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Abstract

Recent approaches for automatic code summa-001
rization rely on fine-tuned transformer based002
language Models often injected with program003
analysis information. We perform empirical004
studies to analyze the extent to which these005
models understand the code they attempt to006
summarize. We observe that these models rely007
heavily on the textual cues present in com-008
ments/function names/variable names and that009
masking this information negatively impacts010
the generated summaries. Further, subtle code011
transformations which drastically alter program012
logic have no corresponding impact on the013
generated summaries. Overall, the quality of014
the generated summaries even from State-Of-015
The-Art models is quite poor, raising ques-016
tions about the utility of current approaches017
and datasets.018

1 Introduction019

Code summaries play an important role in program020

understanding, maintenance and debugging. Re-021

cent work towards automated code summarization022

adopts two primary approaches: (i) Fine tuned Lan-023

guage Models (LM) or (ii) Deep models that inject024

Program Analysis Information (PAI) to facilitate025

better understanding of program semantics. The re-026

sulting models yield BLEU scores (Papineni et al.,027

2002) ranging from 7 to 45 on publicly available028

datasets. In this paper, we perform an empirical029

analysis to evaluate the code understanding capa-030

bilities of these models for summary generation.031

We apply code transformations that change the un-032

derlying logic of the input code and observe the033

resulting change in the summaries and associated034

BLEU scores. Conversely, we observe the change035

in generated summaries when we subject the code036

to semantic preserving transformations such as re-037

placing variable names. We also observe the effect038

on the model performance after removing the data039

leakage problems specifically in TL-CodeSum (Hu040

et al., 2018b) and Python (Wan et al., 2018) datasets 041

(refer Section A of the Appendix). We make the 042

following observations, which may prove useful 043

for the code summarization research community: 044

1.The BLEU scores of existing code summariza- 045

tion models on reported datasets are very low (in 046

the range of 5 to 8), especially for out-of-domain 047

data where train and test codes belong to distinct 048

projects (Liu et al., 2020). This calls into question 049

the utility of these models for real-life applications. 050

2.Testing the models on codes with semantic 051

preserving transformations negatively impacts the 052

BLEU score (average drop of 7). This is not only 053

true for the LM based models but also for the mod- 054

els which claim to understand the program structure 055

by injecting PAI. This likely points to prevailing 056

models performing ‘short-cut’ learning by relying 057

on the inductive biases from meaningful function 058

and variable names. 059

3. Training with codes after semantic preserving 060

transformations leads to no improvements in BLEU 061

over the original biased models. This indicates that 062

the models are extremely reliant on textual cues 063

and are unable to learn code semantics when these 064

are removed. This highlights the need for designing 065

better training strategies to facilitate code under- 066

standing, such as self-supervision with semantic 067

preserving and disrupting transformations. 068

4.Transformations which change the semantics 069

of the code have very minimal impact on the BLEU 070

scores (average drop of 0.13), demonstrating that 071

the models are not paying much attention to code 072

semantics while generating the summaries. 073

5. Getting rid of the leakages in the datasets 074

leads to a large drop in the BLEU scores (average 075

11), highlighting the need for carefully designing 076

datasets where there is no code overlap across the 077

splits, not only in terms of codes having the same 078

surface forms (syntax), but also in terms of codes 079

with the same semantics. Such datasets would bet- 080

ter evaluate the generalization capabilities of dif- 081
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Java
code

Original Function Function after SPT and SDT
private void append(StringBuilder buffer,double[] data,String prefix,
String separator,String suffix){

buffer.append(prefix);
for (int i=0; i < data.length; ++i) {

if (i > 0) {
buffer.append(separator);}

buffer.append(data[i]);}
buffer.append(suffix);}

private void func(StringBuilder var1,double[] var2,String var3
,String var4,String var5){

var1.append(var3);
for(int i=0;i > var2.length; −−i){

if (i < 0) {
var1.append(var4);}

var1.append(var2[i]);}
var1.append(var5);}

Summ.

Model SIT PLBART
GT append a text representation of an array to a buffer . append a text representation of an array to a buffer .

Original
appends the given string representation of all elements.
a concatenates with the given prefix.

appends the given double array to the given buffer.

EXP-Te-SPT compute the given string. func(double[] var1,double[] var2,string var3,string var0)
EXP-Tr-SPT append a string listing of format. appends a double array to the buffer.

EXP-TrTe-SPT append a string ref to the specified stringbuffer.
appends a string representation of a double array to the string
builder.

EXP-Te-SDT appends the given string representation of all elements. appends the given double array to the given buffer.
Python
code

Original Function Function after SPT and SDT
def GetEntityViaMemcache(entity_key):

entity = memcache.get(entity_key)
if (entity is not None):

return entity
key = ndb.Key(urlsafe=entity_key)
entity = key.get()
if (entity is not None):

memcache.set(entity_key, entity)
return entity

def func(var1):
var2 = memcache.get(var1)
if (var2 is not None):

return var2
var3 = ndb.Key(urlsafe=var1)
var2 = var3.get()
if (var2 is not None):

memcache.set(var1, var2)
return var2

Summ.

Model SIT PLBART
GT get entity from memcache if available. get entity from memcache if available.
Original returns a key that can be used for entity. retrieves an entity from memcache.
EXP-Te-SPT returns an instance of c. return the value of var2.
EXP-Tr-SPT cache keys for azure entities. retrieves an entity from memcache.
EXP-TrTe-SPT cache keys in memcache. returns the value of a memcache key.
EXP-Te-SDT returns a key that can be used for entity. retrieves an entity from memcache.

Table 1: Example of transformed code from Python dataset (Wan et al., 2018) and TL-CodeSum (Hu et al., 2018b).
Summaries generated by SIT (Wu et al., 2021) and PLBART (Ahmad et al., 2021b) with the transformations and
experiments (Sections 4). GT: Ground-Truth summary, EXP:Experiment, Te: Test set, Tr: Training set, SPT:
Semantic Preserving Transformations, SDT: Semantic Disrupting Transformations, FN: Function Name, VN:
Variable Names, 1.SPT -FN (Green), 2. SPT -V N (Blue), 3. SDT (Red).

ferent summarization approaches. Datasets should082

also facilitate learning of code semantics and pre-083

vent over reliance on textual correlations.084

2 Related Work085

Code Summarization Datasets Publicly avail-086

able datasets such as TL-CodeSum (Hu et al.,087

2018b), Python (Wan et al., 2018), Funcom088

(LeClair et al., 2019), CCSD (Liu et al.,089

2020), CodeSearchNet (Husain et al., 2019) and090

CodeXGLUE (Lu et al., 2021) have function-091

summary pairs collected from open source GitHub1092

repositories. Current datasets have some serious093

limitations such as :(i) having code comments as a094

part of the source code (CodeSearchNet), (ii) data095

leakage i.e. having common code-summary pairs096

in train and test set (TLCodeSum, Python), (iii)097

meaningful function and variable names having098

textual correlations with the words in the summary099

1https://github.com/

(iv) Highly abstract summaries that are divorced 100

from the code logic (v) domain specific summaries 101

that are not obtainable from code and require exter- 102

nal knowledge out side the code logic for summary 103

generation (CodeNet (Puri et al., 2021)) (vii) no 104

datasets for legacy programming languages like 105

COBOL. The details of limitations with examples 106

are provided in Appendix Section A. We perform 107

our analysis on CodeSearchNet, TL-CodeSum and 108

Python datasets for Python and Java programming 109

languages. The data statistics are provided in Ap- 110

pendix Section A. 111

Code Summarization Approaches Neural code 112

summarization approaches utilize one of the follow- 113

ing : (i) Language Models (LM) pre-trained with 114

monolingual programming data and further fine- 115

tuned with code summary pairs or (ii) Deep models 116

(Transformers, LSTMs, Graph Neural Networks) 117

exploiting program analysis information in terms of 118

Abstract Syntax Trees (ASTs), data dependencies 119

2



and/or control flows to incorporate code semantics.120

Details are provided in Appendix Section B. For121

our analysis, we include one model from each of122

the above categories, namely PLBART (Ahmad123

et al., 2021b) and Structure Induced Transformers124

(SIT) (Wu et al., 2021).125

3 Transformations126

We perform causal analysis by tweaking the code127

using the following transformations to preserve or128

change code semantics and then observe the effect129

on the resulting summary and BLEU scores. Table130

1 demonstrates the transformations.131

SPT are the set of Semantic P reserving132

T ransformations, which include (i) CC removing133

the Code Comments from 17% of the codes in134

CodeSearchNet (ii) FN replacing meaningful user-135

defined Function Names with more generic(but136

unique) function names, and (iii) V N replacing137

meaningful user defined local Variable Names with138

more generic variable names, unique per existing139

variable name, such that data-dependencies are pre-140

served. Generic names carry no semantics and141

are selected from the existing model vocabulary.142

FN and V N are applicable to all codes in all the143

datasets.144

SDT s are the set of Semantic Disrupting145

T ransformations, which include (i) replacing an146

arithmetic and relational operator with its inverse147

(For example, replacing + with − or equality ==148

with inequality ! =, etc) and (ii) replacing a logical149

operator with its complement (For example, replac-150

ing AND with OR) such that the code execution151

is not hampered but the semantics of the code is152

disrupted. ∼78%, 68%, 40% and 43% of codes153

in CodeSearchNet-Java and Python, TLCodeSum154

and Python datasets are modified with SDT . The155

intent is to observe the change in BLEU, by com-156

paring the summaries generated by the models with157

the transformed and original codes, against the orig-158

inal ground truth summaries, which are retained159

for both the transformations.160

4 Experimental Setup161

We perform the following experiments:162

EXP-Te-DL We address the Data Leakage (DL)163

in the datasets by removing 38.49% Java and164

21.66% Python code snippets from the Test Set165

of TL-CodeSum and Python datasets, that syntac-166

tically match with the code snippets in the train167

set resulting in inflated BLEU scores. We expect a168

drop in average BLEU scores after filtering these 169

samples from the test set. We use this filtered test 170

set for the following experiments. 171

EXP-Te-SPT Models trained on the original 172

train data are tested on the SPT transformed Test 173

Set. For an ideal model BLEU scores should not 174

change from unmodified trainset-testset scores as 175

SPT s are semantic preserving. 176

EXP-Tr-SPT Models trained with the SPT 177

transformed Train Set are tested on the original 178

test data. Since the model can no longer exploit 179

function and variable names to generate summaries, 180

this experiment should test whether the model is 181

capable of understanding the program logic and if 182

so, improve the BLEU scores. 183

EXP-TrTe-SPT Models trained with the SPT 184

transformed Train Set are tested on the SPT trans- 185

formed Test Set. Along similar lines of EXP-Tr- 186

SPT, improvements in the BLEU scores over un- 187

modified trainset-testset results would indicate that 188

the model better understands code. 189

EXP-Te-SDT Models trained on the original 190

train data are tested on the SDT transformed Test 191

Set. As the SDT changes the semantics of the 192

programs, if the model understands the code se- 193

mantics, the resulting summaries generated by the 194

model should be different from the original ground 195

truth summaries, leading to a drop in the BLEU 196

scores. 197

To programmatically transform the codes, we 198

use javalang2 and ast3 packages. We detect and 199

replace the function and variable names by con- 200

structing an AST for the functions. We detect the 201

logical and arithmetic operators by using regex4. 202

SIT5 is originally trained on TL-CodeSum and 203

Python dataset and PLBART on CodeSearchNet. 204

For having comparisons across the models, we fine- 205

tune pre-trained PLBART6 with TL-CodeSum and 206

Python, where the codes are tokenized using the 207

Tree-sitter tokenizer 7. For fair comparison, we 208

use the same set-of hyper-parameters described in 209

the original papers (Ahmad et al., 2021a; Wu et al., 210

2021) and run the experiments on one Nvidia Tesla 211

V100 32 GB GPU. SIT and PLBART take ∼34 and 212

8 hours to train. Experiments on CodeSearchNet 213

are performed with only PLBART as the program 214

2https://github.com/c2nes/javalang
3https://docs.python.org/3/library/ast.html#
4https://github.com/python/cpython/blob/3.10/Lib/re.py
5https://github.com/gingasan/sit3
6https://github.com/wasiahmad/PLBART
7https://github.com/tree-sitter/tree-sitter
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PL & Dataset Python Java TL-CodeSum Python CSN Java CSN
Model SIT PLBART SIT PLBART PLBART PLBART Avg

DropMethod BLEU Drop BLEU Drop BLEU Drop BLEU Drop BLEU Drop BLEU Drop
Original 34.11* - 25.53 - 45.76* - 20.61 - 19.30# - 18.45# - -
EXP-Te-DL 23.61 10.5 22.99 2.54 19.34 26.42 16.08 4.53 19.30 0.00 18.45 0.00 10.99
EXP-Te-SPT 15.35 8.26 16.10 6.89 10.46 8.88 11.11 4.97 11.95 7.35 12.25 6.20 7.09
SPT − FN 18.26 5.35 16.61 6.38 12.81 6.53 12.64 3.44 15.27 4.03 14.26 4.19 4.99
SPT − V N 18.39 5.22 21.20 1.79 14.08 5.26 14.96 1.12 17.15 2.15 16.91 1.54 2.85
SPT − CC 23.61 0.00 22.80 0.19 19.34 0.00 16.08 0.00 17.61 1.69 18.22 0.23 0.35
EXP-Tr-SPT 18.25 5.36 20.68 2.31 13.77 5.57 14.68 1.40 18.44 0.86 18.25 0.20 2.62
EXP-TrTe-SPT 20.78 2.83 18.63 4.36 16.76 2.58 13.17 2.91 15.43 3.87 15.40 3.05 3.27
EXP-Te-SDT 23.57 0.04 22.98 0.01 19.29 0.05 16.00 0.08 18.92 0.38 18.24 0.21 0.13

Table 2: Results on Python (Wan et al., 2018), TL-CodeSum (Hu et al., 2018b) and CSN: CodeSearchNet (Husain
et al., 2019). PL: Programming Languages, EXP:Experiment, Te: Test set, Tr: Training set, SPT: Semantic
Preserving Trans, SDT: Semantic Disrupting Trans, DL: Data Leakage, FN: Function Name, VN: Variable Names,
CC: Code Comments. *Results from(Wu et al., 2021), #Results from (Ahmad et al., 2021a).

analysis information required for the SIT model is215

not available for this dataset .216

5 Result and Analysis217

Table 1 illustrates the examples of Java and Python218

codes from TL-CodeSum and Python datasets and219

the corresponding transformed code with SPT220

and SDT . However, it should be noted that, we221

never perform both transformations simultaneously.222

EXP-Te-SPT summaries do not match with the223

ground truth and are inferior to the original model224

summaries, showcasing the negative influence of225

SPT . EXP-Tr-SPT and EXP-TrTe-SPT sum-226

maries are closer to the ground truth as compared227

to EXP-Te-SPT demonstrating the positive effect228

of an SPT transformed train set. Summaries of229

EXP-Te-SDT remain unchanged, showcasing no230

influence of SDT .231

Table 2 illustrates the smoothed BLEU-4 scores232

for all the experiments. As expected, EXP-Te-DL233

showcases substantial drop in BLEU (average 11)234

after removing data leakage. The BLEU scores for235

SIT and PLBART models are comparable. This236

questions the benefit of infusing program analysis237

information into the model as opposed to using a238

fine tuned LM. As CodeSearchNet has no data leak-239

age, there are no drops in the BLEU with EXP-Te-240

DL. After EXP-Te-DL, the overall BLEU scores241

are in the range of 16-24, questioning their utility242

for real-life applications8.243

There is a further drop in BLEU (7.09) with244

EXP-Te-SPT showcasing the role comments and245

meaningful function/variable names are playing in246

summary generation. The ablation experiments247

demonstrate that function names have the most im-248

8https://cloud.google.com/translate/automl/docs/evaluate#bleu

pact on generation followed by variable names and 249

comments leading to 4.99, 2.85 and 0.35 average 250

drops in BLEU score. The drops in the BLEU 251

scores with EXP-Tr-SPT (2.62) and EXP-TrTe- 252

SPT (3.27) are less as compared to that of with 253

the EXP-Te-SPT proving that training with more 254

generic function and variable names is helping the 255

model to better understand the semantics. How- 256

ever, no improvements in BLEU over EXP-Te- 257

DL demonstrates the need for designing better pre- 258

processing and training strategies for the task. With 259

EXP-Te-SDT the drops in BLEU are very minor 260

(0.13) showcasing that the transformations which 261

change the semantics of the code (SDT ) have no 262

effect on the summaries and thus it is questionable 263

if the models are paying any attention to the logic/ 264

semantics of the code. 265

6 Conclusion 266

Through empirical studies of SOTA code summa- 267

rization models, we demonstrate the negative im- 268

pact of semantics preserving code transformations 269

on the generated summaries. Additionally, we 270

demonstrate that semantic disrupting transforma- 271

tions leave the generated summaries largely un- 272

changed. This questions the code understanding 273

capabilities of these models and points to the need 274

for better training strategies to facilitate code under- 275

standing and well-curated datasets. The SPT and 276

SDT transformations devised here offer some ideas 277

for potential self supervised strategies to better train 278

these models. The current analysis is restricted to 279

a subset of code-summary datasets, programming 280

languages, neural models and the defined trans- 281

formations. We are working on extending it to 282

generalize our observations. 283
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A Limitations of Code Summarization416

Datasets417

Dataset Language Train Valid Test
Python Python 57,203 19,067 19,066
TL-CodeSum Java 69,708 8,714 8,714
CodeSearchNet Python 251,820 13,914 10,955
CodeSearchNet Java 164,923 5,183 14,014

Table 3: Dataset statistics for Python (Wan et al.,
2018), TL-CodeSum (Hu et al., 2018b) and CodeSearch-
Net(CSN) (Husain et al., 2019)

Table 3 provides the statistics of the datasets,418

which we have used for our analysis. Publicly419

available code-summary datasets enlisted in section420

2 have the following lacuna:421

1. CodeSearchNet (Husain et al., 2019) have422

code comments in the codes and need pre-423

processing to avoid biases. For example, the code-424

summary pair of Java in CodeSearchNet depicted425

in example (a) of Table 4, has comments in the code426

which have textual correlations with the summary.427

2. TL-CodeSum (Hu et al., 2018b) and Python428

(Wan et al., 2018) datasets have data leakages.429

Examples (b) and (c) in Table 4 depict the Java430

and Python example code-summary pairs from the431

datasets which are common across the train and432

test splits.433

3. As depicted in Table 1, current datasets have434

function and variable names that have textual corre-435

lations with the summaries, leading to an inductive 436

bias. 437

4. As collected from Github repositories, the 438

summaries of existing datasets (Table 1) are in 439

the form of code-comment pairs where the code 440

snippets are at function-level. For models to learn 441

the underlying program logic, we need the code- 442

summary pairs in the form of complete code with 443

more abstract code-level summaries. For example 444

the code-summary pair in the example (d) in Table 445

4, from the project CodeNet (Puri et al., 2021) pro- 446

vides a problem description of the complete code 447

summarizing the underlying logic of the code. 448

5. The code summaries require external domain 449

knowledge, which is not available in the source 450

code. For example, in CodeNet dataset the prob- 451

lem descriptions come from variety of domains. It 452

is impossible to predict the domain-specific compo- 453

nents of the summaries from the codes as an input, 454

which require external domain knowledge. For 455

example, from the code illustrated in example (d) 456

of Table 4, to generate the illustrated ground truth 457

summary external domain knowledge in terms of 458

the meaning of ‘parallel lines’ (lines having same 459

slope and the definition of slope computation) is 460

required. 461

6. As the existing datasets may not have do- 462

main overlaps, models trained on one dataset do 463

not perform well on the other (out-of-domain data) 464

as depicted by the codes in examples (e) Python 465

and (f) Java in table 4 from CodeNet and the corre- 466

sponding ground truth and predicted summaries by 467

PLBART trained on CodeSearchNet. Since there 468

no domain overlap between these datasets, the pre- 469

dicted summaries do not match with the ground 470

truth and most of the time are meaningless. 471

7. The above listed code-summary dataset ad- 472

dresses only high-resource programming languages 473

such as Python, Java, Javascript, PHP, Ruby, Go 474

and C#. For practical appications, where there 475

is a need to maintain and debug legacy codes we 476

need datasets that would facilitate summarization 477

of legacy languages such as COBOL. 478

B Code Summarization Approaches 479

Neural code summarization approaches can be ma- 480

jorly divided into: (i) Language Model (LM) based 481

(ii) Deep models exploiting PAI to incorporate code 482

semantics. LM based approaches such as PLBART 483

(Ahmad et al., 2021b), CodeT5 (Wang et al., 2021), 484

CoText (Phan et al., 2021), ProphetNet-Code (Qi 485
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Example Example (a)
Java Code with Comments from CodeSearchNet

Example (b)
Java Code-Summary pair common in Train & Test set of TLCodeSum

Code

static String normalizePath(String path) {
StringBuilder sb = new StringBuilder(path.length());
int queryStart = path.indexOf(’?’);
String query = null;
if (queryStart != -1) {

query = path.substring(queryStart);
path = path.substring(0, queryStart);

}
// Normalize the path. we need to decode path segments, normalize
//and rejoin in order to
// 1. decode and normalize safe percent escaped characters. e.g. %70 ->’p’
// 2. decode and interpret dangerous character sequences. e.g. /%2E/ ->’/./’ ->’/’
// 3. preserve dangerous encoded characters. e.g. ’/%2F/’ ->’///’ ->’/%2F’
List<String>segments = new ArrayList<>();
for (String segment : SLASH_SPLITTER.split(path)) {

// This decodes all non-special characters from the path segment.
//so if someone passes
// /%2E/foo we will normalize it to /./foo and then /foo
String normalized =

UrlEscapers.urlPathSegmentEscaper().escape(lenientDecode
(segment, UTF_8, false));

if (".".equals(normalized)) {
// skip

} else if ("..".equals(normalized)) {
if (segments.size() >1) {

segments.remove(segments.size() - 1);}
} else {

segments.add(normalized);}
}
SLASH_JOINER.appendTo(sb, segments);
if (query != null) {

sb.append(query);}
return sb.toString();}

private static char[] zzUnpackCMap(String packed){
char[] map=new char[0x10000];
int i=0;
int j=0;
while (i <112) {

int count=packed.charAt(i++);
char value=packed.charAt(i++);
do map[j++]=value;
while (–count >0);

}
return map;

}

Summary Normalizes a path by unescaping all safe, percent encoded characters. Unpacks the compressed character translation table.

Example Example (c)
Python Code Summary pair common in train and test set of Python dataset

Example (d)
C Code-Summary pair from CodeNet

Code

def query_yes_no(question, default=u’yes’):
valid = {u’yes’: u’yes’, u’y’: u’yes’, u’ye’: u’yes’, u’no’: u’no’,
u’n’: u’no’}
prompt = {None: u’[y/n]’, u’yes’: u’[Y/n]’, u’no’: u’[y/N]’}.
get(default, None)
if (not prompt):

raise ValueError((u"invalid default answer: ’%s’" % default))
while 1:

sys.stdout.write((colorize(question, colors.PROMPT) + prompt))
choice = raw_input().lower()
if (default and (not choice)):

return default
elif (choice in valid):

return valid[choice]
else:

printFailure(u"Please respond with ’yes’ or ’no’ (or ’y’ or ’n’).\n")

#include <stdio.h>
int main(void)
{ int n;

int ii;
int i;
float k1, k2;
float x[4], y[4];
scanf("%d", &n);
for (ii = 0; ii <n; ii++){

for (i = 0; i <4; i++){
scanf("%f %f", &x[i], &y[i]);}

k1 = (y[1] - y[0]) / (x[1] - x[0]);
k2 = (y[3] - y[2]) / (x[3] - x[2]);
if (k1 == k2){

printf("YES\n"); }
else {

printf("NO\n");} }
return (0);}

Summary ask a yes/no question via raw_input() and return their answer .

There are four points: A(x1, y1), B(x2, y2), C(x3, y3), and
D(x4, y4). Write a program which determines whether the
line AB and the line CD are parallel. If those two lines are
parallel, your program should prints "YES" and if not prints "NO".

Example Example (e)
Python Code-Summary from CodeNet and summary generated by PLBART

Example (f)
Java Code-Summary from CodeNet and summary generated by PLBART

Code

while True:
t = int(input())
if t == 0:

break
tmp = [int(input()) for i in range(t)]
res = [tmp[0]]
for i in range(1,t):

res.append(max(tmp[i], tmp[i]+res[i-1]))
print(max(res))

public class Main{
public static void main(String[] args) {

Scanner scan = new Scanner(System.in);
String str = scan.nextLine();
str = str.toUpperCase();
System.out.println(str);

}
}

Summary

Given a sequence of numbers a1, a2, a3, ...,an, find the maximum
sum of a contiguous subsequence of those numbers. Note that,
a subsequence of one element is also a contiquous subsequence.
The input end with a line consisting of a single 0.

Write a program which replace all the lower-case
letters of a given text with the corresponding
captital letters. Print the converted text.

PLBART
Summary Reads input and prints the maximum value of t . The main entry point for this class .

Table 4: Code-Summary Examples depicting lacuna of existing datasets (CodeSearchNet (Husain et al., 2019),
TL-CodeSum (Hu et al., 2018b), Python (Wan et al., 2018) and CodeNet (Puri et al., 2021)).

et al., 2021), CodeTrans (Elnaggar et al., 2021),486

and CodeBERT (Feng et al., 2020), pre-train a LM487

on mono-lingual programming language data col-488

lected from Github and/or StackOverflow9 with 489

pre-training objectives such as token masking, dele- 490

9https://stackoverflow.com/
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tion, or infilling (Lewis et al., 2019). They are491

further fine-tuned on code-summary pairs to learn492

code-text alignment and infer summaries for un-493

seen codes.494

Approaches exploiting PAI use LSTMs (Hu495

et al., 2018a; Alon et al., 2018; LeClair et al., 2019),496

Transformers (Ahmad et al., 2020; Wu et al., 2021;497

Zügner et al., 2021; LeClair et al., 2019; Zhang498

et al., 2020), Graph Neural Networks (GNNs) (Liu499

et al., 2020; LeClair et al., 2020; Wang et al., 2020)500

or a combination of these (Choi et al., 2021; Shi501

et al., 2021) and inject PAI in the form of Abstract502

Syntax Trees (ASTs), data dependencies and/or503

control flows. The PAI is provided in the form504

of flattened ASTs using pre-ordered or structure505

based traversal (Hu et al., 2018a; Alon et al., 2018;506

LeClair et al., 2019), pre-defined adjacency matri-507

ces with the edges as an inductive bias for the atten-508

tion between nodes (tokens) (Wu et al., 2021), rela-509

tive positional encodings between adjacent nodes510

(Zügner et al., 2021) or feeding the Code Prop-511

erty Graphs (CPGs) to the model (Liu et al., 2020).512

Some studies also enhance these models by incor-513

porating information retrieval techniques (Li et al.;514

Zhang et al., 2020; Liu et al., 2020), where the515

prototype summaries of similar codes are retrieved516

from a database and are edited by using an encoder-517

decoder setting.518
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