃dot are computed from x, xm, and xdo using Eq. 8.
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4.3 CAUSAL LEARNING AND ROOT CAUSE IDENTIFICATION

Pretraining Phase. During pretraining, we generate synthetic datasets (see Appendix A.2.1) to
train the model. Given a time series x, the objective function consists of several components: the
reconstruction loss Lrecon, the causal graph loss LG, the KL divergence loss LKL, the intervened
loss Ldo. The overall pre-training loss is defined as:

Lpre = Lrecon + λGLG + λKLLKL + λdoLdo, (12)
where λG, λKL, λdo are the corresponding weighting coefficients.

Fine-tuning Phase. During fine-tuning, we address two types of downstream tasks. For Causal
Discovery, where the true data generation process is typically unavailable in real-world scenarios,

we focus solely on the reconstruction loss with st, the causal graph loss with the link probability
matrix Gp, and the KL divergence loss LKL. The fine-tuning loss is as follows:

Lft = ∥s̃t − st∥2 − λG(Gp · log(G̃p) + (1−Gp) · log(1− G̃p)) + λKLLKL. (13)

For Root Cause Identification, Following AERCA (Han et al., 2025), we perform fine-tuning on
normal data to learn the mean (µ) and standard deviation (σ) of the exogenous variable distribution:

Lrc = ∥s̃t − st∥2 + λKLLKL. (14)

The root cause score is then computed as the z-score scoret = Zt−µ
σ and Streaming Peaks-Over-

Threshold (SPOT) (Siffer et al., 2017) is used to adaptively determine the detection threshold.

5 EXPERIMENTS

5.1 EXPERIMENTAL DESIGN

Datasets. We construct a synthetic time series causal dataset (see Appendix A.2.1) to pre-train our
model, and then fine-tune it on two real-world tasks to adapt to practical scenarios. Causal Discov-
ery. We evaluate on a benchmark derived from German river systems (Stein et al., 2025), which
covers causal graphs in Eastern Germany (666 stations) and Bavaria (494 stations). The benchmark
provides datasets featuring two types of variable quantities and five causal relationship types, in-
cluding Close, Root Cause, Random+1, Confounder, and Random. Our model is fine-tuned on the
Bavaria dataset and evaluated on the Eastern Germany river datasets. Root Cause Identification.
We evaluate on two benchmarks. The SWaT dataset (Mathur & Tippenhauer, 2016), collected from
a scaled-down water treatment testbed under both normal and cyber-attack conditions, making it
valuable for assessing intrusion detection in industrial control systems. The MSDS (Multi-Source
Distributed System) dataset (Nedelkoski et al., 2020), generated on an OpenStack-based distributed
infrastructure, injects controlled faults to emulate anomalies in multi-source cloud environments.
Dataset statistics are summarized in Table 5.

Evaluation Metrics. Causal Discovery. To avoid the complexity of selecting individualized thresh-
olds, we report the AUROC score under the best-performing hyperparameter configuration as the
final evaluation metric. Root Cause Identification. Following prior work (Ikram et al., 2022; Li
et al., 2022; Yu et al., 2021; Ma et al., 2020; Han et al., 2025), we evaluate using recall at top-k,
denoted as Recall@K. This metric measures the probability of correctly identifying root causes
within the top-k highest root cause scores. The details are in Appendix A.2.2.

Baselines. Causal Discovery. We evaluate representative methods spanning classical and mod-
ern paradigms. Classical approaches include PCMCI (Runge et al., 2019), Varlingam (Hyvärinen
et al., 2010), Dynotears (Pamfil et al., 2020), VAR (Assaad et al., 2023), CDMI (Ahmad et al.,
2024). Among recent pretraining methods, we compare with Causal Pretraining (CP) (Stein et al.,
2024), which is implemented through both Transformer-based and GRU-based architectures. Root
Cause Identification. We compare T-Caus with four baselines: 1) ε-Diagnosis (Shan et al., 2019),
which locates root causes via pairwise significance tests between normal and abnormal periods; 2)
RCD (Ikram et al., 2022), which learns a partial causal graph and treats intervention targets as root
causes; 3) CIRCA (Li et al., 2022), which leverages domain knowledge to build structural causal
graphs and identifies nodes with significant parent-child distribution shifts; and 4) AERCA (Han
et al., 2025), which models causal dependencies and exogenous variables with an autoencoder and
attributes anomalies to perturbed exogenous factors.
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Table 2: Causal discovery results of AUROC on Eastern Germany river datasets. The best results
are in bold, and the second results are underlined.

Dataset
Model VAR Varlingam Dynotears PCMCI CDMI CP(Gru) CP(Transformer) T-Caus

Close (3) 0.81 0.79 0.50 0.64 0.81 0.79 0.75 0.84
Close (5) 0.81 0.77 0.50 0.62 0.81 0.81 0.83 0.85

Root cause (3) 0.79 0.77 0.56 0.70 0.75 0.78 0.84 0.88
Root cause (5) 0.75 0.77 0.56 0.74 0.65 0.81 0.84 0.86
Random+1 (3) 0.80 0.84 0.52 0.83 0.82 0.82 0.82 0.87
Random+1 (5) 0.79 0.79 0.61 0.74 0.80 0.84 0.85 0.85
Confounder (3) 0.71 0.68 0.53 0.66 0.63 0.64 0.65 0.81
Confounder (5) 0.72 0.70 0.53 0.64 0.71 0.71 0.71 0.79

Random (3) 0.82 0.79 0.50 0.65 0.80 0.77 0.81 0.85
Random (5) 0.80 0.75 0.51 0.65 0.78 0.83 0.86 0.86

avg 0.78 0.77 0.53 0.69 0.76 0.78 0.80 0.85

Table 3: Results of root cause identification. The best results are in bold.

Dataset Model Recall@1 Recall@3 Recall@5 Recall@10 Avg@10

MSDS

ϵ-Diagnosis 0.004±0.004 0.266±0.002 0.452±0.009 1.000±0.000 0.492±0.001
RCD 0.412±0.048 0.573±0.010 0.984±0.001 1.000±0.000 0.821±0.012

CIRCA 0.454±0.238 0.860±0.140 0.917±0.084 1.000±0.000 0.809±0.035
AERCA 0.381±0.408 0.908±0.062 0.974±0.027 1.000±0.000 0.896±0.037
T-Caus 0.515±0.252 0.993±0.004 0.996±0.003 1.000±0.000 0.929±0.013

SWaT

ϵ-Diagnosis 0.075±0.179 0.125±0.217 0.125±0.217 0.375±0.383 0.180±0.194
RCD 0.000±0.000 0.000±0.000 0.000±0.000 0.300±0.458 0.100±0.161

CIRCA 0.000±0.000 0.000±0.000 0.000±0.000 0.300±0.458 0.100±0.161
AERCA 0.220±0.111 0.290±0.088 0.330±0.048 0.455±0.044 0.342±0.052
T-Caus 0.300±0.132 0.450±0.107 0.450±0.137 0.475±0.141 0.440±0.105

5.2 EXPERIMENTAL RESULTS

Causal Discovery. Table 2 presents the results for time series causal graph discovery, demon-
strating that T-Caus consistently outperforms all baseline methods across various types of causal
relationships. This highlights the effectiveness of its dual-scale iterative representation enhance-
ment and instance-specific exogenous variables estimation in capturing complex causal dependen-
cies. A key advantage of T-Caus lies in its ability to learn environment-invariant causal structures
through intervention-based modeling and causal mixup. This approach enables the model to accu-
rately identify true causal dependencies among time series while filtering out spurious correlations
caused by confounders or environmental biases. For example, we observe that our model achieves
strong causal discovery performance on the Eastern Germany river dataset, despite not being di-
rectly trained on it. Notably, compared to CP, our method demonstrates a significant improvement,
with an average gain of 5%. These results underscore that T-Caus delivers more robust, reliable, and
generalizable causal discovery, particularly in real-world settings subject to distribution shifts.

Root Cause Identification. Table 3 shows that T-Caus achieves the best performance on real-
world datasets in the root cause diagnosis task. Unlike AERCA, which primarily focuses on intra-
window modeling, T-Caus leverages a dual-scale iterative representation enhancement to capture
both coarse-grained and fine-grained temporal patterns. This approach enhances the model’s ability
to detect subtle variations over time, leading to superior performance in identifying the root cause
of anomalies. Furthermore, the instance-specific exogenous variable estimation boosts T-Caus to
adapt to the complex and often noisy conditions found in real-world data. According to the AC@1
metric, T-Caus excels in accurately identifying the time series with the highest root cause score,
demonstrating that incorporating intervention-based pre-training enables more stable detection of
anomalous root causes even in the presence of dynamic shifts and external disturbances.

Ablation Studies. To assess the impact of different components in T-Caus, we conduct an ablation
study on inter-window attention, intra-window attention, mixture of Gaussians exogenous valuables,
causal mixup, and intervention. As shown in Table 4, each module contributes to the overall per-
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Table 4: Ablation study of causal discovery using the Eastern Germany river dataset. w/o inter,
w/o intra, w/o exogenous, w/o causal mixup, w/o intervention represent removing the inter-window
attention, intra-window attention, exogenous, causal mixup, and intervention, respectively.

Dataset
Model w/o inter w/o intra w/o exogenous w/o causal mixup w/o intervention T-Caus

Close (3) 0.83 0.82 0.80 0.83 0.80 0.84
Close (5) 0.84 0.82 0.81 0.83 0.81 0.85

Root cause (3) 0.86 0.84 0.82 0.86 0.83 0.88
Root cause (5) 0.85 0.84 0.82 0.85 0.83 0.86
Random+1 (3) 0.85 0.84 0.83 0.86 0.84 0.87
Random+1 (5) 0.83 0.83 0.82 0.83 0.81 0.85
Confounder (3) 0.79 0.79 0.78 0.80 0.75 0.81
Confounder (5) 0.78 0.76 0.75 0.77 0.74 0.79

Random (3) 0.84 0.84 0.81 0.83 0.82 0.85
Random (5) 0.85 0.84 0.83 0.84 0.83 0.86

avg 0.83 0.82 0.81 0.83 0.81 0.85
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Figure 3: Results under different test input ratios (10%, 20%, 30%, 50%, 100%) on Eastern Germany
river dataset (average total sequence length: 3,143).

formance. Notably, removing exogenous variable estimation significantly reduces performance,
highlighting the importance of learning instance-specific distributions. Furthermore, the inclusion
of intervention yields notable performance improvements, particularly in datasets where the root
cause is confounded (Confounder (3) and Confounder (5)). This demonstrates that interventions
help the model distinguish between spurious correlations and true causal relationships, enhancing
the accuracy of causal graph prediction. Further ablation studies are in Appendix A.2.4.

Different Time Series Ratio. Figure 3 shows the impact of varying lengths of the input time series
on model performance. We find that using only 30% of the full sequence length yields results compa-
rable to the complete input, while even 10% still provides reasonable results across all datasets. This
demonstrates that our method remains effective under limited computational resources and efficient
for causal discovery using reduced temporal inputs, making it suitable for real-world applications.

6 CONCLUSIONS

This paper introduces T-Caus, a novel pretraining framework designed to improve the generalization
of time series causal discovery across diverse downstream tasks. To capture complex temporal de-
pendencies, T-Caus employs a dual-scale attention mechanism for both fine-grained local dynamics
and long-range causal relationships, complemented by an instance-specific Gaussian mixture to ac-
commodate heterogeneous exogenous variable distributions flexibly. To further mitigate distribution
shifts, T-Caus incorporates a causal mixup strategy and intervention-based learning to encode causal
invariance, thereby promoting stable causal discovery and stronger generalization. Experiments on
real-world OOD datasets show that T-Caus outperforms existing methods in both causal discovery
and root cause identification, establishing it as a robust foundation for time series analysis.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This study is based exclusively on publicly accessible benchmark datasets, as detailed in the paper,
with no collection or disclosure of personal or sensitive information. Additionally, no human partic-
ipants were involved, ensuring full adherence to ethical principles and research integrity standards.

REPRODUCIBILITY STATEMENT

The experimental results and datasets presented in this work are real, and all findings are fully repro-
ducible as described in the paper. Comprehensive details regarding the model architecture, training
process, and evaluation methodology are provided in the main manuscript and supplementary ma-
terials. To support transparency and enable replication of our work, we have made the source code
and datasets publicly available at https://anonymous.4open.science/r/T-Caus-B0CD.
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A APPENDIX

A.1 PROOF OF THEOREM 1

Consider the following linear structural causal model (SCM) with time series channels
X1,t−2, X2,t−1, X3,t:

X1,t−2 = Z1, ε ∼ N (0, σ2
Z1
), (15)

X2,t−1 = αX1,t−2 + εZ2
, εZ2

∼ N (0, σ2
Z2
),

X3,t = βX2,t−1 + γX1,t−2 + εZ3
, εZ3

∼ N (0, σ2
Z3
),

where X1,t−2 is a confounder affecting both X2,t−1 and X3,t, and α, β, γ are constants. Objective:
Show how the observational regression coefficient of X3,t on X2,t−1 is biased due to X1,t−2, and
how the intervention do(X2,t−1 = x) removes this spurious correlation.

In observational data, the ordinary least squares estimate of X3,t on X2,t−1 is:

Var(X2,t−1) = Var(αX1,t−2 + εZ2) = α2σ2
Z1

+ σ2
Z2
, (16)

Cov(X2,t−1, X3,t) = Cov(αX1,t−2 + εZ2
, β(αX1,t−2 + εZ2

) + γX1,t−2)

+ Cov(αX1,t−2 + εZ2 , εZ3)

= Cov(αX1,t−2 + εZ2
, (βα+ γ)X1,t−2 + βεZ2

)

= α(βα+ γ)Var(X1,t−2) + βVar(εZ2
)

= α(βα+ γ)σ2
Z1

+ βσ2
Z2
,

bobs =
Cov(X2,t−1, X3,t)

Var(X2,t−1)

=
α(βα+ γ)σ2

Z1
+ βσ2

Z2

α2σ2
Z1

+ σ2
Z2

= β + γ
ασ2

Z1

ασ2
Z1

+ σ2
Z2

,

where the term γ
ασ2

Z1

ασ2
Z1

+σ2
Z2

is spurious correlation bias due to the confounder X1,t−2. Observa-

tional regression coefficients depend on the distribution of X1,t−2 (on P (X1,t−2 | X2,t−1)), and
therefore can vary across environments. As P (X1,t−2) or the relationship between X2,t−1 and
X1,t−2 changes across environments, this observational slope changes, and OOD predictions fail.

X3,t = βX2,t−1 + γX1,t−2 + εX3 , X2,t−1 set to x exogenously. (17)
The interventional expectation is:

E[X3,t | do(X2,t−1 = x)] = E[βX2,t−1 + γX1,t−2 + εZ3
| do(X2,t−1 = x)] (18)

= βx+ γE[X1,t−2] + E[εZ3 ]

= βx

Thus, the confounder X3,t no longer affects the slope; the spurious correlation term disappears.
Hence, interventions remove spurious correlations and reveal the invariant causal effect, which forms
the basis for OOD generalization in causal discovery and causal graph-based prediction models.

A.2 EXPERIMENTS

A.2.1 DETAILS OF DATASETS

Synthetic Datasets. To enable model pre-training, we follow CP (Stein et al., 2024) to construct a
synthetic dataset. First, we randomly generate a causal graph G by sampling directed edges between
nodes. Then, we assign edge weights by drawing from a specified uniform distribution to obtain the
weighted adjacency matrix Ga. For each edge, we sample a nonlinear functional relationship fk,j,i
from a predefined set of functions:

Fn =

{
ex, x2, σ(x), sin(x), cos(x), relu(x), log(σ(x)),

1

x
, ∥x∥, clamp(x, (−0.5, 0.5))

}
.

(19)
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Table 5: Details of Root Cause Identification Datasets.

Dataset Training Time Steps Test Sequences Avg. Sequence Length Avg. # of Root Causes
SWaT (51) 49,500 20 51 13.35

MSDS (10) 29,268 4,255 21 3.05

For linear relationships, we simply set fk,j,i(x) = x. Next, we randomly initialize the time lag
for each connection. Using the causal graph, functional mappings, and lag structure, we iteratively
generate multivariate time series data. Finally, we synthesize datasets with varying numbers of
variables and lags, ensuring diversity in both structural and dynamic properties.

Real-world Benchmark. CausalRiver (Stein et al., 2025) treats river flow measurements from
monitoring stations as a time series dataset with inherent causal structure. It covers two regions in
Germany: the eastern German territory (666 measuring stations) and Bavaria (494 stations). The
dataset spans from 2019 to 2023 with a temporal resolution of 15 minutes. Importantly, CausalRiver
includes both normal hydrological conditions and extreme events such as heavy rainfall and large-
scale precipitation, enabling the study of causal dynamics under diverse environmental scenarios.
The dataset is categorized into five types based on the characteristics of their underlying causal
structures:

• Random: All connected subgraphs with three or five nodes, covering the entire dataset and
full diversity of benchmark conditions.

• Close: Connected subgraphs whose edges have a maximum geographic (Euclidean) dis-
tance of 0.3; by excluding long-range connections, causal effects are expected to be more
pronounced. This set is fully contained within Random.

• Random + 1: Connected subgraphs with two or four nodes, combined with one additional
isolated node. To avoid confounding, the isolated nodes are drawn from coastal or border
regions where disconnected nodes naturally occur.

• Root cause: Connected subgraphs with three or five nodes in which each node has at most
one parent, forming chain-like structures. This setting is useful for root-cause analysis
(Ikram et al., 2022) and is fully contained within Random.

• Confounder: Subgraphs with four or six nodes containing a single node with multiple chil-
dren (rarely observed in cases such as river splits). The multi-child node is then removed
to simulate permanent hidden confounding.

Root Cause Identification Datasets. SWaT (Mathur & Tippenhauer, 2016) is a dataset collected
from a testbed that simulates a real-world water treatment plant. It comprises data from 51 sensors in
the critical infrastructure system during continuous operation, including both normal operating con-
ditions and attack scenarios within the water treatment process. MSDS (Multi-Source Distributed
System) (Nedelkoski et al., 2020) is developed on an OpenStack testbed and serves as a dataset for
AIOps (Artificial Intelligence for IT Operations). Instances of fault injections in this system are
labeled as anomalies. More detail are provided in Table 5.

A.2.2 MORE DETAILS OF METRICS ON ROOT CAUSE IDENTIFICATION

Given a multivariate time series X , the Recall@K is defined as:

Recall@K =
1

|X |
∑
xi∈X

∣∣∣V (RC)
xi ∩ {Rxi [k] | k = 1, 2, . . .K}

∣∣∣
min

(
K,

∣∣∣V (RC)
xi

∣∣∣) , (20)

where Rxi
[k] indicates the time series at the k-th rank for the channel xi, and V

(RC)
xi indicates a set of

root cause variables over the whole channel xi. Note that if a time series receives multiple exogenous
interventions, it only counts as one root cause time series in V

(RC)
xi . We further compute the overall

performance by computing the average Recall@K, denoted as Avg@K = 1
K

∑K
k=1 Recall@k.
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Table 6: Ablation studies on Root Cause Localization. w/o inter, w/o intra, w/o exogenous, w/o
causal mixup, w/o intervention represent removing the inter-window attention, intra-window atten-
tion, exogenous, causal mixup, and intervention, respectively.

Dataset Model Recall@1 Recall@3 Recall@5 Recall@10 Avg@10

MSDS

w/o inter 0.452 0.792 0.910 1.000 0.492
w/o intra 0.498 0.801 0.910 1.000 0.835

w/o exogenous 0.227 0.697 0.893 1.000 0.694
w/o causal mixup 0.500 0.792 0.993 1.000 0.842
w/o intervention 0.296 0.798 0.900 1.000 0.728

T-Caus 0.515 0.993 0.996 1.000 0.929

SWaT

w/o inter 0.200 0.350 0.350 0.455 0.351
w/o intra 0.250 0.375 0.375 0.450 0.360

w/o exogenous 0.100 0.150 0.250 0.350 0.205
w/o causal mixup 0.250 0.330 0.450 0.455 0.342
w/o intervention 0.150 0.220 0.330 0.375 0.252

T-Caus 0.300 0.450 0.450 0.475 0.440

A.2.3 IMPLEMENTATION DETAILS

We first pretrain T-Caus using the Adam optimizer (Kingma & Ba, 2015) with a learning rate of
10−3. We apply early stopping with a patience of 30 epochs to prevent overfitting. The loss weights
λG, λKL and λdo are set to 0.5. The model consists of 4 alternating attention blocks, and the
number of Gaussian components K is set to 10. For fine-tuning in the causal discovery task, we
use a learning rate of 10−4, and keep λG and λKL fixed at 0.5. In the root cause identification task,
fine-tuning is also performed with a learning rate of 10−4, and λKL is set to 0.5. All experiments are
implemented in PyTorch and conducted on an NVIDIA A800 80GB GPU. Following AERCA (Han
et al., 2025), data preprocessing is standardized across datasets using a MinMax scaler. To improve
computational efficiency, we downsample the SWaT dataset every 10 seconds and the MSDS dataset
every 5 time steps.

A.2.4 MORE ABLATION STUDY

To investigate the impact of different components on root cause identification, we conduct an abla-
tion study focusing on inter-window attention, intra-window attention, mixture-of-Gaussians mod-
eling of exogenous variables, causal mixup, and intervention. As shown in Table 6, we find that
the intervention mechanism achieves superior performance in identifying root causes. This gain is
attributed to the fact that interventions provide the model with information across diverse environ-
ments, enabling it to filter out spurious correlations, learn more accurate causal relationships, and
enhance overall robustness. Furthermore, when the mixture-of-Gaussians constraint on exogenous
variables is removed, T-Caus exhibits a notable drop in performance, demonstrating the importance
of instance-specific exogenous variable estimation for effective root cause identification.
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