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Abstract001

Despite the success of integrating large lan-002
guage models into the development of con-003
versational systems, many studies have shown004
the effectiveness of retrieving and augmenting005
external knowledge for informative responses.006
Hence, many existing studies commonly as-007
sume the always need for Retrieval Augmented008
Generation (RAG) in a conversational system009
without explicit control. This raises a research010
question about such a necessity. In this study,011
we propose to investigate the need for each turn012
of system response to be augmented with exter-013
nal knowledge. In particular, by leveraging hu-014
man judgements on the binary choice of adap-015
tive augmentation, we develop RAGate, a gat-016
ing model, which models conversation context017
and relevant inputs to predict if a conversational018
system requires RAG for improved responses.019
We conduct extensive experiments on devising020
and applying RAGate to conversational models021
and well-rounded analyses of different conver-022
sational scenarios. Our experimental results023
and analysis indicate the effective application024
of RAGate in RAG-based conversational sys-025
tems in identifying system responses for ap-026
propriate RAG with high-quality responses in027
a high generation confidence. This study also028
identifies the correlation between the genera-029
tion’s confidence level and the relevance of the030
augmented knowledge.031

1 Introduction032

Recently, the advancement of Large Language033

Models (LLMs) has significantly improved con-034

versational systems, enabling the generation of nat-035

ural and high-quality responses (Ni et al., 2023).036

Despite these advancements, recent studies have037

identified several limitations on the simple use038

of LLMs to address conversational tasks (Onoe039

et al., 2022; Huang et al., 2021; Ren et al., 2018).040

These limitations include the lack of up-to-date041

knowledge (Onoe et al., 2022), the generation of042

Can you find me some interesting things to do?

K
no

w
le

dg
e Cloud on earth, clouds are formed by 

the saturation of air in the homosphere. 
Cloud the Droplets or particles are 
suspended in the atmosphere above 
the surface of a planetary body.

Sure! Here are a few interesting things you can do: 
1. Explore the science of clouds.
2. Virtual museum tours
3. Online Courses
4. Read a Book or listen to an audiobook.

Sure! Here are a few suggestions based on different 
interests:
1. Creative activities: painting, writing, DIY crafts
2. Physical activities: exercise, outdoor walk and 

dancing
3. Entertainment: movies, games, books

Use Knowledge

Not Use Knowledge

Figure 1: Example conversation when generating a re-
sponse with or without a knowledge snippet using a
language model (GPT-4 in this example).

non-factual or hallucinated content (Huang et al., 043

2021), and restricted domain adaptability (Ren 044

et al., 2018). These issues can hinder the devel- 045

opment of user-satisfied conversational agents. To 046

address these identified challenges, a common ap- 047

proach is to retrieve and augment LLMs with ex- 048

ternal knowledge to enhance the conversational 049

response, making them more accurate, reliable, 050

and adaptable to different domains (Zhao et al., 051

2020; Lian et al., 2019; Ye et al., 2024). For exam- 052

ple, Shuster et al. (2021) demonstrated that using 053

a dense retrieval model (DPR) (Karpukhin et al., 054

2020) to retrieve relevant knowledge for augmenta- 055

tion can significantly reduce the hallucination rate, 056

according to a corresponding human evaluation. 057

Similarly, Yang et al. (2020) showed that leverag- 058

ing a graph-structured knowledge base can boost 059

the reasoning ability and domain generalisability of 060

task-oriented conversational agents. These achieve- 061

ments of knowledge-augmented techniques high- 062
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light a promising direction for enhancing conversa-063

tional agents and address the current limitations.064

However, while implementing retrieval augmen-065

tation to a conversational system for improved re-066

sponse, we question the necessity of knowledge067

augmentation for every turn of system responses.068

To develop effective human-computer conversa-069

tions, it is essential to provide factual and relevant070

responses, offer appropriate amount of informa-071

tion, and not unnaturally drive and shift the con-072

versation to non-relevant topics (Kasirzadeh and073

Gabriel, 2023; Miehling et al., 2024). We argue074

that overusing external knowledge could result in075

system responses against these core criteria. Fig-076

ure 1 presents a conversation example that shows077

how the system response to a generic user utter-078

ance about suggesting activities can vary with and079

without augmented knowledge. The knowledge-080

augmented system response is being information081

conditioned with limited diversity and assuming082

specific user preferences.In contrast, without the ad-083

dition of external knowledge, the system response084

is more diverse and natural in this early stage of085

a conversation. This indicates that misusing ex-086

ternal knowledge can lead to problematic system087

responses and a negative user experience.088

To address this, we investigate an adaptive089

retrieval-augmented generation solution for effec-090

tive conversational systems. In particular, moti-091

vated by the gate function in long-short term mem-092

ory models (Graves and Graves, 2012), which093

explicitly controls the use of input and memory,094

we propose a binary knowledge gate mechanism,095

called RAGate, to manipulate the use of external096

knowledge for a conversational system. To model097

the conversation context and accurately estimate098

the need for augmentation, we leverage the hu-099

man labels as ground truth and develop RAGate100

by exploring the use of recent advanced language101

models or constructing attention neural gate mod-102

els. To validate the effectiveness of RAGate, we103

conduct extensive experiments on an annotated104

Task-Oriented Dialogue (TOD) system dataset,105

KETOD, that builds upon the SGD dataset with106

TOD-spanning 16 domains, such as Restaurant and107

Weather. The experimental results show that RA-108

Gate enables conversational systems to efficiently109

use external knowledge at appropriate conversation110

turns, producing high-quality system responses. In111

particular, by modelling the uncertainty and confi-112

dence level of the system – which correlates with113

the likelihood of hallucinated output (Varshney114

et al., 2023) – we show that the "always" augmenta- 115

tion of external knowledge can significantly higher 116

generation uncertainty and the risk of hallucination. 117

After applying RAGate, we can effectively control 118

the conversation system to make confident and in- 119

formative responses. In addition, by varying the use 120

of knowledge snippets in different relevance levels, 121

we also observe the positive correlation between 122

the calculated confidence score and the relevance 123

of augmented knowledge, which can be valuable 124

for many future studies. 125

2 Related Work 126

In the pipeline of knowledge-augmented generation 127

for a conversation system, two main components 128

are identified: the knowledge retriever and the re- 129

sponse generator. Existing studies have improved 130

conversational responses to different extents by im- 131

proving one or both components (Li et al., 2022; 132

Komeili et al., 2022; Wang et al., 2024). 133

Knowledge Retrieval: Several studies have ex- 134

plored the use of dense passage retrieval techniques 135

(Lewis et al., 2020; Karpukhin et al., 2020) and 136

public search service for effective retrievers (Li 137

et al., 2022). For example, Li et al. (2022) retrieved 138

Wikipedia passages through a database interface 139

and then ranked them according to statistical rele- 140

vance, calculated by TF-IDF, or semantic relevance 141

as per cosine similarity. Similarly, Komeili et al. 142

used a search engine API to retrieve relevant knowl- 143

edge but first transformed the dialogue context into 144

a natural search query using an encoder-decoder 145

model before searching. 146

Joint Optimisation of Retriever and Genera- 147

tor: On the other hand, another thread of re- 148

search studies has explored joint optimisation ap- 149

proaches. For instance, Shi et al. (2023) introduced 150

a retriever-generator architecture that aims to im- 151

prove the performance of Task-Oriented Dialogue 152

(TOD) systems by using a dual-feedback mecha- 153

nism. The retriever identifies relevant knowledge 154

from a database, while the generator uses this in- 155

formation to create appropriate system responses. 156

The feedback from the generator is further used as 157

pseudo-labels to train the retriever to select perti- 158

nent information. Shen et al. (2023) introduced a 159

training method based on maximal marginal like- 160

lihood. This method jointly optimise a perceptive 161

retriever and the response generation in a feed- 162

back loop. The proposed approach incorporates 163

meta-knowledge, which guides the generator to 164
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Figure 2: RAGate variants for implementing the gating function. The three variants are the prediction with pre-
trained language models after prompting (1), after parameter-efficient fine-tuning (2), and with a multi-head attention
encoder (3).

improve the utilisation of knowledge and, conse-165

quently, the quality of the generated responses.166

Kang et al. (2023) further advance the retriever167

by proposing SUbgraph Retrieval-augmented GEn-168

eration (SURGE), which employed a graph neural169

network (GNN)-based context-relevant subgraph170

retriever. SURGE incorporates contrastive learn-171

ing to optimise the latent representation space, en-172

suring that generated texts closely resemble the173

retrieved subgraphs.174

Despite the richness of existing retrieval-175

augmented generation techniques for conversa-176

tional systems, they commonly hypothesise that177

every conversation turn needs external knowledge.178

However, the necessity of augmenting every turn179

of the conversation with external knowledge re-180

mains questionable. A relevant thread of work that181

aims to answer this question is the introduction of182

the knowledge-seeking turn detection task using183

the DSTC-9 dataset (Kim et al., 2020), and the184

follow-up studies, such as (Hong et al., 2023; Jin185

et al., 2021). However, this task is to identify the186

turns in conversations injected by human workers187

about knowledge enquiry instead of identifying the188

system responses that require knowledge augmen-189

tation for improvements. This research gap high-190

lights the value and novelty of this study, which191

investigates the adaptive use of retrieval-augmented192

generation for advanced conversational systems.193

3 Methodology194

3.1 Problem Formulation195

This study addresses the challenge of effectively196

identifying conversation turns that require augmen-197

tation of external knowledge. In particular, we aim198

to develop a gate mechanism that dynamically de-199

termines when to search for external knowledge 200

to ensure natural, relevant and contextually appro- 201

priate responses. First, we define the task of user- 202

system conversation. Let D = {d1, d2, ..., d|D|} be 203

a set of user-system dialogues, and each dialogue d 204

comprises a sequence of interactions between users 205

and systems (i.e., d = {u0, s0, u1, s1, ..., uT , sT }) 206

with varying lengths. Here, ut and st denote the 207

user utterance and system response at the t-th turn, 208

respectively. The conversational context up to turn 209

t can be formulated by aggregating the previous 210

user-system interactions, i.e., ct = u0, s0, .., ut. 211

With this context information ct, the conversation 212

system can augment it with a list of retrieved exter- 213

nal knowledge, et,k, where k represents the rank- 214

ing cutoff for the retrieved knowledge. Hence, the 215

binary gate mechanism proposed in this study, de- 216

ciding the knowledge augmentation, can be formu- 217

lated as f(ct) = {0, 1} or f(ct, et,k) = {0, 1} if 218

the external knowledge et,k is considered. Then, 219

the follow-up response generation function g(·) can 220

be formulated as follows: 221

g(·) =

{
g(ct, et,k) if f(ct) or f(ct, et,k)
g(ct) otherwise.

(1) 222

Hence, by evaluating and estimating the necessity 223

of augmenting with external knowledge, we dy- 224

namically update the conversational response gen- 225

eration accordingly. 226

3.2 RAGate Gate Mechanism 227

To effectively estimate the need to use external 228

knowledge and implement adaptive retrieval aug- 229

mented generation for a conversation system. We 230

introduce our proposed gate mechanism, RAGate, 231

that uses the conversational context and, option- 232

ally, the retrieved external knowledge to predict 233
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the binary choice of using external knowledge. In234

particular, we explore three RAGate variants that235

are implemented by the use of Large Language236

Models (LLMs) with devised prompts, with param-237

eter efficient fine-tuning (e.g., QLoRA (Dettmers238

et al., 2024)) and the construction of an end-to-end239

multi-head attention encoder. This exploring de-240

velopment is motivated by the recent advancement241

of transformer-structured neural models in natural242

language processing. In Figure 2, we illustrate the243

application of RAGate and its three variants. We244

describe each of these three variants to clarify the245

use of RAGate:246

RAGate-Prompt: As denoted by Arora et al.247

(2022), a language model can effectively adapt248

to new tasks by using a natural language prompt249

that explains the process to address the tasks with-250

out extra training. Hence, we can formulate a251

gate function f(·) as f(y|ct) = f(y|Θ, ct, p),252

where Θ denotes the used language model with253

its pre-trained weights and p is the devised nat-254

ural language prompt. Alternatively, if the re-255

trieved knowledge is also involved in prediction,256

we have f(y|ct) = f(y|Θ, ct, et,k, p). Specifically,257

we explore two types of prompts: zero-shot and258

in-context learning. Zero-shot prompts describe259

the task that uses the conversational context and,260

optionally, the retrieved knowledge to generate261

a response with binary feedback. As for the in-262

context learning prompts, we augment the zero-263

shot prompts with illustrative examples. We show264

the set of prompts in Appendix A.265

RAGate-PEFT: Despite the high adaptabil-266

ity of the language model with devised prompts,267

we further explored the use of instruction tun-268

ing on language models with a parameter-efficient269

fine-tuning method (i.e., QLoRA (Dettmers et al.,270

2024)) to meet the goal of an effective gate func-271

tion. QLoRA is built upon the known Low-rank272

Adapter (LoRA) (Hu et al., 2021), which keeps the273

pre-trained weight matrix W0 frozen and addresses274

the gradient updates of the weight matrix ∆W275

through low-rank approximation (i.e., ∆W = BA,276

where B and A are the result of lower-rank de-277

composition on ∆W ). Hence, the forward pass278

during the model training can be updated from279

h = W0x+∆Wx to h = W0x+ BAx. QLoRA280

(Dettmers et al., 2024), which is used in this study,281

further quantises the language model into a 4-bit282

NormalFloat data type and leverages the page-to-283

page transfer between the CPU and GPU to fur-284

ther avoid memory spikes. To implement RAGate-285

PEFT, we format the train data with devised in- 286

structions, joined with paired inputs and outputs 287

for developing parameter-efficient fine-tuned large 288

language models. In particular, we provide a set 289

of instruction-input-output triples for model train- 290

ing. The input can vary with the provision of a 291

set of available features. Apart from the use of the 292

conversational context (contx), we also include the 293

system response (resp), synthetic responses gener- 294

ated by the language model (syn-resp) due to the 295

missing responses as input in the practical scenario, 296

the name entities within the incoming responses 297

(ner), retrieved knowledge (know) and the descrip- 298

tion of the knowledge source, e.g., the WikiHow 299

website (source). By using various combinations of 300

inputs and customising the corresponding instruc- 301

tions, we explore the effectiveness of the result- 302

ing learned language models that implement the 303

RAGate-PEFT. 304

RAGate-MHA: Apart from the use of pre- 305

trained language models and further fine-tuned lan- 306

guage models, we also explore the introduction 307

of a multi-head attention neural encoder to model 308

the context as input and estimate the augmenta- 309

tion necessity (i.e., RAGate-MHA). Here, we de- 310

scribe the model structure of RAGate-MHA. At 311

first, as denoted by (Vaswani et al., 2017), the at- 312

tention mechanism is formulated as the interaction 313

between three objects, queries Q, keys K, and val- 314

ues V : Attention(Q,K, V ) = softmax(QKT
√
dk

)V . 315

To estimate the necessity of augmentation, we fit 316

the context and the retrieved knowledge into the 317

roles of these three objects. Specifically, we in- 318

clude the setups of (1) using context only (contx) 319

or (2) using the concatenated context and retrieved 320

knowledge (contx ⊕ know) as queries, keys, and 321

values, and (3) using the context as queries and 322

interact with the retrieved knowledge as keys and 323

values (contx × know). Next, following (Vaswani 324

et al., 2017) in the encoder construction of a trans- 325

former model, we encode the inputs via an input 326

embedding layer into latent vectors and a position 327

encoding layer to encode the order of tokens in the 328

sequence. After that, we leverage the multi-head 329

attention to learn attention weights on the inputs 330

and then followed by a feed-forward network: 331

FFN(x) = max(0, xW1 + b1)W2 + b2 (2) 332

where W1 and W2 are two learned parameter 333

matrics with two bias terms (b1 and b2). Both multi- 334

head attention and feed-forward neural modules are 335
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followed by residual connection (He et al., 2016)336

and layer normalisation (Ba et al., 2016). Unlike337

the introduction of another decoder module that338

addresses the sequence-to-sequence generation in339

(Vaswani et al., 2017), we followed the encoder out-340

put with a linear projection module and a softmax341

function for our binary classification task.342

4 Model Training and Evaluation Setups343

We evaluate the performance of introducing RA-344

Gate according to its binary classification perfor-345

mance and the effectiveness of the resulting re-346

sponse generation. Specifically, we use the KE-347

TOD dataset (Chen et al., 2022), which has fully348

annotated 5,324 dialogues and 52,063 turns of con-349

versations. In particular, it is associated with 33,761350

knowledge snippets to be retrieved and augmented.351

In addition, KETOD was developed with human352

labels on turns of conversations (around 12.1% of353

turns) about the need for augmenting with retrieved354

knowledge snippets for a natural and informative355

system response. Hence, we use these human labels356

as natural ground truths when evaluating RAGate.357

It is worth indicating that many current knowledge-358

augmented conversational datasets often ground359

their conversations on the knowledge snippet, such360

as Wizard of Wikipedia (Dinan et al., 2018) and361

CMU_DoG (Zhou et al., 2018), which makes them362

not a natural fit to be investigated in this study.363

Retrieval Models Recall@1 Recall@3
TF-IDF 0.0227 0.0871
BERT-Ranker 0.2475 0.4714

Table 1: Retrieval Performance Evaluation when using
context as the query.

Due to the limited computational resource avail-364

ability, we explore the use of Llama-v2-7B and365

Llama-v2-13B to implement RAGate-prompt and366

fine-tune Llama-v2-7B for RAGate-PEFT. We im-367

plement QLoRA using the PEFT library (Man-368

grulkar et al., 2022) and set the lower rank to 16. As369

discussed in Section 3, we have various input fea-370

tures to be combined for performance optimisation.371

We begin with the use of context only, then concate-372

nate the context with the real response (contx-resp),373

with the synthetic response and recognised enti-374

ties (contx-syn-resp-ner) and further extend with375

the use of retrieved knowledge (contx-syn-resp-ner-376

know) or the source of knowledge (contx-syn-resp-377

ner-source). Specifically, we retrieve the relevant378

knowledge by exploring the use of TF-IDF and379

a learned BERT ranker. We evaluate their perfor- 380

mance with the classic Recall@1 and Recall@3 on 381

the test collection. We use a shallow cutoff because 382

we only use top-relevant knowledge snippets for 383

augmentation. Table 1 shows their retrieval per- 384

formance. According to the leading performance 385

of BERT-Ranker, we augment knowledge with its 386

retrieved top 3 relevant knowledge snippets (i.e., 387

k = 3). Regarding the development of RAGate- 388

MHA, we explore the combinations of 2 to 8 layers, 389

2 or 4 heads and the embedding size in [64, 128, 390

256] for the best classification accuracy. We report 391

the precision, recall, F1, Area Under Curve (AUC) 392

and the False Discovery Rate (FDR) as the main 393

measures to show the classification effectiveness. 394

Next, we further deploy the best-performing RA- 395

Gate gate function to update the KETOD dialogue 396

system (Chen et al., 2022), which uses GPT-2 (Rad- 397

ford et al., 2019) as the backbone model. To high- 398

light the effect of various augmentation setups, 399

we use the context with the gold action without 400

extra prediction as input to KETOD. Then, we 401

compare the resulting performance to the KETOD 402

model without knowledge augmentation and aug- 403

menting every system response as baselines. To 404

report the response generation effectiveness, we 405

report how close the response is to the ground truth 406

via BLEU, ROUGE-1/2/L and BERTScores and 407

the confidence score calculated by the minimum 408

probabilities of individual tokens that compose the 409

response. As argued by Varshney et al. (2023), this 410

calculated confidence score can highly correlate 411

with a language model’s likelihood of generating 412

hallucinated responses. 413

We trained our models and conducted the eval- 414

uations on one machine with one NVIDIA 4090 415

GPU. We will release the code, full prompt instruc- 416

tions and documentation upon the acceptance of 417

this paper. 418

5 Results and Analysis 419

5.1 Augmentation Need Classification 420

First, we evaluate the classification accuracy of our 421

developed RAGate gate methods for addressing 422

the adaptive RAG to system responses. Table 2 423

presents the classification performance of RAGate 424

baselines while evaluated on the test collection of 425

the KETOD dataset, which includes rich human 426

labels on the use of RAG for response generation. 427

As discussed in Section 3, we explore the devel- 428

opment of RAGate with three variants: the use 429
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Model Variants Precision Recall F1
RAGate-Prompt: LLMs – Zero Shot

Llama-2-7B 0.1323 0.0278 0.0460
Llama-2-13B 0.1422 0.1083 0.1230

RAGate-Prompt: LLMs – In-Context Learning

Llama-2-7B 0.1417 0.0294 0.0487
Llama-2-13B 0.0989 0.0851 0.0915

RAGate-PEFT: Parameter Efficient Fine-tuned LLMs (Llama2-7B)

[contx⊕resp] 0.4926 0.3095 0.3802

contx-only 0.5203 0.3359 0.4082

contx-(syn-resp)-ner 0.6818 0.2321 0.3464
contx-(syn-resp)-ner-know 0.4698 0.0603 0.1069
contx-(syn-resp)-ner-source 0.4000 0.0185 0.0355

RAGate-MHA: Context with / without Knowledge Input

MHA(contx)-h(4)-l(5)-emb(64) 0.3210 0.5541 0.4065
MHA([contx⊕know])-h(4)-l(2)-emb(64) 0.2795 0.5201 0.3636
MHA(contx×know)-h(4)-l(2)-emb(64) 0.2272 0.5835 0.3271

RAGate-MHA: Context-Response Input

MHA([contx⊕resp])-h(4)-l(4)-emb(64) 0.3500 0.5510 0.4281

Table 2: Classification accuracy on adaptive augmenta-
tion for system response. "contx", "resp", and "know"
refer to the use of context, initial system response, and
retrieved knowledge snippets as input. "syn-resp" and
"ner" are the additional synthetic response and name en-
tity recognition steps in the model fine-tuning prompts.
h, l and emb refer to the best-performed configuration
on the number of heads, layers and embedding size.

of LLM prompting (RAGate-Prompt), parameter-430

efficient fine-tuned LLMs (RAGate-PEFT), and a431

neural classifier with Multi-Head Attention struc-432

ture (RAGate-MHA).433

RAGate performance with LLM prompting ver-434

sus fine-tuning. By comparing the corresponding435

performance reported in Table 2, we observe that,436

on average, fine-tuning a Llama-2-7B with QLoRA437

(i.e., RAGate-PEFT) can significantly outperform438

RAGate-Prompt. For example, by looking at the439

RAG-PEFT with context-only input, without using440

extra input features and instruction updates, it can441

outperform all RAG-Prompt approaches by a big442

margin (e.g., 0.4082 versus the highest 0.1230 F1443

scores). This reflects the difficulty of this adap-444

tive knowledge augmentation task, which can not445

be properly addressed by prompting a general pre-446

trained language model. In particular, the use of447

larger language models and the in-context learn-448

ing setup, which often result in improved perfor-449

mance (Arora et al., 2022), can not guarantee the450

enhancement of models’ classification accuracy re-451

garding this classification task.452

Regarding the performance of RAGate-PEFT453

approaches, by first examining the effect of us-454

ing synthetic response and recognised name enti-455

ties, we observe significantly improved precision 456

(0.5203 to 0.6818) but with the cost of lower recall 457

(0.3359 to 0.2321). In addition, when we add the 458

retrieved knowledge to the input features for pre- 459

diction, we observe a significant performance drop 460

across all evaluated aspects. This can be caused 461

by the additional complexity introduced by the in- 462

cluded retrieved knowledge snippets. Furthermore, 463

we also explored the performance impact of nam- 464

ing the source of the knowledge snippet. We use 465

wikiHow1 in this study, which can provide rich task 466

instructions for offering informative task-oriented 467

system response (Sen et al., 2023). However, the 468

fine-tuned model cannot reasonably connect the 469

promised rich resource from the knowledge source 470

and the prediction of augmentation necessity. 471

RAGate Performance between fine-tuned LLM 472

and MHA classifier. Next, by comparing the ex- 473

perimental results of RAGate-MHA and RAGate- 474

PEFT in Table 2, we observe a wide-margin re- 475

call improvement using RAGate-MHA, reaching 476

a minimum recall of 0.52, but with significantly 477

lower precision accuracy. In Table 2, we also in- 478

clude the use of both the context and the initial 479

system responses (i.e., MHA([contx, resp])) for 480

additional insights. We can observe that a higher 481

precision can be achieved but the use of response 482

does not improve the recall performance. These re- 483

sults are consistent with the observed performance 484

of RAGate-PEFT, which further encourages the 485

use of a synthetic response due to the unavailability 486

of a system response in a practical scenario. In 487

addition, we also observe a similar performance 488

drop when including the retrieved knowledge snip- 489

pets for classification. Even though the RAGate- 490

MHA model, using the interaction between context 491

and retrieved knowledge snippets, can achieve the 492

highest recall of 0.5835, it can not outperform the 493

RAGate-MHA using context-only on other metrics. 494

Hence, considering the similar F1 and AUC perfor- 495

mance levels of RAGate-PEFT and RAGate-MHA 496

leads to a trade-off balance between precision and 497

recall for the two groups of approaches. To further 498

evaluate the classification effectiveness of RAGate, 499

in Appendix B, we provide a detailed discussion 500

of a conducted user study that explores whether 501

RAGate can also assess the potential contribution 502

of retrieved snippets when predicting the decision 503

for retrieval augmentation. 504

1https://www.wikihow.com
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Figure 3: Frequency analysis of adaptive augmentations
about the position of a conversation.

5.2 Adaptive Augmentation Analysis505

In addition to the classification accuracy, we also506

compare the choice of human workers and RA-507

Gate approaches in augmenting specific turns.508

Specifically, we analyse the frequency of aug-509

mentation in different positions of conversations510

and different domains covered in the KETOD511

dataset. We use the RAGate-PEFT (contx-(syn-512

resp)-ner) with the highest precision and RAGate-513

MHA (MHA(contx)) with the best overall perfor-514

mance in the above analysis as representatives for515

comparison. Figure 3 presents the frequency in516

different positions. Due to the unequal number of517

conversational turns, we use the ratio to indicate518

the relative position. According to the reported519

results in Figure 3, most human augmentation se-520

lections happen at the beginning of a conversation.521

This trend is also effectively captured by both RA-522

Gate approaches, especially RAGate-MHA. This523

can be caused by the reason that a conversation524

is semantically coherent, and once sufficient addi-525

tional information is provided at the early stage,526

the value of knowledge augmentation to the later527

turns is naturally lower.528

On the other hand, Figure 4 presents the augmen-529

tation frequency over different domains. We ob-530

serve that system responses about certain domains531

are selected more often by humans than other do-532

mains, such as travel, hotels, trains, flights, service533

and rental cars, which require access to additional534

information to assist the suggestion-making, and535

the domains, like movies, music, media, events536

that often include entities require enriched de-537

scription. By looking into the performance of538

RAGate-PEFT and RAGate-MHA, RAGate-MHA539

can make aligned selections for humans. However,540

the RAGate-PEFT does not guarantee the identifi-541

cation of appropriate augmentation use and often542
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Figure 4: Frequency analysis of adaptive augmentations
about dialogue domains.

Variants # Augs BLEU ROUGE-L BERTScore Confidence
No-Aug 0 9.38 0.3780 0.8105 9.3425 –

Augment BERT Ranker Retrieved Knowledge
RAGate-PEFT 230 10.45 0.3825 0.8144 9.3374 -0.05%
RAGate-MHA 787 12.14 0.3882 0.8192 9.3083 -0.36%
Random-Aug 230 9.53 0.3784 0.8110 9.2984 -0.47%
Random-Aug 787 10.01 0.3795 0.8126 9.1877 -1.65%
Human-label 631 11.66 0.3856 0.8176 9.2550 -0.93%
Aug-All 4964 16.08 0.3927 0.8258 8.3677 -10.43%

Augment Rank-1 Relevant Knowledge

RAGate-Llama 230 10.54 0.3822 0.8142 9.3642 +0.23%
RAGate-MHA 787 11.99 0.3883 0.8191 9.3774 +0.37%
Random-Aug 230 9.51 0.3784 0.8110 9.3328 -0.10%
Random-Aug 787 10.01 0.3800 0.8127 9.2982 -0.47%
Human-label 631 11.52 0.3846 0.8170 9.3218 -0.22%
Augment-All 4964 16.05 0.3944 0.8259 9.0655 -2.9%

Table 3: Performance of applying RAGate and com-
pared to the KETOD baseline on the KETOD dataset.
Confidence is calculated by the average value over the
lowest logit of each generation.

presents fewer augmentations, apart from the travel 543

domain. Hence, by considering both position and 544

domain augmentation frequency, we conclude that 545

RAGate-MHA can outperform RAGate-MHA and 546

effectively capture the trend of augmentation needs. 547

5.3 RAGate for Response Generation 548

To evaluate the effect of adaptive RAG for a conver- 549

sational system, we use RAGate-PEFT (contx-(syn- 550

resp)-ner) with the highest precision and RAGate- 551

MHA (MHA(contx)) with the best overall perfor- 552

mance in the above analysis, to support the adaptive 553

retrieval augmented conversational response gen- 554

eration. Table 3 presents the results of applying 555

RAGAte to the KETOD model for adaptive knowl- 556

edge augmentation when evaluated on the KETOD 557

dataset. We include four types of adaptive augmen- 558

tation, namely the use of RAGate and comparison 559

to the random selection with equal numbers of se- 560
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lections, human choice, and the commonly used561

"all" augmentation. In addition, to explore the ef-562

fect of varied quality of knowledge snippets, we563

also extend the evaluation of using the top-3 knowl-564

edge snippets ranked by different retrievers (i.e.,565

BERT-ranker and TF-IDF) and the use of knowl-566

edge snippets at the 1st and 5th rank according to567

the BERT-ranker. Due to the space limit, we first568

present the results of using BERT-ranker retrieved569

and top-1 relevant knowledge and top-1 relevant in570

Table 3 and show the full results in the Appendix C.571

At first, without adaptive knowledge augmenta-572

tion, we compare the choice of response generation573

without augmentation and with "always" augmenta-574

tion (i.e., No-Aug versus Aug-All). In Table 3, we575

observe that by augmenting a total of 4,964 system576

responses in the test collection, the conversational577

model can generate more informative and effec-578

tive responses according to the reported scores of579

BLEU, ROUGE and BERTscore. This aligns with580

the reported effectiveness of RAG in many existing581

studies. However, we also identify a significant582

drop in the model’s generation confidence level.583

As denoted by Varshney et al. (2023), a lower con-584

fidence level can correlate with a higher chance of585

generating hallucinated responses, which could be586

caused by the unnecessary use of external knowl-587

edge. Hence, to investigate the effectiveness of588

adaptive knowledge augmentation, we examine the589

impact of using RAGate. According to the reported590

experimental results in Table 3, the adaptive aug-591

mented response generation with fewer knowledge592

snippets can indeed result in a higher confidence593

level than Aug-All.594

Moreover, comparing the performance between595

RAGate and random selections shows that, consid-596

ering equal numbers (230 or 787 according to the597

classification with RAGate) of system responses for598

augmentation, RAGate can further result in a higher599

quality of generated response. RAGate-MHA even600

enables results that are comparable to Aug-All’s601

response quality, with only 787 turn augmentations602

instead of all 4964 turns. Specifically, the use of603

RAGate-PEFT, which identifies 230 turns of sys-604

tem responses for knowledge augmentation, can605

even outperform the random baseline that augments606

787 system response turns with improved response607

quality. Apart from the improved response quality,608

RAGate also enables the conversational model to609

maintain a high confidence level and ensure faith-610

ful responses. Indeed, using RAGate-MHA, which611

augments 787 system responses, only lowers the612

average confidence score by 0.36%, instead of the 613

1.65% when randomly selecting an equal number 614

of turns to augment. 615

In addition, considering the use of different qual- 616

ity and amount of knowledge snippets for augmen- 617

tation, we also include the use of the most rele- 618

vant knowledge snippet according to BERT-ranker 619

in Table 3. We observe that the use of different 620

amounts of knowledge snippets in different rele- 621

vance levels has a marginal effect on this learned 622

dialogue system. However, we observe a signif- 623

icant difference in the confidence level. We ob- 624

serve that using only the most relevant knowledge 625

snippet enables the Aug-All to suffer less from a 626

lower confidence level. In particular, the applica- 627

tion of RAGate can even increase the confidence 628

level of the conversation system in response gen- 629

eration. This indicates that the confidence score 630

can also correlate with the quality of the augmented 631

knowledge snippets. This observation is further val- 632

idated using knowledge snippets with fifth-ranking 633

positions by BERT-ranker and the use of TF-IDF 634

ranker. We include the full experimental results 635

in Table 4 and attached in the Appendix. These 636

observations indicate the value of adaptive system 637

response augmentation via RAGate in generating 638

high-quality outputs, ensuring faithful responses, 639

and potentially saving retrieval costs. We also show 640

the value of using confidence scores to reflect the 641

contribution of RAG. 642

6 Conclusions 643

Our study investigates a core research question 644

about whether retrieval-augmented generation is 645

always useful to a conversational system. To an- 646

swer this research question, we propose adaptive 647

retrieval-augmented generation for conversational 648

systems and introduce corresponding gate func- 649

tions, RAGate, for explicit control. A comprehen- 650

sive set of experiments and results show the RA- 651

Gate approaches can effectively identify augmen- 652

tation needs. In addition, RAGate can capture hu- 653

man preference by augmenting the beginning turns 654

of conversations, and RAGate can further identify 655

knowledge augmentation for assisting suggestion- 656

making and enriching description. When applying 657

RAGate to conversational systems, we observe that 658

it can ensure comparable quality of generated re- 659

sponses and enable the system to increase genera- 660

tion confidence for faithful outputs, especially with 661

the appropriate use of relevant knowledge snippets. 662
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Limitations663

There are three limitations of this study. At first,664

due to the main focus of examining the adaptive665

retrieval-augmented generation for a conversation666

system. We only consider a few examples of667

retrieval techniques (TF-IDF and BERT-ranker),668

which can be further extended to recent retrieval669

techniques, such as dense passage retrieval for ad-670

ditional insights. The second limitation is the miss-671

ing use of larger language models, such as GPT-4,672

due to the shortage of computational resources. In-673

cluding larger language models for conversational674

systems could introduce additional experimental in-675

sights. The third limitation is the shortage of appro-676

priate conversational data for extensive evaluations.677

This is mainly caused by the recent development of678

the retrieval augmented generation technique and679

its application to conversational systems. Future680

research is encouraged to address this limitation.681

Ethics Statement682

All experiments in this study were conducted us-683

ing publicly available datasets and open-released684

language models, which do not contain any private685

information that could raise ethical concerns.686
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In this section, we list the used prompts for the 860

RAGate-Prompt gate mechanism. 861

Zero-Shot Prompt: 862

Below is an instruction that describes a task. 863

Please respond with ‘True’ or ‘False’ only that 864

appropriately completes the request. 865

### Instruction: Analyse the conversational con- 866

text so far. Generate an appropriate response. Con- 867

sider the invovled entites. Estimate if augmenting 868

the response with external knowledge is helpful 869

with an output of ‘True’ or ‘False’ only. 870

### Input: [Converstion Context Input] 871

### Response: 872

In-Context Learning Prompt: 873

10

https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://arxiv.org/abs/2404.13781
https://arxiv.org/abs/2404.13781
https://arxiv.org/abs/2404.13781
https://arxiv.org/abs/2405.07437
https://arxiv.org/abs/2405.07437
https://arxiv.org/abs/2405.07437


Augmentation Variants # Augs BLEU ROUGE-1 ROUGE-2 ROUGE-L BERTScore Confidence
No-Aug 0 9.38 0.4111 0.2246 0.3780 0.8105 9.3425

Augment BERT Ranker Retrieved Knowledge
RAGate-Llama 230 10.45 0.4165 0.2273 0.3825 0.8144 9.3374
RAGate-MHA 787 12.14 0.4227 0.2318 0.3882 0.8192 9.3083
Random-Aug 230 9.53 0.4119 0.2250 0.3784 0.8110 9.2984
Random-Aug 787 10.01 0.4138 0.2265 0.3795 0.8126 9.1877
Human-label 631 11.66 0.4198 0.2297 0.3856 0.8176 9.2550
Augment-All 4964 16.08 0.4301 0.2364 0.3927 0.8258 8.3677

Augment TF-IDF Ranker Retrieved Knowledge
RAGate-Llama 230 10.52 0.4165 0.2273 0.3826 0.8144 9.3418
RAGate-MHA 787 12.11 0.4233 0.2319 0.3889 0.8193 9.3058
Random-Aug 230 9.47 0.4118 0.2251 0.3783 0.8110 9.3006
Random-Aug 787 9.93 0.4136 0.2259 0.3793 0.8125 9.1942
Human-label 631 11.60 0.4198 0.2293 0.3854 0.8175 9.2639
Augment-All 4964 15.76 0.4289 0.2345 0.3914 0.8256 8.4188

Augment Rank-1 Relevant Knowledge

RAGate-Llama 230 10.54 0.4162 0.2271 0.3822 0.8142 9.3642
RAGate-MHA 787 11.99 0.4227 0.2316 0.3883 0.8191 9.3774
Random-Aug 230 9.51 0.4117 0.2250 0.3784 0.8110 9.3328
Random-Aug 787 10.01 0.4140 0.2267 0.3800 0.8127 9.2982
Human-label 631 11.52 0.4189 0.2289 0.3846 0.8170 9.3218
Augment-All 4964 16.05 0.4308 0.2365 0.3944 0.8259 9.0655

Augment Rank-5 Relevant Knowledge

RAGate-Llama 230 10.47 0.4161 0.2272 0.3823 0.8142 9.3592
RAGate-MHA 787 12.18 0.4224 0.2314 0.3883 0.8192 9.3704
Random-Aug 230 9.52 0.4118 0.2252 0.3785 0.8110 9.3315
Random-Aug 787 10.01 0.4135 0.2263 0.3794 0.8127 9.2961
Human-label 631 11.58 0.4186 0.2287 0.3845 0.8170 9.3210
Augment-All 4964 15.97 0.4290 0.2349 0.3927 0.8256 9.0604

Table 4: Performance of applying RAGate and compared to KETOD on the SGD dataset. Confidence is calculated
by the average value over the lowest logit of each generation.

Below is an instruction that describes a task.874

Please respond with ‘True’ or ‘False’ only that875

appropriately completes the request.876

### Instruction: Analyse the conversational con-877

text so far. Generate an appropriate response. Con-878

sider the invovled entites. Estimate if augmenting879

the response with external knowledge is helpful880

with an output of ‘True’ or ‘False’ only.881

### Example 1: USER: I’m planning a trip, can882

you help me look for a flight? SYSTEM: Which883

day are you planning to return and from which884

city? USER: I want to go from NYC the day after885

tomorrow and return on the 13th of this month.886

SYSTEM: Where would you like to go? USER: I887

want to go to Vancouver, BC. Can you look for a888

Premium Economy class ticket. SYSTEM: I found889

1 flight for you. It is a Delta Airlines flight that890

takes off at 6 am and returns at 2:50 am. The price891

is $505. USER: What is the departure airport, and892

how many stops does the flight have?893

### Response: True894

### Example 2: USER: Get me bus tickets to a895

Cher event on March 6th. SYSTEM: How many to896

buy? USER: only one, please.897

### Response: False 898

### Input: [Converstion Context Input] 899

### Response: 900

B Impact of Retrieval Quality on 901

Adaptive RAG 902

To have a successful conversation model with a 903

retrieval-augmented system, two main criteria must 904

be met. One is identifying insufficient context, and 905

the other is the quality of retrieved information 906

(Salemi and Zamani, 2024; Yu et al., 2024). A 907

conversational model performs better when both 908

criteria are satisfied. In our proposed approach, 909

as shown in Table 2, we have already assessed 910

whether our adaptive retrieval method can detect 911

insufficient context. We further explored to deter- 912

mine whether our model can inherently estimate 913

the quality of the retrieved snippets to address such 914

insufficiency and, based on that, decide on the re- 915

trieval. Although we do not explicitly provide re- 916

trieved snippets to our model, retrieval comes with 917

a corpus that includes potentially relevant knowl- 918

edge snippets. Consequently, given a query and 919

a retrieval collection, it can be estimated whether 920

11



useful information for the query exists in the corpus921

to address the insufficient context. To investigate922

by following this direction, we randomly selected923

50 samples from instances where our proposed ap-924

proach (RAGate-MHA, the best-performing gate925

model) predicted using retrieval augmentation. We926

asked domain experts (co-authors) to score whether927

they thought the retrieved snippets in those scenar-928

ios could be useful to response generation. Users929

rated the snippets on a scale of 0− 4, with scores930

of 3 or 4 indicating ‘useful’ or ‘highly useful’. We931

found that in 54% of cases where the prediction932

was for augmentation, users also found the snippets933

useful. This indicates that our proposed approach934

can implicitly capture the potential for obtaining935

high-quality retrieval snippets. The full user study936

results will be released upon the acceptance of this937

paper.938

C Additional experimental results about939

RAGate for Response Generation940

In Table 4, we include the complete experimental941

results of applying RAGate for adaptive retrieval-942

augmented system response generation. Specif-943

ically, explore the use of retrieved knowledge944

snippets to different extents of relevance. We in-945

clude top-3 knowledge snippets retrieved by BERT-946

ranker and TF-IDF. In addition, we also explore947

the use of knowledge snippets in different ranking948

positions (rank 1 and 5) according to the BERT-949

ranker retriever. The experimental result shows950

that precisely using a suitable amount of relevant951

knowledge can generate a response with higher952

confidence (i.e., less is more). In addition, this953

observation also indicates the potential use of con-954

fidence levels to evaluate the quality of the aug-955

mented knowledge.956
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