
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

FedDSE: Distribution-aware Sub-model Extraction for Federated
Learning over Resource-constrained Devices

Anonymous Author(s)

Submission Id: 566

ABSTRACT
Sub-model extraction based federated learning has emerged as a

popular strategy for training models on resource-constrained de-

vices. However, existingmethods treat all clients equally and extract

sub-models using predetermined rules, which disregard the statisti-

cal heterogeneity across clients and may lead to fierce competition

among them. Specifically, this paper identifies that when making

predictions, different clients tend to activate different neurons of

the entire model related to their respective distributions. If highly

activated neurons from some clients with one distribution are incor-

porated into the sub-model allocated to other clients with different

distributions, they will be forced to fit the new distributions, which

can hinder their activation over the previous clients and result in

a performance reduction. Motivated by this finding, we propose a

novel method called FedDSE, which can reduce the conflicts among

clients by extracting sub-models based on the data distribution of

each client. The core idea of FedDSE is to empower each client to

adaptively extract neurons from the entire model based on their

activation over the local dataset. We theoretically show that FedDSE
can achieve an improved classification score and convergence over

general neural networks with the ReLU activation function. Experi-

mental results on various datasets and models show that FedDSE
outperforms all state-of-the-art baselines.

CCS CONCEPTS
• Computer systems organization→ Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability.

KEYWORDS
Federated Learning; Submodel extraction; Distribution-aware

ACM Reference Format:
Anonymous Author(s). 2018. FedDSE: Distribution-aware Sub-model Ex-

traction for Federated Learning over Resource-constrained Devices. In Pro-
ceedings of Make sure to enter the correct conference title from your rights
confirmation emai (Conference acronym ’XX). ACM, New York, NY, USA,

25 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
With the proliferation of edge devices like IoT and sensors, huge

amounts of data are generated continuously, which can be used to

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

train efficient machine learning models. However, the raised pri-

vacy concerns make it difficult to collect big data from edge devices

and send them to a central cloud for training. Federated Learning

(FL) [22, 32], which enables clients to collaboratively train machine

learning models in a decentralized manner without revealing their

private raw data, is an emerging paradigm that has been adopted

in various fields including medical image processing [44] and rec-

ommendation systems [11]. However, to deploy FL in practical

edge environments, it is necessary for the resulting systems to not

only preserve the privacy, but also satisfy the common pragmatic

constraint, i.e., constrained resources such as energy, computation,

communication, and memory of edge devices [4, 14, 25].

To address the aforementioned issues, extracting the sub-model

from the entire model appears to be an effective solution, which

is also called partial federated learning, where each device only

trains a sub-model of the full global model. Two categories of sub-

model extraction methods for FL have been proposed: parameter

sparsifying methods [3, 19, 26, 37] and neuron pruning methods

[2, 6, 9, 16]. Parameters sparsifying methods extract sub-models by

selecting specific parameters from the entire neural network based

on the lottery ticket hypothesis [13]. Although they effectively

reduce the computation and communication costs, recent works

[4] have shown that such methods do not reduce the memory

trace because the activation outputs from neurons are much larger

than the original parameters. Neurons pruning methods [2, 6, 9,

16] extract sub-models by selecting a subset of neurons from the

entire neural network. For example, FedRolex [2] selects neurons

in a rolling way for each client. Considering their great advances

in terms of memory efficiency, this paper mainly focuses on the

category of neuron pruning methods.

Although current neuron pruning methods are effective in reduc-

ing memory usage, they do not account for statistical heterogeneity

(i.e., non-identically distributed data) [21, 28, 29, 33], potentially

leading to decreased performance. Specifically, this study reveals

the competition between clients with different data distributions

when only sub-models are locally trained. We observe that clients

tend to activate different neurons within the model during predic-

tion, closely linked to their respective data distributions. As data

distribution is neglected, the neurons highly activated for clients

with one distribution may be extracted into a sub-model designated

to other clients with distinct distributions. Newly-assigned clients

may find it challenging to obtain effective representations over

local datasets via the sub-model with limited capacity, as they have

to force the neurons strongly linked to previous clients to adapt

to these new distributions. On the other side, such a re-fit process

may also in turn hinder the activation of these neurons over the

previous clients and result in a performance reduction.

Motivated by this finding, we propose a simple yet effective

method FedDSE to reduce the conflicts among clients by extracting

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon. Submission Id: 566

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

2023/5/14

1

1 2 31 2 1 2 3 4 5

Server

Small-capacity clients Middle-capacity clients Large-capacity clients

1 2 3 4 5

(a) Order-based neurons selection

2023/5/14

1

Small-capacity clients
Middle-capacity clients

Large-capacity clients

Server
1

2

𝑦0

𝑦1

1
𝑦0

𝑦1

Rounds

𝑥 < 0
𝑦 = 0

1

1
𝑦0

𝑦1

2

𝑦0

𝑦1

2

𝑦0

𝑦1

1 2 3 4

𝑥 > 0
𝑦 = 1

Client 1

Client 2

- +

+

+

+
+

+

-
𝑤1,1,1

𝑤1,2,1

𝑤2,1,1

-

-

-

-

𝑤2,2,2
ℎ1,2

ℎ1,1

(b) Rolling selection of neurons

Figure 1: Illustration of existing methods that extract neurons with pre-defined rules. (a) An example of three types of clients
with order-based neurons selection (Fjord [16] and Hetero [9]). Neurons 4 and 5 may only be trained a few times due to the
limited number of large-capacity clients. (b) An example of two clients (different rows) selecting neurons in a rolling way
(FedRolex [2]). Clients may compete for neurons to fit their respective distinct distributions.

sub-models based on the data distribution of each client. The main

idea of FedDSE is to empower each client to adaptively extract

neurons from the entire model based on their activation over the

local dataset, where neuronswith the largest magnitude are selected.

In this way, the conflicts can be minimized since every client is

assigned its most appropriate neurons instead of the ones activated

for other clients with different distributions. Experiment results on

different datasets and models show that FedDSE can significantly

improve the training efficiency under the constraint of limited

memory compared to baselines. Our contributions are:

● To the best of our knowledge, this paper is the first to consider

statistical heterogeneity in FL with sub-model extraction. Our

findings reveal that clients with distinct distributions tend to

activate different neurons, leading to conflicts among them when

the neurons are not assigned properly.

● We propose a novel training method, FedDSE, to extract sub-

models for each client based on their data distributions. In FedDSE,
the neurons of the sub-model are chosen based on their levels

of activation over the local dataset of each client, enabling us to

assign the most appropriate neurons to each client.

● We establish a theory for the convergence of FedDSE on general

neural networks with ReLU activation function, which shows

that our method has an asymptotic convergence rate.

● To validate the efficiency of the proposed method, we compare

FedDSE with state-of-the-art methods. Evaluation results show

that FedDSE can improve the performance by up to 2.72%.

2 RELATEDWORKS
Many approaches have been proposed to realize FL over memory-

limited devices, which can be categorized into twomain types based

on whether the weights of the global model are updated.

2.1 Training masks from the fixed-weights
global model

This category of works initially comes from the centralized scenario,

where the masked model of a dense network with random weights

performs surprisingly well without ever training the weights [1,

35, 36, 46]. Considering this phenomenon, some recent works seek

to find such a mask to reduce the communication budget in FL,

while simultaneously compressing the given global dense network

[18, 27, 41]. Although these methods achieve success separately,

their targets are totally different from ours. For example, Li et al.

[27] focus on the personalization of local models over different

clients via various masks. Anish et al. [41] and Isik et al. [18] seek

to reduce the computation and communication costs via the 1-bit

mask. In contrast, this paper mainly focuses on the issue of limited

on-device memory. While these prior methods can also reduce the

memory usage by reducing the size of parameters, they cannot

reduce the size of activation which consumes much more memory

[4]. Besides, these methods rely on a dense network, which may

also potentially increase the memory usage.

2.2 Training sub-model weights extracted from
the global model

These methods train the global model by updating the weights

of the extracted sub-model, which are further classified into two

categories, i.e., parameter sparsifying methods and neuron sparsi-

fying methods. Parameters sparsifying methods extract sub-models

by selecting specific parameters from the entire neural network

[3, 19, 26, 37] , which are usually based on the theory of the lottery

ticket hypothesis [13]. Although they effectively reduce the com-

putation and communication costs, recent works [4] have shown

that such methods do not reduce the memory trace because the

activation outputs from neurons are much larger than the original

parameters. Another line of methods is to extract the sub-model

by pruning neurons from the global neural network [2, 6, 9, 16, 30].

For example, an earlier method randomly prunes neurons from

the global neural network for each client [6]. For the heteroge-

neous edge devices, Fjord [16] and Hetero [9] employ a similar

approach. They manually define a neuron-order before training

and construct sub-models for each client based on its memory

constraints, and then select neurons in accordance with this pre-

defined order. However, ordered extraction requires an adequate

number of high-capacity devices to accommodate the complete

model. Otherwise, as illustrated in Figure 1(a), many neurons lo-

cated towards the tail-end of the sequence may not be adequately

trained, resulting in degraded performance. In practice, the number

of large-capacity devices is generally far less than the low-capacity

devices, which restricts its application. Considering this limitation,

the recent work FedRolex [2] extracts the sub-model by selecting

neurons in a rolling way for each client such that all neurons can

be trained equally. However, such a method may cause competition

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

FedDSE: Distribution-aware Sub-model Extraction for Federated Learning over Resource-constrained Devices Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

among clients, as we will illustrate later. These neuron pruning

methods are most close to this paper. But different from them, we

take the statistical heterogeneity into account when extracting

sub-models for different clients.

3 PRELIMINARIES
Basics of deep neural network. We consider a deep neural net-

work with 𝐿 layers, and each layer 𝑙 contains𝑚𝑙 neurons.We denote

the weight parameters of the model as w and the parameters of

the 𝑙-th layer as w𝑙 = (︀𝑤𝑙 , 𝑏𝑙 ⌋︀ with the weights𝑤𝑙 and bias 𝑏𝑙 . For

each 𝑖-th neuron in the 𝑙-th layer, we compute its activation output

as ℎ𝑙,𝑖 = 𝜎(𝑤𝑙,𝑖h𝑙−1
+ 𝑏𝑙,𝑖), where 𝜎(⋅) is the nonlinear activation

function (e.g., ReLU),𝑤𝑙,𝑖 and 𝑏𝑙,𝑖 denote the weights/bias for this

neuron, and h𝑙−1
represents the outputs of all neurons in the pre-

vious layer, i.e., h𝑙−1
= (︀ℎ𝑙−1,1, . . . , ℎ𝑙−1,𝑚𝑙−1

⌋︀. For simplicity, we

denote all weights of the network as w = (︀w1, . . . ,w𝐿⌋︀.
Problem formulation. Our objective is to allow all clients to

collaboratively train a global model via FL. We presume that there

are 𝑁 clients, and each client 𝑛 has access only to its own private

dataset D𝑛 ∶= {𝑥𝑛𝑖 ,𝑦𝑖}, where 𝑥𝑖 represents the 𝑖-th input data

sample, and 𝑦𝑖 ∈ 𝐶 = {1, 2,⋯,𝐶} represents the corresponding label
of 𝑥𝑖 . The number of data samples in dataset D𝑛 is represented by

𝐷𝑛 . D = {D1,D2,⋯,D𝑁 }, with 𝑁 = ∑𝑁𝑛=1
𝐷𝑛 . The goal is to train

a global model w by minimizing the total empirical loss over the

entire dataset D:

min

w
𝐹(w) ∶=

𝑁

∑
𝑛=1

𝐷𝑛

𝐷
𝐹𝑛(w), where 𝐹𝑛(w) =

1

𝐷𝑛

𝐷𝑛

∑
𝑖=1

𝑓 (w;𝑥𝑖 ,𝑦𝑖),

(1)

where 𝐹𝑛(w) denotes the local loss function of the 𝑛-th client,

which measures its private dataset’s local empirical risk, and 𝑓 (⋅)
is the cross-entropy loss function that quantifies the difference

between the predicted and ground-truth labels.

4 CHALLENGES AND MOTIVATIONS
4.1 Resource Properties of Edge Devices
LimitedMemory. Different from servers in the cloud, edge devices

generally have limited capability in terms of memory, energy, com-

munication, and computation. For example, the device Raspberry

Pi 1 Model A, which is widely used in edge applications, e.g., smart

home [20], only has a memory of 256 MB. Although the memory

is sufficient for the inference of neural networks, e.g., the popular

ResNet18 where the memory footprint is approximately 60 MB in

the inference process, the device can hardly support its training.

Specifically, training ResNet18 with a small batch size of 8 requires

a memory of 569.67 MB, which far exceeds the memory limit. The

available memory will become even less when other applications

are running on the device. On the other hand, energy consump-

tion is also strongly related to memory access. Widely used edge

devices mobile-phone which are usually equipped with intelligent

accelerators
1
. The memory of these mobile phones is composed of

DRAM in the CPU and SRAM in the accelerator. Under the 45nm

CMOS technology [15], a 32bit off-chip DRAM access consumes

640 pJ, which is two orders of magnitude larger than a 32bit on-chip

SRAM access (5 pJ) or a 32bit float multiplication (3.7 pJ). Despite

1

https://ai.googleblog.com/2019/11/introducing-next-generation-on-device.html

the energy efficiency of the SRAM, the accelerator usually has lim-

ited memory of SRAM. For instance, TPU [17] only has 28MB of

SRAM which is even smaller than the training memory footprint

of a small network MobileNetV2 using a small batch size of 1 [5].

This leads to numerous resource-intensive DRAM accesses, conse-

quently consuming significant energy and depleting the battery of

edge devices. In fact, SSD or Flash access costs even more energy

than DRAM. These properties of memory indicate the necessity of
training the sub-model on each local device.
Asymmetric network bandwidth of edge devices. Most current

methods use sub-models downloaded from servers to reduce the

download bandwidth. However, it is worth noting that upload band-

width is often much lower than download bandwidth and is the

main bottleneck for communication efficiency. This can be seen by

summarizing the bandwidth of mobile networks provided by differ-

ent global telecom operators
2
. In fact, the download bandwidth can

be up to 7.7 times larger than the upload bandwidth. Given this, a
natural improvement idea would be to download the full model from
the server to improve the training performance while only uploading
sub-models to ensure efficient communication.

4.2 Extracting Neurons with Pre-defined Rules
May Cause Competition

Here we demonstrate the necessity of extracting client-specific

neurons based on their unique data distribution in FL. We present

an analysis of the limitations of FedRolex [2], which is currently the

state-of-the-art method for FL with sub-model extraction. Specifi-

cally, Figure 1(b) illustrates a simple binary classification problem

for single-dimension data, where the label 𝑦 = 0 corresponds to

data points 𝑥 ≤ 0 and 𝑦 = 1 is assigned to 𝑥 > 0. All samples with

label 𝑦 = 0 are allocated to the first client and those with label 𝑦 = 1

to the second client. A two-layer neural network with two hidden

neurons and ReLU activation function is employed for this classi-

fication task. Our example reveals that during training, neurons

can become biased towards one particular client and fail to adapt

well to other clients’ data distribution. For instance, after the first

round, neuron 1 is trained to recognize data 𝑥 < 0 of client 1 by

updating the parameter 𝑤1,1,1 to negative (denoted by ’-’). In the

next round, it is designated to the second client and may struggle

to adjust to the new data 𝑥 > 0 by updating the parameter 𝑤1,1,1

from negative to positive (’+’). On the other side, the adjusting

process will also hinder its activation over data from the previous

client. Such a conflict is due to the neglect of data distribution when

extracting neurons into the sub-model for each client, where the

neurons strongly linked to clients with one distribution may be

designated to other clients with different distributions. To present

this problem formally, we establish the following theory for the

general two-layer neural networks.

Theorem 1. Consider a two-layer neural network employing the
ReLU activation function and being trained with a cross-entropy loss.
Let D𝑛1

comprise samples belonging to class 𝑠 , and D𝑛2
consist of

samples from class 𝑐 , representing the datasets of clients 𝑛1 and 𝑛2

respectively. Let ℎ𝑖(D𝑛1
) = ∑𝐷𝑗=1

ReLU(w𝑇𝑖 x𝑗) represent the sum of

2

https://www.opensignal.com/reports/2023/02/global-state-of-the-mobile-network-

experience-awards

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon. Submission Id: 566

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

0 10 20 30 40 50
Neuron

 (a)

0.0

0.5

1.0

Av
er

ag
e

Ac
tiv

at
io

n
Va

lu
e Layer 1

Client 1
Client 2

0 5 10 15 20
Neuron

 (b)

0

1

2

3
Layer 2

Client 1
Client 2

1 3 5 7 9
Neuron

 (c)

2.5

0.0

2.5

5.0

Layer 3
Client 1
Client 2

0 10 20 30 40 50
Neuron

 (d)

1

0

1

2
Full Dataset

Layer1
Layer2
Layer3

Figure 2: Comparison of activation distributions of a 3-layer MLP on MNIST. (a-c) Activations of two clients on layer-1, 2 and 3.
(d) Activations of different layers trained on the full dataset.

activations of the 𝑖-th selected hidden neuron across dataset D𝑛1
, with

𝐷 denoting the dataset size. Subsequently, training the sub-model ŵ
on dataset D𝑛2

and denoting 𝑝𝑘𝑠 as the probability score of sample
x𝑘 ∈ D𝑛2

over the trained sub-model, with a learning rate 𝜂 > 0,
yields the following observations:
●When the dataset D𝑛1

of client 𝑛1 is homogeneous to the local
training dataset D𝑛2

of client 𝑛2, i.e., ∑x𝑘∈D𝑛
2

𝑝
𝑘
𝑠 (x𝑘)𝑇 x𝑗 ≥ 0 for

each sample x𝑗 ∈ D𝑛1
, the activation sum ℎ𝑖(D𝑛1

) increases, where
the augmentation can be as high as 𝜂∑x𝑗 ∈D𝑛

1

∑x𝑘∈D𝑛
2

𝑝
𝑘
𝑠 (𝑤2,𝑐,𝑖 −

𝑤2,𝑠,𝑖)(x𝑘)𝑇 x𝑗 .
● Conversely, when the dataset D𝑛2

of client 𝑛1 is heterogeneous to
the local training dataset D𝑛2

of client 𝑛2, i.e.,∑x𝑘∈D𝑛
2

𝑝
𝑘
𝑠 (x𝑘)𝑇 x𝑗 ≤

0 for each sample x𝑗 ∈ D𝑛1
, the activation sum ℎ𝑖(D𝑛1

) decreases,
where the reduction isMin(ℎ𝑖(D𝑛1

),−𝜂∑x𝑗 ∈D𝑛
1

∑x𝑘∈D𝑛
2

𝑝
𝑘
𝑠 (𝑤2,𝑐,𝑖−

𝑤2,𝑠,𝑖)(x𝑘)𝑇 x𝑗).

The proof can be found in B. Theorem 1 suggests that clients

possessing homogeneous data distributions will mutually amplify

their activation learning, while clients with heterogeneous data

distributions will mutually diminish each other’s activation.

4.3 Neuron Properties of DNNs in FL
To investigate the principle of neuron competition, we seek to

present the properties of DNN neurons in FL. Through profiling

the training process of clients over local datasets, we find neurons

are activated differently for specific clients. To demonstrate the

potential in extracting neurons, we track the training progress of

different layers of a Multilayer Perceptron (MLP) as an example.

MLP is a simple and popular model for image classification, con-

sisting of multiple fully-connected layers. Figure 2 compares the

activation distributions (i.e., the output feature map produced by

a DNN layer) of a three-layer MLP fully trained on the MNIST

dataset. The number of neurons for layers 1 to 3 are 50, 24 and 10

respectively. We take the average activation of each neuron over

256 data samples. From Figure 2, we can get the following insights:

● Each client activates distinct neurons. Figure 2 (a)-(c) depict the
activation values of neurons in different layers for two clients

(five clients in total for experiments and we only take two for

better illustration here). Obviously, there exists a huge variance

between the activation distributions of those two clients. Their

curves barely overlap and those neurons with high activation

values also vary for each client. For instance, in layer-2, neuron-

16 generates a larger activation value for client-1 while a lower

value for client-2, indicating this neuron is activated more by

local data of client-1. Similarly, other clients also show their

correspondingly stressed neurons in each layer. This pattern

reveals a natural strategy: each client can extract neurons from
the global model based on their most activated ones.

● The activations of different layers differ. To further verify the

above point, Figure 2(d) shows the average activations of each

layer on i.i.d dataset. The values of each layer distinguish much

between each other: activation values of the first layer tend to

be stable while subsequent layers show more fluctuations. The
activation distributions vary as the model goes deeper, indicating
that comparing activations of different layers is insufficient to
unmask neuron properties for each client.

In fact, we have the following proposition to show that the acti-

vation magnitude is strongly related to the classification accuracy

which is represented as the probability score for each class.

Proposition 2. Given a well-converged two-layer neural network
with the ReLU activation function, high activation values have a large
impact on the probability score than low activation values. Specifically,
for any sample x with label 𝑦 = 𝑐 , the ratio of impact over probability
score 𝑝𝑐 between a high activation ℎ𝐻 and a low activation ℎ𝐿 is

approximately 𝑒𝛼(ℎ
2

𝐻−ℎ
2

𝐿), where 𝛼 > 0 is a constant.

The proof can be found in B. Proposition 2 shows that higher

activation contributes more to the probability score of the classi-

fication label. Jointly considering Proposition 2 and Theorem 1,

we can intuitively get that the accuracy of the global model over

the dataset of some specific client will be reduced when the cor-

responding neurons with large activation are allocated to other

clients of which their data distributions are heterogeneous to this

client. More explanations are discussed in Appendix A.

5 FEDDSE DESIGN
Motivated by the above findings, we propose to extract a sub-model

for each client based on its data distribution, where the detailed

workflow is presented in Algorithm 1. Our method FedDSE has the

following innovations. First, considering the sufficient download

bandwidth, we allow each client 𝑛 to pull the entire model w from

the server. Second, based on the basic property of neural networks

that inference consumes much less memory than training, each

client 𝑛 selects neurons by only running inference over the model

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

FedDSE: Distribution-aware Sub-model Extraction for Federated Learning over Resource-constrained Devices Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

2023/5/15

1

2 3 41 3 2 4 5

Server

Clients with activation

ℎ1 > ℎ3 > ℎ2 > ℎ4 > ℎ5

Clients with activation

ℎ2 > ℎ4 > ℎ3 > ℎ1 > ℎ5

Clients with activation

ℎ5 > ℎ4 > ℎ2 > ℎ3 > ℎ1

1 2 3 4 5

Figure 3: Clients extract sub-models based on the magnitude
of neuron activation.
with a portion of its local dataset. Third, based on the observation

that the magnitude of neuron activation differs a lot for different

layers, each client extracts neurons in a layer-by-layer manner,

which does not requires caching the activation of previous layers.

Specifically, for each layer 𝑙 , the client 𝑛 only remains the top ra-

tio 𝑟 of neurons in a weighted sampling manner and prunes the other
neurons to obtain the sub-model w𝑛 = w⊙M𝑛

, where ⊙ denotes

the element-wise multiplication and M𝑛
is the mask. M𝑛

𝑙,𝑖, 𝑗 = 0 if

the neuron ℎ𝑙,𝑖 of the parameter 𝑤𝑙,𝑖, 𝑗 is pruned, and M𝑛
𝑙,𝑖, 𝑗 = 1

otherwise. The sampling probability of each neuron is determined

based on its activation. We apply a softmax function over the ac-

tivation ℎ𝑖 of each neuron 𝑖 , obtaining its sampling probability

𝑝(𝑖) = 𝑒
ℎ𝑖 ⇑𝑇

∑𝑚
𝑗=1

𝑒
ℎ𝑗 ⇑𝑇

, where 𝑇 is the temperature. Obviously, one neu-

ron is more likely to be sampled once its activation is larger. In

particular, the neurons are selected in a uniform manner as the

temperature 𝑇 → ∞, while the neurons are selected in a TopK

manner as the temperature 𝑇 → 0, i.e., selecting neurons with the

highest activation values ∏︁ℎ𝑙,𝑖∏︁.
The client locally updates the sub-modelw𝑛 = w𝑛−𝜂∇w𝑛 𝑓𝑛(w𝑛),

where 𝑓𝑛(w𝑛) denotes the loss over a mini-batch of data and

𝜂 is the learning rate. Then, the server receives the sub-models

from all clients and aggregates them to update the global model:

w = w−𝜂∑𝑛∈𝑁 p𝑛⊙∑𝐸𝑒=1
∇w𝑛

𝑒
𝑓𝑛(w𝑛𝑒), where 𝑁 denotes the set of

selected clients and p𝑛 endows a weight for each element of the sub-

model parameters. We set p𝑛𝑙,𝑖, 𝑗 =
1

⋃︀𝑁𝑙,𝑖,𝑗 ⋃︀ with 𝑁𝑙,𝑖, 𝑗 representing

the clients set that select the parameter𝑤𝑙,𝑖, 𝑗 . In fact, the extraction

process can also be conducted on the server by using a data-free

manner like [47]. We leave the discussion in Appendix A.3.

6 THEORETICAL ANALYSIS
In this section, we formally analyze the performance of our pro-

posed method compared to existing methods. We first show that our

method achieves a higher probability score than existing methods

over the two-layer neural networks with ReLU activation function.

Then, we establish the convergence theory of our method over

general non-convex loss functions.

6.1 Improved Probability Score
Following Theorem 1 and Proposition 2, we further compare the

impact of neuron competition over the activation, i.e., reduced

activation value by allocating positive neurons of some specific

client to another heterogeneous client), and the probability score.

Algorithm 1 FedDSE Algorithm

Input: Global model w, and learning rate 𝜂, total communication

rounds 𝑇 .

Output: Trained global model w.

1: Initialize the model parameters w1;

2: procedure Server-side Optimization
3: for each communication round 𝑡 ∈ {1, 2, ...,𝑇} do
4: Randomly select a subset of clients 𝑁𝑡 ;

5: Distribute w𝑡 to each selected client;

6: for each selected client 𝑛 in parallel do
7: w𝑛𝑡+1

← 𝐶𝑙𝑖𝑒𝑛𝑡𝐿𝑜𝑐𝑎𝑙𝑈𝑝𝑑𝑎𝑡𝑒(𝑛,w𝑛𝑡);
8: Update the global model w𝑡 = w𝑡 − 𝜂∑𝑛∈𝑁𝑡

p𝑛𝑡 ⊙
∑𝐸𝑒=1

∇w𝑛
𝑡,𝑒
𝑓𝑛(w𝑛𝑡,𝑒);

9: procedure ClientLocalUpdate(𝑛,w𝑛𝑡)
10: Receive w𝑡 from the server;

11: Sample 𝑟 neurons layer-by-layer in activation-based proba-

bility to obtain the sub-model w𝑛𝑡,1 = w𝑡 ⊙M𝑛
𝑡 ;

12: for each local iterations 𝑒 from 1 to 𝐸 do
13: Update sub-model parameters on private data w𝑛𝑡,𝑒+1

=
w𝑛𝑡,𝑒 − 𝜂∇w𝑛

𝑡,𝑒
𝑓𝑛(w𝑛𝑡,𝑒);

return Local update of the sub-model∑𝐸𝑒=1
∇w𝑛

𝑡,𝑒
𝑓𝑛(w𝑛𝑡,𝑒);

Proposition 3. When training sub-models on clients with hetero-
geneous distributions relative to a specific client 𝑛, the reduction in
neuron activation Δℎ(D𝑛) for a two-layer neural network over the
data D𝑛 of the specific client, achieved through either random or se-
quential neuron selection strategies, is greater compared to that of our
distribution-aware selection method Δℎ′(D𝑛) under the worst-case,
i.e., Δℎ(D𝑛) ≥ Δℎ′(D𝑛).

The proof can be found in B. The key is that existing strategies

cannot avoid allocating the top neurons of some specific client

to the other clients with heterogeneous distribution to the client,

leading to a great activation reduction to these top neurons. Then,

we have the following theory to show that the probability score

will also be reduced due to the reduced activation activation.

Theorem 4. Given a two-layer converged neural network includ-
ing𝑚 neurons with the ReLU activation function. The obtained proba-
bility score 𝑝𝑠(D𝑛) over the dataset D𝑛 of some specific client 𝑛 for a
given class 𝑠 , after running on heterogeneous clients with sub-models
extracted through either random or sequential neuron selection strate-
gies, is smaller than the probability score of our distribution-aware se-
lection method 𝑝′𝑠(D𝑛) under the worst-case, i.e., 𝑝𝑠(D𝑛) ≤ 𝑝′𝑠(D𝑛).

The proof is in B. Theorem 4 indicates that our method can main-

tain the probability score of previous clients by avoiding allocat-

ing neurons to conflicted clients with heterogeneous distributions.

Hence, our method can help the global model memorize the data

of clients selected in old rounds and improve the training accuracy.

6.2 Convergence Analysis
To show the convergence, we make the following assumptions

which are widely adopted in FL.

Assumption 1. (L-smoothness). The objective function 𝐹 is con-
tinuously differentiable and the gradient function of 𝐹 is L-smooth

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon. Submission Id: 566

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

with Lipschitz constant 𝐿𝑠 > 0, i.e., for all w, w′,

∏︁∇𝐹(w) −∇𝐹(w′)∏︁2 ≤ 𝐿𝑠∏︁w −w′∏︁2 .

Assumption 2. (Bounded variance). For all parametersw, the vari-
ance of the stochastic gradient in each client is bounded:E(∏︁∇w 𝑓𝑛(w)−
∇w𝐹𝑛(w)∏︁2) ≤ 𝜎2.

Assumption 3. (Bounded Hessian). There exists positive a constant
𝐻 such that for all w and 𝑛, the second partial derivatives of 𝑓𝑛 with
respect to the activation ℎ𝑛,𝑙,𝑖 for each layer 𝑙 and neuron 𝑖 satisfy:
∏︁∇2

ℎ𝑛,𝑙,𝑖
𝑓𝑛(w)∏︁2 ≤ 𝐻 .

Assumption 4. (Bounded Gradient). For all parameters w, the
gradient with respect to the loss is bounded: E(∏︁∇w 𝑓𝑛(w)∏︁2) ≤ 𝐺2,
and the embedding gradient with respect to each 𝑖-th neuron in the
𝑙-th layer is also boundded E(∏︁∇w𝑙,𝑖ℎ𝑙,𝑖(w)∏︁2) ≤ 𝐺2

ℎ .

The first two assumptions are generally used in the standard

analysis of Federated Learning [12, 40, 43]. Based on these assump-

tions, we derive the convergence properties of our algorithm on

general neural networks with ReLU activation function. The third

assumption is a strengthened version of Assumption 1, which is also

leveraged by previous studies [8]. The assumption of the bounded

gradient regarding the loss is also generally utilized [45]. Assump-

tion 4 slightly strengthens traditional assumption by also assuming

the bounded gradient regarding the activation.

To simplify analysis, we introduce an iteration index 𝑘 where

𝑘 = 𝑡 ∗ 𝐸 + 𝑒 . We also introduce an auxiliary model ŵ𝑛𝑘 , which is

the full model obtained by filling the sub-model w𝑛𝑘 with global

parameters in the latest global round. Notably, according to the

updating formula, ŵ𝑛𝑘 = w𝑡 when 𝑘 = 𝑡 ∗ 𝐸. To measure the impact

of extracting neurons. We define the error between the activation

h𝑛𝑚,𝑘 computed from the sub-model w𝑛𝑘 and h𝑛𝑘 calculated from

the filled auxiliary model ŵ𝑛𝑘 , as e
𝑛
𝑘 = h

𝑛
𝑚,𝑘 − h

𝑛
𝑘 . Based on these

definitions, we then have the following lemma.

Lemma 1. The error of the gradient calculated by the sub-model is
bounded by

E∏︁∇ŵ𝑛
𝑘
𝑓𝑛(ŵ𝑛𝑘) −∇w𝑛

𝑘
𝑓𝑛(w𝑛𝑘)∏︁

2

2
≤𝐺2

ℎ𝐻
2

𝐿

∑
𝑙=1

E ∑
𝑖∈𝑆𝑙,𝑘

∏︁e𝑙,𝑖,𝑘∏︁
2

2

+
𝐿

∑
𝑙=1

E ∑
𝑖∈𝑆𝑐

𝑙,𝑘

∏︁∇ŵ𝑛
𝑙,𝑖,𝑘

𝑓𝑛(ŵ𝑛𝑘)∏︁
2

2
, (2)

where 𝑆𝑙,𝜏 is the set of selected neurons in the 𝑙-th layer and 𝑆
𝑐
𝑙,𝜏 denotes

the set of un-selected neurons. ŵ𝑛𝑙,𝑖,𝑘−1
represents the parameters

connected to the neuron 𝑖 .

The proofs are deferred to Appendix C.1. Lemma 1 indicates that

the error of the gradient calculated by the sub-model is related to

the activation difference and the gradient unselected by the sub-

model. Based on this lemma, we can derive the following theorem

for the convergence of the algorithm.

Theorem 5. Considering 𝐹∗ be the global minima of the loss
function, 𝛾 and 𝛼 are constants with 𝛾 > 0, 0 ≤ 𝛼 < 1, and the
learning rate 0 < 𝜂 ≤ 1

𝐿𝑠
, then for all neural networks with ReLU

activation function, the expected average of the squared gradient

norms of 𝐹 obtained by Algorithm 1 satisfies the following bound for
all 𝐾 ∈ N:

𝐾

∑
𝑘=1

E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
≤ 2(𝐹(w1) − 𝐹∗)

𝜂

+ 2𝐿
2

𝑠𝜂
2

𝛼𝐺
2(1 + 𝛾)(1 + 𝛾)𝐾−1 − 1

𝛾2
+ 𝐾𝐿𝑠𝜂𝜎

2

2

𝑁

+ 4𝐿
2

𝑠𝜂
2(1 + 1

𝛾
)𝐺2

ℎ𝐻
2

𝐾

∑
𝑘=1

𝑘−1

∑
𝜏=1

(1 + 𝛾)𝑘−1−𝜏 𝐿

∑
𝑙=1

E ∑
𝑖∈𝑆𝑙,𝜏

∏︁e𝑙,𝑖,𝜏∏︁
2

2

+ 16𝐾𝐿
2

𝑠𝜂
4

𝐸
2

𝐺
2(1 + 1

𝛾
), (3)

where 𝑆𝑙,𝜏 is the set of selected neurons in the 𝑙-th layer.

Detailed derivations are deferred to Appendix C.2. Theorem 5

shows that the convergence performance of FL with sub-model ex-

traction heavily relies on the activation error e𝑛𝑘 . Rather than select-

ing neurons based on their location according to conventional meth-

ods, our approach extracts neurons based on the magnitude of their

activation. Hence, our method maximizes the potential to reduce

the activation error. Since the global model w𝑡 periodically equals

ŵ𝑛𝑘 , Theorem 5 also indicates the convergence of the global model,

i.e., ∑𝑇𝑡=1
E∏︁∇w𝑡 𝐹(w𝑡)∏︁2

2
≤ ∑𝐾𝑘=1

E∏︁ 1

𝑁 ∑
𝑁
𝑛=1
∇ŵ𝑛

𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
. Now,

we consider the feature distance ∏︁e∏︁2

2
is bounded by a constant 𝜖 > 0

which is determined by the ratio, i.e., ∏︁e∏︁2

2
≤ 𝜖2

. Obviously, 𝜖 → 0 as

𝑟 → 1. We show that the final convergence error is strongly related

to the extraction ratio 𝑟 .

Theorem 6. Considering 𝐹∗ be the global minima of the loss
function and the learning rate 0 < 𝜂 ≤ 1

4𝐿𝑠
, then for all neural

networks with ReLU activation function, the expected average of the
squared gradient norms of 𝐹 obtained by Algorithm 1 satisfies the
following bound for all 𝑡 ∈ N:

1

𝑇

𝑇

∑
𝑡=1

∏︁∇w𝑡 𝐹(w𝑡)∏︁2

2
≤ 4(𝐹(w1) − 𝐹∗)⌋︂

𝑇

+ 4𝐸(𝐿𝑠⌋︂
𝑇
+ 1

2

)(𝐺2

ℎ𝐻
2

𝑟𝑀𝜖
2 + 𝛼𝐺2) + 8𝐸𝐿𝑠𝐸

2
𝐺

2

𝑇
, (4)

where 𝛼 is a constant relying on the extraction ratio of the sub-model
with 0 ≤ 𝛼 < 1.

Proof can be found in Appendix C.3. Since 𝜖 → 0 and 𝛼 → 0 as

𝑟 → 1, Theorem 6 indicates that the error asymptotically converges

to 0 with respect to the iteration 𝑡 and 𝑟 .

7 EXPERIMENTS
Datasets and models. We evaluate the performance of the pro-

posed FedDSE over two models and three mainstream datasets. In

specific, two distinct models including a CNN for EMNIST [24],

a pre-activated ResNet [38] for CIFAR-10 and CIFAR-100 [23] are

adopted for performance evaluation. The Static Batch Normaliza-

tion method is applied instead of Batch Normalization, and a scalar

module follows each convolution layer [10] is introduced. We use

four convolution layers to compose the CNN model, whose chan-

nels are {64, 128, 256, 512}, respectively.
Data heterogeneity. For EMNIST, CIFAR-10 and CIFAR-100, we

follow the non-IID split method in HeteroFL [10]. In the following

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

FedDSE: Distribution-aware Sub-model Extraction for Federated Learning over Resource-constrained Devices Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 1: The comparison of test accuracy of different methods. Each experiment is conducted three times with random seeds.

Method

High Data Heterogeneity(%) Low Data Heterogeneity(%)

EMNIST CIFAR-10 CIFAR-100 EMNIST CIFAR-10 CIFAR-100

HeteroFL 93.21±1.23 38.13±1.91 8.00±2.45 97.61±1.02 47.01±1.34 11.16±2.02

Federated Dropout 87.96±2.11 50.16±2.63 10.47±2.87 97.63±1.92 58.16±2.26 16.21±2.10

FedRolex 91.41±1.15 55.61±1.62 14.02±1.90 98.61±0.98 68.04±1.34 20.81±1.18

FedDSE 95.34±1.24 58.19±1.57 16.61±1.87 98.65±1.01 70.82±1.16 22.93±1.31

of this paper, L indicates the number of classes each client has.

According to the size of L, we define High Data Heterogeneity and

LowData Heterogeneity. For EMNIST and CIFAR-10, 𝐿 = 2 indicates

High Data Heterogeneity, and 𝐿 = 4 means Low Data Heterogeneity

For CIFAR-100, we adopt 𝐿 = 5 for High Data Heterogeneity and

𝐿 = 10 for Low Data Heterogeneity.

Model heterogeneity. We define five different client model capac-

ities 𝛽 ={1 (0, 0.01, 0.99), 1/2 (0.01, 0.98, 0.01), 1/4 (0.01, 0.98, 0.01),

1/8 (0.01, 0.98, 0.01), 1/16 (0, 1, 0)}. As most clients’ capacities do not

reach the capacity of the server and include several intermediate

values, we define a ratio 𝛼 = 1⇑16 to better simulate the real client

distribution. Each client’s model capacity fluctuates around 𝛼 of

the original capacity. Using 1⇑2 as an example, 1⇑2 represents client

model capacity. (0.01, 0.98, 0.01) i.e., the probability distribution

of {1⇑2 + 1⇑16, 1⇑2, 1⇑2 − 1⇑16}. The global model channels are al-

located according to the number of channels in each layer of the

client model.

Baselines. We compare three Partial Training (PT)-based FL meth-

ods. Specifically, HeteroFL [10] is a static distribute neuron method.

FedRolex [39] and Federated Dropout[7] are dynamic distribute neu-

ron methods. To guarantee the fairness of comparison, we use the

same learning rate, local epochs, as well as communication rounds.

In this paper, we mainly focus on the performance of FedDSE rather
than model optimization using the existing multi-step learning rate

decay schedule that may lead to an efficiency decrease. More details

about each method and dataset can be found in the Appendix D

(including the setting of Table 2-5).

Configurations and platform. For EMNIST, CIFAR-10 and CIFAR-

100, we apply bounding box crop [34] to augment the images. In

each communication round, 10% of the 100 clients are selected for

training, with frc = 10%. At the beginning of each communication

round, the selected clients’ capacities are dynamically chosen from

a uniform distribution. Experiments are conducted atop PyTorch

framework. The specifics of hyperparameters are shown in the

Appendix. Experiments are carried out on computing machines

with Nvidia RTX 3090, K80 and 1080Ti GPUs.

Evaluation metric. For image classification tasks, global accuracy

is adopted as the evaluation metric, which is defined as the server

model’s accuracy over the entire test set. Besides, we also compare

the cost of memory, communication, and computation of FedAvg

and FedDSE in Table 7 of the appendix.

7.1 Performance Comparison with Baselines
Table 1 compares our FedDSE with four PT-base methods. The tem-

perature of FedDSE is set to be 0. For a fair comparison, the client

distribution is done in the aforementioned way. We observe that

FedDSE achieves the best performance over the other three methods

0.0 0.2 0.4 0.6 0.8 1.0ρ
20

40

60

80

Ac
cu

ra
cy

(%
)

High heterogeneity
Low heterogeneity

(a) EMNIST

0.0 0.2 0.4 0.6 0.8 1.0ρ

20

30

40

50

Ac
cu

ra
cy

(%
)

High heterogeneity
Low heterogeneity

(b) CIFAR-10

Figure 4: Impact of client model heterogeneity distribution
in EMNIST and CIFAR-10
under both high data heterogeneity and low data heterogeneity

conditions. In addition, the results have proved that under high

data heterogeneity, FedDSE significantly outperforms FedRolex on

EMNIST and CIFAR10. This indicates that when the number of

classes is relatively small, our method can accurately capture and

activate the relevant neurons for training, hence achieving better

results on EMNIST and CIFAR10 with 10 classes and 𝐿 = 2. While

for CIFAR100 with 100 classes and 𝐿 = 5 where the sizes of the

client dataset remain the same, it becomes difficult to select the

active neurons, and the improvement is a mere 0.9%. Under low data

heterogeneity where the client datasets are evenly distributed, the

model converges faster and leads to prominent training overhead

reduction. On the simple EMNIST dataset, FedDSE achieves similar

accuracy as FedRolex. For complex datasets like CIFAR10 and CI-

FAR100, under more evenly distributed data, FedDSE outperforms

other methods significantly by selecting and activating relevant

neurons. HeteroFL can hardly cope with the situation when most

client capacities are not up to the server capacity. The reason is

that the neurons in the later part of the same layer will be trained

with few times, and these neurons cause an accuracy drop in the

global model. This phenomenon is not very obvious over EMNIST

due to the simplicity of the dataset, as training a limited number of

neurons can achieve decent results. The Federated Dropout method

performs moderately. It randomly drops neurons causing high vari-

ance and instability. The performance of FedRolex is second only to

FedDSE. We have thoroughly analyzed the reasons in the theoretical

part, so we omit it here.

7.2 Impact of Client Model Heterogeneity
In the above experiments, the distribution of client capacities is

set uniformly. Now we conduct the test by varying the value of 𝜌

to introduce different distributions. We choose two client model

capacities 𝛽=1/2,1/16. 𝜌 is defined as the proportion of 1⇑2 clients.

For example, 𝜌 = 0.2 means that client capacity of 1⇑2 accounts for

0.2 and 1⇑16 accounts for 0.8.

Figure 5 shows that the accuracy increases as 𝜌 increases on the

whole. For EMNIST in Figure 4(a), under high data heterogeneity,

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon. Submission Id: 566

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

2 4 6 8 10
Data Heterogeneity (Class Number)

94

95

96

97

98

99

100

Te
st

 A
cc

ur
ac

y
(%

)

95.34

98.55 98.63 98.83 98.74

(a) Impact Data Heterogeneity

5 10 15 20
Fraction of Selected Clients (%)

85.0

87.5

90.0

92.5

95.0

97.5

100.0

102.5

105.0

Te
st

 A
cc

ur
ac

y
(%

)

93.62

97.86
95.34

98.65

95.78

98.59

95.9

98.84

High Data Heterogeneity
Low Data Heterogeneity

(b) Impact of Client Selection

65 128 256 all
Data Size for Sub-model Extraction

85.0

87.5

90.0

92.5

95.0

97.5

100.0

102.5

105.0

Te
st

 A
cc

ur
ac

y
(%

)

93.99

98.26

95.13

98.45

95.82
98.18

95.34

98.65

High Data Heterogeneity
Low Data Heterogeneity

(c) Impact of Data Size for Extraction

Without distillation With distillation
86

88

90

92

94

96

98

100

Te
st

 A
cc

ur
ac

y
(%

)

93.21

95.34
94.34

96.24

FedDF(HeteroFL)
FedDSE

(d) Comparison to Federated Distillation

Figure 5: Ablation Study
the peak is reached at 𝜌=1. This indicates that the model conver-

gence requires a combination of a large number of models. Thus the

accuracy increases linearly with 𝜌 . Under low data heterogeneity,

the peak appears at 𝜌 = 0.4, proving that a large global model is not

a prerequisite for fast convergence. Therefore, when 𝜌 exceeds 0.4,

the model accuracy fluctuates up and down as 𝜌 increases. For the

complex CIFAR-10 dataset in Figure 4(b), the accuracy continues to

increase with the increase of 𝜌 . This indicates that FedDSE is suit-
able for appropriately increasing the model parameters to improve

the effect when dealing with complex problems.

7.3 Impact of Statistical Heterogeneity
In the above experiments, we define high and low data heterogene-

ity. In EMNIST, they are set as 𝐿 = {2, 4}, respectively. Here, we
set 𝐿 = {2, 4, 6, 8, 10}. In doing so, the testing results can reflect the

influence of the degree of data heterogeneity on global accuracy.

Figure 5(a) shows that the accuracy improves significantly when

𝐿 = 2 and 𝐿 = 4, while the impact of data heterogeneity becomes

mild from 𝐿 = 4 to 𝐿 = 10. In the scenario of 10 classes, it is common

for users to encounter up to 4 classes at most.

7.4 Impact of Client Selection
Rather than simply setting frc as 10%, we vary the number of se-

lecting clients from 5% to 20% with a step length of 5%. Figure 5(b)

shows that under high data heterogeneity, frc improves the accu-

racy significantly when it increases from 5% to 10%. However, from

10% to 20%, the effect of frc becomes mild. Through Figure 5(b)

we can find that a decent balance between model accuracy and

convergence overhead can be reached when frc = 10%.

7.5 Impact of Data Size for Extraction
In the above experiments, the entire client dataset is adopted as the

inference data. Here, we vary the inference batch size as {64, 128, 256,

𝑎𝑙𝑙} to explore the impact of the inference data scale. In specific,

’all’ refers to the size of the local dataset, which is 500 in EMNIST.

Figure 5(c) shows that when the inference batch size reaches 128,

the activated neurons selected can basically meet the requirements

during inference. Figure 5(c) also indicates that simply increasing

the inference batch size beyond 128 brings negligible accuracy gain.

In other words, adopting an appropriate batch size leads to faster

model convergence and fewer selected clients.

7.6 Comparison with Federated Distillation
FLwith knowledge distillation accommodates heterogeneousmodel

structures among clients and thus also allows training heteroge-

neous sub-models over different clients [31, 42]. In fact, our method
is orthogonal to these methods.We can utilize FedDSE to extract sub-
models and then adopt federated distillation to aggregate all sub-

models. To show this, we also compare our method with FedDF [31]

on EMNIST, as shown in Figure 5(d). It can be observed that combin-

ing with federated distillation can further improve the performance

of FedDSE. Besides, our method combined with federated distilla-

tion outperforms the baseline.

7.7 Impact of Temperature
In practice, we can also choose the temperature adaptively to

achieve both benefits of activation-based selection and evenly-

trained selection. To show this, we also conduct some experiments

to compare FedDSE with hard-TopK and with soft-TopK, as shown

in Table 2 on EMNIST. Homo. (1⇑4) denotes that all clients are
homogeneous and can only train 1⇑4 of the full model, and Het-

erogeneous capability adopts the same setting as Table 1. It can

be observed from the table that 𝑇 = 0 and 𝑇 = 1 perform better

separately in different scenarios. Generally, higher temperature is

more applicable to the settings where the capability of clients are

homogeneous and vice versa. It is also worthwhile to note that our

method always outperforms SOTA baseline, i.e., FedRolex.

Table 2: Impact of different Temperature.

Capacity Method

Data heterogeneity

High Low Homogeneity

Homo. (1/4)

FedRolex 93.35 97.29 97.04

FedDSE (T=0) 81.25 89.74 88.05

FedDSE (T=1) 96.59 98.21 97.83

Homo. (1/2)

FedRolex 97.76 98.52 98.74

FedDSE (T=0) 91.51 96.53 95.24

FedDSE (T=1) 98.45 99.16 99.09

Heterogeneous

FedRolex 91.41 98.61 98.67

FedDSE (T=0) 95.34 98.65 98.69
FedDSE (T=1) 94.60 97.86 98.15

8 CONCLUSION
This paper focuses on sub-model extraction in federated learning.

We have observed that clients tend to activate distinct neurons of

the model due to statistical heterogeneity. This may lead to a com-

petition problem for neurons in the sub-model when extracted inap-

propriately. To address this challenge, we propose a new sub-model

extraction method for FL called FedDSE that exploits the activation

distribution properties of neural networks and edge devices. Our

method selects neurons with the largest activation value, adaptively

designating them to different clients. We prove the convergence of

our method theoretically and demonstrate its effectiveness through

experimental results which outperform state-of-the-art techniques.

However, our method requires downloading the entire model

which may increase communication costs. Furthermore, the lo-

cal sub-model extraction process incurs extra computational costs

despite being only an inference process. In addition to memory

efficiency, we aim to further improve the efficiency in terms of

communication and computation in future work.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

FedDSE: Distribution-aware Sub-model Extraction for Federated Learning over Resource-constrained Devices Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Maxwell Mbabilla Aladago and Lorenzo Torresani. [n. d.]. Slot Machines:

Discovering Winning Combinations of Random Weights in Neural Networks.

InProceedings of the 38th International Conference onMachine Learning, ICML

2021, 18-24 July 2021, Virtual Event. 163–174.

[2] Samiul Alam, Luyang Liu, Ming Yan, and Mi Zhang. 2022. FedRolex:

Model-Heterogeneous Federated Learning with Rolling Sub-Model Extraction.

InAdvances in Neural Information Processing Systems 35: Annual Conference

on Neural Information Processing Systems.

[3] Sameer Bibikar, Haris Vikalo, Zhangyang Wang, and Xiaohan Chen. [n. d.].

Federated Dynamic Sparse Training: Computing Less, Communicating Less,

Yet Learning Better. InThirty-Sixth AAAI Conference on Artificial Intelligence,

AAAI 2022, Thirty-Fourth Conference on Innovative Applications of Artificial

Intelligence, IAAI 2022, The Twelveth Symposium on Educational Advances in

Artificial Intelligence, EAAI 2022 Virtual Event, February 22 - March 1, 2022.

6080–6088.

[4] Han Cai, Chuang Gan, Ligeng Zhu, and Song Han. [n. d.]. TinyTL: Reduce

Memory, Not Parameters for Efficient On-Device Learning. InAdvances in Neural

Information Processing Systems 33: Annual Conference on Neural Information

Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual.

[5] Han Cai, Chuang Gan, Ligeng Zhu, and Song Han. 2020. TinyTL: Reduce Mem-

ory, Not Parameters for Efficient On-Device Learning. InNeural Information

Processing Systems.

[6] Sebastian Caldas, Jakub Konečný, H. Brendan McMahan, and Ameet Talwalkar.

2018. Expanding the Reach of Federated Learning by Reducing Client Resource

Requirements. CoRR abs/1812.07210 (2018).

[7] Sebastian Caldas, Jakub Konečny, H Brendan McMahan, and Ameet Talwalkar.

2018. Expanding the reach of federated learning by reducing client resource

requirements. arXiv preprint arXiv:1812.07210 (2018).

[8] Timothy J. Castiglia, Anirban Das, Shiqiang Wang, and Stacy Patterson. [n. d.].

Compressed-VFL: Communication-Efficient Learning with Vertically Partitioned

Data. InInternational Conference on Machine Learning, ICML 2022, 17-23 July

2022, Baltimore, Maryland, USA. 2738–2766.

[9] Enmao Diao, Jie Ding, and Vahid Tarokh. [n. d.]. HeteroFL: Computation

and Communication Efficient Federated Learning for Heterogeneous Clients.

In9th International Conference on Learning Representations, ICLR 2021, Virtual

Event, Austria, May 3-7, 2021.

[10] Enmao Diao, Jie Ding, and Vahid Tarokh. 2020. HeteroFL: Computation and

communication efficient federated learning for heterogeneous clients. arXiv

preprint arXiv:2010.01264 (2020).

[11] Yucheng Ding, Chaoyue Niu, Fan Wu, Shaojie Tang, Chengfei Lyu, yanghe feng,

and Guihai Chen. 2022. Federated Submodel Optimization for Hot and Cold

Data Features. InThe 36th Annual Conference onNeural Information Processing

Systems, NeurIPS.

[12] Canh T. Dinh, Nguyen H. Tran, and Tuan Dung Nguyen. 2020. Personalized Fed-

erated Learning with Moreau Envelopes. InProceedings of Advances in Neural

Information Processing Systems 33: Annual Conference on Neural Information

Processing Systems, NeurIPS.

[13] Jonathan Frankle and Michael Carbin. [n. d.]. The Lottery Ticket Hypothesis:

Finding Sparse, Trainable Neural Networks. In7th International Conference on

Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.

[14] Graham Gobieski, Brandon Lucia, and Nathan Beckmann. [n. d.]. Intelligence

Beyond the Edge: Inference on Intermittent Embedded Systems. InProceedings

of the Twenty-Fourth International Conference on Architectural Support for

Programming Languages and Operating Systems, ASPLOS 2019, Providence, RI,

USA, April 13-17, 2019. 199–213.

[15] Song Han, Jeff Pool, John Tran, and William J. Dally. 2015. Learning both

Weights and Connections for Efficient Neural Network. InAdvances in Neural

Information Processing Systems 28: Annual Conference on Neural Information

Processing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada.

1135–1143.

[16] Samuel Horváth, Stefanos Laskaridis, Mário Almeida, Ilias Leontiadis, Stylianos I.

Venieris, and Nicholas D. Lane. [n. d.]. FjORD: Fair and Accurate Federated Learn-

ing under heterogeneous targets with Ordered Dropout. InAdvances in Neural

Information Processing Systems 34: Annual Conference on Neural Information

Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual. 12876–

12889.

[17] DONG-HYUN Hwang. 2017. In-datacenter performance analysis of a ten-

sor processing unit. 2017 ACM/IEEE 44th Annual International Symposium on

Computer Architecture (ISCA) (2017), 1–12.

[18] Berivan Isik, Francesco Pase, Deniz Gündüz, Tsachy Weissman, and Michele

Zorzi. [n. d.]. Sparse Random Networks for Communication-Efficient Federated

Learning. 11th International Conference on Learning Representations, ICLR

2023 ([n. d.]).

[19] Shaoxiong Ji, Wenqi Jiang, Anwar Walid, and Xue Li. 2022. Dynamic Sampling

and Selective Masking for Communication-Efficient Federated Learning. IEEE

Intell. Syst. 37, 2 (2022), 27–34.

[20] Neel Kamal and Prasun Ghosal. 2018. Three Tier Architecture for IoT Driven

Health Monitoring System Using Raspberry Pi. InIEEE International Symposium

on Smart Electronic Systems, iSES 2018 (Formerly iNiS), Hyderabad, India,

December 17-19, 2018. 167–170.

[21] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian

Stich, and Ananda Theertha Suresh. 2020. SCAFFOLD: Stochastic controlled

averaging for federated learning. InProceedings of International Conference on

Machine Learning, ICML. 5132–5143.

[22] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J. Reddi, Se-

bastian U. Stich, and Ananda Theertha Suresh. [n. d.]. SCAFFOLD: Stochas-

tic Controlled Averaging for Federated Learning. InProceedings of the 37th

International Conference on Machine Learning, ICML, 13-18 July 2020, Virtual

Event. 5132–5143.

[23] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learningmultiple layers of features

from tiny images. (2009).

[24] Yann LeCun. 1998. The MNIST database of handwritten digits. http://yann. lecun.

com/exdb/mnist/ (1998).

[25] Seulki Lee, Bashima Islam, Yubo Luo, and Shahriar Nirjon. 2019. Intermittent

Learning: On-Device Machine Learning on Intermittently Powered System. Proc.

ACM Interact. Mob. Wearable Ubiquitous Technol. 3, 4 (2019), 141:1–141:30.

[26] Ang Li, Jingwei Sun, Binghui Wang, Lin Duan, Sicheng Li, Yiran Chen, and Hai

Li. 2020. LotteryFL: Personalized and Communication-Efficient Federated Learn-

ing with Lottery Ticket Hypothesis on Non-IID Datasets. CoRR abs/2008.03371

(2020).

[27] Ang Li, Jingwei Sun, Xiao Zeng, Mi Zhang, Hai Li, and Yiran Chen. [n. d.]. Fed-

Mask: Joint Computation and Communication-Efficient Personalized Federated

Learning via Heterogeneous Masking. InSenSys ’21: The 19th ACM Conference

on Embedded Networked Sensor Systems, Coimbra, Portugal, November 15 - 17,

2021. 42–55.

[28] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar,

and Virginia Smith. 2020. Federated Optimization in Heterogeneous Networks.

InProceedings of Machine Learning and Systems, MLSys.

[29] Tian Li, Maziar Sanjabi, Ahmad Beirami, and Virginia Smith. 2020. Fair Resource

Allocation in Federated Learning. InProceedings of 8th International Conference

on Learning Representations, ICLR.

[30] Fangshuo Liao and Anastasios Kyrillidis. [n. d.]. On the Convergence of Shallow

Neural Network Training with RandomlyMasked Neurons. CoRR abs/2112.02668

([n. d.]).

[31] Tao Lin, Lingjing Kong, Sebastian U. Stich, and Martin Jaggi. 2020. Ensemble

Distillation for Robust Model Fusion in Federated Learning. InProceedings of

Advances in Neural Information Processing Systems 33: Annual Conference on

Neural Information Processing Systems, NeurIPS.

[32] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and

Blaise Agüera y Arcas. 2017. Communication-Efficient Learning of Deep

Networks from Decentralized Data. InProceedings of the 20th International

Conference on Artificial Intelligence and Statistics, AISTATS.

[33] Mehryar Mohri, Gary Sivek, and Ananda Theertha Suresh. 2019. Agnostic feder-

ated learning. InProceedings of International Conference on Machine Learning,

ICML. 4615–4625.

[34] Adam Paszke, SamGross, FranciscoMassa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.

Pytorch: An imperative style, high-performance deep learning library. Advances

in neural information processing systems 32 (2019).

[35] Ankit Pensia, Shashank Rajput, Alliot Nagle, Harit Vishwakarma, and Dim-

itris S. Papailiopoulos. [n. d.]. Optimal Lottery Tickets via Subset Sum: Loga-

rithmic Over-Parameterization is Sufficient. InAdvances in Neural Information

Processing Systems 33: Annual Conference on Neural Information Processing

Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual.

[36] Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kembhavi, Ali Farhadi, and

Mohammad Rastegari. [n. d.]. What’s Hidden in a Randomly Weighted Neu-

ral Network?. In2020 IEEE/CVF Conference on Computer Vision and Pattern

Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020. 11890–11899.

[37] Sejin Seo, Seung-Woo Ko, Jihong Park, Seong-Lyun Kim, and Mehdi Bennis.

[n. d.]. Communication-Efficient and Personalized Federated Lottery Ticket

Learning. In22nd IEEE International Workshop on Signal Processing Advances

in Wireless Communications, SPAWC 2021, Lucca, Italy, September 27-30, 2021.

581–585.

[38] Muhammad Shafiq and Zhaoquan Gu. 2022. Deep Residual Learning for Image

Recognition: A Survey. Applied Sciences 12, 18 (2022). https://doi.org/10.3390/

app12188972

[39] Yue Tan, Guodong Long, LU LIU, Tianyi Zhou, Qinghua Lu, Jing Jiang, and

Chengqi Zhang. 2022. FedProto: Federated Prototype Learning across Hetero-

geneous Clients. Proceedings of the AAAI Conference on Artificial Intelligence

36, 8 (Jun. 2022), 8432–8440. https://doi.org/10.1609/aaai.v36i8.20819

[40] Xueyang Tang, Song Guo, and Jingcai Guo. [n. d.]. Personalized Federated

Learning with Contextualized Generalization. InProceedings of the Thirty-First

International Joint Conference on Artificial Intelligence, IJCAI 2022, Vienna,

Austria, 23-29 July.

9

https://doi.org/10.3390/app12188972
https://doi.org/10.3390/app12188972
https://doi.org/10.1609/aaai.v36i8.20819

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon. Submission Id: 566

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[41] Anish K. Vallapuram, Pengyuan Zhou, Young D. Kwon, Lik Hang Lee, Hengwei

Xu, and Pan Hui. 2022. HideNseek: Federated Lottery Ticket via Server-side

Pruning and Sign Supermask. CoRR abs/2206.04385 (2022).

[42] Haozhao Wang, Yichen Li, Wenchao Xu, Ruixuan Li, Yufeng Zhan, and Zhi-

gang Zeng. [n. d.]. DaFKD: Domain-aware Federated Knowledge Distillation.

InIEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR

2023, Vancouver, BC, Canada, June 17-24, 2023. 20412–20421.

[43] Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H. Vincent Poor. [n. d.].

Tackling the Objective Inconsistency Problem in Heterogeneous Federated Op-

timization. InAdvances in Neural Information Processing Systems 33, NeurIPS,

December 6-12, 2020, virtual.

[44] An Xu, Wenqi Li, Pengfei Guo, Dong Yang, Holger Roth, Ali Hatamizadeh, Can

Zhao, Daguang Xu, Heng Huang, and Ziyue Xu. [n. d.]. Closing the General-

ization Gap of Cross-silo Federated Medical Image Segmentation. InIEEE/CVF

Conference on Computer Vision and Pattern Recognition, CVPR 2022, New

Orleans, LA, USA, June 18-24, 2022. 20834–20843.

[45] Hao Yu, Sen Yang, and Shenghuo Zhu. [n. d.]. Parallel Restarted SGD with

Faster Convergence and Less Communication: Demystifying Why Model Av-

eraging Works for Deep Learning. InThe Thirty-Third AAAI Conference on

Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of

Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on

Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii,

USA, January 27 - February 1, 2019. 5693–5700.

[46] Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosinski. [n. d.]. Deconstruct-

ing Lottery Tickets: Zeros, Signs, and the Supermask. InAdvances in Neural

Information Processing Systems 32: Annual Conference on Neural Information

Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,

Canada. 3592–3602.

[47] Zhuangdi Zhu, Junyuan Hong, and Jiayu Zhou. [n. d.]. Data-Free Knowledge

Distillation for Heterogeneous Federated Learning. InProceedings of the 38th

International Conference on Machine Learning, ICML 2021, 18-24 July 2021,

Virtual Event. 12878–12889.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

FedDSE: Distribution-aware Sub-model Extraction for Federated Learning over Resource-constrained Devices Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

A MORE DETAILS ABOUT THE DESIGN OF MOTIVATION AND METHOD
A.1 Investigation on Discrepancy of Activation Distribution
To investigate the principle behind the discrepancy of activation distribution among clients, we conduct the following experiment on a

three-layer MLP with the MNIST dataset. The results are shown in Figure 6. There are a total of 5 clients and each client is allocated with

2 classes. The activation values outputted by the second layer over the datasets of all clients are illustrated together to demonstrate the

difference among clients. Each client is denoted by a distinct color. It can be observed that the differences in data distribution can lead to

disparities in the distribution of activation values.

The reason for activation reflecting data distribution is that activations between classes can be distinctly differentiated. The inference of

neural networks is to progressively increase the linear separability of activation between classes from shallow to deep layers such that the

last fully-connected classification layer can distinguish them. Hence, the activation can reflect its corresponding class and different classes

also correspond to different activation. In FL, clients are usually equipped with various distributions of classes, and thus the activation

distributions of different clients also differ from each other.

A.2 More details about motivation

1.0 0.5 0.0 0.5 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Activation Distributions of Layer-2

Client 0
Client 1
Client 2
Client 3
Client 4

Figure 6: Illustration of activation dis-
tribution of different clients.

In the main text, we have shown that different clients (client 1 and client 2) with different

data distributions tend to activate different neurons. For the comprehensiveness of this

conclusion, we present the comparison results of all clients, as shown in Figure 7 and 8.

Obviously, all client pairs will activate different neurons.

A.3 More details about the design of method
The goal of FedDSE downloading the entire global model is to utilize the local dataset to

identify neurons with large activation. In fact, many recent data-free methods have been

proposed, which makes it unnecessary to rely on the real local dataset. Like [47], the server

can train a generator based on the local model uploaded by each client. Then, the server

utilizes the generator to produce pseudo-data samples which follow the same distribution

as the local dataset. Based on these pseudo samples, the server can extract neurons from

the global like FedDSE. One concern may be that the samples produced by the generator

may cause privacy leakage which recovers the original samples. In fact, the recovery level

heavily relies on the training strategies of the generator. The server can simply adopt the

naive training method and learn the distribution instead of the original data samples. Besides, the generator can also be trained to generate

intermediate feature maps instead of the original data samples to protect privacy.

B PROOFS OF THEORIES OVER THE TWO-LAYER NEURAL NETWORKS
G

en
er

at
o
r

z

Noise

…

…

Global Model

Local Sub-model
Pseudo Data

Figure 9: Server extracts sub-models
based on the pseudo data.

To verify our motivation, we seek to first show that the classification accuracy is strongly

related to the activation magnitude of neurons. Then, we show that the activation magnitude

of some neurons of one client can be reduced by another client with different distributions.

We consider a two-layer neural network with the popular ReLU as the activation function

and there are𝑚 neurons in the hidden layer. The neural network is trained with a basic cross-

entropy loss function.Without losing generality, we mainly consider the binary classification

task.

We denote the parameters of the second layer as w2 and the parameters of class 𝑐

are w2,𝑐 . Similarly, we denote w1,𝑖 as the first-layer parameters corresponding to the 𝑖-th

hidden neuron, and𝑤1,𝑖, 𝑗 as a first-layer parameter connected between the input neuron

𝑗 and hidden neuron 𝑖 . Besides, the activation of the 𝑖-th hidden neuron is denoted as

ℎ
𝑘
𝑖 = 𝜎(w1,𝑖x𝑘) with the input sample as x𝑘 with extend dimension 1 to incorporate the

bias, and h𝑘 = (︀ℎ1

𝑖 , ℎ
2

𝑖 , . . . , ℎ
𝑚
𝑖 ⌋︀ as the activation vector outputted by the hidden layer.

To optimize the parameters, the neural network will first compute the probability for each class 𝑐 and sample x𝑘 :

𝑝
𝑘
𝑐 =

𝑒
w2,𝑐h𝑘

∑𝐶𝑠=1
𝑒w2,𝑠h𝑘

, (5)

and the cross-entropy loss is:

𝐿𝑘 = −
𝐶

∑
𝑐=1

𝐼(𝑦𝑘 = 𝑐)log 𝑝𝑘𝑐 , (6)

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon. Submission Id: 566

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

0 10 20 30 40 50
Neuron

 (a)

0.0

0.5

1.0
Av

er
ag

e
Ac

tiv
at

io
n

Va
lu

e Layer 1
Client 0
Client 1

0 5 10 15 20
Neuron

 (b)

0

1

2

3
Layer 2

Client 0
Client 1

1 3 5 7 9
Neuron

 (c)

2.5

0.0

2.5

5.0

Layer 3
Client 0
Client 1

0 10 20 30 40 50
Neuron

 (a)

0.0

0.5

1.0

Av
er

ag
e

Ac
tiv

at
io

n
Va

lu
e Layer 1

Client 0
Client 2

0 5 10 15 20
Neuron

 (b)

0

1

2

3
Layer 2

Client 0
Client 2

1 3 5 7 9
Neuron

 (c)

2.5

0.0

2.5

5.0

Layer 3
Client 0
Client 2

0 10 20 30 40 50
Neuron

 (a)

0.0

0.5

1.0

Av
er

ag
e

Ac
tiv

at
io

n
Va

lu
e Layer 1

Client 0
Client 3

0 5 10 15 20
Neuron

 (b)

0

1

2

3
Layer 2

Client 0
Client 3

1 3 5 7 9
Neuron

 (c)

2.5

0.0

2.5

5.0

Layer 3
Client 0
Client 3

0 10 20 30 40 50
Neuron

 (a)

0.0

0.5

1.0

Av
er

ag
e

Ac
tiv

at
io

n
Va

lu
e Layer 1

Client 0
Client 4

0 5 10 15 20
Neuron

 (b)

0

1

2

3
Layer 2

Client 0
Client 4

1 3 5 7 9
Neuron

 (c)

2.5

0.0

2.5

5.0

Layer 3
Client 0
Client 4

0 10 20 30 40 50
Neuron

 (a)

0.0

0.5

1.0

Av
er

ag
e

Ac
tiv

at
io

n
Va

lu
e Layer 1

Client 1
Client 2

0 5 10 15 20
Neuron

 (b)

0

1

2

3
Layer 2

Client 1
Client 2

1 3 5 7 9
Neuron

 (c)

2.5

0.0

2.5

5.0

Layer 3
Client 1
Client 2

Figure 7: Comparison of activation distributions of a 3-layer MLP on MNIST. (a-c) Activations of two clients on layer-1, 2 and 3.

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

FedDSE: Distribution-aware Sub-model Extraction for Federated Learning over Resource-constrained Devices Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

0 10 20 30 40 50
Neuron

 (a)

0.0

0.5

1.0
Av

er
ag

e
Ac

tiv
at

io
n

Va
lu

e Layer 1
Client 1
Client 3

0 5 10 15 20
Neuron

 (b)

0

1

2

3
Layer 2

Client 1
Client 3

1 3 5 7 9
Neuron

 (c)

2.5

0.0

2.5

5.0

Layer 3
Client 1
Client 3

0 10 20 30 40 50
Neuron

 (a)

0.0

0.5

1.0

Av
er

ag
e

Ac
tiv

at
io

n
Va

lu
e Layer 1

Client 1
Client 4

0 5 10 15 20
Neuron

 (b)

0

1

2

3
Layer 2

Client 1
Client 4

1 3 5 7 9
Neuron

 (c)

2.5

0.0

2.5

5.0

Layer 3
Client 1
Client 4

0 10 20 30 40 50
Neuron

 (a)

0.0

0.5

1.0

Av
er

ag
e

Ac
tiv

at
io

n
Va

lu
e Layer 1

Client 2
Client 3

0 5 10 15 20
Neuron

 (b)

0

1

2

3
Layer 2

Client 2
Client 3

1 3 5 7 9
Neuron

 (c)

2.5

0.0

2.5

5.0

Layer 3
Client 2
Client 3

0 10 20 30 40 50
Neuron

 (a)

0.0

0.5

1.0

Av
er

ag
e

Ac
tiv

at
io

n
Va

lu
e Layer 1

Client 2
Client 4

0 5 10 15 20
Neuron

 (b)

0

1

2

3
Layer 2

Client 2
Client 4

1 3 5 7 9
Neuron

 (c)

2.5

0.0

2.5

5.0

Layer 3
Client 2
Client 4

0 10 20 30 40 50
Neuron

 (a)

0.0

0.5

1.0

Av
er

ag
e

Ac
tiv

at
io

n
Va

lu
e Layer 1

Client 3
Client 4

0 5 10 15 20
Neuron

 (b)

0

1

2

3
Layer 2

Client 3
Client 4

1 3 5 7 9
Neuron

 (c)

2.5

0.0

2.5

5.0

Layer 3
Client 3
Client 4

Figure 8: Comparison of activation distributions of a 3-layer MLP on MNIST. (a-c) Activations of two clients on layer-1, 2 and 3.

13

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon. Submission Id: 566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

where 𝐼(⋅) denotes indication function. The gradient of w𝑘𝑐 is:

𝑔(w𝑘
2,𝑐) = −(𝐼(𝑦𝑘 = 𝑐) − 𝑝𝑘𝑐)h𝑘 . (7)

According to the process of backward propagation, the gradient 𝑔(w𝑘
1,𝑖) of the parameter corresponding to the 𝑖-th hidden neuron is:

𝑔(w𝑘
1,𝑖) = −(︀

𝐶

∑
𝑐=1

(𝐼(𝑦𝑘 = 𝑐) − 𝑝
𝑘
𝑐)𝑤2,𝑐,𝑖⌋︀x𝑘

= −(1 − 𝑝𝑘𝑐)𝑤2,𝑐,𝑖x
𝑘 +

𝐶

∑
𝑠≠𝑐,𝑠=1

𝑝
𝑘
𝑠𝑤2,𝑠,𝑖x

𝑘
(8)

Next, we show that the activation magnitude of some neurons of one client can be reduced by another client with different distributions.

THEOREM 1. Consider a two-layer neural network employing the ReLU activation function and being trained with a cross-entropy loss. Let
D𝑛1

comprise samples belonging to class 𝑠 , and D𝑛2
consist of samples from class 𝑐 , representing the datasets of clients 𝑛1 and 𝑛2 respectively.

Let ℎ𝑖(D𝑛1
) = ∑𝐷𝑗=1

ReLU(w𝑇𝑖 x𝑗) represent the sum of activations of the 𝑖-th selected hidden neuron across dataset D𝑛1
, with 𝐷 denoting the

dataset size. Subsequently, training the sub-model ŵ on dataset D𝑛2
and denoting 𝑝𝑘𝑠 as the probability score of sample x𝑘 ∈ D𝑛2

over the trained
sub-model, with a learning rate 𝜂 > 0, yields the following observations:
●When the dataset D𝑛1

of client 𝑛1 is homogeneous to the local training dataset D𝑛2
of client 𝑛2, i.e.,∑x𝑘∈D𝑛

2

𝑝
𝑘
𝑠 (x𝑘)𝑇 x𝑗 ≥ 0 for each sample

x𝑗 ∈ D𝑛1
, the activation sum ℎ𝑖(D𝑛1

) increases, where the augmentation can be as high as 𝜂∑x𝑗 ∈D𝑛
1

∑x𝑘∈D𝑛
2

𝑝
𝑘
𝑠 (𝑤2,𝑐,𝑖 −𝑤2,𝑠,𝑖)(x𝑘)𝑇 x𝑗 .

● Conversely, when the dataset D𝑛2
of client 𝑛1 is heterogeneous to the local training dataset D𝑛2

of client 𝑛2, i.e.,∑x𝑘∈D𝑛
2

𝑝
𝑘
𝑠 (x𝑘)𝑇 x𝑗 ≤ 0 for

each sample x𝑗 ∈ D𝑛1
, the activation sumℎ𝑖(D𝑛1

) decreases, where the reduction isMin(−𝜂∑x𝑗 ∈D𝑛
1

∑x𝑘∈D𝑛
2

𝑝
𝑘
𝑠 (𝑤2,𝑐,𝑖−𝑤2,𝑠,𝑖)(x𝑘)𝑇 x𝑗 , ℎ𝑖(D𝑛1

)).

Proof. To investigate the change of activation values over the previous client 𝑛1 and current client 𝑛2, we start with the optimization of

the last-layer classifier parameters. Specifically, we consider the current client contains the samples of class 𝑐 whereas the previous client

only contains the samples of class 𝑠 . After neuron selection, we denote 𝑁𝑖 the set of selected neurons for each client 𝑖 and denote
ˆh as the

activation vector of the hidden layer in sub-model ŵ. The gradient of parameters corresponding to the class 𝑐 and class 𝑠 respectively for

each sample x𝑘 with the label 𝑦
𝑘 = 𝑐 is:

∇𝐿𝑘
∇ŵ𝑘

2,𝑐

= −(1 − 𝑝𝑘𝑐)ˆh𝑘 = −(1 − 𝑒
ŵ2,𝑐

ˆh𝑘

∑𝐶𝑖=1
𝑒ŵ2,𝑖

ˆh𝑘
)ˆh𝑘 ,

∇𝐿𝑘
∇ŵ𝑘

2,𝑠

= 𝑝𝑘𝑠 ˆh𝑘 = 𝑒
ŵ2,𝑠

ˆh𝑘

∑𝐶𝑖=1
𝑒ŵ2,𝑖

ˆh𝑘
ˆh𝑘 . (9)

The updating formula of the two parameters is:

ŵ𝑘
2,𝑐 = ŵ𝑘2,𝑐 + 𝜂(1 − 𝑝𝑘𝑐)ˆh𝑘 , ŵ𝑘

2,𝑠 = ŵ𝑘2,𝑠 − 𝜂𝑝𝑘𝑠 ˆh𝑘 . (10)

Since the activation value from the ReLU function is always positive, i.e., h≥0, we can intuitively find that the parameters ŵ𝑘
2,𝑐 corresponding

to the local class 𝑐 always increase while the parameters ŵ𝑘
2,𝑠 corresponding to the class 𝑠 of previous client always decreases. Further, we

can derive the final converged parameter by solving the following equation to find the saddle points:

𝜕𝐿𝑘

𝜕ŵ𝑘
2,𝑐

= 0,
𝜕𝐿𝑘

𝜕ŵ𝑘
2,𝑠

= 0, (11)

where the solution is:

ŵ𝑘
2,𝑐 →∞, ŵ𝑘

2,𝑐 → −∞. (12)

Hence, we can immediately derive that the local training process over all samples of local data will update the classifier parameters as

ŵ2,𝑐 →∞, ŵ2,𝑐 → −∞. (13)

Now, we investigate the update of parameters in the first layer. For each selected neuron 𝑖 ∈ 𝑁𝑛2
, the gradient of its correspond parameters

w𝑘
1,𝑖 for each sample x𝑘 with label 𝑦

𝑘 = 𝑐 is:

𝜕𝐿𝑘

𝜕w𝑘
1,𝑖

= −(︀
𝐶

∑
𝑐=1

(𝐼(𝑦𝑘 = 𝑐) − 𝑝
𝑘
𝑐)𝑤2,𝑠,𝑖⌋︀x𝑘

= −(1 − 𝑝𝑘𝑐)𝑤2,𝑐,𝑖x
𝑘 +

𝐶

∑
𝑠≠𝑐,𝑠=1

𝑝
𝑘
𝑠𝑤2,𝑠,𝑖x

𝑘

14

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

FedDSE: Distribution-aware Sub-model Extraction for Federated Learning over Resource-constrained Devices Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

= 𝑝𝑘𝑠 (−𝑤2,𝑐,𝑖 +𝑤2,𝑠,𝑖)x𝑘

(14)

where 𝐼(⋅) is an indication function. By applying the local training process over the local dataset D𝑛 , we have the updated formula of the

parameter w𝑘
1,𝑖 as:

w′
1,𝑖 = w1,𝑖 + 𝜂

𝐷

∑
𝑘=1

𝑝
𝑘
𝑠 (𝑤2,𝑐,𝑖 −𝑤2,𝑠,𝑖)x𝑘 , (15)

where 𝐷 is the number of samples in each client. Based on equation (13), we can get that𝑤2,𝑐,𝑖 −𝑤2,𝑠,𝑖 > 0 when the number of local training

epochs is sufficient. Now, we can obtain the activation average of this updated neuron 𝑖 over any dataset D:

ℎ
′
𝑖(D) = ∑

x𝑗 ∈D
ReLU(w′

1,𝑖x
𝑗)

=
𝐷

∑
𝑗=1

ReLU(w𝑇
1,𝑖x

𝑗 + 𝜂
𝐷

∑
𝑘=1

𝑝
𝑘
𝑠 (𝑤2,𝑐,𝑖 −𝑤2,𝑠,𝑖)(x𝑘)𝑇 x𝑗), (16)

When the dataset D is homogeneous to the local dataset D𝑛 , i.e., ∑x𝑘∈D𝑛 𝑝
𝑘
𝑠 (x𝑘)𝑇 x𝑗 ≥ 0 for any x𝑗 ∈ D, according to the convexity of

monotonicity of the ReLU function, we have

ℎ𝑖(D) =
𝐷

∑
𝑗=1

ReLU(w𝑇
1,𝑖x

𝑗) ≤ ℎ′𝑖(D)

=
𝐷

∑
𝑗=1

ReLU(w𝑇
1,𝑖x

𝑗 + 𝜂
𝐷

∑
𝑘=1

𝑝
𝑘
𝑠 (𝑤2,𝑐,𝑖 −𝑤2,𝑠,𝑖)(x𝑘)𝑇 x𝑗)

≤
𝐷

∑
𝑗=1

ReLU(w𝑇
1,𝑖x

𝑗) +
𝐷

∑
𝑗=1

ReLU(𝜂
𝐷

∑
𝑘=1

𝑝
𝑘
𝑠 (𝑤2,𝑐,𝑖 −𝑤2,𝑠,𝑖)(x𝑘)𝑇 x𝑗)

= ℎ𝑖(D) + 𝜂
𝐷

∑
𝑗=1

𝐷

∑
𝑘=1

𝑝
𝑘
𝑠 (𝑤2,𝑐,𝑖 −𝑤2,𝑠,𝑖)(x𝑘)𝑇 x𝑗 , (17)

where ℎ𝑖(D) represents the activation mean of the 𝑖-th neuron of the non-updated model ŵ over the dataset D. Based on this equation (17),

considering D = D𝑛 , we can immediately derive that the local training process increases the neuron activation over the local dataset, i.e.,

ℎ𝑖(D𝑛) ≤ ℎ′𝑖(D𝑛). The increased overall activation is 𝜂∑𝐷𝑗=1∑𝐷𝑘=1
𝑝
𝑘
𝑠 (𝑤2,𝑐,𝑖 −𝑤2,𝑠,𝑖)(x𝑘)𝑇 x𝑗 .

Similarly, when the dataset D is heterogeneous to the local dataset D𝑛 , i.e., ∑x𝑘∈D𝑛 𝑝
𝑘
𝑠 (x𝑘)𝑇 x𝑗 ≤ 0 for any x𝑗 ∈ D, according to the

convexity of monotonicity of the ReLU function, we have

ℎ
′
𝑖(D) =

𝐷

∑
𝑗=1

ReLU(w𝑇
1,𝑖x

𝑗 + 𝜂
𝐷

∑
𝑘=1

𝑝
𝑘
𝑠 (𝑤2,𝑐,𝑖 −𝑤2,𝑠,𝑖)(x𝑘)𝑇 x𝑗)

= Max(
𝐷

∑
𝑗=1

ReLU(w𝑇
1,𝑖x

𝑗) −
𝐷

∑
𝑗=1

ReLU(−𝜂
𝐷

∑
𝑘=1

𝑝
𝑘
𝑠 (𝑤2,𝑐,𝑖 −𝑤2,𝑠,𝑖)(x𝑘)𝑇 x𝑗), 0)

= Max(ℎ𝑖(D) + 𝜂
𝐷

∑
𝑗=1

𝐷

∑
𝑘=1

𝑝
𝑘
𝑠 (𝑤2,𝑐,𝑖 −𝑤2,𝑠,𝑖)(x𝑘)𝑇 x𝑗 , 0)

≤
𝐷

∑
𝑗=1

ReLU(w𝑇
1,𝑖x

𝑗)

= ℎ𝑖(D). (18)

Hence, the overall activation of each 𝑖-th selected neuron over the dataset D is reduced when the sub-model has been locally updated with

the local dataset D𝑛 , i.e., ℎ𝑖(D) ≥ ℎ′𝑖(D). The reduced overall activation is Min(−𝜂∑𝐷𝑗=1∑𝐷𝑘=1
𝑝
𝑘
𝑠 (𝑤2,𝑐,𝑖 −𝑤2,𝑠,𝑖)(x𝑘)𝑇 x𝑗 , ℎ𝑖(D)). The proof

is done. □

Proposition 2. Given a well-converged two-layer neural network with the ReLU activation function, high activation values have a large impact
on the probability score than low activation values. Specifically, for any sample x with label 𝑦 = 𝑐 , the ratio of impact over probability score 𝑝𝑐
between a high activation ℎ𝐻 and a low activation ℎ𝐿 is approximately 𝑒𝛼(ℎ

2

𝐻−ℎ
2

𝐿), where 𝛼 > 0 is a constant.
Proof : Based on [1] (Theorem 1), all sample features of each class 𝑐 collapse to their mean h𝑐 and the converged parameters w2,𝑐 of the

class 𝑐 have the same direction as the activation mean of its class, i.e., w2,𝑐 = 𝛼h𝑐 , where 𝛼 > 0 is a constant. Hence, the activation of a given

15

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon. Submission Id: 566

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

sample x with label 𝑦 = 𝑐 is approximately equivalent to the activation mean h ≈ h𝑐 . Accordingly, the impact of the high activation and low

activation can be obtained separately based on equation (5) as

Impact(𝑝𝑐 , ℎ𝐻) =
𝑒
w2,𝑐,𝐻ℎ𝐻

∑𝐶𝑠=1
𝑒w2,𝑠h

≈ 𝑒
𝛼ℎ

2

𝐻

∑𝐶𝑠=1
𝑒w2,𝑠h

, (19)

Impact(𝑝𝑐 , ℎ𝐿) =
𝑒
w2,𝑐,𝐿ℎ𝐿

∑𝐶𝑠=1
𝑒w2,𝑠h

≈ 𝑒
𝛼ℎ

2

𝐿

∑𝐶𝑠=1
𝑒w2,𝑠h

. (20)

Computing the ratio between the two impacts derives the proposition.

[1] Fang, Cong, et al. "Exploring deep neural networks via layer-peeled model: Minority collapse in imbalanced training." Proceedings of

the National Academy of Sciences 118.43 (2021): e2103091118.

Proposition 3. When training sub-models on clients with heterogeneous distributions relative to a specific client, the reduction in neuron
activation for a two-layer neural network, achieved through either random or sequential neuron selection strategies, is greater compared to that of
our distribution-aware selection method under the worst-case.

proof Based on Theorem 1, the activation magnitude of neurons over the dataset D𝑛 of some specific client 𝑛 will be reduced to 0 under

the worst-case when these neurons are allocated to another client with heterogeneous data distribution to this specific client. Since existing

strategies cannot avoid allocating the top neurons of some specific client to other clients with heterogeneous distributions, they will reduce

the activation of neurons with the highest magnitudes to 0. Denote the activation of 𝑖-th neuron over the specific client 𝑛 as ℎ
𝑛
𝑖 (D𝑛) and

the selected 𝑟 neurons by other clients with the highest magnitudes are numbered from 1 to 𝑟 . Then, the overall reduction in activation by

existing strategies is

Δℎ =
𝑟

∑
𝑖=1

ℎ
𝑛
𝑖 (D𝑛). (21)

Considering that our distribution-aware method avoids clients selecting the top neurons in the client 𝑛 when they have heterogeneous

distributions, we denote the selected neurons to be 𝑜
1
, . . . , 𝑜

𝑟
. Hence, the overall reduction in activation by our method is

Δℎ′ =
𝑟

∑
𝑖=1

ℎ
𝑛
𝑜𝑖 (D𝑛) (22)

Considering that the neurons numbered 1 to 𝑟 have the largest activation, i.e.,

ℎ
𝑛
𝑖 (D𝑛) ≤ ℎ𝑛𝑗 (D𝑛), for any1 ≤ 𝑖 ≤ 𝑟, 𝑟 + 1 ≤ 𝑗 ≤𝑚, (23)

we have

Δℎ =
𝑟

∑
𝑖=1

ℎ
𝑛
𝑖 (D𝑛) ≥

𝑟

∑
𝑖=1

ℎ
𝑛
𝑜𝑖 (D𝑛) = Δℎ

′
, (24)

which completes the proof.

Theorem 4. Given a two-layer converged neural network including𝑚 neurons with the ReLU activation function. The obtained probability
score 𝑝𝑠(D𝑛) over the dataset D𝑛 of some specific client 𝑛, after running on heterogeneous clients with sub-models extracted through either
random or sequential neuron selection strategies, is smaller than our distribution-aware selection method 𝑝′𝑠(D𝑛) under the worst-case, i.e.,
𝑝𝑠(D𝑛) ≤ 𝑝′𝑠(D𝑛).

Proof : We consider there are a total of𝑚 neurons in the hidden layer of the global neural network. We assume that neurons numbered 1

to 𝑟 are the neurons with the highest activation values on client 𝑛1 with the dataset D𝑛 comprising samples belonging to class 𝑠 . In the

following, we show that the probability score of the global model over client 𝑛1 will be reduced when the neurons are allocated without

considering their relationship to data distribution.

Under the worst case, on the 𝑡-th round, we consider the sub-models extracted by clients 𝑆𝑡 with heterogeneous distribution to the client

𝑛1 contain neurons numbered 1 to 𝑟 while the client 𝑛 does not participate in this round. Based on Theorem 1, the activation values of the

local sub-models obtained by these clients are 0 when there are sufficient local training iterations. By denoting the local parameters for the

𝑖-th neuron in the selected client 𝑛 𝑗 as w
𝑛 𝑗

1,𝑖 , then we have

ℎ
𝑛 𝑗

𝑖 (D𝑛) = ∑
x𝑘∈D𝑛

ReLU((w𝑛 𝑗

1,𝑖)
𝑇 x𝑘) = 0, (25)

for each client 𝑛 𝑗 ∈ 𝑆𝑡 that contains the 𝑖-th selected neuron. After that, the parameters of each neuron in different clients are aggregated

correspondingly in a FedAvg manner, and the global parameters of the 𝑖-th neuron arew1,𝑖 = 1

⋃︀𝑆𝑡 ⋃︀ ∑𝑛 𝑗 ∈𝑆𝑡 w
𝑛 𝑗

1,𝑖 . Now, we can obtain the overall

activation value ℎ𝑖(D𝑛) of each 𝑖 neuron in 1 to 𝑟 of the global model on the dataset D𝑛 of the client 𝑛:

ℎ𝑖(D𝑛) = ∑
x𝑘∈D𝑛

ReLU(w𝑇
1,𝑖x

𝑘)

= ∑
x𝑘∈D𝑛

ReLU((1

⋃︀𝑆𝑡 ⋃︀
∑
𝑛 𝑗 ∈𝑆𝑡

w𝑛 𝑗

1,𝑖)
𝑇 x𝑘)

16

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

FedDSE: Distribution-aware Sub-model Extraction for Federated Learning over Resource-constrained Devices Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

= ∑
x𝑘∈D𝑛

ReLU(1

⋃︀𝑆𝑡 ⋃︀
∑
𝑛 𝑗 ∈𝑆𝑡

(w𝑛 𝑗

1,𝑖)
𝑇 x𝑘)

≤
(𝑎)

1

⋃︀𝑆𝑡 ⋃︀
∑

x𝑘∈D𝑛
∑
𝑛 𝑗 ∈𝑆𝑡

ReLU((w𝑛 𝑗

1,𝑖)
𝑇 x𝑘)

= 0, (26)

where the inequality (a) is due to the convexity of the ReLU function. Since the activation ℎ𝑖(D𝑛) ≤ 0, we have ℎ𝑖(D𝑛) = 0. As a consequence,

the activation of neurons numbered 1 to 𝑟 in the global model over some specific client 𝑛 will be significantly reduced with an inappropriate

selection strategy.

Since the classifier parameters𝑤2,𝑠,𝑖 connected the 𝑖-th hidden neuron and the class 𝑠 approach are not selected when 𝑟 + 1 ≤ 𝑖 ≤𝑚, their

value approaches the activation mean of samples with the class 𝑠 when the model converges based on Theorem 1 in [1]. Hence, we denote

𝑤2,𝑠,𝑖 = 𝛼𝑠ℎ𝑠𝑖 and𝑤2,𝑐,𝑖 = 𝛼𝑐ℎ𝑐𝑖 , for 𝑟 + 1 ≤ 𝑖 ≤𝑚, where 𝛼𝑠 > 0 and 𝛼𝑐 > 0 are constants. Then, the probability score 𝑝𝑠 of the global model

over the dataset D𝑛 becomes:

𝑝𝑠 = ∑
x𝑘∈D𝑛

𝑒
w2,𝑠h𝑘

∑𝐶𝑐=1
𝑒w2,𝑐h𝑘

= ∑
x𝑘∈D𝑛

𝑒∑
𝑟
𝑖=1

𝑤2,𝑠,𝑖 ⋅0+∑𝑚
𝑖=𝑟+1

𝑤2,𝑠,𝑖ℎ
𝑘
𝑖

𝑒∑
𝑟
𝑖=1

𝑤2,𝑠,𝑖 ⋅0+∑𝑚
𝑖=𝑟+1

𝑤2,𝑠,𝑖ℎ
𝑘
𝑖 + 𝑒∑𝑟

𝑖=1
𝑤2,𝑐,𝑖 ⋅0+∑𝑚

𝑖=𝑟+1
𝑤2,𝑐,𝑖ℎ

𝑘
𝑖

≈ 𝐷 𝑒
𝛼𝑠 ∑𝑚

𝑖=𝑟+1
(ℎ𝑠𝑖)

2

𝑒𝛼𝑠 ∑
𝑚
𝑖=𝑟+1

(ℎ𝑠
𝑖
)2 + 𝑒𝛼𝑐 ∑𝑚

𝑖=𝑟+1
ℎ𝑐
𝑖
ℎ𝑠
𝑖

≤ 𝐷 𝑒
𝛼𝑠 ∑𝑚

𝑖=𝑟+1
(ℎ𝑠𝑖)

2

𝑒𝛼𝑠 ∑
𝑚
𝑖=𝑟+1

(ℎ𝑠
𝑖
)2 + 𝑒𝛼𝑐(𝑚−𝑟)ℎ𝑐𝑚𝑖𝑛

ℎ𝑠
𝑚𝑖𝑛

, (27)

where ℎ
𝑠
𝑚𝑖𝑛 and ℎ

𝑐
𝑚𝑖𝑛 is the minimum activation among all neurons for class 𝑠 and 𝑐 respectively.

As our method selects neurons according to the distribution of each client, we contend that the neurons chosen by clients 𝑆𝑡 with

heterogeneous distributions are not the neurons numbered 1 to 𝑟 which are top neurons over the client 𝑛. We consider the neurons selected

by clients 𝑆𝑡 to be numbered 𝑛
1
to 𝑛

𝑟
. Similar to (27), we can derive the probability score 𝑝

′
𝑠 of the global model w over the the training

dataset D𝑛 is

𝑝
′
𝑠 ≈ 𝐷

𝑒
𝛼𝑠 ∑𝑚−𝑟

𝑖=1
(ℎ𝑠

𝑛𝑖
)2

𝑒
𝛼𝑠 ∑𝑚−𝑟

𝑖=1
(ℎ𝑠

𝑛𝑖
)2

+ 𝑒𝛼𝑐 ∑
𝑚−𝑟
𝑖=1

ℎ𝑐
𝑛𝑖
ℎ𝑠
𝑛𝑖

≤ 𝐷 𝑒
𝛼𝑠 ∑𝑚−𝑟

𝑖=1
(ℎ𝑠

𝑛𝑖
)2

𝑒
𝛼𝑠 ∑𝑚−𝑟

𝑖=1
(ℎ𝑠

𝑛𝑖
)2

+ 𝑒𝛼𝑐(𝑚−𝑟)ℎ𝑐𝑚𝑖𝑛
ℎ𝑠
𝑚𝑖𝑛

, (28)

Since ℎ
𝑠
𝑖 ≤ ℎ𝑠𝑗 for any 1 ≤ 𝑖 ≤ 𝑟 , 𝑟 + 1 ≤ 𝑗 ≤𝑚, we have 𝑒

𝛼𝑠 ∑𝑚
𝑖=𝑟+1

(ℎ𝑠𝑖)
2

≤ 𝑒𝛼𝑠 ∑
𝑚−𝑟
𝑖=1
(ℎ𝑠

𝑛𝑖
)2

. Hence, the upper bound of the probability score 𝑝𝑠 is

smaller than 𝑝
′
𝑠 , i.e.,

𝐷
𝑒
𝛼𝑠 ∑𝑚

𝑖=𝑟+1
(ℎ𝑠𝑖)

2

𝑒𝛼𝑠 ∑
𝑚
𝑖=𝑟+1

(ℎ𝑠
𝑖
)2 + 𝑒𝛼𝑐(𝑚−𝑟)ℎ𝑐𝑚𝑖𝑛

ℎ𝑠
𝑚𝑖𝑛

≤ 𝐷 𝑒
𝛼𝑠 ∑𝑚−𝑟

𝑖=1
(ℎ𝑠

𝑛𝑖
)2

𝑒
𝛼𝑠 ∑𝑚−𝑟

𝑖=1
(ℎ𝑠

𝑛𝑖
)2

+ 𝑒𝛼𝑐(𝑚−𝑟)ℎ𝑐𝑚𝑖𝑛
ℎ𝑠
𝑚𝑖𝑛

, (29)

demonstrating our method’s effectiveness.

C PROOFS OF CONVERGENCE THEORIES
C.1 General Lemmas
Without losing generality, we in this paper consider that the size of the local dataset in each client is the same and all clients are selected in

each round. For ease of analysis, we introduce the index 𝑘 where 𝑘 = 𝑡 ∗ 𝐸 + 𝑒 . According to Algorithm 1, we have the following basic update

formula:

w𝑛𝑘+1
= w𝑛𝑘 − 𝜂∇w𝑛

𝑘
𝑓𝑛(w𝑛𝑘). (30)

We consider the following auxiliary global model w̄𝑘+1
, which helps analyze the bound of local updates:

w̄𝑘+1
= w̄𝑘 − 𝜂

1

𝑁

𝑁

∑
𝑛=1

∇w𝑛
𝑘
𝑓𝑛(w𝑛𝑘) (31)

Obviously, w̄𝑘 = w𝑡 , when 𝑘 = 𝑡 ∗ 𝐸. Besides, We define ŵ𝑛𝑘 as the full model which fills the sub-model w𝑛𝑘 with the global parameters in the

latest global round. According to the updating formula, we have ŵ𝑛𝑡,𝑒 = w𝑡 for all local iteration 𝑒 , and 1

𝑁 ∑
𝑁
𝑛=1

ŵ𝑛𝑘 = w̄𝑘 for all 𝑘 .

17

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon. Submission Id: 566

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

Correspondingly, we also introduce an auxiliary full model which helps analyze the bound of the sub-model:

w̃𝑘+1
= w̃𝑘 − 𝜂

1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝑓𝑛(ŵ𝑛𝑘). (32)

Lemma 1’. Consider the gradient∇w⊙M 𝑓 (w⊙M) calculated from a sub-modelw⊙M and another gradient𝑄(∇w 𝑓 (w)) = ∇w(h𝑚)∇h𝑚 𝑓 (h𝑛)
computed from the entire model w but with the activation of neurons pruned by the sub-model set to zero, i.e., h𝑚 = h⊙m. For neural networks
that use the ReLU activation function, these two gradients are equivalent, meaning that ∇w⊙M 𝑓 (w⊙M) = 𝑄(∇w 𝑓 (w)).

Proof. We prove this lemma by showing that pruning neurons is equivalent to setting the activation of these neurons to be zero in both

the forward and backward process. Considering the 𝑝-th neuron in the (𝑙 − 1)-th layer is pruned, then the activation of each 𝑖-th neuron in

the 𝑙-th layer is

ℎ𝑙,𝑖 = 𝜎(
𝑚𝑙−1

∑
𝑗=1, 𝑗≠𝑝

𝑤𝑙,𝑖, 𝑗ℎ𝑙−1, 𝑗 + 𝑏𝑙,𝑖), (33)

which is equivalent to setting ℎ𝑙−1,𝑝 = 0.

We now prove that the gradient is equivalent based on the backward process of gradient computing. The parameters not connected to

pruned neurons are nothing related to their activation in the gradient computation process, which naturally remains the same. Considering

this, we mainly focus on the parameters connected to the pruned neurons. Since the gradients of these parameters connected to the pruned

neurons are zero, we can prove this conclusion by showing that the gradients of parameters connected to the neurons with zero activation

are also zero. Specifically, we divide the parameters connected to the neuron into two types, inputting parameters and outputting parameters

according to their relative position to the given neuron. Define the non-activated feature as

𝑎𝑙,𝑖 =
𝑚𝑙−1

∑
𝑗=1

𝑤𝑙,𝑖, 𝑗ℎ𝑙−1, 𝑗 + 𝑏𝑙,𝑖 (34)

and the error received back from the 𝑝-th neuron in 𝑙 + 1-th layer as 𝛿𝑙+1,𝑝 . The gradient ∇𝑤𝑙,𝑖,𝑗 𝑓 (w) of each outputting parameter for the

𝑗-th neuron in the (𝑙 − 1)-th layer is

∇𝑤𝑙,𝑖,𝑗 𝑓 (w) = ℎ𝑙−1, 𝑗∇𝑎𝑙,𝑖ℎ𝑙,𝑖(𝑎𝑙,𝑖)
𝑚𝑙+1

∑
𝑝=1

𝑤𝑙+1,𝑝,𝑖𝛿𝑙+1,𝑝 . (35)

Obviously, by setting the activation ℎ𝑙−1, 𝑗 to be zero, its outputting parameters also become zero, which equals to pruning the neuron. Since

∇𝑎𝑙−1, 𝑗ℎ𝑙−1, 𝑗(𝑎𝑙−1, 𝑗) = 0 holds for each neuron with the ReLU activation function, the gradients of its connected inputting parameters are

∇𝑤𝑙−1, 𝑗,𝑞 𝑓 (w) = ℎ𝑙−2,𝑞∇𝑎𝑙−1, 𝑗ℎ𝑙−1, 𝑗(𝑎𝑙−1, 𝑗)
𝑚𝑙

∑
𝑖=1

𝑤𝑙,𝑖, 𝑗𝛿𝑙,𝑖 = ℎ𝑙−2,𝑞 ⋅ 0 ⋅
𝑚𝑙

∑
𝑖=1

𝑤𝑙,𝑖, 𝑗𝛿𝑙,𝑖 = 0, (36)

which completes the proof. □

Lemma 1 The error of the gradient calculated by the sub-model is bounded by

E∏︁∇ŵ𝑛
𝑘
𝑓𝑛(ŵ𝑛𝑘) −∇w𝑛

𝑘
𝑓𝑛(w𝑛𝑘)∏︁

2

2
≤𝐺2

ℎ𝐻
2

𝐿

∑
𝑙=1

E ∑
𝑖∈𝑆𝑙,𝑘

∏︁e𝑙,𝑖,𝑘∏︁
2

2
+

𝐿

∑
𝑙=1

E ∑
𝑖∈𝑆𝑐

𝑙,𝑘

∏︁∇ŵ𝑛
𝑙,𝑖,𝑘

𝑓𝑛(ŵ𝑛𝑘)∏︁
2

2
, (37)

where 𝑆𝑙,𝜏 is the set of selected neurons in the 𝑙-th layer and 𝑆
𝑐
𝑙,𝜏 denotes the set of un-selected neurons. ŵ

𝑛
𝑙,𝑖,𝑘−1

represents the parameters connected
to the neuron 𝑖 .

Proof. : E∏︁∇ŵ𝑛
𝑘−1

𝑓𝑛(ŵ𝑛𝑘−1
)−∇w𝑛

𝑘−1

𝑓𝑛(w𝑛𝑘−1
)∏︁2

2
measures the distance between the gradient computed from the full model and from the

sub-model. To calculate this distance, we use Lemma ?? to transform the gradient that was computed from the sub-model into the gradient

of the entire model.

Specifically, according to the chain rule of backward, the gradient of the parameters of 𝑖-th neuron in 𝑙-th layer for the entire model ŵ𝑛𝑘−1

is ∇ŵ𝑛
𝑙,𝑖,𝑘−1

h𝑛𝑙,𝑖,𝑘−1
∇h𝑛

𝑙,𝑖,𝑘−1

𝑓𝑛(h𝑛𝑘−1
). Similarly, the gradient of the parameters connected to the 𝑖-th non-pruned neuron in the 𝑙-th layer of

the sub-model w𝑛𝑘−1
= ŵ𝑛𝑘−1

⊙M𝑛
𝑘−1

is ∇ŵ𝑛
𝑙,𝑖,𝑘−1

h𝑛𝑙,𝑖,𝑘−1
∇h𝑛

𝑙,𝑖,𝑘−1

𝑓𝑛(h𝑛𝑚,𝑘−1
) where h𝑚,𝑘−1

= h𝑘−1
⊙m𝑘−1

. We define error between them is

e𝑛𝑘−1
= h𝑛𝑚,𝑘−1

− h𝑛𝑘−1
. We use 𝑆𝑙,𝑘−1

to denote the set of selected neurons in the 𝑙-th layer and 𝑆
𝑐
𝑙,𝑘−1

to denote its complementary set in

the 𝑙-th layer, i.e., the set of unselected neurons. We utilize Taylor expansion to ∇h𝑛
𝑙,𝑖,𝑘−1

𝑓𝑛(h𝑛𝑚,𝑘−1
) around the full activation point h𝑛𝑘−1

,

obtaining:

∇h𝑛
𝑙,𝑖,𝑘−1

𝑓𝑛(h𝑛𝑚,𝑘−1
) = ∇h𝑛

𝑙,𝑖,𝑘−1

𝑓𝑛(h𝑛𝑘−1
) + 𝑅(e𝑛𝑘−1

)

= ∇h𝑛
𝑙,𝑖,𝑘−1

𝑓𝑛(h𝑛𝑘−1
) +∇2

h𝑛
𝑙,𝑖,𝑘−1

𝑓𝑛(h𝑛𝑘−1
)𝑇 e𝑙,𝑖,𝑘−1

+ . . . , (38)

18

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

FedDSE: Distribution-aware Sub-model Extraction for Federated Learning over Resource-constrained Devices Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

where 𝑅(e𝑛𝑙,𝑖,𝑘−1
) denotes the infinite sum of all terms from the second partial derivatives. Based on the Assumption 3 and basics of the

Taylor series, we obtain the approximation error:

∏︁𝑅(e𝑛𝑙,𝑖,𝑘−1
)∏︁2

2
≤ 𝐻2∏︁e𝑙,𝑖,𝑘−1

∏︁2

2
. (39)

Then, we have the following inequality:

E∏︁∇ŵ𝑛
𝑘−1

𝑓𝑛(ŵ𝑛𝑘−1
) −∇w𝑛

𝑘−1

𝑓𝑛(w𝑛𝑘−1
)∏︁2

2

=
𝐿

∑
𝑙=1

E ∑
𝑖∈𝑆𝑙,𝑘−1

∏︁∇ŵ𝑛
𝑙,𝑖,𝑘−1

h𝑛𝑙,𝑖,𝑘−1
∇h𝑛

𝑙,𝑖,𝑘−1

𝑓𝑛(h𝑛𝑘−1
) −∇ŵ𝑛

𝑙,𝑖,𝑘−1

h𝑛𝑙,𝑖,𝑘−1
∇h𝑛

𝑙,𝑖,𝑘−1

𝑓𝑛(h𝑛𝑚,𝑘−1
)∏︁2

2

+
𝐿

∑
𝑙=1

E ∑
𝑖∈𝑆𝑐

𝑙,𝑘−1

∏︁∇ŵ𝑛
𝑙,𝑖,𝑘−1

h𝑛𝑙,𝑖,𝑘−1
∇h𝑛

𝑙,𝑖,𝑘−1

𝑓𝑛(h𝑛𝑘−1
)∏︁2

2

=
𝐿

∑
𝑙=1

E ∑
𝑖∈𝑆𝑙,𝑘−1

∏︁∇ŵ𝑛
𝑙,𝑖,𝑘−1

h𝑛𝑙,𝑖,𝑘−1
∇h𝑛

𝑙,𝑖,𝑘−1

𝑓𝑛(h𝑛𝑘−1
) −∇ŵ𝑛

𝑙,𝑖,𝑘−1

h𝑛𝑙,𝑖,𝑘−1
(∇h𝑛

𝑙,𝑖,𝑘−1

𝑓𝑛(h𝑛𝑘−1
) + 𝑅(e𝑛𝑘−1

))∏︁2

2

+
𝐿

∑
𝑙=1

E ∑
𝑖∈𝑆𝑐

𝑙,𝑘

∏︁∇ŵ𝑛
𝑙,𝑖,𝑘

𝑓𝑛(ŵ𝑛𝑘)∏︁
2

2

=
𝐿

∑
𝑙=1

E ∑
𝑖∈𝑆𝑙,𝑘−1

∏︁∇ŵ𝑛
𝑙,𝑖,𝑘−1

h𝑛𝑙,𝑖,𝑘−1
𝑅(e𝑛𝑘−1

)∏︁2

2
+

𝐿

∑
𝑙=1

E ∑
𝑖∈𝑆𝑐

𝑙,𝑘

∏︁∇ŵ𝑛
𝑙,𝑖,𝑘

𝑓𝑛(ŵ𝑛𝑘)∏︁
2

2
,

≤
(𝑎)

𝐿

∑
𝑙=1

E ∑
𝑖∈𝑆𝑙,𝑘−1

𝐺
2

ℎ𝐻
2∏︁e𝑙,𝑖,𝑘−1

∏︁2

2
+

𝐿

∑
𝑙=1

E ∑
𝑖∈𝑆𝑐

𝑙,𝑘

∏︁∇ŵ𝑛
𝑙,𝑖,𝑘

𝑓𝑛(ŵ𝑛𝑘)∏︁
2

2
, (40)

where (𝑎) follows from Assumption 4. The proof is done. □

C.2 Proof of Theorem 5
Theorem 5. Considering 𝐹∗ be the global minima of the loss function, 𝛾 and 𝛼 are constants with 𝛾 > 0, 0 ≤ 𝛼 < 1, and the learning rate 0 < 𝜂 ≤ 1

𝐿𝑠
,

then for all neural networks with ReLU activation function, the expected average of the squared gradient norms of 𝐹 obtained by Algorithm 1
satisfies the following bound for all 𝐾 ∈ N:

𝐾

∑
𝑘=1

E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
≤ 2(𝐹(w1) − 𝐹∗)

𝜂
+ 2𝐿

2

𝑠𝜂
2

𝛼𝐺
2(1 + 𝛾)(1 + 𝛾)𝐾−1 − 1

𝛾2
+ 𝐾𝐿𝑠𝜂𝜎

2

2

𝑁

+ 4𝐿
2

𝑠𝜂
2(1 + 1

𝛾
)𝐺2

ℎ𝐻
2

𝐾

∑
𝑘=1

𝑘−1

∑
𝜏=1

(1 + 𝛾)𝑘−1−𝜏 𝐿

∑
𝑙=1

E ∑
𝑖∈𝑆𝑙,𝜏

∏︁e𝑙,𝑖,𝜏∏︁
2

2
+ 16𝐾𝐿

2

𝑠𝜂
4

𝐸
2

𝐺
2(1 + 1

𝛾
), (41)

where 𝑆𝑙,𝜏 is the set of selected neurons in the 𝑙-th layer.

Proof. : Our proof starts from the L-smooth assumption (Assumption 1) that bounds the loss of one global iteration:

E(𝐹(w̃𝑘+1
) − 𝐹(w̃𝑘)) ≤ E ∐︀∇𝐹(w̃𝑘), w̃𝑘+1

− w̃𝑘̃︀ +
𝐿𝑠

2

E∏︁w̃𝑘+1
− w̃𝑘∏︁

2

2
. (42)

The inequality contains two items and we bound them separately in the following text:

E∏︁w̃𝑘+1
− w̃𝑘∏︁

2

2
= 𝜂2

E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝑓𝑛(ŵ𝑛𝑘)∏︁

2

2

=
(𝑎)

𝜂
2

E∏︁ 1

𝑁

𝑁

∑
𝑛=1

(∇ŵ𝑛
𝑘
𝑓𝑛(ŵ𝑛𝑘) −∇ŵ𝑛

𝑘
𝐹𝑛(ŵ𝑛𝑘))∏︁

2

2
+ 𝜂2

E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2

=
(𝑏)

𝜂
2 1

𝑁 2

𝑁

∑
𝑛=1

E∏︁∇ŵ𝑛
𝑘
𝑓𝑛(ŵ𝑛𝑘) −∇ŵ𝑛

𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
+ 𝜂2

E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2

≤
(𝑐)

1

𝑁
𝜂

2

𝜎
2

2
+ 𝜂2

E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
, (43)

where (𝑏) follows that E∇ŵ𝑛
𝑘
𝑓𝑛(ŵ𝑛𝑘) = E∇ŵ𝑛

𝑘
𝐹𝑛(ŵ𝑛𝑘) and E∏︁v∏︁

2 = E∏︁v − Ev∏︁2 + ∏︁Ev∏︁2
. (𝑏) is due to the independence among clients and

the zero mean and (𝑐) follows from the Assumption 2.

19

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon. Submission Id: 566

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

For another item, we have

E ∐︀∇𝐹(w̃𝑘), w̃𝑘+1
− w̃𝑘̃︀ = E ̂︂∇𝐹(w̃𝑘),−𝜂

1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝑓𝑛(ŵ𝑛𝑘)]︁

= −𝜂E ̂︂∇𝐹(w̃𝑘),
1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)]︁

= −𝜂
2

⎨⎝⎝⎝⎪
E∏︁∇𝐹(w̃𝑘)∏︁

2

2
+ E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
− E∏︁∇𝐹(w̃𝑘) −

1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2

⎬⎠⎠⎠⎮
. (44)

Substituting (43) and (44) into (42) derives

E(𝐹(w̃𝑘+1
) − 𝐹(w̃𝑘)) ≤ −

𝜂

2

E∏︁∇𝐹(w̃𝑘)∏︁
2

2
− 𝜂 − 𝜂

2
𝐿𝑠

2

E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2

+ 𝜂
2

E∏︁∇𝐹(w̃𝑘) −
1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
+ 𝐿𝑠𝜂

2
𝜎

2

2

2𝑁

≤
(𝑎)
−𝜂

2

E∏︁∇𝐹(w̃𝑘)∏︁
2

2
+ 𝜂

2

E∏︁∇𝐹(w̃𝑘) −
1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
+ 𝐿𝑠𝜂

2
𝜎

2

2

2𝑁
,

≤ −𝜂
2

⎛
⎝
E∏︁∇𝐹(w̃𝑘)∏︁

2

2
+ E∏︁∇𝐹(w̃𝑘) −

1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2

⎞
⎠

+ 𝜂E∏︁∇𝐹(w̃𝑘) −
1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
+ 𝐿𝑠𝜂

2
𝜎

2

2

2𝑁
, (45)

where (𝑎) holds when 0 < 𝜂 < 1

𝐿
. Since the following inequality holds:

E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2

= E∏︁∇𝐹(w̃𝑘) − (∇𝐹(w̃𝑘) −
1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘))∏︁

2

2

≤ E∏︁∇𝐹(w̃𝑘)∏︁
2

2
+ E∏︁∇𝐹(w̃𝑘) −

1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
, (46)

we have the following inequality by re-organizing (45):

𝜂

2

E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
+ E(𝐹(w̃𝑘+1

) − 𝐹(w̃𝑘))

≤ 𝜂E∏︁∇𝐹(w̃𝑘) −
1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
+ 𝐿𝑠𝜂

2
𝜎

2

2

2𝑁
. (47)

We denote the minimum of the loss function by 𝐹∗. By computing the sum of (47) from 𝑘 = 1 to 𝐾 , we can obtain:

𝐾

∑
𝑘=1

𝜂

2

E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
+ (𝐹∗ − 𝐹(w̃1))

≤
𝐾

∑
𝑘=1

𝜂

2

E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
+ E(𝐹(w̃𝐾+1

) − 𝐹(w̃1))

≤ 𝜂
𝐾

∑
𝑘=1

E∏︁∇𝐹(w̃𝑘) −
1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
+ 𝐾𝐿𝑠𝜂

2
𝜎

2

2

2𝑁
. (48)

Now, we seek to present the bound of E∏︁∇𝐹(w̃𝑘) − 1

𝑁 ∑
𝑁
𝑛=1
∇ŵ𝑛

𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
:

E∏︁∇𝐹(w̃𝑘) −
1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2

= E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇𝐹𝑛(w̃𝑘) −
1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2

20

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

FedDSE: Distribution-aware Sub-model Extraction for Federated Learning over Resource-constrained Devices Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

= 1

𝑁 2
E∏︁

𝑁

∑
𝑛=1

∇𝐹𝑛(w̃𝑘) −
𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2

≤ 1

𝑁

𝑁

∑
𝑛=1

E∏︁∇𝐹𝑛(w̃𝑘) −∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2

≤
(𝑎)

𝐿
2

𝑠

𝑁

𝑁

∑
𝑛=1

E∏︁w̃𝑘 − ŵ
𝑛
𝑘∏︁

2

2

≤ 𝐿
2

𝑠

𝑁

𝑁

∑
𝑛=1

E∏︁w̃𝑘 − w̄𝑘 + w̄𝑘 − ŵ
𝑛
𝑘∏︁

2

2
,

≤ 2𝐿
2

𝑠

𝑁

𝑁

∑
𝑛=1

(E∏︁w̃𝑘 − w̄𝑘∏︁
2

2
+ E∏︁w̄𝑘 − ŵ

𝑛
𝑘∏︁

2

2
) , (49)

where (a) follows from Assumption 1. The item ∏︁w̃𝑘 − w̄𝑘∏︁2

2
represents the error between the ideal model updated based on the entire model

and the real model updated based on the sub-model. The item ∏︁w̄𝑘 − ŵ𝑛𝑘∏︁
2

2
represents the error between the global model and the local

model. Next, we bound them separately.

First, considering the previous synchronization iteration is 𝑘0, we have

E∏︁w̄𝑘 − ŵ
𝑛
𝑘∏︁

2

2

= E∏︁(w̄𝑘0
− 𝜂

𝑘

∑
𝜏=𝑘0

1

𝑁

𝑁

∑
𝑛=1

∇w𝑛
𝜏
𝑓𝑛(w𝑛𝜏)) − (ŵ𝑛𝑘0

− 𝜂
𝑘

∑
𝜏=𝑘0

∇w𝑛
𝜏
𝑓𝑛(w𝑛𝜏))∏︁2

2

=
(𝑎)

𝜂
2

E∏︁
𝑘

∑
𝜏=𝑘0

1

𝑁

𝑁

∑
𝑛=1

∇w𝑛
𝜏
𝑓𝑛(w𝑛𝜏) −

𝑘

∑
𝜏=𝑘0

∇w𝑛
𝜏
𝑓𝑛(w𝑛𝜏)∏︁2

2

≤
(𝑏)

2𝜂
2

E∏︁
𝑘

∑
𝜏=𝑘0

1

𝑁

𝑁

∑
𝑛=1

∇w𝑛
𝜏
𝑓𝑛(w𝑛𝜏)∏︁2

2
+ 2𝜂

2

E∏︁
𝑘

∑
𝜏=𝑘0

∇w𝑛
𝜏
𝑓𝑛(w𝑛𝜏)∏︁2

2

≤
(𝑐)

2𝜂
2(𝑘 − 𝑘0)

𝑘

∑
𝜏=𝑘0

E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇w𝑛
𝜏
𝑓𝑛(w𝑛𝜏)∏︁2

2
+ 2𝜂

2(𝑘 − 𝑘0)
𝑘

∑
𝜏=𝑘0

E∏︁∇w𝑛
𝜏
𝑓𝑛(w𝑛𝜏)∏︁2

2

≤
(𝑑)

2𝜂
2(𝑘 − 𝑘0)

𝑘

∑
𝜏=𝑘0

1

𝑁

𝑁

∑
𝑛=1

E∏︁∇w𝑛
𝜏
𝑓𝑛(w𝑛𝜏)∏︁2

2
+ 2𝜂

2(𝑘 − 𝑘0)
𝑘

∑
𝜏=𝑘0

E∏︁∇w𝑛
𝜏
𝑓𝑛(w𝑛𝜏)∏︁2

2

≤
(𝑒)

4𝜂
2

𝐸
2

𝐺
2

, (50)

where (𝑎) holds because w̄𝑘0
= ŵ𝑛𝑘0

= w𝑘0
. (𝑐) − (𝑑) come from the Cauchy-Schwarz Inequality. (𝑒) is due to Assumption 2.

For another item, we have

E∏︁w̃𝑘 − w̄𝑘∏︁
2

2

= E∏︁(w̃𝑘−1
− 𝜂 1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘−1

𝑓𝑛(ŵ𝑛𝑘−1
)) − (w̄𝑘−1

− 𝜂 1

𝑁

𝑁

∑
𝑛=1

∇w𝑛
𝑘−1

𝑓𝑛(w𝑛𝑘−1
))∏︁2

2

=
(𝑎)

(1 + 𝛾)E∏︁w̃𝑘−1
− w̄𝑘−1

∏︁2

2
+ 𝜂2(1 + 1

𝛾
)E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘−1

𝑓𝑛(ŵ𝑛𝑘−1
) − 1

𝑁

𝑁

∑
𝑛=1

∇w𝑛
𝑘−1

𝑓𝑛(w𝑛𝑘−1
)∏︁2

2

≤ (1 + 𝛾)E∏︁w̃𝑘−1
− w̄𝑘−1

∏︁2

2
+ 𝜂2(1 + 1

𝛾
) 1

𝑁

𝑁

∑
𝑛=1

E∏︁∇ŵ𝑛
𝑘−1

𝑓𝑛(ŵ𝑛𝑘−1
) −∇w𝑛

𝑘−1

𝑓𝑛(w𝑛𝑘−1
)∏︁2

2

= (1 + 𝛾)E∏︁w̃𝑘−1
− w̄𝑘−1

∏︁2

2
+ 𝜂2(1 + 1

𝛾
) 1

𝑁

𝑁

∑
𝑛=1

E∏︁∇ŵ𝑛
𝑘−1

𝑓𝑛(ŵ𝑛𝑘−1
) −∇w𝑛

𝑘−1

𝑓𝑛(w𝑛𝑘−1
)∏︁2

2

=
𝑘−1

∑
𝜏=1

𝜂
2(1 + 𝛾)𝑘−1−𝜏(1 + 1

𝛾
) 1

𝑁

𝑁

∑
𝑛=1

E∏︁∇ŵ𝑛
𝜏
𝑓𝑛(ŵ𝑛𝜏) −∇w𝑛

𝜏
𝑓𝑛(w𝑛𝜏)∏︁2

2
, (51)

where (𝑎) arises from the inequality (v1 + v2)2 ≤ (1 + 𝛾)v2

1
+ (1 + 1

𝛾
)v2

2
for 𝛾 > 0.

21

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon. Submission Id: 566

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

Based on Assumption 4, obviously, there is a constant 0 < 𝛼 < 1 that

𝐿

∑
𝑙=1

E ∑
𝑖∈𝑆𝑐

𝑙,𝑘−1

∏︁∇ŵ𝑛
𝑙,𝑖,𝑘−1

𝑓𝑛(ŵ𝑛𝑘)∏︁
2

2

≤ 𝛼
𝐿

∑
𝑙=1

𝑚𝑙

∑
𝑖=1

E∏︁∇ŵ𝑛
𝑙,𝑖,𝑘−1

𝑓𝑛(ŵ𝑛𝑘−1
)∏︁2

2

= 𝛼E∏︁∇ŵ𝑛
𝑘−1

𝑓𝑛(ŵ𝑛𝑘−1
)∏︁2

2

≤ 𝛼𝐺2

. (52)

Then, according to Lemma 1, we have

E∏︁∇ŵ𝑛
𝑘−1

𝑓𝑛(ŵ𝑛𝑘−1
) −∇w𝑛

𝑘−1

𝑓𝑛(w𝑛𝑘−1
)∏︁2

2

≤
(𝑎)

𝐿

∑
𝑙=1

E ∑
𝑖∈𝑆𝑙,𝑘−1

𝐺
2

ℎ𝐻
2∏︁e𝑙,𝑖,𝑘−1

∏︁2

2
+ 𝛼𝐺2

. (53)

Bringing (53) back to (51) derives:

E∏︁w̃𝑘 − w̄𝑘∏︁
2

2
≤
𝑘−1

∑
𝜏=1

𝜂
2(1 + 𝛾)𝑘−1−𝜏(1 + 1

𝛾
)
⎛
⎝
𝐿

∑
𝑙=1

E ∑
𝑖∈𝑆𝑙,𝜏

𝐺
2

ℎ𝐻
2∏︁e𝑙,𝑖,𝜏∏︁

2

2
+ 𝛼𝐺2

⎞
⎠
. (54)

Substituting (54) and (50) back into (49), and then bringing the derived inequality back into (48) obtains:

𝐾

∑
𝑘=1

𝜂

2

E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
+ (𝐹∗ − 𝐹(w̃1))

≤ 2𝐿
2

𝑠𝜂
3(1 + 1

𝛾
)𝐺2

ℎ𝐻
2

𝐾

∑
𝑘=1

𝑘−1

∑
𝜏=1

(1 + 𝛾)𝑘−1−𝜏 𝐿

∑
𝑙=1

E ∑
𝑖∈𝑆𝑙,𝜏

∏︁e𝑙,𝑖,𝜏∏︁
2

2

+ 𝐿2

𝑠𝜂
3

𝛼𝐺
2(1 + 𝛾)(1 + 𝛾)𝐾−1

𝛾2
+ 8𝐾𝐿

2

𝑠𝜂
5

𝐸
2

𝐺
2(1 + 1

𝛾
) + 𝐾𝐿𝑠𝜂

2
𝜎

2

2

2𝑁
. (55)

Reorganizing the inequality proves the theorem. □

C.3 Proof of Theorem 6
Theorem 6. Considering 𝐹∗ be the global minima of the loss function and the learning rate 0 < 𝜂 ≤ 1

4𝐿𝑠
, then for all neural networks with ReLU

activation function, the expected average of the squared gradient norms of 𝐹 obtained by Algorithm 1 satisfies the following bound for all 𝑡 ∈ N:

1

𝑇

𝑇

∑
𝑡=1

∏︁∇w𝑡 𝐹(w𝑡)∏︁2

2
≤ 4(𝐹(w1) − 𝐹∗)⌋︂

𝑇
+ 4𝐸(𝐿𝑠⌋︂

𝑇
+ 1

2

)(𝐺2

ℎ𝐻
2

𝑟𝑀𝜖
2 + 𝛼𝐺2) + 8𝐸𝐿𝑠𝐸

2
𝐺

2

𝑇
, (56)

where 𝛼 is a constant relying on the extraction ratio of the sub-model with 0 ≤ 𝛼 < 1.

Proof. : Our proof also starts from the L-smooth assumption (Assumption 1) that bounds the loss of one global iteration:

E(𝐹(w̄𝑘+1
) − 𝐹(w̄𝑘))

≤ E ∐︀∇𝐹(w̄𝑘), w̄𝑘+1
− w̄𝑘̃︀ +

𝐿𝑠

2

E∏︁w̄𝑘+1
− w̄𝑘∏︁

2

2

= E ̂︂∇𝐹(w̄𝑘),−𝜂
1

𝑁

𝑁

∑
𝑛=1

∇w𝑛
𝑘
𝐹𝑛(w𝑛𝑘)]︁ +

𝐿𝑠

2

E∏︁ − 𝜂 1

𝑁

𝑁

∑
𝑛=1

∇w𝑛
𝑘
𝐹𝑛(w𝑛𝑘)∏︁

2

2

= 𝜂E ̂︂∇𝐹(w̄𝑘),−
1

𝑁

𝑁

∑
𝑛=1

∇w𝑛
𝑘
𝐹𝑛(w𝑛𝑘) +

1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)]︁ + 𝜂E ̂︂∇𝐹(w̄𝑘),−

1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)]︁

+ 𝐿𝑠𝜂
2

2

E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇w𝑛
𝑘
𝐹𝑛(w𝑛𝑘) −

1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘) +

1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2

≤
(𝑎)

𝜂

2

E∏︁∇𝐹(w̄𝑘)∏︁
2

2
+ 𝜂

2

E∏︁ − 1

𝑁

𝑁

∑
𝑛=1

∇w𝑛
𝑘
𝐹𝑛(w𝑛𝑘) +

1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2

22

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

FedDSE: Distribution-aware Sub-model Extraction for Federated Learning over Resource-constrained Devices Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

− 𝜂
2

E∏︁∇𝐹(w̄𝑘)∏︁
2

2
− 𝜂

2

E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
+ 𝜂

2

E∏︁∇𝐹(w̄𝑘) −
1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2

+ 𝐿𝑠𝜂2

E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇w𝑛
𝑘
𝐹𝑛(w𝑛𝑘) −

1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
+ 𝐿𝑠𝜂2

E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2

= (𝐿𝑠𝜂2 + 𝜂
2

)E∏︁ − 1

𝑁

𝑁

∑
𝑛=1

∇w𝑛
𝑘
𝐹𝑛(w𝑛𝑘) +

1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2

− (𝜂
2

− 𝐿𝑠𝜂2)E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
+ 𝜂

2

E∏︁∇𝐹(w̄𝑘) −
1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2

≤
(𝑏)

(𝐿𝑠𝜂2 + 𝜂
2

) 1

𝑁

𝑁

∑
𝑛=1

E∏︁∇w𝑛
𝑘
𝐹𝑛(w𝑛𝑘) −∇ŵ𝑛

𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2

− (𝜂
2

− 𝐿𝑠𝜂2)E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
+ 𝜂

2

E∏︁∇𝐹(w̄𝑘) −
1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
, (57)

where (𝑎) holds because 2𝑎𝑏 ≤ 𝑎2 +𝑏2
and −2𝑎𝑏 = −𝑎2 −𝑏2 + (𝑎 −𝑏)2

, and (𝑏) is due to ∏︁∑𝑛𝑖=1
𝑎𝑖∏︁2

2
≤ 𝑛∑𝑛𝑖=1

∏︁𝑎𝑖∏︁2

2
. Considering the distance

between the gradient of the average model and the filled model, we have

E∏︁∇𝐹(w̄𝑘) −
1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2

= E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇𝐹(w̄𝑘) −
1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2

≤ 1

𝑁

𝑁

∑
𝑛=1

E∏︁∇𝐹(w̄𝑘) −∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2

≤
(𝑎)

𝐿𝑠

𝑁

𝑁

∑
𝑛=1

E∏︁w̄𝑘 − ŵ
𝑛
𝑘∏︁

2

2

≤
(𝑏)

4𝐿𝑠𝜂
2

𝐸
2

𝐺
2

, (58)

where (𝑎) follows from Assumption 1 and (𝑏) is derived by (50). Consider there are𝑀 total neurons, i.e., ∑𝐿𝑙=1
𝑚𝑙 = 𝑀 . Based on Lemma 1,

we have

E∏︁∇ŵ𝑛
𝑘
𝑓𝑛(ŵ𝑛𝑘) −∇w𝑛

𝑘
𝑓𝑛(w𝑛𝑘)∏︁

2

2

≤ 𝐺2

ℎ𝐻
2

𝐿

∑
𝑙=1

E ∑
𝑖∈𝑆𝑙,𝑘

∏︁e𝑙,𝑖,𝑘∏︁
2

2
+

𝐿

∑
𝑙=1

E ∑
𝑖∈𝑆𝑐

𝑙,𝑘

∏︁∇ŵ𝑛
𝑙,𝑖,𝑘

𝑓𝑛(ŵ𝑛𝑘)∏︁
2

2

≤
(𝑎)

𝐺
2

ℎ𝐻
2

𝐿

∑
𝑙=1

∑
𝑖∈𝑆𝑙,𝑘

𝜖
2 + 𝛼𝐺2

≤ 𝐺2

ℎ𝐻
2

𝑟𝑀𝜖
2 + 𝛼𝐺2

, (59)

where (𝑎) is derived from Lemma 1 and (52).

By bringing (58) and (59) back to (57), we can obtain

E(𝐹(w̄𝑘+1
) − 𝐹(w̄𝑘))

≤ (𝐿𝑠𝜂2 + 𝜂
2

)(𝐺2

ℎ𝐻
2

𝑟𝑀𝜖
2 + 𝛼𝐺2) − (𝜂

2

− 𝐿𝑠𝜂2)E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
+ 2𝐿𝑠𝜂

3

𝐸
2

𝐺
2

, (60)

Summing both sides of (60) from 𝑘 = 1 to 𝐾 gets

E(𝐹(w̄𝐾+1
) − 𝐹(w̄1))

≤ 𝐾(𝐿𝑠𝜂2 + 𝜂
2

)(𝐺2

ℎ𝐻
2

𝑟𝑀𝜖
2 + 𝛼𝐺2) −

𝐾

∑
𝑘=1

(𝜂
2

− 𝐿𝑠𝜂2)E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
+ 2𝐾𝐿𝑠𝜂

3

𝐸
2

𝐺
2

. (61)

23

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

2696

2697

2698

2699

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon. Submission Id: 566

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746

2747

2748

2749

2750

2751

2752

2753

2754

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

Considering w̄1 = w1 and 𝐹∗ ≤ 𝐹(w̄𝐾+1
), we re-organize (61) by moving∑𝐾𝑘=1

(𝜂
2
− 𝐿𝑠𝜂2)E∏︁ 1

𝑁 ∑
𝑁
𝑛=1
∇ŵ𝑛

𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
to left hand divide both

sides by 𝜂, and can obtain:

𝐾

∑
𝑘=1

(1

2

− 𝐿𝑠𝜂)E∏︁
1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2

≤ 𝐹(w1) − 𝐹∗
𝜂

+𝐾(𝐿𝑠𝜂 +
1

2

)(𝐺2

ℎ𝐻
2

𝑟𝑀𝜖
2 + 𝛼𝐺2) + 2𝐾𝐿𝑠𝜂

2

𝐸
2

𝐺
2

. (62)

Note that ŵ𝑘 = w𝑡 when 𝑡 ∗ 𝐸 = 𝑘 , we have
𝑇

∑
𝑡=1

E∏︁∇w𝑛
𝑘
𝐹(w𝑛𝑘)∏︁

2

2
≤

𝐾

∑
𝑘=1

E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
. (63)

Also, we set

𝜂 < 1

4𝐿𝑠
(64)

such that

1

4

≤ 1

2

− 𝐿𝑠𝜂. (65)

Jointly considering the two above inequalities together, we can get

𝑇

∑
𝑡=1

E∏︁∇w𝑡 𝐹(w𝑡)∏︁2

2

≤
𝐾

∑
𝑘=1

E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2

≤ 4(𝐹(w1) − 𝐹∗)
𝜂

+ 4𝐾(𝐿𝑠𝜂 +
1

2

)(𝐺2

ℎ𝐻
2

𝑟𝑀𝜖
2 + 𝛼𝐺2) + 8𝐾𝐿𝑠𝜂

2

𝐸
2

𝐺
2

. (66)

By approximately considering 𝐾 = 𝑇 ∗ 𝐸, we have

1

𝑇

𝑇

∑
𝑡=1

E∏︁∇w𝑡 𝐹(w𝑡)∏︁2

2
≤ 4(𝐹(w1) − 𝐹∗)

𝑇𝜂
+ 4𝐸(𝐿𝑠𝜂 +

1

2

)(𝐺2

ℎ𝐻
2

𝑟𝑀𝜖
2 + 𝛼𝐺2) + 8𝐸𝐿𝑠𝜂

2

𝐸
2

𝐺
2

. (67)

Setting 𝜂 =
⌉︂

1

𝑇
, we can obtain that

1

𝑇

𝑇

∑
𝑡=1

∏︁∇w𝑡 𝐹(w𝑡)∏︁2

2
≤ 4(𝐹(w1) − 𝐹∗)⌋︂

𝑇
+ 4𝐸(𝐿𝑠⌋︂

𝑇
+ 1

2

)(𝐺2

ℎ𝐻
2

𝑟𝑀𝜖
2 + 𝛼𝐺2) + 8𝐸𝐿𝑠𝐸

2
𝐺

2

𝑇
, (68)

which completes the proof. □

D MORE EXPERIMENTAL DETAILS
The expermental setup for Table (1) (5(a)) (5(b)) (5(c)) Figure (10) and Figure (5) is listed in Table 3.

Table 3: Experimental setup details on EMNIST, CIFAR-10 and CIFAR-100.
EMNIST CIFAR-10 CIFAR-100

Local Epoch 2 2 2

Batch Size 16 16 16

Learning Rate 0.001 0.001 0.001

Decay Schedule

High Data Heterogeneity None None None

Low Data Heterogeneity None None None

Communication Rounds

High Data Heterogeneity 1000 2500 2500

Low Data Heterogeneity 1000 2500 2500

Optimizer SGD SGD SGD

Momentum 0.9 0.9 0.9

Weight Decay 5.00E-04 5.00E-04 5.00E-04

Inference Batch all all all

The Impact of client model heterogeneity distribution in CIFAR-100 Figure 10

24

2785

2786

2787

2788

2789

2790

2791

2792

2793

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

2806

2807

2808

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

FedDSE: Distribution-aware Sub-model Extraction for Federated Learning over Resource-constrained Devices Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

2843

2844

2845

2846

2847

2848

2849

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

2861

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

2890

2891

2892

2893

2894

2895

2896

2897

2898

2899

2900

0.0 0.2 0.4 0.6 0.8 1.0ρ

2

4

6

8

Ac
cu

ra
cy

(%
)

High heterogeneity
Low heterogeneity

Figure 10: Impact of client model heterogeneity distribution in CIFAR-100.
The specify data of Figure 10 is listed in table 4.

Table 4: Impact of client model heterogeneity distribution in CIFAR-100.

CIFAR-100
𝜌

0 0.2 0.4 0.6 0.8 1

High Data Heterogeneity(%) 1.93 4.92 6.63 6.44 6.29 7.38

Low Data Heterogeneity(%) 1.76 5.98 8.36 9.14 9.18 8.70

The specify data of Figure 4(a) is listed in table 5.

Table 5: Impact of client model heterogeneity distribution in EMNIST.

EMNIST
𝜌

0 0.2 0.4 0.6 0.8 1

High Data Heterogeneity(%) 23.58 80.09 84.92 80.43 88.20 88.53

Low Data Heterogeneity(%) 51.19 93.44 96.12 94.79 95.13 94.33

The specify data of Figure 4(b) is listed in table 6.

Table 6: Impact of client model heterogeneity distribution in CIFAR-10.

CIFAR-10
𝜌

0 0.2 0.4 0.6 0.8 1

High Data Heterogeneity(%) 17.87 30.53 36.29 38.17 39.01 40.74

Low Data Heterogeneity(%) 19.54 37.92 43.31 47.06 49.86 53.06

Resource Savage of FedDSE The computation and communication costs are also obviously related to the consumption of energy. Besides,

they are highly related to intelligent service quality in terms of timeliness. To this end, via extracting neurons and only training sub-models

on the edge device, the method of our paper promotes the development of edge intelligence by reducing energy consumption, memory

footprint, and computational and communication cost. Besides, the benefits of our method can be found in Table 1 as training the ResNet18,

where our method can reduce three types of cost, thus also reducing the energy consumption. Thanks again for this constructive comment

that amplifies the impact of our method. We will add these discussions to the refined manuscript.

Table 1. Different metrics of different methods. 1⇑3 of neurons are extracted from the full model. The batch size is 8.

Method Memory (MB) Computation (GFlops) Communication (MB) FedAvg 569.67 14.48 44.59 FedDSE 188.17 5.68 16.17

Table 7: Comparison of resource consumption between FedDSE and FedAvg.

Method Memory (MB) Computation (GFlops) Communication (MB)

FedAvg 569.67 14.48 44.59

FedDSE 188.17 5.68 16.17

25

	Abstract
	1 Introduction
	2 Related Works
	2.1 Training masks from the fixed-weights global model
	2.2 Training sub-model weights extracted from the global model

	3 Preliminaries
	4 Challenges and Motivations
	4.1 Resource Properties of Edge Devices
	4.2 Extracting Neurons with Pre-defined Rules May Cause Competition
	4.3 Neuron Properties of DNNs in FL

	5 FedDSE Design
	6 Theoretical Analysis
	6.1 Improved Probability Score
	6.2 Convergence Analysis

	7 Experiments
	7.1 Performance Comparison with Baselines
	7.2 Impact of Client Model Heterogeneity
	7.3 Impact of Statistical Heterogeneity
	7.4 Impact of Client Selection
	7.5 Impact of Data Size for Extraction
	7.6 Comparison with Federated Distillation
	7.7 Impact of Temperature

	8 Conclusion
	References
	A More details about the design of motivation and method
	A.1 Investigation on Discrepancy of Activation Distribution
	A.2 More details about motivation
	A.3 More details about the design of method

	B Proofs of Theories over the Two-layer Neural Networks
	C Proofs of Convergence Theories
	C.1 General Lemmas
	C.2 Proof of Theorem 5
	C.3 Proof of Theorem 6

	D More experimental details

