Code Summarization: Do Transformers Really Understand Code?

Anonymous ACL submission

Abstract

Recent approaches for automatic code summa-
rization rely on fine-tuned transformer based
language Models often injected with program
analysis information. We perform empirical
studies to analyze the extent to which these
models understand the code they attempt to
summarize. We observe that these models rely
heavily on the textual cues present in com-
ments/function names/variable names and that
masking this information negatively impacts
the generated summaries. Further, subtle code
transformations which drastically alter program
logic have no corresponding impact on the
generated summaries. Overall, the quality of
the generated summaries even from State-Of-
The-Art models is quite poor, raising ques-
tions about the utility of current approaches
and datasets.

1 Introduction

Code summaries play an important role in program
understanding, maintenance and debugging. Re-
cent work towards automated code summarization
adopts two primary approaches: (i) Fine tuned Lan-
guage Models (LM) or (ii) Deep models that inject
Program Analysis Information (PAI) to facilitate
better understanding of program semantics. The re-
sulting models yield BLEU scores (Papineni et al.,
2002) ranging from 7 to 45 on publicly available
datasets. In this paper, we perform an empirical
analysis to evaluate the code understanding capa-
bilities of these models for summary generation.
We apply code transformations that change the un-
derlying logic of the input code and observe the
resulting change in the summaries and associated
BLEU scores. Conversely, we observe the change
in generated summaries when we subject the code
to semantic preserving transformations such as re-
placing variable names. We also observe the effect
on the model performance after removing the data
leakage problems specifically in TL-CodeSum (Hu

et al., 2018b) and Python (Wan et al., 2018) datasets
(refer Section A of the Appendix). We make the
following observations, which may prove useful
for the code summarization research community:

1.The BLEU scores of existing code summariza-
tion models on reported datasets are very low (in
the range of 5 to 8), especially for out-of-domain
data where train and test codes belong to distinct
projects (Liu et al., 2020). This calls into question
the utility of these models for real-life applications.

2.Testing the models on codes with semantic
preserving transformations negatively impacts the
BLEU score (average drop of 7). This is not only
true for the LM based models but also for the mod-
els which claim to understand the program structure
by injecting PAI. This likely points to prevailing
models performing ‘short-cut’ learning by relying
on the inductive biases from meaningful function
and variable names.

3. Training with codes after semantic preserving
transformations leads to no improvements in BLEU
over the original biased models. This indicates that
the models are extremely reliant on textual cues
and are unable to learn code semantics when these
are removed. This highlights the need for designing
better training strategies to facilitate code under-
standing, such as self-supervision with semantic
preserving and disrupting transformations.

4 Transformations which change the semantics
of the code have very minimal impact on the BLEU
scores (average drop of 0.13), demonstrating that
the models are not paying much attention to code
semantics while generating the summaries.

5. Getting rid of the leakages in the datasets
leads to a large drop in the BLEU scores (average
11), highlighting the need for carefully designing
datasets where there is no code overlap across the
splits, not only in terms of codes having the same
surface forms (syntax), but also in terms of codes
with the same semantics. Such datasets would bet-
ter evaluate the generalization capabilities of dif-

Java Original Function

code private void append(StringBuilder buffer,double[] data,String prefix,

String separator,String suffix){
bufter.append(prefix);
for (int i=0; i < data.length; ++i) {
if 1>0) {
buffer.append(separator); }
buffer.append(datali]); }
buffer.append(suffix);}

Function after SPT and SDT
private void func(StringBuilder varl,double[] var2,String var3
,String var4,String var5){
varl.append(var3);
for(int i=0;i > var2.length; ——1){
if 1<0) {
varl.append(var4);}
varl.append(var2[i]);}
varl.append(var5);}

Model SIT PLBART
GT append a text representation of an array to a buffer . append a text representation of an array to a buffer .
. ds the given stri sentation of all el ts. . . N
Original appencs the givetl stfing representation of alf elements appends the given double array to the given buffer.
Summ. a concatenates with the given prefix.
EXP-Te-SPT compute the given string. func(double[] varl,double[] var2,string var3,string varQ)
EXP-Tr-SPT append a string listing of format. appends a double array to the buffer.
EXP-TrTe-SPT | append a string ref to the specified stringbufter. EEEZI;C:S a string representation of a double array to the string
EXP-Te-SDT appends the given string representation of all elements. | appends the given double array to the given buffer.
Python | Original Function Function after SPT and SDT

code def GetEntity ViaMemcache(entity_key):
entity = memcache.get(entity_key)
if (entity is not None):
return entity
key = ndb.Key(urlsafe=entity_key)
entity = key.get()
if (entity is not None):
memcache.set(entity_key, entity)
return entity

def func(varl):
var2 = memcache.get(varl)
if (var2 is not None):
return var2
var3 = ndb.Key(urlsafe=var1)
var2 = var3.get()
if (var2 is not None):
memcache.set(varl, var2)
return var2

Summ. | EXP-Te-SPT returns an instance of c.
EXP-Tr-SPT cache keys for azure entities.
EXP-TrTe-SPT | cache keys in memcache.
EXP-Te-SDT returns a key that can be used for entity.

Model SIT PLBART
GT get entity from memcache if available. get entity from memcache if available.
Original returns a key that can be used for entity. retrieves an entity from memcache.

return the value of var2.

retrieves an entity from memcache.
returns the value of a memcache key.
retrieves an entity from memcache.

Table 1: Example of transformed code from Python dataset (Wan et al., 2018) and TL-CodeSum (Hu et al., 2018b).
Summaries generated by SIT (Wu et al., 2021) and PLBART (Ahmad et al., 2021b) with the transformations and
experiments (Sections 4). GT: Ground-Truth summary, EXP:Experiment, Te: Test set, Tr: Training set, SPT:
Semantic Preserving Transformations, SDT: Semantic Disrupting Transformations, FN: Function Name, VN:
Variable Names, 1.5 PT-I'N (Green), 2. SPT-V N (Blue), 3. SDT (Red).

ferent summarization approaches. Datasets should
also facilitate learning of code semantics and pre-
vent over reliance on textual correlations.

2 Related Work

Code Summarization Datasets Publicly avail-
able datasets such as TL-CodeSum (Hu et al.,
2018b), Python (Wan et al., 2018), Funcom
(LeClair et al., 2019), CCSD (Liu et al.,
2020), CodeSearchNet (Husain et al., 2019) and
CodeXGLUE (Lu et al., 2021) have function-
summary pairs collected from open source GitHub'
repositories. Current datasets have some serious
limitations such as :(i) having code comments as a
part of the source code (CodeSearchNet), (ii) data
leakage i.e. having common code-summary pairs
in train and test set (TLCodeSum, Python), (iii)
meaningful function and variable names having
textual correlations with the words in the summary

"https://github.com/

(iv) Highly abstract summaries that are divorced
from the code logic (v) domain specific summaries
that are not obtainable from code and require exter-
nal knowledge out side the code logic for summary
generation (CodeNet (Puri et al., 2021)) (vii) no
datasets for legacy programming languages like
COBOL. The details of limitations with examples
are provided in Appendix Section A. We perform
our analysis on CodeSearchNet, TL-CodeSum and
Python datasets for Python and Java programming
languages. The data statistics are provided in Ap-
pendix Section A.

Code Summarization Approaches Neural code
summarization approaches utilize one of the follow-
ing : (i) Language Models (LM) pre-trained with
monolingual programming data and further fine-
tuned with code summary pairs or (ii) Deep models
(Transformers, LSTMs, Graph Neural Networks)
exploiting program analysis information in terms of
Abstract Syntax Trees (ASTs), data dependencies

and/or control flows to incorporate code semantics.
Details are provided in Appendix Section B. For
our analysis, we include one model from each of
the above categories, namely PLBART (Ahmad
et al., 2021b) and Structure Induced Transformers
(SIT) (Wu et al., 2021).

3 Transformations

We perform causal analysis by tweaking the code
using the following transformations to preserve or
change code semantics and then observe the effect
on the resulting summary and BLEU scores. Table
1 demonstrates the transformations.

SPT are the set of Semantic Preserving
Transformations, which include (i) C'C removing
the Code Comments from 17% of the codes in
CodeSearchNet (ii) F'N replacing meaningful user-
defined Function Names with more generic(but
unique) function names, and (iii) VNV replacing
meaningful user defined local Variable Names with
more generic variable names, unique per existing
variable name, such that data-dependencies are pre-
served. Generic names carry no semantics and
are selected from the existing model vocabulary.
F'N and VN are applicable to all codes in all the
datasets.

SDT's are the set of Semantic Disrupting
Transformations, which include (i) replacing an
arithmetic and relational operator with its inverse
(For example, replacing + with — or equality ==
with inequality ! =, etc) and (ii) replacing a logical
operator with its complement (For example, replac-
ing AN D with OR) such that the code execution
is not hampered but the semantics of the code is
disrupted. ~78%, 68%, 40% and 43% of codes
in CodeSearchNet-Java and Python, TLCodeSum
and Python datasets are modified with SDT. The
intent is to observe the change in BLEU, by com-
paring the summaries generated by the models with
the transformed and original codes, against the orig-
inal ground truth summaries, which are retained
for both the transformations.

4 Experimental Setup

We perform the following experiments:
EXP-Te-DL We address the Data Leakage (DL)
in the datasets by removing 38.49% Java and
21.66% Python code snippets from the Test Set
of TL-CodeSum and Python datasets, that syntac-
tically match with the code snippets in the train
set resulting in inflated BLEU scores. We expect a

drop in average BLEU scores after filtering these
samples from the test set. We use this filtered test
set for the following experiments.

EXP-Te-SPT Models trained on the original
train data are tested on the S PT transformed Test
Set. For an ideal model BLEU scores should not
change from unmodified trainset-testset scores as
S PT's are semantic preserving.

EXP-Tr-SPT Models trained with the SPT
transformed Train Set are tested on the original
test data. Since the model can no longer exploit
function and variable names to generate summaries,
this experiment should test whether the model is
capable of understanding the program logic and if
so, improve the BLEU scores.

EXP-TrTe-SPT Models trained with the S PT
transformed Train Set are tested on the S PT’ trans-
formed Test Set. Along similar lines of EXP-Tr-
SPT, improvements in the BLEU scores over un-
modified trainset-testset results would indicate that
the model better understands code.

EXP-Te-SDT Models trained on the original
train data are tested on the S DT transformed Test
Set. As the SDT changes the semantics of the
programs, if the model understands the code se-
mantics, the resulting summaries generated by the
model should be different from the original ground
truth summaries, leading to a drop in the BLEU
scores.

To programmatically transform the codes, we
use javalang® and ast’ packages. We detect and
replace the function and variable names by con-
structing an AST for the functions. We detect the
logical and arithmetic operators by using regex”.
SIT? is originally trained on TL-CodeSum and
Python dataset and PLBART on CodeSearchNet.
For having comparisons across the models, we fine-
tune pre-trained PLBART® with TL-CodeSum and
Python, where the codes are tokenized using the
Tree-sitter tokenizer /. For fair comparison, we
use the same set-of hyper-parameters described in
the original papers (Ahmad et al., 2021a; Wu et al.,
2021) and run the experiments on one Nvidia Tesla
V100 32 GB GPU. SIT and PLBART take ~34 and
8 hours to train. Experiments on CodeSearchNet
are performed with only PLBART as the program

Zhttps://github.com/c2nes/javalang
3https://docs.python.org/3/library/ast.html#
*https://github.com/python/cpython/blob/3.10/Lib/re.py
Shttps://github.com/gingasan/sit3
®https://github.com/wasiahmad/PLBART
"https://github.com/tree-sitter/tree-sitter

PL & Dataset Python Java TL-CodeSum Python CSN Java CSN

Model SIT PLBART SIT PLBART PLBART PLBART Avg
Method BLEU Drop BLEU Drop BLEU Drop BLEU Drop BLEU Drop BLEU Drop Drop
Original 34.117 - 25.53 - 45.76" - 20.61 - 19.30% - 18.45% - -
EXP-Te-DL 23.61 105 2299 254 | 1934 2642 1608 453 | 1930 0.00 1845 0.00 10.99
EXP-Te-SPT 1535 826 16.10 6.89 | 1046 888 11.11 497 | 1195 7.35 1225 620 7.09
SPT — FN 1826 535 1661 638 | 1281 653 12.64 344 | 1527 403 1426 4.19 499
SPT —-VN 1839 522 2120 1.79 | 1408 526 1496 1.12 |17.15 215 1691 154 285
SPT —CC 23.61 0.00 22.80 0.19 | 1934 0.00 16.08 0.00 | 17.61 1.69 1822 0.23 035
EXP-Tr-SPT 1825 536 20.68 231 | 1377 557 1468 140 | 1844 0.86 1825 020 2.62
EXP-TrTe-SPT 20.78 2.83 18.63 436 | 16.76 258 13.17 291 | 1543 3.87 1540 3.05 3.27
EXP-Te-SDT 23.57 0.04 2298 0.01 | 1929 0.05 1600 0.08 | 1892 038 1824 0.21 0.13

Table 2: Results on Python (Wan et al., 2018), TL-CodeSum (Hu et al., 2018b) and CSN: CodeSearchNet (Husain
et al., 2019). PL: Programming Languages, EXP:Experiment, Te: Test set, Tr: Training set, SPT: Semantic
Preserving Trans, SDT: Semantic Disrupting Trans, DL: Data Leakage, FN: Function Name, VN: Variable Names,
CC: Code Comments. “Results from(Wu et al., 2021), #Results from (Ahmad et al., 2021a).

analysis information required for the SIT model is
not available for this dataset .

5 Result and Analysis

Table 1 illustrates the examples of Java and Python
codes from TL-CodeSum and Python datasets and
the corresponding transformed code with SPT
and SDT. However, it should be noted that, we
never perform both transformations simultaneously.
EXP-Te-SPT summaries do not match with the
ground truth and are inferior to the original model
summaries, showcasing the negative influence of
SPT. EXP-Tr-SPT and EXP-TrTe-SPT sum-
maries are closer to the ground truth as compared
to EXP-Te-SPT demonstrating the positive effect
of an SPT transformed train set. Summaries of
EXP-Te-SDT remain unchanged, showcasing no
influence of SDT.

Table 2 illustrates the smoothed BLEU-4 scores
for all the experiments. As expected, EXP-Te-DL
showcases substantial drop in BLEU (average 11)
after removing data leakage. The BLEU scores for
SIT and PLBART models are comparable. This
questions the benefit of infusing program analysis
information into the model as opposed to using a
fine tuned LM. As CodeSearchNet has no data leak-
age, there are no drops in the BLEU with EXP-Te-
DL. After EXP-Te-DL, the overall BLEU scores
are in the range of 16-24, questioning their utility
for real-life applications?.

There is a further drop in BLEU (7.09) with
EXP-Te-SPT showcasing the role comments and
meaningful function/variable names are playing in
summary generation. The ablation experiments
demonstrate that function names have the most im-

pact on generation followed by variable names and
comments leading to 4.99, 2.85 and 0.35 average
drops in BLEU score. The drops in the BLEU
scores with EXP-Tr-SPT (2.62) and EXP-TrTe-
SPT (3.27) are less as compared to that of with
the EXP-Te-SPT proving that training with more
generic function and variable names is helping the
model to better understand the semantics. How-
ever, no improvements in BLEU over EXP-Te-
DL demonstrates the need for designing better pre-
processing and training strategies for the task. With
EXP-Te-SDT the drops in BLEU are very minor
(0.13) showcasing that the transformations which
change the semantics of the code (S D7) have no
effect on the summaries and thus it is questionable
if the models are paying any attention to the logic/
semantics of the code.

6 Conclusion

Through empirical studies of SOTA code summa-
rization models, we demonstrate the negative im-
pact of semantics preserving code transformations
on the generated summaries. Additionally, we
demonstrate that semantic disrupting transforma-
tions leave the generated summaries largely un-
changed. This questions the code understanding
capabilities of these models and points to the need
for better training strategies to facilitate code under-
standing and well-curated datasets. The SPT and
SDT transformations devised here offer some ideas
for potential self supervised strategies to better train
these models. The current analysis is restricted to
a subset of code-summary datasets, programming
languages, neural models and the defined trans-
formations. We are working on extending it to

®https://cloud.google.com/translate/automl/docs/evaluate#tbleu generalize our observations.

4

References

Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and
Kai-Wei Chang. 2021a. Unified pre-training for pro-
gram understanding and generation. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 2655-2668,
Online. Association for Computational Linguistics.

Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray,
and Kai-Wei Chang. 2020. A transformer-based
approach for source code summarization. arXiv
preprint arXiv:2005.00653.

Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray,
and Kai-Wei Chang. 2021b. Unified pre-training
for program understanding and generation. arXiv
preprint arXiv:2103.06333.

Uri Alon, Shaked Brody, Omer Levy, and Eran Ya-
hav. 2018. code2seq: Generating sequences from
structured representations of code. arXiv preprint
arXiv:1808.01400.

YunSeok Choi, JinYeong Bak, CheolWon Na, and Jee-
Hyong Lee. 2021. Learning sequential and structural
information for source code summarization. In Find-
ings of the Association for Computational Linguistics:
ACL-IJCNLP 2021, pages 2842-2851.

Ahmed FElnaggar, Wei Ding, Llion Jones, Tom Gibbs,
Tamas Feher, Christoph Angerer, Silvia Severini,
Florian Matthes, and Burkhard Rost. 2021. Code-
trans: Towards cracking the language of sili-
con’s code through self-supervised deep learning
and high performance computing. arXiv preprint
arXiv:2104.02443.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, et al. 2020. Codebert: A
pre-trained model for programming and natural lan-
guages. arXiv preprint arXiv:2002.08155.

Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018a.
Deep code comment generation. In 2018 IEEE/ACM
26th International Conference on Program Compre-
hension (ICPC), pages 200-20010. IEEE.

Xing Hu, Ge Li, Xin Xia, David Lo, Shuai Lu, and
Zhi Jin. 2018b. Summarizing source code with trans-
ferred api knowledge.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. 2019. Code-
searchnet challenge: Evaluating the state of semantic
code search. arXiv preprint arXiv:1909.09436.

Alexander LeClair, Sakib Haque, Lingfei Wu, and
Collin McMillan. 2020. Improved code summariza-
tion via a graph neural network. In Proceedings of
the 28th International Conference on Program Com-
prehension, pages 184—195.

Alexander LeClair, Siyuan Jiang, and Collin McMillan.
2019. A neural model for generating natural lan-
guage summaries of program subroutines. In 2079
IEEE/ACM 41st International Conference on Soft-
ware Engineering (ICSE), pages 795-806. IEEE.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.
arXiv preprint arXiv:1910.13461.

Jia Li, Yongmin Li, Ge Li, Xing Hu, Xin Xia, and
Zhi Jin. Editsum: A retrieve-and-edit framework for
source code summarization.

Shangqing Liu, Yu Chen, Xiaofei Xie, Jing Kai Siow,
and Yang Liu. 2020. Retrieval-augmented generation
for code summarization via hybrid gnn. In Interna-
tional Conference on Learning Representations.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, et al. 2021.
Codexglue: A machine learning benchmark dataset
for code understanding and generation. arXiv
preprint arXiv:2102.04664.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311-318.

Long Phan, Hieu Tran, Daniel Le, Hieu Nguyen, James
Anibal, Alec Peltekian, and Yanfang Ye. 2021. Co-
text: Multi-task learning with code-text transformer.
arXiv preprint arXiv:2105.08645.

Ruchir Puri, David S Kung, Geert Janssen, Wei
Zhang, Giacomo Domeniconi, Vladmir Zolotov, Ju-
lian Dolby, Jie Chen, Mihir Choudhury, Lindsey
Decker, et al. 2021. Project codenet: A large-scale
ai for code dataset for learning a diversity of coding
tasks. arXiv preprint arXiv:2105.12655.

Weizhen Qi, Yeyun Gong, Yu Yan, Can Xu, Bolun Yao,
Bartuer Zhou, Biao Cheng, Daxin Jiang, Jiusheng
Chen, Ruofei Zhang, et al. 2021. Prophetnet-x:
Large-scale pre-training models for english, chinese,
multi-lingual, dialog, and code generation. arXiv
preprint arXiv:2104.08006.

Ensheng Shi, Yanlin Wang, Lun Du, Hongyu Zhang,
Shi Han, Dongmei Zhang, and Hongbin Sun. 2021.
Cast: Enhancing code summarization with hierar-
chical splitting and reconstruction of abstract syntax
trees. arXiv preprint arXiv:2108.12987.

Yao Wan, Zhou Zhao, Min Yang, Guandong Xu,
Haochao Ying, Jian Wu, and Philip S Yu. 2018. Im-
proving automatic source code summarization via
deep reinforcement learning. In Proceedings of the
33rd ACM/IEEE International Conference on Auto-
mated Software Engineering, pages 397-407.

https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.18653/v1/2021.naacl-main.211

Wenhan Wang, Kechi Zhang, Ge Li, and Zhi Jin. 2020.
Learning to represent programs with heterogeneous
graphs. arXiv preprint arXiv:2012.04188.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH
Hoi. 2021. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code un-
derstanding and generation. arXiv preprint
arXiv:2109.00859.

Honggqiu Wu, Hai Zhao, and Min Zhang. 2021. Code
summarization with structure-induced transformer.
In Findings of the Association for Computational
Linguistics: ACL-IJCNLP 2021, pages 1078-1090,
Online. Association for Computational Linguistics.

Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, and
Xudong Liu. 2020. Retrieval-based neural source
code summarization. In 2020 IEEE/ACM 42nd
International Conference on Software Engineering
(ICSE), pages 1385-1397. IEEE.

Daniel Ziigner, Tobias Kirschstein, Michele Catasta,
Jure Leskovec, and Stephan Giinnemann. 2021.
Language-agnostic representation learning of source
code from structure and context. arXiv preprint
arXiv:2103.11318.

A Limitations of Code Summarization

Datasets
Dataset Language | Train Valid | Test
Python Python 57,203 | 19,067 | 19,066
TL-CodeSum Java 69,708 | 8,714 | 8,714
CodeSearchNet | Python 251,820 | 13,914 | 10,955
CodeSearchNet | Java 164,923 | 5,183 14,014

Table 3: Dataset statistics for Python (Wan et al.,
2018), TL-CodeSum (Hu et al., 2018b) and CodeSearch-
Net(CSN) (Husain et al., 2019)

Table 3 provides the statistics of the datasets,
which we have used for our analysis. Publicly
available code-summary datasets enlisted in section
2 have the following lacuna:

1. CodeSearchNet (Husain et al., 2019) have
code comments in the codes and need pre-
processing to avoid biases. For example, the code-
summary pair of Java in CodeSearchNet depicted
in example (a) of Table 4, has comments in the code
which have textual correlations with the summary.

2. TL-CodeSum (Hu et al., 2018b) and Python
(Wan et al., 2018) datasets have data leakages.
Examples (b) and (c) in Table 4 depict the Java
and Python example code-summary pairs from the
datasets which are common across the train and
test splits.

3. As depicted in Table 1, current datasets have
function and variable names that have textual corre-

lations with the summaries, leading to an inductive
bias.

4. As collected from Github repositories, the
summaries of existing datasets (Table 1) are in
the form of code-comment pairs where the code
snippets are at function-level. For models to learn
the underlying program logic, we need the code-
summary pairs in the form of complete code with
more abstract code-level summaries. For example
the code-summary pair in the example (d) in Table
4, from the project CodeNet (Puri et al., 2021) pro-
vides a problem description of the complete code
summarizing the underlying logic of the code.

5. The code summaries require external domain
knowledge, which is not available in the source
code. For example, in CodeNet dataset the prob-
lem descriptions come from variety of domains. It
is impossible to predict the domain-specific compo-
nents of the summaries from the codes as an input,
which require external domain knowledge. For
example, from the code illustrated in example (d)
of Table 4, to generate the illustrated ground truth
summary external domain knowledge in terms of
the meaning of ‘parallel lines’ (lines having same
slope and the definition of slope computation) is
required.

6. As the existing datasets may not have do-
main overlaps, models trained on one dataset do
not perform well on the other (out-of-domain data)
as depicted by the codes in examples (e) Python
and (f) Java in table 4 from CodeNet and the corre-
sponding ground truth and predicted summaries by
PLBART trained on CodeSearchNet. Since there
no domain overlap between these datasets, the pre-
dicted summaries do not match with the ground
truth and most of the time are meaningless.

7. The above listed code-summary dataset ad-
dresses only high-resource programming languages
such as Python, Java, Javascript, PHP, Ruby, Go
and C#. For practical appications, where there
is a need to maintain and debug legacy codes we
need datasets that would facilitate summarization
of legacy languages such as COBOL.

B Code Summarization Approaches

Neural code summarization approaches can be ma-
jorly divided into: (i) Language Model (LM) based
(i1) Deep models exploiting PAI to incorporate code
semantics. LM based approaches such as PLBART
(Ahmad et al., 2021b), CodeT5 (Wang et al., 2021),
CoText (Phan et al., 2021), ProphetNet-Code (Qi

https://doi.org/10.18653/v1/2021.findings-acl.93
https://doi.org/10.18653/v1/2021.findings-acl.93
https://doi.org/10.18653/v1/2021.findings-acl.93

Example (a)

Example (b)

Example Java Code with Comments from CodeSearchNet Java Code-S 'y pair in Train & Test set of TLCodeSum
static String normalizePath(String path) {
StringBuilder sb = new StringBuilder(path.length());
int queryStart = path.indexOf(*?");
String query = null;
if (queryStart !=-1) {
query = path.substring(queryStart);
path = path.substring(0, queryStart);
}
// Normalize the path. we need to decode path segments, normalize
//and rejoin in order to
//'1. decode and pormalizc safe percent escaped characters. e.g. %70 ->,’p’, | private static char{] zzUnpackCMap(String packed)(
/1 2. decode and interpret dangerous character sequences. e.g. /%2E/ ->’/./" ->’/ char{] map=new char[0x10000]:
/1 3. preserve dangerous encoded characters. e.g. "/%2F/" ->’/II" ->’19%2F int e ’
List<String>segments = new ArrayList<>(); s
for (String segment : SLASH_SPLITTER .split(path)) { 1m4j_ .
/I This decodes all non-special characters from the path segment. Wh_lle (i<112){ .
. int count=packed.charAt(i++);
Code /0 if someone passes char value=packed.charAt(i++);
11 1%2E/foo we will normalize it to /./foo and then /foo . R ’
. . do mapl[j++]=value;
String normalized = while (—count >0);
UrlEscapers.urlPathSegmentEscaper().escape(lenientDecode ’
(segment, UTF_S8, false)); zeturn map;
if (".".equals(normalized)) { ’
1/ skip }
} else if ("..".equals(normalized)) {
if (segments.size() >1) {
segments.remove(segments.size() - 1);}
}else {
segments.add(normalized); }
}
SLASH_JOINER .appendTo(sb, segments);
if (query != null) {
sb.append(query); }
return sb.toString(); }
S y | Normalizes a path by unescaping all safe, percent encoded characters. Unpacks the compressed character translation table.
Example Example (c) Example (d)
Python Code S y pair in train and test set of Python dataset C Code-Si y pair from CodeNet
#include <stdio.h>
def query_yes_no(question, default=u’yes’): int main(void)
valid = {u’yes’: u’yes’, u’y’: u’yes’, u’ye’: u’yes’, u’no’: u’no’, { intn;
u'n’:u'no’} int ii;
prompt = {None: u’[y/n]’, u’yes’: u’[Y/n]’, u’no’: u’[y/N]’}. int i;
get(default, None) float k1, k2;
if (not prompt): float x[4], y[4];
raise ValueError((u"invalid default answer: *%s’" % default)) scanf("%d", &n);
Code while 1: for (ii = 0; ii <n; ii++){
sys.stdout.write((colorize(question, colors. PROMPT) + prompt)) for (i=0; 1 <4; i++){
choice = raw_input().lower() scanf("%f %f", &x[i], &yl[il);}
if (default and (not choice)): k1 = (y[1]-y[0]) / (x[1] - x[0]);
return default K2 = (y[3] - y[2]) / (x[3] - x[2]);
elif (choice in valid): if (k1 ==k2){
return valid[choice] printf("YES\n"); }
else: else {
printFailure(u"Please respond with ’yes’ or 'no’ (or "y’ or 'n’).\n") printf("NO\n");} }
return (0);}
There are four points: A(x1, y1), B(x2, y2), C(x3, y3), and
Summary | ask a yes/no question via raw_input() and return their answer Dixd, y4). Write a program which determines whether the
) ‘ ‘ -) : line AB and the line CD are parallel. If those two lines are
parallel, your program should prints "YES" and if not prints "NO".
Example Example (e) Example (f)
Python Code-Summary from CodeNet and 'y generated by PLBART | Java Code-S y from CodeNet and y generated by PLBART
Whlll:e :;?;pm()) public class Main{
if (== 0: public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
break . .
Code tmp = [int(input()) for i in range(t)] String str = scan.nextLine();
° str = str.toUpperCase();
res = [tmp[0]] System.out.println(str);
for i in range(1,t): Y -outp ’
res.append(max(tmpl[i], tmp[i]+res[i-1])) }
print(max(res)) }
Given a sequence of numbers al, a2, a3, ...,an, find the maximum X .
. Write a program which replace all the lower-case
sum of a contiguous subsequence of those numbers. Note that,
Summary . . . letters of a given text with the corresponding
a subsequence of one element is also a contiquous subsequence. . .
. captital letters. Print the converted text.
The input end with a line consisting of a single 0.
ELBAR’I;] Reads input and prints the maximum value of t . The main entry point for this class .
Table 4: Code-Summary Examples depicting lacuna of existing datasets (CodeSearchNet (Husain et al., 2019),

TL-CodeSum (Hu et al., 2018b), Python (Wan et al., 2018) and CodeNet (Puri et al., 2021)).

et al., 2021), CodeTrans (Elnaggar et al., 2021),
and CodeBERT (Feng et al., 2020), pre-train a LM
on mono-lingual programming language data col-

lected from Github and/or StackOverflow® with
pre-training objectives such as token masking, dele-

*https://stackoverflow.com/

tion, or infilling (Lewis et al., 2019). They are
further fine-tuned on code-summary pairs to learn
code-text alignment and infer summaries for un-
seen codes.

Approaches exploiting PAI use LSTMs (Hu
etal., 2018a; Alon et al., 2018; LeClair et al., 2019),
Transformers (Ahmad et al., 2020; Wu et al., 2021;
Ziigner et al., 2021; LeClair et al., 2019; Zhang
et al., 2020), Graph Neural Networks (GNNs) (Liu
et al., 2020; LeClair et al., 2020; Wang et al., 2020)
or a combination of these (Choi et al., 2021; Shi
et al., 2021) and inject PAI in the form of Abstract
Syntax Trees (ASTs), data dependencies and/or
control flows. The PAI is provided in the form
of flattened ASTs using pre-ordered or structure
based traversal (Hu et al., 2018a; Alon et al., 2018;
LeClair et al., 2019), pre-defined adjacency matri-
ces with the edges as an inductive bias for the atten-
tion between nodes (tokens) (Wu et al., 2021), rela-
tive positional encodings between adjacent nodes
(Zigner et al., 2021) or feeding the Code Prop-
erty Graphs (CPGs) to the model (Liu et al., 2020).
Some studies also enhance these models by incor-
porating information retrieval techniques (Li et al.;
Zhang et al., 2020; Liu et al., 2020), where the
prototype summaries of similar codes are retrieved
from a database and are edited by using an encoder-
decoder setting.

