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ABSTRACT
Sub-model extraction based federated learning has emerged as a

popular strategy for training models on resource-constrained de-

vices. However, existingmethods treat all clients equally and extract

sub-models using predetermined rules, which disregard the statisti-

cal heterogeneity across clients and may lead to fierce competition

among them. Specifically, this paper identifies that when making

predictions, different clients tend to activate different neurons of

the entire model related to their respective distributions. If highly

activated neurons from some clients with one distribution are incor-

porated into the sub-model allocated to other clients with different

distributions, they will be forced to fit the new distributions, which

can hinder their activation over the previous clients and result in

a performance reduction. Motivated by this finding, we propose a

novel method called FedDSE, which can reduce the conflicts among

clients by extracting sub-models based on the data distribution of

each client. The core idea of FedDSE is to empower each client to

adaptively extract neurons from the entire model based on their

activation over the local dataset. We theoretically show that FedDSE
can achieve an improved classification score and convergence over

general neural networks with the ReLU activation function. Experi-

mental results on various datasets and models show that FedDSE
outperforms all state-of-the-art baselines.
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dundancy; Robotics; • Networks→ Network reliability.
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1 INTRODUCTION
With the proliferation of edge devices like IoT and sensors, huge

amounts of data are generated continuously, which can be used to
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train efficient machine learning models. However, the raised pri-

vacy concerns make it difficult to collect big data from edge devices

and send them to a central cloud for training. Federated Learning

(FL) [22, 32], which enables clients to collaboratively train machine

learning models in a decentralized manner without revealing their

private raw data, is an emerging paradigm that has been adopted

in various fields including medical image processing [44] and rec-

ommendation systems [11]. However, to deploy FL in practical

edge environments, it is necessary for the resulting systems to not

only preserve the privacy, but also satisfy the common pragmatic

constraint, i.e., constrained resources such as energy, computation,

communication, and memory of edge devices [4, 14, 25].

To address the aforementioned issues, extracting the sub-model

from the entire model appears to be an effective solution, which

is also called partial federated learning, where each device only

trains a sub-model of the full global model. Two categories of sub-

model extraction methods for FL have been proposed: parameter

sparsifying methods [3, 19, 26, 37] and neuron pruning methods

[2, 6, 9, 16]. Parameters sparsifying methods extract sub-models by

selecting specific parameters from the entire neural network based

on the lottery ticket hypothesis [13]. Although they effectively

reduce the computation and communication costs, recent works

[4] have shown that such methods do not reduce the memory

trace because the activation outputs from neurons are much larger

than the original parameters. Neurons pruning methods [2, 6, 9,

16] extract sub-models by selecting a subset of neurons from the

entire neural network. For example, FedRolex [2] selects neurons

in a rolling way for each client. Considering their great advances

in terms of memory efficiency, this paper mainly focuses on the

category of neuron pruning methods.

Although current neuron pruning methods are effective in reduc-

ing memory usage, they do not account for statistical heterogeneity

(i.e., non-identically distributed data) [21, 28, 29, 33], potentially

leading to decreased performance. Specifically, this study reveals

the competition between clients with different data distributions

when only sub-models are locally trained. We observe that clients

tend to activate different neurons within the model during predic-

tion, closely linked to their respective data distributions. As data

distribution is neglected, the neurons highly activated for clients

with one distribution may be extracted into a sub-model designated

to other clients with distinct distributions. Newly-assigned clients

may find it challenging to obtain effective representations over

local datasets via the sub-model with limited capacity, as they have

to force the neurons strongly linked to previous clients to adapt

to these new distributions. On the other side, such a re-fit process

may also in turn hinder the activation of these neurons over the

previous clients and result in a performance reduction.

Motivated by this finding, we propose a simple yet effective

method FedDSE to reduce the conflicts among clients by extracting

1
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Figure 1: Illustration of existing methods that extract neurons with pre-defined rules. (a) An example of three types of clients
with order-based neurons selection (Fjord [16] and Hetero [9]). Neurons 4 and 5 may only be trained a few times due to the
limited number of large-capacity clients. (b) An example of two clients (different rows) selecting neurons in a rolling way
(FedRolex [2]). Clients may compete for neurons to fit their respective distinct distributions.

sub-models based on the data distribution of each client. The main

idea of FedDSE is to empower each client to adaptively extract

neurons from the entire model based on their activation over the

local dataset, where neuronswith the largest magnitude are selected.

In this way, the conflicts can be minimized since every client is

assigned its most appropriate neurons instead of the ones activated

for other clients with different distributions. Experiment results on

different datasets and models show that FedDSE can significantly

improve the training efficiency under the constraint of limited

memory compared to baselines. Our contributions are:

● To the best of our knowledge, this paper is the first to consider

statistical heterogeneity in FL with sub-model extraction. Our

findings reveal that clients with distinct distributions tend to

activate different neurons, leading to conflicts among them when

the neurons are not assigned properly.

● We propose a novel training method, FedDSE, to extract sub-

models for each client based on their data distributions. In FedDSE,
the neurons of the sub-model are chosen based on their levels

of activation over the local dataset of each client, enabling us to

assign the most appropriate neurons to each client.

● We establish a theory for the convergence of FedDSE on general

neural networks with ReLU activation function, which shows

that our method has an asymptotic convergence rate.

● To validate the efficiency of the proposed method, we compare

FedDSE with state-of-the-art methods. Evaluation results show

that FedDSE can improve the performance by up to 2.72%.

2 RELATEDWORKS
Many approaches have been proposed to realize FL over memory-

limited devices, which can be categorized into twomain types based

on whether the weights of the global model are updated.

2.1 Training masks from the fixed-weights
global model

This category of works initially comes from the centralized scenario,

where the masked model of a dense network with random weights

performs surprisingly well without ever training the weights [1,

35, 36, 46]. Considering this phenomenon, some recent works seek

to find such a mask to reduce the communication budget in FL,

while simultaneously compressing the given global dense network

[18, 27, 41]. Although these methods achieve success separately,

their targets are totally different from ours. For example, Li et al.

[27] focus on the personalization of local models over different

clients via various masks. Anish et al. [41] and Isik et al. [18] seek

to reduce the computation and communication costs via the 1-bit

mask. In contrast, this paper mainly focuses on the issue of limited

on-device memory. While these prior methods can also reduce the

memory usage by reducing the size of parameters, they cannot

reduce the size of activation which consumes much more memory

[4]. Besides, these methods rely on a dense network, which may

also potentially increase the memory usage.

2.2 Training sub-model weights extracted from
the global model

These methods train the global model by updating the weights

of the extracted sub-model, which are further classified into two

categories, i.e., parameter sparsifying methods and neuron sparsi-

fying methods. Parameters sparsifying methods extract sub-models

by selecting specific parameters from the entire neural network

[3, 19, 26, 37] , which are usually based on the theory of the lottery

ticket hypothesis [13]. Although they effectively reduce the com-

putation and communication costs, recent works [4] have shown

that such methods do not reduce the memory trace because the

activation outputs from neurons are much larger than the original

parameters. Another line of methods is to extract the sub-model

by pruning neurons from the global neural network [2, 6, 9, 16, 30].

For example, an earlier method randomly prunes neurons from

the global neural network for each client [6]. For the heteroge-

neous edge devices, Fjord [16] and Hetero [9] employ a similar

approach. They manually define a neuron-order before training

and construct sub-models for each client based on its memory

constraints, and then select neurons in accordance with this pre-

defined order. However, ordered extraction requires an adequate

number of high-capacity devices to accommodate the complete

model. Otherwise, as illustrated in Figure 1(a), many neurons lo-

cated towards the tail-end of the sequence may not be adequately

trained, resulting in degraded performance. In practice, the number

of large-capacity devices is generally far less than the low-capacity

devices, which restricts its application. Considering this limitation,

the recent work FedRolex [2] extracts the sub-model by selecting

neurons in a rolling way for each client such that all neurons can

be trained equally. However, such a method may cause competition

2
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among clients, as we will illustrate later. These neuron pruning

methods are most close to this paper. But different from them, we

take the statistical heterogeneity into account when extracting

sub-models for different clients.

3 PRELIMINARIES
Basics of deep neural network. We consider a deep neural net-

work with 𝐿 layers, and each layer 𝑙 contains𝑚𝑙 neurons.We denote

the weight parameters of the model as w and the parameters of

the 𝑙-th layer as w𝑙 = (︀𝑤𝑙 , 𝑏𝑙 ⌋︀ with the weights𝑤𝑙 and bias 𝑏𝑙 . For

each 𝑖-th neuron in the 𝑙-th layer, we compute its activation output

as ℎ𝑙,𝑖 = 𝜎(𝑤𝑙,𝑖h𝑙−1
+ 𝑏𝑙,𝑖), where 𝜎(⋅) is the nonlinear activation

function (e.g., ReLU),𝑤𝑙,𝑖 and 𝑏𝑙,𝑖 denote the weights/bias for this

neuron, and h𝑙−1
represents the outputs of all neurons in the pre-

vious layer, i.e., h𝑙−1
= (︀ℎ𝑙−1,1, . . . , ℎ𝑙−1,𝑚𝑙−1

⌋︀. For simplicity, we

denote all weights of the network as w = (︀w1, . . . ,w𝐿⌋︀.
Problem formulation. Our objective is to allow all clients to

collaboratively train a global model via FL. We presume that there

are 𝑁 clients, and each client 𝑛 has access only to its own private

dataset D𝑛 ∶= {𝑥𝑛𝑖 ,𝑦𝑖}, where 𝑥𝑖 represents the 𝑖-th input data

sample, and 𝑦𝑖 ∈ 𝐶 = {1, 2,⋯,𝐶} represents the corresponding label
of 𝑥𝑖 . The number of data samples in dataset D𝑛 is represented by

𝐷𝑛 . D = {D1,D2,⋯,D𝑁 }, with 𝑁 = ∑𝑁𝑛=1
𝐷𝑛 . The goal is to train

a global model w by minimizing the total empirical loss over the

entire dataset D:

min

w
𝐹(w) ∶=

𝑁

∑
𝑛=1

𝐷𝑛

𝐷
𝐹𝑛(w), where 𝐹𝑛(w) =

1

𝐷𝑛

𝐷𝑛

∑
𝑖=1

𝑓 (w;𝑥𝑖 ,𝑦𝑖),

(1)

where 𝐹𝑛(w) denotes the local loss function of the 𝑛-th client,

which measures its private dataset’s local empirical risk, and 𝑓 (⋅)
is the cross-entropy loss function that quantifies the difference

between the predicted and ground-truth labels.

4 CHALLENGES AND MOTIVATIONS
4.1 Resource Properties of Edge Devices
LimitedMemory. Different from servers in the cloud, edge devices

generally have limited capability in terms of memory, energy, com-

munication, and computation. For example, the device Raspberry

Pi 1 Model A, which is widely used in edge applications, e.g., smart

home [20], only has a memory of 256 MB. Although the memory

is sufficient for the inference of neural networks, e.g., the popular

ResNet18 where the memory footprint is approximately 60 MB in

the inference process, the device can hardly support its training.

Specifically, training ResNet18 with a small batch size of 8 requires

a memory of 569.67 MB, which far exceeds the memory limit. The

available memory will become even less when other applications

are running on the device. On the other hand, energy consump-

tion is also strongly related to memory access. Widely used edge

devices mobile-phone which are usually equipped with intelligent

accelerators
1
. The memory of these mobile phones is composed of

DRAM in the CPU and SRAM in the accelerator. Under the 45nm

CMOS technology [15], a 32bit off-chip DRAM access consumes

640 pJ, which is two orders of magnitude larger than a 32bit on-chip

SRAM access (5 pJ) or a 32bit float multiplication (3.7 pJ). Despite

1

https://ai.googleblog.com/2019/11/introducing-next-generation-on-device.html

the energy efficiency of the SRAM, the accelerator usually has lim-

ited memory of SRAM. For instance, TPU [17] only has 28MB of

SRAM which is even smaller than the training memory footprint

of a small network MobileNetV2 using a small batch size of 1 [5].

This leads to numerous resource-intensive DRAM accesses, conse-

quently consuming significant energy and depleting the battery of

edge devices. In fact, SSD or Flash access costs even more energy

than DRAM. These properties of memory indicate the necessity of
training the sub-model on each local device.
Asymmetric network bandwidth of edge devices. Most current

methods use sub-models downloaded from servers to reduce the

download bandwidth. However, it is worth noting that upload band-

width is often much lower than download bandwidth and is the

main bottleneck for communication efficiency. This can be seen by

summarizing the bandwidth of mobile networks provided by differ-

ent global telecom operators
2
. In fact, the download bandwidth can

be up to 7.7 times larger than the upload bandwidth. Given this, a
natural improvement idea would be to download the full model from
the server to improve the training performance while only uploading
sub-models to ensure efficient communication.

4.2 Extracting Neurons with Pre-defined Rules
May Cause Competition

Here we demonstrate the necessity of extracting client-specific

neurons based on their unique data distribution in FL. We present

an analysis of the limitations of FedRolex [2], which is currently the

state-of-the-art method for FL with sub-model extraction. Specifi-

cally, Figure 1(b) illustrates a simple binary classification problem

for single-dimension data, where the label 𝑦 = 0 corresponds to

data points 𝑥 ≤ 0 and 𝑦 = 1 is assigned to 𝑥 > 0. All samples with

label 𝑦 = 0 are allocated to the first client and those with label 𝑦 = 1

to the second client. A two-layer neural network with two hidden

neurons and ReLU activation function is employed for this classi-

fication task. Our example reveals that during training, neurons

can become biased towards one particular client and fail to adapt

well to other clients’ data distribution. For instance, after the first

round, neuron 1 is trained to recognize data 𝑥 < 0 of client 1 by

updating the parameter 𝑤1,1,1 to negative (denoted by ’-’). In the

next round, it is designated to the second client and may struggle

to adjust to the new data 𝑥 > 0 by updating the parameter 𝑤1,1,1

from negative to positive (’+’). On the other side, the adjusting

process will also hinder its activation over data from the previous

client. Such a conflict is due to the neglect of data distribution when

extracting neurons into the sub-model for each client, where the

neurons strongly linked to clients with one distribution may be

designated to other clients with different distributions. To present

this problem formally, we establish the following theory for the

general two-layer neural networks.

Theorem 1. Consider a two-layer neural network employing the
ReLU activation function and being trained with a cross-entropy loss.
Let D𝑛1

comprise samples belonging to class 𝑠 , and D𝑛2
consist of

samples from class 𝑐 , representing the datasets of clients 𝑛1 and 𝑛2

respectively. Let ℎ𝑖(D𝑛1
) = ∑𝐷𝑗=1

ReLU(w𝑇𝑖 x𝑗) represent the sum of

2

https://www.opensignal.com/reports/2023/02/global-state-of-the-mobile-network-

experience-awards
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Figure 2: Comparison of activation distributions of a 3-layer MLP on MNIST. (a-c) Activations of two clients on layer-1, 2 and 3.
(d) Activations of different layers trained on the full dataset.

activations of the 𝑖-th selected hidden neuron across dataset D𝑛1
, with

𝐷 denoting the dataset size. Subsequently, training the sub-model ŵ
on dataset D𝑛2

and denoting 𝑝𝑘𝑠 as the probability score of sample
x𝑘 ∈ D𝑛2

over the trained sub-model, with a learning rate 𝜂 > 0,
yields the following observations:
●When the dataset D𝑛1

of client 𝑛1 is homogeneous to the local
training dataset D𝑛2

of client 𝑛2, i.e., ∑x𝑘∈D𝑛
2

𝑝
𝑘
𝑠 (x𝑘)𝑇 x𝑗 ≥ 0 for

each sample x𝑗 ∈ D𝑛1
, the activation sum ℎ𝑖(D𝑛1

) increases, where
the augmentation can be as high as 𝜂∑x𝑗 ∈D𝑛

1

∑x𝑘∈D𝑛
2

𝑝
𝑘
𝑠 (𝑤2,𝑐,𝑖 −

𝑤2,𝑠,𝑖)(x𝑘)𝑇 x𝑗 .
● Conversely, when the dataset D𝑛2

of client 𝑛1 is heterogeneous to
the local training dataset D𝑛2

of client 𝑛2, i.e.,∑x𝑘∈D𝑛
2

𝑝
𝑘
𝑠 (x𝑘)𝑇 x𝑗 ≤

0 for each sample x𝑗 ∈ D𝑛1
, the activation sum ℎ𝑖(D𝑛1

) decreases,
where the reduction isMin(ℎ𝑖(D𝑛1

),−𝜂∑x𝑗 ∈D𝑛
1

∑x𝑘∈D𝑛
2

𝑝
𝑘
𝑠 (𝑤2,𝑐,𝑖−

𝑤2,𝑠,𝑖)(x𝑘)𝑇 x𝑗).

The proof can be found in B. Theorem 1 suggests that clients

possessing homogeneous data distributions will mutually amplify

their activation learning, while clients with heterogeneous data

distributions will mutually diminish each other’s activation.

4.3 Neuron Properties of DNNs in FL
To investigate the principle of neuron competition, we seek to

present the properties of DNN neurons in FL. Through profiling

the training process of clients over local datasets, we find neurons

are activated differently for specific clients. To demonstrate the

potential in extracting neurons, we track the training progress of

different layers of a Multilayer Perceptron (MLP) as an example.

MLP is a simple and popular model for image classification, con-

sisting of multiple fully-connected layers. Figure 2 compares the

activation distributions (i.e., the output feature map produced by

a DNN layer) of a three-layer MLP fully trained on the MNIST

dataset. The number of neurons for layers 1 to 3 are 50, 24 and 10

respectively. We take the average activation of each neuron over

256 data samples. From Figure 2, we can get the following insights:

● Each client activates distinct neurons. Figure 2 (a)-(c) depict the
activation values of neurons in different layers for two clients

(five clients in total for experiments and we only take two for

better illustration here). Obviously, there exists a huge variance

between the activation distributions of those two clients. Their

curves barely overlap and those neurons with high activation

values also vary for each client. For instance, in layer-2, neuron-

16 generates a larger activation value for client-1 while a lower

value for client-2, indicating this neuron is activated more by

local data of client-1. Similarly, other clients also show their

correspondingly stressed neurons in each layer. This pattern

reveals a natural strategy: each client can extract neurons from
the global model based on their most activated ones.

● The activations of different layers differ. To further verify the

above point, Figure 2(d) shows the average activations of each

layer on i.i.d dataset. The values of each layer distinguish much

between each other: activation values of the first layer tend to

be stable while subsequent layers show more fluctuations. The
activation distributions vary as the model goes deeper, indicating
that comparing activations of different layers is insufficient to
unmask neuron properties for each client.

In fact, we have the following proposition to show that the acti-

vation magnitude is strongly related to the classification accuracy

which is represented as the probability score for each class.

Proposition 2. Given a well-converged two-layer neural network
with the ReLU activation function, high activation values have a large
impact on the probability score than low activation values. Specifically,
for any sample x with label 𝑦 = 𝑐 , the ratio of impact over probability
score 𝑝𝑐 between a high activation ℎ𝐻 and a low activation ℎ𝐿 is

approximately 𝑒𝛼(ℎ
2

𝐻−ℎ
2

𝐿), where 𝛼 > 0 is a constant.

The proof can be found in B. Proposition 2 shows that higher

activation contributes more to the probability score of the classi-

fication label. Jointly considering Proposition 2 and Theorem 1,

we can intuitively get that the accuracy of the global model over

the dataset of some specific client will be reduced when the cor-

responding neurons with large activation are allocated to other

clients of which their data distributions are heterogeneous to this

client. More explanations are discussed in Appendix A.

5 FEDDSE DESIGN
Motivated by the above findings, we propose to extract a sub-model

for each client based on its data distribution, where the detailed

workflow is presented in Algorithm 1. Our method FedDSE has the

following innovations. First, considering the sufficient download

bandwidth, we allow each client 𝑛 to pull the entire model w from

the server. Second, based on the basic property of neural networks

that inference consumes much less memory than training, each

client 𝑛 selects neurons by only running inference over the model

4
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Figure 3: Clients extract sub-models based on the magnitude
of neuron activation.
with a portion of its local dataset. Third, based on the observation

that the magnitude of neuron activation differs a lot for different

layers, each client extracts neurons in a layer-by-layer manner,

which does not requires caching the activation of previous layers.

Specifically, for each layer 𝑙 , the client 𝑛 only remains the top ra-

tio 𝑟 of neurons in a weighted sampling manner and prunes the other
neurons to obtain the sub-model w𝑛 = w⊙M𝑛

, where ⊙ denotes

the element-wise multiplication and M𝑛
is the mask. M𝑛

𝑙,𝑖, 𝑗 = 0 if

the neuron ℎ𝑙,𝑖 of the parameter 𝑤𝑙,𝑖, 𝑗 is pruned, and M𝑛
𝑙,𝑖, 𝑗 = 1

otherwise. The sampling probability of each neuron is determined

based on its activation. We apply a softmax function over the ac-

tivation ℎ𝑖 of each neuron 𝑖 , obtaining its sampling probability

𝑝(𝑖) = 𝑒
ℎ𝑖 ⇑𝑇

∑𝑚
𝑗=1

𝑒
ℎ𝑗 ⇑𝑇

, where 𝑇 is the temperature. Obviously, one neu-

ron is more likely to be sampled once its activation is larger. In

particular, the neurons are selected in a uniform manner as the

temperature 𝑇 → ∞, while the neurons are selected in a TopK

manner as the temperature 𝑇 → 0, i.e., selecting neurons with the

highest activation values ∏︁ℎ𝑙,𝑖∏︁.
The client locally updates the sub-modelw𝑛 = w𝑛−𝜂∇w𝑛 𝑓𝑛(w𝑛),

where 𝑓𝑛(w𝑛) denotes the loss over a mini-batch of data and

𝜂 is the learning rate. Then, the server receives the sub-models

from all clients and aggregates them to update the global model:

w = w−𝜂∑𝑛∈𝑁 p𝑛⊙∑𝐸𝑒=1
∇w𝑛

𝑒
𝑓𝑛(w𝑛𝑒 ), where 𝑁 denotes the set of

selected clients and p𝑛 endows a weight for each element of the sub-

model parameters. We set p𝑛𝑙,𝑖, 𝑗 =
1

⋃︀𝑁𝑙,𝑖,𝑗 ⋃︀ with 𝑁𝑙,𝑖, 𝑗 representing

the clients set that select the parameter𝑤𝑙,𝑖, 𝑗 . In fact, the extraction

process can also be conducted on the server by using a data-free

manner like [47]. We leave the discussion in Appendix A.3.

6 THEORETICAL ANALYSIS
In this section, we formally analyze the performance of our pro-

posed method compared to existing methods. We first show that our

method achieves a higher probability score than existing methods

over the two-layer neural networks with ReLU activation function.

Then, we establish the convergence theory of our method over

general non-convex loss functions.

6.1 Improved Probability Score
Following Theorem 1 and Proposition 2, we further compare the

impact of neuron competition over the activation, i.e., reduced

activation value by allocating positive neurons of some specific

client to another heterogeneous client), and the probability score.

Algorithm 1 FedDSE Algorithm

Input: Global model w, and learning rate 𝜂, total communication

rounds 𝑇 .

Output: Trained global model w.

1: Initialize the model parameters w1;

2: procedure Server-side Optimization
3: for each communication round 𝑡 ∈ {1, 2, ...,𝑇} do
4: Randomly select a subset of clients 𝑁𝑡 ;

5: Distribute w𝑡 to each selected client;

6: for each selected client 𝑛 in parallel do
7: w𝑛𝑡+1

← 𝐶𝑙𝑖𝑒𝑛𝑡𝐿𝑜𝑐𝑎𝑙𝑈𝑝𝑑𝑎𝑡𝑒(𝑛,w𝑛𝑡 );
8: Update the global model w𝑡 = w𝑡 − 𝜂∑𝑛∈𝑁𝑡

p𝑛𝑡 ⊙
∑𝐸𝑒=1

∇w𝑛
𝑡,𝑒
𝑓𝑛(w𝑛𝑡,𝑒);

9: procedure ClientLocalUpdate(𝑛,w𝑛𝑡 )
10: Receive w𝑡 from the server;

11: Sample 𝑟 neurons layer-by-layer in activation-based proba-

bility to obtain the sub-model w𝑛𝑡,1 = w𝑡 ⊙M𝑛
𝑡 ;

12: for each local iterations 𝑒 from 1 to 𝐸 do
13: Update sub-model parameters on private data w𝑛𝑡,𝑒+1

=
w𝑛𝑡,𝑒 − 𝜂∇w𝑛

𝑡,𝑒
𝑓𝑛(w𝑛𝑡,𝑒);

return Local update of the sub-model∑𝐸𝑒=1
∇w𝑛

𝑡,𝑒
𝑓𝑛(w𝑛𝑡,𝑒);

Proposition 3. When training sub-models on clients with hetero-
geneous distributions relative to a specific client 𝑛, the reduction in
neuron activation Δℎ(D𝑛) for a two-layer neural network over the
data D𝑛 of the specific client, achieved through either random or se-
quential neuron selection strategies, is greater compared to that of our
distribution-aware selection method Δℎ′(D𝑛) under the worst-case,
i.e., Δℎ(D𝑛) ≥ Δℎ′(D𝑛).

The proof can be found in B. The key is that existing strategies

cannot avoid allocating the top neurons of some specific client

to the other clients with heterogeneous distribution to the client,

leading to a great activation reduction to these top neurons. Then,

we have the following theory to show that the probability score

will also be reduced due to the reduced activation activation.

Theorem 4. Given a two-layer converged neural network includ-
ing𝑚 neurons with the ReLU activation function. The obtained proba-
bility score 𝑝𝑠(D𝑛) over the dataset D𝑛 of some specific client 𝑛 for a
given class 𝑠 , after running on heterogeneous clients with sub-models
extracted through either random or sequential neuron selection strate-
gies, is smaller than the probability score of our distribution-aware se-
lection method 𝑝′𝑠(D𝑛) under the worst-case, i.e., 𝑝𝑠(D𝑛) ≤ 𝑝′𝑠(D𝑛).

The proof is in B. Theorem 4 indicates that our method can main-

tain the probability score of previous clients by avoiding allocat-

ing neurons to conflicted clients with heterogeneous distributions.

Hence, our method can help the global model memorize the data

of clients selected in old rounds and improve the training accuracy.

6.2 Convergence Analysis
To show the convergence, we make the following assumptions

which are widely adopted in FL.

Assumption 1. (L-smoothness). The objective function 𝐹 is con-
tinuously differentiable and the gradient function of 𝐹 is L-smooth
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with Lipschitz constant 𝐿𝑠 > 0, i.e., for all w, w′,

∏︁∇𝐹(w) −∇𝐹(w′)∏︁2 ≤ 𝐿𝑠∏︁w −w′∏︁2 .

Assumption 2. (Bounded variance). For all parametersw, the vari-
ance of the stochastic gradient in each client is bounded:E(∏︁∇w 𝑓𝑛(w)−
∇w𝐹𝑛(w)∏︁2) ≤ 𝜎2.

Assumption 3. (Bounded Hessian). There exists positive a constant
𝐻 such that for all w and 𝑛, the second partial derivatives of 𝑓𝑛 with
respect to the activation ℎ𝑛,𝑙,𝑖 for each layer 𝑙 and neuron 𝑖 satisfy:
∏︁∇2

ℎ𝑛,𝑙,𝑖
𝑓𝑛(w)∏︁2 ≤ 𝐻 .

Assumption 4. (Bounded Gradient). For all parameters w, the
gradient with respect to the loss is bounded: E(∏︁∇w 𝑓𝑛(w)∏︁2) ≤ 𝐺2,
and the embedding gradient with respect to each 𝑖-th neuron in the
𝑙-th layer is also boundded E(∏︁∇w𝑙,𝑖ℎ𝑙,𝑖(w)∏︁2) ≤ 𝐺2

ℎ .

The first two assumptions are generally used in the standard

analysis of Federated Learning [12, 40, 43]. Based on these assump-

tions, we derive the convergence properties of our algorithm on

general neural networks with ReLU activation function. The third

assumption is a strengthened version of Assumption 1, which is also

leveraged by previous studies [8]. The assumption of the bounded

gradient regarding the loss is also generally utilized [45]. Assump-

tion 4 slightly strengthens traditional assumption by also assuming

the bounded gradient regarding the activation.

To simplify analysis, we introduce an iteration index 𝑘 where

𝑘 = 𝑡 ∗ 𝐸 + 𝑒 . We also introduce an auxiliary model ŵ𝑛𝑘 , which is

the full model obtained by filling the sub-model w𝑛𝑘 with global

parameters in the latest global round. Notably, according to the

updating formula, ŵ𝑛𝑘 = w𝑡 when 𝑘 = 𝑡 ∗ 𝐸. To measure the impact

of extracting neurons. We define the error between the activation

h𝑛𝑚,𝑘 computed from the sub-model w𝑛𝑘 and h𝑛𝑘 calculated from

the filled auxiliary model ŵ𝑛𝑘 , as e
𝑛
𝑘 = h

𝑛
𝑚,𝑘 − h

𝑛
𝑘 . Based on these

definitions, we then have the following lemma.

Lemma 1. The error of the gradient calculated by the sub-model is
bounded by

E∏︁∇ŵ𝑛
𝑘
𝑓𝑛(ŵ𝑛𝑘) −∇w𝑛

𝑘
𝑓𝑛(w𝑛𝑘)∏︁

2

2
≤𝐺2

ℎ𝐻
2

𝐿

∑
𝑙=1

E ∑
𝑖∈𝑆𝑙,𝑘

∏︁e𝑙,𝑖,𝑘∏︁
2

2

+
𝐿

∑
𝑙=1

E ∑
𝑖∈𝑆𝑐

𝑙,𝑘

∏︁∇ŵ𝑛
𝑙,𝑖,𝑘

𝑓𝑛(ŵ𝑛𝑘)∏︁
2

2
, (2)

where 𝑆𝑙,𝜏 is the set of selected neurons in the 𝑙-th layer and 𝑆
𝑐
𝑙,𝜏 denotes

the set of un-selected neurons. ŵ𝑛𝑙,𝑖,𝑘−1
represents the parameters

connected to the neuron 𝑖 .

The proofs are deferred to Appendix C.1. Lemma 1 indicates that

the error of the gradient calculated by the sub-model is related to

the activation difference and the gradient unselected by the sub-

model. Based on this lemma, we can derive the following theorem

for the convergence of the algorithm.

Theorem 5. Considering 𝐹∗ be the global minima of the loss
function, 𝛾 and 𝛼 are constants with 𝛾 > 0, 0 ≤ 𝛼 < 1, and the
learning rate 0 < 𝜂 ≤ 1

𝐿𝑠
, then for all neural networks with ReLU

activation function, the expected average of the squared gradient

norms of 𝐹 obtained by Algorithm 1 satisfies the following bound for
all 𝐾 ∈ N:

𝐾

∑
𝑘=1

E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
≤ 2(𝐹(w1) − 𝐹∗)

𝜂

+ 2𝐿
2

𝑠𝜂
2

𝛼𝐺
2(1 + 𝛾)(1 + 𝛾)𝐾−1 − 1

𝛾2
+ 𝐾𝐿𝑠𝜂𝜎

2

2

𝑁

+ 4𝐿
2

𝑠𝜂
2(1 + 1

𝛾
)𝐺2

ℎ𝐻
2

𝐾

∑
𝑘=1

𝑘−1

∑
𝜏=1

(1 + 𝛾)𝑘−1−𝜏 𝐿

∑
𝑙=1

E ∑
𝑖∈𝑆𝑙,𝜏

∏︁e𝑙,𝑖,𝜏∏︁
2

2

+ 16𝐾𝐿
2

𝑠𝜂
4

𝐸
2

𝐺
2(1 + 1

𝛾
), (3)

where 𝑆𝑙,𝜏 is the set of selected neurons in the 𝑙-th layer.

Detailed derivations are deferred to Appendix C.2. Theorem 5

shows that the convergence performance of FL with sub-model ex-

traction heavily relies on the activation error e𝑛𝑘 . Rather than select-

ing neurons based on their location according to conventional meth-

ods, our approach extracts neurons based on the magnitude of their

activation. Hence, our method maximizes the potential to reduce

the activation error. Since the global model w𝑡 periodically equals

ŵ𝑛𝑘 , Theorem 5 also indicates the convergence of the global model,

i.e., ∑𝑇𝑡=1
E∏︁∇w𝑡 𝐹(w𝑡 )∏︁2

2
≤ ∑𝐾𝑘=1

E∏︁ 1

𝑁 ∑
𝑁
𝑛=1
∇ŵ𝑛

𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
. Now,

we consider the feature distance ∏︁e∏︁2

2
is bounded by a constant 𝜖 > 0

which is determined by the ratio, i.e., ∏︁e∏︁2

2
≤ 𝜖2

. Obviously, 𝜖 → 0 as

𝑟 → 1. We show that the final convergence error is strongly related

to the extraction ratio 𝑟 .

Theorem 6. Considering 𝐹∗ be the global minima of the loss
function and the learning rate 0 < 𝜂 ≤ 1

4𝐿𝑠
, then for all neural

networks with ReLU activation function, the expected average of the
squared gradient norms of 𝐹 obtained by Algorithm 1 satisfies the
following bound for all 𝑡 ∈ N:

1

𝑇

𝑇

∑
𝑡=1

∏︁∇w𝑡 𝐹(w𝑡 )∏︁2

2
≤ 4(𝐹(w1) − 𝐹∗)⌋︂

𝑇

+ 4𝐸( 𝐿𝑠⌋︂
𝑇
+ 1

2

)(𝐺2

ℎ𝐻
2

𝑟𝑀𝜖
2 + 𝛼𝐺2) + 8𝐸𝐿𝑠𝐸

2
𝐺

2

𝑇
, (4)

where 𝛼 is a constant relying on the extraction ratio of the sub-model
with 0 ≤ 𝛼 < 1.

Proof can be found in Appendix C.3. Since 𝜖 → 0 and 𝛼 → 0 as

𝑟 → 1, Theorem 6 indicates that the error asymptotically converges

to 0 with respect to the iteration 𝑡 and 𝑟 .

7 EXPERIMENTS
Datasets and models. We evaluate the performance of the pro-

posed FedDSE over two models and three mainstream datasets. In

specific, two distinct models including a CNN for EMNIST [24],

a pre-activated ResNet [38] for CIFAR-10 and CIFAR-100 [23] are

adopted for performance evaluation. The Static Batch Normaliza-

tion method is applied instead of Batch Normalization, and a scalar

module follows each convolution layer [10] is introduced. We use

four convolution layers to compose the CNN model, whose chan-

nels are {64, 128, 256, 512}, respectively.
Data heterogeneity. For EMNIST, CIFAR-10 and CIFAR-100, we

follow the non-IID split method in HeteroFL [10]. In the following
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Table 1: The comparison of test accuracy of different methods. Each experiment is conducted three times with random seeds.

Method

High Data Heterogeneity(%) Low Data Heterogeneity(%)

EMNIST CIFAR-10 CIFAR-100 EMNIST CIFAR-10 CIFAR-100

HeteroFL 93.21±1.23 38.13±1.91 8.00±2.45 97.61±1.02 47.01±1.34 11.16±2.02

Federated Dropout 87.96±2.11 50.16±2.63 10.47±2.87 97.63±1.92 58.16±2.26 16.21±2.10

FedRolex 91.41±1.15 55.61±1.62 14.02±1.90 98.61±0.98 68.04±1.34 20.81±1.18

FedDSE 95.34±1.24 58.19±1.57 16.61±1.87 98.65±1.01 70.82±1.16 22.93±1.31

of this paper, L indicates the number of classes each client has.

According to the size of L, we define High Data Heterogeneity and

LowData Heterogeneity. For EMNIST and CIFAR-10, 𝐿 = 2 indicates

High Data Heterogeneity, and 𝐿 = 4 means Low Data Heterogeneity

For CIFAR-100, we adopt 𝐿 = 5 for High Data Heterogeneity and

𝐿 = 10 for Low Data Heterogeneity.

Model heterogeneity. We define five different client model capac-

ities 𝛽 ={1 (0, 0.01, 0.99), 1/2 (0.01, 0.98, 0.01), 1/4 (0.01, 0.98, 0.01),

1/8 (0.01, 0.98, 0.01), 1/16 (0, 1, 0)}. As most clients’ capacities do not

reach the capacity of the server and include several intermediate

values, we define a ratio 𝛼 = 1⇑16 to better simulate the real client

distribution. Each client’s model capacity fluctuates around 𝛼 of

the original capacity. Using 1⇑2 as an example, 1⇑2 represents client

model capacity. (0.01, 0.98, 0.01) i.e., the probability distribution

of {1⇑2 + 1⇑16, 1⇑2, 1⇑2 − 1⇑16}. The global model channels are al-

located according to the number of channels in each layer of the

client model.

Baselines. We compare three Partial Training (PT)-based FL meth-

ods. Specifically, HeteroFL [10] is a static distribute neuron method.

FedRolex [39] and Federated Dropout[7] are dynamic distribute neu-

ron methods. To guarantee the fairness of comparison, we use the

same learning rate, local epochs, as well as communication rounds.

In this paper, we mainly focus on the performance of FedDSE rather
than model optimization using the existing multi-step learning rate

decay schedule that may lead to an efficiency decrease. More details

about each method and dataset can be found in the Appendix D

(including the setting of Table 2-5).

Configurations and platform. For EMNIST, CIFAR-10 and CIFAR-

100, we apply bounding box crop [34] to augment the images. In

each communication round, 10% of the 100 clients are selected for

training, with frc = 10%. At the beginning of each communication

round, the selected clients’ capacities are dynamically chosen from

a uniform distribution. Experiments are conducted atop PyTorch

framework. The specifics of hyperparameters are shown in the

Appendix. Experiments are carried out on computing machines

with Nvidia RTX 3090, K80 and 1080Ti GPUs.

Evaluation metric. For image classification tasks, global accuracy

is adopted as the evaluation metric, which is defined as the server

model’s accuracy over the entire test set. Besides, we also compare

the cost of memory, communication, and computation of FedAvg

and FedDSE in Table 7 of the appendix.

7.1 Performance Comparison with Baselines
Table 1 compares our FedDSE with four PT-base methods. The tem-

perature of FedDSE is set to be 0. For a fair comparison, the client

distribution is done in the aforementioned way. We observe that

FedDSE achieves the best performance over the other three methods
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Figure 4: Impact of client model heterogeneity distribution
in EMNIST and CIFAR-10
under both high data heterogeneity and low data heterogeneity

conditions. In addition, the results have proved that under high

data heterogeneity, FedDSE significantly outperforms FedRolex on

EMNIST and CIFAR10. This indicates that when the number of

classes is relatively small, our method can accurately capture and

activate the relevant neurons for training, hence achieving better

results on EMNIST and CIFAR10 with 10 classes and 𝐿 = 2. While

for CIFAR100 with 100 classes and 𝐿 = 5 where the sizes of the

client dataset remain the same, it becomes difficult to select the

active neurons, and the improvement is a mere 0.9%. Under low data

heterogeneity where the client datasets are evenly distributed, the

model converges faster and leads to prominent training overhead

reduction. On the simple EMNIST dataset, FedDSE achieves similar

accuracy as FedRolex. For complex datasets like CIFAR10 and CI-

FAR100, under more evenly distributed data, FedDSE outperforms

other methods significantly by selecting and activating relevant

neurons. HeteroFL can hardly cope with the situation when most

client capacities are not up to the server capacity. The reason is

that the neurons in the later part of the same layer will be trained

with few times, and these neurons cause an accuracy drop in the

global model. This phenomenon is not very obvious over EMNIST

due to the simplicity of the dataset, as training a limited number of

neurons can achieve decent results. The Federated Dropout method

performs moderately. It randomly drops neurons causing high vari-

ance and instability. The performance of FedRolex is second only to

FedDSE. We have thoroughly analyzed the reasons in the theoretical

part, so we omit it here.

7.2 Impact of Client Model Heterogeneity
In the above experiments, the distribution of client capacities is

set uniformly. Now we conduct the test by varying the value of 𝜌

to introduce different distributions. We choose two client model

capacities 𝛽=1/2,1/16. 𝜌 is defined as the proportion of 1⇑2 clients.

For example, 𝜌 = 0.2 means that client capacity of 1⇑2 accounts for

0.2 and 1⇑16 accounts for 0.8.

Figure 5 shows that the accuracy increases as 𝜌 increases on the

whole. For EMNIST in Figure 4(a), under high data heterogeneity,
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Figure 5: Ablation Study
the peak is reached at 𝜌=1. This indicates that the model conver-

gence requires a combination of a large number of models. Thus the

accuracy increases linearly with 𝜌 . Under low data heterogeneity,

the peak appears at 𝜌 = 0.4, proving that a large global model is not

a prerequisite for fast convergence. Therefore, when 𝜌 exceeds 0.4,

the model accuracy fluctuates up and down as 𝜌 increases. For the

complex CIFAR-10 dataset in Figure 4(b), the accuracy continues to

increase with the increase of 𝜌 . This indicates that FedDSE is suit-
able for appropriately increasing the model parameters to improve

the effect when dealing with complex problems.

7.3 Impact of Statistical Heterogeneity
In the above experiments, we define high and low data heterogene-

ity. In EMNIST, they are set as 𝐿 = {2, 4}, respectively. Here, we
set 𝐿 = {2, 4, 6, 8, 10}. In doing so, the testing results can reflect the

influence of the degree of data heterogeneity on global accuracy.

Figure 5(a) shows that the accuracy improves significantly when

𝐿 = 2 and 𝐿 = 4, while the impact of data heterogeneity becomes

mild from 𝐿 = 4 to 𝐿 = 10. In the scenario of 10 classes, it is common

for users to encounter up to 4 classes at most.

7.4 Impact of Client Selection
Rather than simply setting frc as 10%, we vary the number of se-

lecting clients from 5% to 20% with a step length of 5%. Figure 5(b)

shows that under high data heterogeneity, frc improves the accu-

racy significantly when it increases from 5% to 10%. However, from

10% to 20%, the effect of frc becomes mild. Through Figure 5(b)

we can find that a decent balance between model accuracy and

convergence overhead can be reached when frc = 10%.

7.5 Impact of Data Size for Extraction
In the above experiments, the entire client dataset is adopted as the

inference data. Here, we vary the inference batch size as {64, 128, 256,

𝑎𝑙𝑙} to explore the impact of the inference data scale. In specific,

’all’ refers to the size of the local dataset, which is 500 in EMNIST.

Figure 5(c) shows that when the inference batch size reaches 128,

the activated neurons selected can basically meet the requirements

during inference. Figure 5(c) also indicates that simply increasing

the inference batch size beyond 128 brings negligible accuracy gain.

In other words, adopting an appropriate batch size leads to faster

model convergence and fewer selected clients.

7.6 Comparison with Federated Distillation
FLwith knowledge distillation accommodates heterogeneousmodel

structures among clients and thus also allows training heteroge-

neous sub-models over different clients [31, 42]. In fact, our method
is orthogonal to these methods.We can utilize FedDSE to extract sub-
models and then adopt federated distillation to aggregate all sub-

models. To show this, we also compare our method with FedDF [31]

on EMNIST, as shown in Figure 5(d). It can be observed that combin-

ing with federated distillation can further improve the performance

of FedDSE. Besides, our method combined with federated distilla-

tion outperforms the baseline.

7.7 Impact of Temperature
In practice, we can also choose the temperature adaptively to

achieve both benefits of activation-based selection and evenly-

trained selection. To show this, we also conduct some experiments

to compare FedDSE with hard-TopK and with soft-TopK, as shown

in Table 2 on EMNIST. Homo. (1⇑4) denotes that all clients are
homogeneous and can only train 1⇑4 of the full model, and Het-

erogeneous capability adopts the same setting as Table 1. It can

be observed from the table that 𝑇 = 0 and 𝑇 = 1 perform better

separately in different scenarios. Generally, higher temperature is

more applicable to the settings where the capability of clients are

homogeneous and vice versa. It is also worthwhile to note that our

method always outperforms SOTA baseline, i.e., FedRolex.

Table 2: Impact of different Temperature.

Capacity Method

Data heterogeneity

High Low Homogeneity

Homo. (1/4)

FedRolex 93.35 97.29 97.04

FedDSE (T=0) 81.25 89.74 88.05

FedDSE (T=1) 96.59 98.21 97.83

Homo. (1/2)

FedRolex 97.76 98.52 98.74

FedDSE (T=0) 91.51 96.53 95.24

FedDSE (T=1) 98.45 99.16 99.09

Heterogeneous

FedRolex 91.41 98.61 98.67

FedDSE (T=0) 95.34 98.65 98.69
FedDSE (T=1) 94.60 97.86 98.15

8 CONCLUSION
This paper focuses on sub-model extraction in federated learning.

We have observed that clients tend to activate distinct neurons of

the model due to statistical heterogeneity. This may lead to a com-

petition problem for neurons in the sub-model when extracted inap-

propriately. To address this challenge, we propose a new sub-model

extraction method for FL called FedDSE that exploits the activation

distribution properties of neural networks and edge devices. Our

method selects neurons with the largest activation value, adaptively

designating them to different clients. We prove the convergence of

our method theoretically and demonstrate its effectiveness through

experimental results which outperform state-of-the-art techniques.

However, our method requires downloading the entire model

which may increase communication costs. Furthermore, the lo-

cal sub-model extraction process incurs extra computational costs

despite being only an inference process. In addition to memory

efficiency, we aim to further improve the efficiency in terms of

communication and computation in future work.
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A MORE DETAILS ABOUT THE DESIGN OF MOTIVATION AND METHOD
A.1 Investigation on Discrepancy of Activation Distribution
To investigate the principle behind the discrepancy of activation distribution among clients, we conduct the following experiment on a

three-layer MLP with the MNIST dataset. The results are shown in Figure 6. There are a total of 5 clients and each client is allocated with

2 classes. The activation values outputted by the second layer over the datasets of all clients are illustrated together to demonstrate the

difference among clients. Each client is denoted by a distinct color. It can be observed that the differences in data distribution can lead to

disparities in the distribution of activation values.

The reason for activation reflecting data distribution is that activations between classes can be distinctly differentiated. The inference of

neural networks is to progressively increase the linear separability of activation between classes from shallow to deep layers such that the

last fully-connected classification layer can distinguish them. Hence, the activation can reflect its corresponding class and different classes

also correspond to different activation. In FL, clients are usually equipped with various distributions of classes, and thus the activation

distributions of different clients also differ from each other.

A.2 More details about motivation

1.0 0.5 0.0 0.5 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Activation Distributions of Layer-2

Client 0
Client 1
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Client 3
Client 4

Figure 6: Illustration of activation dis-
tribution of different clients.

In the main text, we have shown that different clients (client 1 and client 2) with different

data distributions tend to activate different neurons. For the comprehensiveness of this

conclusion, we present the comparison results of all clients, as shown in Figure 7 and 8.

Obviously, all client pairs will activate different neurons.

A.3 More details about the design of method
The goal of FedDSE downloading the entire global model is to utilize the local dataset to

identify neurons with large activation. In fact, many recent data-free methods have been

proposed, which makes it unnecessary to rely on the real local dataset. Like [47], the server

can train a generator based on the local model uploaded by each client. Then, the server

utilizes the generator to produce pseudo-data samples which follow the same distribution

as the local dataset. Based on these pseudo samples, the server can extract neurons from

the global like FedDSE. One concern may be that the samples produced by the generator

may cause privacy leakage which recovers the original samples. In fact, the recovery level

heavily relies on the training strategies of the generator. The server can simply adopt the

naive training method and learn the distribution instead of the original data samples. Besides, the generator can also be trained to generate

intermediate feature maps instead of the original data samples to protect privacy.

B PROOFS OF THEORIES OVER THE TWO-LAYER NEURAL NETWORKS
G

en
er

at
o
r

z

Noise

…

…

Global Model

Local Sub-model
Pseudo Data 

Figure 9: Server extracts sub-models
based on the pseudo data.

To verify our motivation, we seek to first show that the classification accuracy is strongly

related to the activation magnitude of neurons. Then, we show that the activation magnitude

of some neurons of one client can be reduced by another client with different distributions.

We consider a two-layer neural network with the popular ReLU as the activation function

and there are𝑚 neurons in the hidden layer. The neural network is trained with a basic cross-

entropy loss function.Without losing generality, we mainly consider the binary classification

task.

We denote the parameters of the second layer as w2 and the parameters of class 𝑐

are w2,𝑐 . Similarly, we denote w1,𝑖 as the first-layer parameters corresponding to the 𝑖-th

hidden neuron, and𝑤1,𝑖, 𝑗 as a first-layer parameter connected between the input neuron

𝑗 and hidden neuron 𝑖 . Besides, the activation of the 𝑖-th hidden neuron is denoted as

ℎ
𝑘
𝑖 = 𝜎(w1,𝑖x𝑘) with the input sample as x𝑘 with extend dimension 1 to incorporate the

bias, and h𝑘 = (︀ℎ1

𝑖 , ℎ
2

𝑖 , . . . , ℎ
𝑚
𝑖 ⌋︀ as the activation vector outputted by the hidden layer.

To optimize the parameters, the neural network will first compute the probability for each class 𝑐 and sample x𝑘 :

𝑝
𝑘
𝑐 =

𝑒
w2,𝑐h𝑘

∑𝐶𝑠=1
𝑒w2,𝑠h𝑘

, (5)

and the cross-entropy loss is:

𝐿𝑘 = −
𝐶

∑
𝑐=1

𝐼(𝑦𝑘 = 𝑐)log 𝑝𝑘𝑐 , (6)
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Figure 7: Comparison of activation distributions of a 3-layer MLP on MNIST. (a-c) Activations of two clients on layer-1, 2 and 3.
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Figure 8: Comparison of activation distributions of a 3-layer MLP on MNIST. (a-c) Activations of two clients on layer-1, 2 and 3.
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where 𝐼(⋅) denotes indication function. The gradient of w𝑘𝑐 is:

𝑔(w𝑘
2,𝑐) = −(𝐼(𝑦𝑘 = 𝑐) − 𝑝𝑘𝑐 )h𝑘 . (7)

According to the process of backward propagation, the gradient 𝑔(w𝑘
1,𝑖) of the parameter corresponding to the 𝑖-th hidden neuron is:

𝑔(w𝑘
1,𝑖) = −(︀

𝐶

∑
𝑐=1

(𝐼(𝑦𝑘 = 𝑐) − 𝑝
𝑘
𝑐 )𝑤2,𝑐,𝑖⌋︀x𝑘

= −(1 − 𝑝𝑘𝑐 )𝑤2,𝑐,𝑖x
𝑘 +

𝐶

∑
𝑠≠𝑐,𝑠=1

𝑝
𝑘
𝑠𝑤2,𝑠,𝑖x

𝑘
(8)

Next, we show that the activation magnitude of some neurons of one client can be reduced by another client with different distributions.

THEOREM 1. Consider a two-layer neural network employing the ReLU activation function and being trained with a cross-entropy loss. Let
D𝑛1

comprise samples belonging to class 𝑠 , and D𝑛2
consist of samples from class 𝑐 , representing the datasets of clients 𝑛1 and 𝑛2 respectively.

Let ℎ𝑖(D𝑛1
) = ∑𝐷𝑗=1

ReLU(w𝑇𝑖 x𝑗) represent the sum of activations of the 𝑖-th selected hidden neuron across dataset D𝑛1
, with 𝐷 denoting the

dataset size. Subsequently, training the sub-model ŵ on dataset D𝑛2
and denoting 𝑝𝑘𝑠 as the probability score of sample x𝑘 ∈ D𝑛2

over the trained
sub-model, with a learning rate 𝜂 > 0, yields the following observations:
●When the dataset D𝑛1

of client 𝑛1 is homogeneous to the local training dataset D𝑛2
of client 𝑛2, i.e.,∑x𝑘∈D𝑛

2

𝑝
𝑘
𝑠 (x𝑘)𝑇 x𝑗 ≥ 0 for each sample

x𝑗 ∈ D𝑛1
, the activation sum ℎ𝑖(D𝑛1

) increases, where the augmentation can be as high as 𝜂∑x𝑗 ∈D𝑛
1

∑x𝑘∈D𝑛
2

𝑝
𝑘
𝑠 (𝑤2,𝑐,𝑖 −𝑤2,𝑠,𝑖)(x𝑘)𝑇 x𝑗 .

● Conversely, when the dataset D𝑛2
of client 𝑛1 is heterogeneous to the local training dataset D𝑛2

of client 𝑛2, i.e.,∑x𝑘∈D𝑛
2

𝑝
𝑘
𝑠 (x𝑘)𝑇 x𝑗 ≤ 0 for

each sample x𝑗 ∈ D𝑛1
, the activation sumℎ𝑖(D𝑛1

) decreases, where the reduction isMin(−𝜂∑x𝑗 ∈D𝑛
1

∑x𝑘∈D𝑛
2

𝑝
𝑘
𝑠 (𝑤2,𝑐,𝑖−𝑤2,𝑠,𝑖)(x𝑘)𝑇 x𝑗 , ℎ𝑖(D𝑛1

)).

Proof. To investigate the change of activation values over the previous client 𝑛1 and current client 𝑛2, we start with the optimization of

the last-layer classifier parameters. Specifically, we consider the current client contains the samples of class 𝑐 whereas the previous client

only contains the samples of class 𝑠 . After neuron selection, we denote 𝑁𝑖 the set of selected neurons for each client 𝑖 and denote
ˆh as the

activation vector of the hidden layer in sub-model ŵ. The gradient of parameters corresponding to the class 𝑐 and class 𝑠 respectively for

each sample x𝑘 with the label 𝑦
𝑘 = 𝑐 is:

∇𝐿𝑘
∇ŵ𝑘

2,𝑐

= −(1 − 𝑝𝑘𝑐 )ˆh𝑘 = −(1 − 𝑒
ŵ2,𝑐

ˆh𝑘

∑𝐶𝑖=1
𝑒ŵ2,𝑖

ˆh𝑘
)ˆh𝑘 ,

∇𝐿𝑘
∇ŵ𝑘

2,𝑠

= 𝑝𝑘𝑠 ˆh𝑘 = 𝑒
ŵ2,𝑠

ˆh𝑘

∑𝐶𝑖=1
𝑒ŵ2,𝑖

ˆh𝑘
ˆh𝑘 . (9)

The updating formula of the two parameters is:

ŵ𝑘
2,𝑐 = ŵ𝑘2,𝑐 + 𝜂(1 − 𝑝𝑘𝑐 )ˆh𝑘 , ŵ𝑘

2,𝑠 = ŵ𝑘2,𝑠 − 𝜂𝑝𝑘𝑠 ˆh𝑘 . (10)

Since the activation value from the ReLU function is always positive, i.e., h≥0, we can intuitively find that the parameters ŵ𝑘
2,𝑐 corresponding

to the local class 𝑐 always increase while the parameters ŵ𝑘
2,𝑠 corresponding to the class 𝑠 of previous client always decreases. Further, we

can derive the final converged parameter by solving the following equation to find the saddle points:

𝜕𝐿𝑘

𝜕ŵ𝑘
2,𝑐

= 0,
𝜕𝐿𝑘

𝜕ŵ𝑘
2,𝑠

= 0, (11)

where the solution is:

ŵ𝑘
2,𝑐 →∞, ŵ𝑘

2,𝑐 → −∞. (12)

Hence, we can immediately derive that the local training process over all samples of local data will update the classifier parameters as

ŵ2,𝑐 →∞, ŵ2,𝑐 → −∞. (13)

Now, we investigate the update of parameters in the first layer. For each selected neuron 𝑖 ∈ 𝑁𝑛2
, the gradient of its correspond parameters

w𝑘
1,𝑖 for each sample x𝑘 with label 𝑦

𝑘 = 𝑐 is:

𝜕𝐿𝑘

𝜕w𝑘
1,𝑖

= −(︀
𝐶

∑
𝑐=1

(𝐼(𝑦𝑘 = 𝑐) − 𝑝
𝑘
𝑐 )𝑤2,𝑠,𝑖⌋︀x𝑘

= −(1 − 𝑝𝑘𝑐 )𝑤2,𝑐,𝑖x
𝑘 +

𝐶

∑
𝑠≠𝑐,𝑠=1

𝑝
𝑘
𝑠𝑤2,𝑠,𝑖x

𝑘
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= 𝑝𝑘𝑠 (−𝑤2,𝑐,𝑖 +𝑤2,𝑠,𝑖)x𝑘

(14)

where 𝐼(⋅) is an indication function. By applying the local training process over the local dataset D𝑛 , we have the updated formula of the

parameter w𝑘
1,𝑖 as:

w′
1,𝑖 = w1,𝑖 + 𝜂

𝐷

∑
𝑘=1

𝑝
𝑘
𝑠 (𝑤2,𝑐,𝑖 −𝑤2,𝑠,𝑖)x𝑘 , (15)

where 𝐷 is the number of samples in each client. Based on equation (13), we can get that𝑤2,𝑐,𝑖 −𝑤2,𝑠,𝑖 > 0 when the number of local training

epochs is sufficient. Now, we can obtain the activation average of this updated neuron 𝑖 over any dataset D:

ℎ
′
𝑖(D) = ∑

x𝑗 ∈D
ReLU(w′

1,𝑖x
𝑗)

=
𝐷

∑
𝑗=1

ReLU(w𝑇
1,𝑖x

𝑗 + 𝜂
𝐷

∑
𝑘=1

𝑝
𝑘
𝑠 (𝑤2,𝑐,𝑖 −𝑤2,𝑠,𝑖)(x𝑘)𝑇 x𝑗), (16)

When the dataset D is homogeneous to the local dataset D𝑛 , i.e., ∑x𝑘∈D𝑛 𝑝
𝑘
𝑠 (x𝑘)𝑇 x𝑗 ≥ 0 for any x𝑗 ∈ D, according to the convexity of

monotonicity of the ReLU function, we have

ℎ𝑖(D) =
𝐷

∑
𝑗=1

ReLU(w𝑇
1,𝑖x

𝑗) ≤ ℎ′𝑖(D)

=
𝐷

∑
𝑗=1

ReLU(w𝑇
1,𝑖x

𝑗 + 𝜂
𝐷

∑
𝑘=1

𝑝
𝑘
𝑠 (𝑤2,𝑐,𝑖 −𝑤2,𝑠,𝑖)(x𝑘)𝑇 x𝑗)

≤
𝐷

∑
𝑗=1

ReLU(w𝑇
1,𝑖x

𝑗) +
𝐷

∑
𝑗=1

ReLU(𝜂
𝐷

∑
𝑘=1

𝑝
𝑘
𝑠 (𝑤2,𝑐,𝑖 −𝑤2,𝑠,𝑖)(x𝑘)𝑇 x𝑗)

= ℎ𝑖(D) + 𝜂
𝐷

∑
𝑗=1

𝐷

∑
𝑘=1

𝑝
𝑘
𝑠 (𝑤2,𝑐,𝑖 −𝑤2,𝑠,𝑖)(x𝑘)𝑇 x𝑗 , (17)

where ℎ𝑖(D) represents the activation mean of the 𝑖-th neuron of the non-updated model ŵ over the dataset D. Based on this equation (17),

considering D = D𝑛 , we can immediately derive that the local training process increases the neuron activation over the local dataset, i.e.,

ℎ𝑖(D𝑛) ≤ ℎ′𝑖(D𝑛). The increased overall activation is 𝜂∑𝐷𝑗=1∑𝐷𝑘=1
𝑝
𝑘
𝑠 (𝑤2,𝑐,𝑖 −𝑤2,𝑠,𝑖)(x𝑘)𝑇 x𝑗 .

Similarly, when the dataset D is heterogeneous to the local dataset D𝑛 , i.e., ∑x𝑘∈D𝑛 𝑝
𝑘
𝑠 (x𝑘)𝑇 x𝑗 ≤ 0 for any x𝑗 ∈ D, according to the

convexity of monotonicity of the ReLU function, we have

ℎ
′
𝑖(D) =

𝐷

∑
𝑗=1

ReLU(w𝑇
1,𝑖x

𝑗 + 𝜂
𝐷

∑
𝑘=1

𝑝
𝑘
𝑠 (𝑤2,𝑐,𝑖 −𝑤2,𝑠,𝑖)(x𝑘)𝑇 x𝑗)

= Max(
𝐷

∑
𝑗=1

ReLU(w𝑇
1,𝑖x

𝑗) −
𝐷

∑
𝑗=1

ReLU(−𝜂
𝐷

∑
𝑘=1

𝑝
𝑘
𝑠 (𝑤2,𝑐,𝑖 −𝑤2,𝑠,𝑖)(x𝑘)𝑇 x𝑗), 0)

= Max(ℎ𝑖(D) + 𝜂
𝐷

∑
𝑗=1

𝐷

∑
𝑘=1

𝑝
𝑘
𝑠 (𝑤2,𝑐,𝑖 −𝑤2,𝑠,𝑖)(x𝑘)𝑇 x𝑗 , 0)

≤
𝐷

∑
𝑗=1

ReLU(w𝑇
1,𝑖x

𝑗)

= ℎ𝑖(D). (18)

Hence, the overall activation of each 𝑖-th selected neuron over the dataset D is reduced when the sub-model has been locally updated with

the local dataset D𝑛 , i.e., ℎ𝑖(D) ≥ ℎ′𝑖(D). The reduced overall activation is Min(−𝜂∑𝐷𝑗=1∑𝐷𝑘=1
𝑝
𝑘
𝑠 (𝑤2,𝑐,𝑖 −𝑤2,𝑠,𝑖)(x𝑘)𝑇 x𝑗 , ℎ𝑖(D)). The proof

is done. □

Proposition 2. Given a well-converged two-layer neural network with the ReLU activation function, high activation values have a large impact
on the probability score than low activation values. Specifically, for any sample x with label 𝑦 = 𝑐 , the ratio of impact over probability score 𝑝𝑐
between a high activation ℎ𝐻 and a low activation ℎ𝐿 is approximately 𝑒𝛼(ℎ

2

𝐻−ℎ
2

𝐿), where 𝛼 > 0 is a constant.
Proof : Based on [1] (Theorem 1), all sample features of each class 𝑐 collapse to their mean h𝑐 and the converged parameters w2,𝑐 of the

class 𝑐 have the same direction as the activation mean of its class, i.e., w2,𝑐 = 𝛼h𝑐 , where 𝛼 > 0 is a constant. Hence, the activation of a given
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sample x with label 𝑦 = 𝑐 is approximately equivalent to the activation mean h ≈ h𝑐 . Accordingly, the impact of the high activation and low

activation can be obtained separately based on equation (5) as

Impact(𝑝𝑐 , ℎ𝐻 ) =
𝑒
w2,𝑐,𝐻ℎ𝐻

∑𝐶𝑠=1
𝑒w2,𝑠h

≈ 𝑒
𝛼ℎ

2

𝐻

∑𝐶𝑠=1
𝑒w2,𝑠h

, (19)

Impact(𝑝𝑐 , ℎ𝐿) =
𝑒
w2,𝑐,𝐿ℎ𝐿

∑𝐶𝑠=1
𝑒w2,𝑠h

≈ 𝑒
𝛼ℎ

2

𝐿

∑𝐶𝑠=1
𝑒w2,𝑠h

. (20)

Computing the ratio between the two impacts derives the proposition.

[1] Fang, Cong, et al. "Exploring deep neural networks via layer-peeled model: Minority collapse in imbalanced training." Proceedings of

the National Academy of Sciences 118.43 (2021): e2103091118.

Proposition 3. When training sub-models on clients with heterogeneous distributions relative to a specific client, the reduction in neuron
activation for a two-layer neural network, achieved through either random or sequential neuron selection strategies, is greater compared to that of
our distribution-aware selection method under the worst-case.

proof Based on Theorem 1, the activation magnitude of neurons over the dataset D𝑛 of some specific client 𝑛 will be reduced to 0 under

the worst-case when these neurons are allocated to another client with heterogeneous data distribution to this specific client. Since existing

strategies cannot avoid allocating the top neurons of some specific client to other clients with heterogeneous distributions, they will reduce

the activation of neurons with the highest magnitudes to 0. Denote the activation of 𝑖-th neuron over the specific client 𝑛 as ℎ
𝑛
𝑖 (D𝑛) and

the selected 𝑟 neurons by other clients with the highest magnitudes are numbered from 1 to 𝑟 . Then, the overall reduction in activation by

existing strategies is

Δℎ =
𝑟

∑
𝑖=1

ℎ
𝑛
𝑖 (D𝑛). (21)

Considering that our distribution-aware method avoids clients selecting the top neurons in the client 𝑛 when they have heterogeneous

distributions, we denote the selected neurons to be 𝑜
1
, . . . , 𝑜

𝑟
. Hence, the overall reduction in activation by our method is

Δℎ′ =
𝑟

∑
𝑖=1

ℎ
𝑛
𝑜𝑖 (D𝑛) (22)

Considering that the neurons numbered 1 to 𝑟 have the largest activation, i.e.,

ℎ
𝑛
𝑖 (D𝑛) ≤ ℎ𝑛𝑗 (D𝑛), for any1 ≤ 𝑖 ≤ 𝑟, 𝑟 + 1 ≤ 𝑗 ≤𝑚, (23)

we have

Δℎ =
𝑟

∑
𝑖=1

ℎ
𝑛
𝑖 (D𝑛) ≥

𝑟

∑
𝑖=1

ℎ
𝑛
𝑜𝑖 (D𝑛) = Δℎ

′
, (24)

which completes the proof.

Theorem 4. Given a two-layer converged neural network including𝑚 neurons with the ReLU activation function. The obtained probability
score 𝑝𝑠(D𝑛) over the dataset D𝑛 of some specific client 𝑛, after running on heterogeneous clients with sub-models extracted through either
random or sequential neuron selection strategies, is smaller than our distribution-aware selection method 𝑝′𝑠(D𝑛) under the worst-case, i.e.,
𝑝𝑠(D𝑛) ≤ 𝑝′𝑠(D𝑛).

Proof : We consider there are a total of𝑚 neurons in the hidden layer of the global neural network. We assume that neurons numbered 1

to 𝑟 are the neurons with the highest activation values on client 𝑛1 with the dataset D𝑛 comprising samples belonging to class 𝑠 . In the

following, we show that the probability score of the global model over client 𝑛1 will be reduced when the neurons are allocated without

considering their relationship to data distribution.

Under the worst case, on the 𝑡-th round, we consider the sub-models extracted by clients 𝑆𝑡 with heterogeneous distribution to the client

𝑛1 contain neurons numbered 1 to 𝑟 while the client 𝑛 does not participate in this round. Based on Theorem 1, the activation values of the

local sub-models obtained by these clients are 0 when there are sufficient local training iterations. By denoting the local parameters for the

𝑖-th neuron in the selected client 𝑛 𝑗 as w
𝑛 𝑗

1,𝑖 , then we have

ℎ
𝑛 𝑗

𝑖 (D𝑛) = ∑
x𝑘∈D𝑛

ReLU((w𝑛 𝑗

1,𝑖)
𝑇 x𝑘) = 0, (25)

for each client 𝑛 𝑗 ∈ 𝑆𝑡 that contains the 𝑖-th selected neuron. After that, the parameters of each neuron in different clients are aggregated

correspondingly in a FedAvg manner, and the global parameters of the 𝑖-th neuron arew1,𝑖 = 1

⋃︀𝑆𝑡 ⋃︀ ∑𝑛 𝑗 ∈𝑆𝑡 w
𝑛 𝑗

1,𝑖 . Now, we can obtain the overall

activation value ℎ𝑖(D𝑛) of each 𝑖 neuron in 1 to 𝑟 of the global model on the dataset D𝑛 of the client 𝑛:

ℎ𝑖(D𝑛) = ∑
x𝑘∈D𝑛

ReLU(w𝑇
1,𝑖x

𝑘)

= ∑
x𝑘∈D𝑛

ReLU(( 1

⋃︀𝑆𝑡 ⋃︀
∑
𝑛 𝑗 ∈𝑆𝑡

w𝑛 𝑗

1,𝑖)
𝑇 x𝑘)

16



1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

FedDSE: Distribution-aware Sub-model Extraction for Federated Learning over Resource-constrained Devices Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

= ∑
x𝑘∈D𝑛

ReLU( 1

⋃︀𝑆𝑡 ⋃︀
∑
𝑛 𝑗 ∈𝑆𝑡

(w𝑛 𝑗

1,𝑖)
𝑇 x𝑘)

≤
(𝑎)

1

⋃︀𝑆𝑡 ⋃︀
∑

x𝑘∈D𝑛
∑
𝑛 𝑗 ∈𝑆𝑡

ReLU((w𝑛 𝑗

1,𝑖)
𝑇 x𝑘)

= 0, (26)

where the inequality (a) is due to the convexity of the ReLU function. Since the activation ℎ𝑖(D𝑛) ≤ 0, we have ℎ𝑖(D𝑛) = 0. As a consequence,

the activation of neurons numbered 1 to 𝑟 in the global model over some specific client 𝑛 will be significantly reduced with an inappropriate

selection strategy.

Since the classifier parameters𝑤2,𝑠,𝑖 connected the 𝑖-th hidden neuron and the class 𝑠 approach are not selected when 𝑟 + 1 ≤ 𝑖 ≤𝑚, their

value approaches the activation mean of samples with the class 𝑠 when the model converges based on Theorem 1 in [1]. Hence, we denote

𝑤2,𝑠,𝑖 = 𝛼𝑠ℎ𝑠𝑖 and𝑤2,𝑐,𝑖 = 𝛼𝑐ℎ𝑐𝑖 , for 𝑟 + 1 ≤ 𝑖 ≤𝑚, where 𝛼𝑠 > 0 and 𝛼𝑐 > 0 are constants. Then, the probability score 𝑝𝑠 of the global model

over the dataset D𝑛 becomes:

𝑝𝑠 = ∑
x𝑘∈D𝑛

𝑒
w2,𝑠h𝑘

∑𝐶𝑐=1
𝑒w2,𝑐h𝑘

= ∑
x𝑘∈D𝑛

𝑒∑
𝑟
𝑖=1

𝑤2,𝑠,𝑖 ⋅0+∑𝑚
𝑖=𝑟+1

𝑤2,𝑠,𝑖ℎ
𝑘
𝑖

𝑒∑
𝑟
𝑖=1

𝑤2,𝑠,𝑖 ⋅0+∑𝑚
𝑖=𝑟+1

𝑤2,𝑠,𝑖ℎ
𝑘
𝑖 + 𝑒∑𝑟

𝑖=1
𝑤2,𝑐,𝑖 ⋅0+∑𝑚

𝑖=𝑟+1
𝑤2,𝑐,𝑖ℎ

𝑘
𝑖

≈ 𝐷 𝑒
𝛼𝑠 ∑𝑚

𝑖=𝑟+1
(ℎ𝑠𝑖 )

2

𝑒𝛼𝑠 ∑
𝑚
𝑖=𝑟+1

(ℎ𝑠
𝑖
)2 + 𝑒𝛼𝑐 ∑𝑚

𝑖=𝑟+1
ℎ𝑐
𝑖
ℎ𝑠
𝑖

≤ 𝐷 𝑒
𝛼𝑠 ∑𝑚

𝑖=𝑟+1
(ℎ𝑠𝑖 )

2

𝑒𝛼𝑠 ∑
𝑚
𝑖=𝑟+1

(ℎ𝑠
𝑖
)2 + 𝑒𝛼𝑐(𝑚−𝑟)ℎ𝑐𝑚𝑖𝑛

ℎ𝑠
𝑚𝑖𝑛

, (27)

where ℎ
𝑠
𝑚𝑖𝑛 and ℎ

𝑐
𝑚𝑖𝑛 is the minimum activation among all neurons for class 𝑠 and 𝑐 respectively.

As our method selects neurons according to the distribution of each client, we contend that the neurons chosen by clients 𝑆𝑡 with

heterogeneous distributions are not the neurons numbered 1 to 𝑟 which are top neurons over the client 𝑛. We consider the neurons selected

by clients 𝑆𝑡 to be numbered 𝑛
1
to 𝑛

𝑟
. Similar to (27), we can derive the probability score 𝑝

′
𝑠 of the global model w over the the training

dataset D𝑛 is

𝑝
′
𝑠 ≈ 𝐷

𝑒
𝛼𝑠 ∑𝑚−𝑟

𝑖=1
(ℎ𝑠

𝑛𝑖
)2

𝑒
𝛼𝑠 ∑𝑚−𝑟

𝑖=1
(ℎ𝑠

𝑛𝑖
)2

+ 𝑒𝛼𝑐 ∑
𝑚−𝑟
𝑖=1

ℎ𝑐
𝑛𝑖
ℎ𝑠
𝑛𝑖

≤ 𝐷 𝑒
𝛼𝑠 ∑𝑚−𝑟

𝑖=1
(ℎ𝑠

𝑛𝑖
)2

𝑒
𝛼𝑠 ∑𝑚−𝑟

𝑖=1
(ℎ𝑠

𝑛𝑖
)2

+ 𝑒𝛼𝑐(𝑚−𝑟)ℎ𝑐𝑚𝑖𝑛
ℎ𝑠
𝑚𝑖𝑛

, (28)

Since ℎ
𝑠
𝑖 ≤ ℎ𝑠𝑗 for any 1 ≤ 𝑖 ≤ 𝑟 , 𝑟 + 1 ≤ 𝑗 ≤𝑚, we have 𝑒

𝛼𝑠 ∑𝑚
𝑖=𝑟+1

(ℎ𝑠𝑖 )
2

≤ 𝑒𝛼𝑠 ∑
𝑚−𝑟
𝑖=1
(ℎ𝑠

𝑛𝑖
)2

. Hence, the upper bound of the probability score 𝑝𝑠 is

smaller than 𝑝
′
𝑠 , i.e.,

𝐷
𝑒
𝛼𝑠 ∑𝑚

𝑖=𝑟+1
(ℎ𝑠𝑖 )

2

𝑒𝛼𝑠 ∑
𝑚
𝑖=𝑟+1

(ℎ𝑠
𝑖
)2 + 𝑒𝛼𝑐(𝑚−𝑟)ℎ𝑐𝑚𝑖𝑛

ℎ𝑠
𝑚𝑖𝑛

≤ 𝐷 𝑒
𝛼𝑠 ∑𝑚−𝑟

𝑖=1
(ℎ𝑠

𝑛𝑖
)2

𝑒
𝛼𝑠 ∑𝑚−𝑟

𝑖=1
(ℎ𝑠

𝑛𝑖
)2

+ 𝑒𝛼𝑐(𝑚−𝑟)ℎ𝑐𝑚𝑖𝑛
ℎ𝑠
𝑚𝑖𝑛

, (29)

demonstrating our method’s effectiveness.

C PROOFS OF CONVERGENCE THEORIES
C.1 General Lemmas
Without losing generality, we in this paper consider that the size of the local dataset in each client is the same and all clients are selected in

each round. For ease of analysis, we introduce the index 𝑘 where 𝑘 = 𝑡 ∗ 𝐸 + 𝑒 . According to Algorithm 1, we have the following basic update

formula:

w𝑛𝑘+1
= w𝑛𝑘 − 𝜂∇w𝑛

𝑘
𝑓𝑛(w𝑛𝑘). (30)

We consider the following auxiliary global model w̄𝑘+1
, which helps analyze the bound of local updates:

w̄𝑘+1
= w̄𝑘 − 𝜂

1

𝑁

𝑁

∑
𝑛=1

∇w𝑛
𝑘
𝑓𝑛(w𝑛𝑘) (31)

Obviously, w̄𝑘 = w𝑡 , when 𝑘 = 𝑡 ∗ 𝐸. Besides, We define ŵ𝑛𝑘 as the full model which fills the sub-model w𝑛𝑘 with the global parameters in the

latest global round. According to the updating formula, we have ŵ𝑛𝑡,𝑒 = w𝑡 for all local iteration 𝑒 , and 1

𝑁 ∑
𝑁
𝑛=1

ŵ𝑛𝑘 = w̄𝑘 for all 𝑘 .
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Correspondingly, we also introduce an auxiliary full model which helps analyze the bound of the sub-model:

w̃𝑘+1
= w̃𝑘 − 𝜂

1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝑓𝑛(ŵ𝑛𝑘). (32)

Lemma 1’. Consider the gradient∇w⊙M 𝑓 (w⊙M) calculated from a sub-modelw⊙M and another gradient𝑄(∇w 𝑓 (w)) = ∇w(h𝑚)∇h𝑚 𝑓 (h𝑛)
computed from the entire model w but with the activation of neurons pruned by the sub-model set to zero, i.e., h𝑚 = h⊙m. For neural networks
that use the ReLU activation function, these two gradients are equivalent, meaning that ∇w⊙M 𝑓 (w⊙M) = 𝑄(∇w 𝑓 (w)).

Proof. We prove this lemma by showing that pruning neurons is equivalent to setting the activation of these neurons to be zero in both

the forward and backward process. Considering the 𝑝-th neuron in the (𝑙 − 1)-th layer is pruned, then the activation of each 𝑖-th neuron in

the 𝑙-th layer is

ℎ𝑙,𝑖 = 𝜎(
𝑚𝑙−1

∑
𝑗=1, 𝑗≠𝑝

𝑤𝑙,𝑖, 𝑗ℎ𝑙−1, 𝑗 + 𝑏𝑙,𝑖), (33)

which is equivalent to setting ℎ𝑙−1,𝑝 = 0.

We now prove that the gradient is equivalent based on the backward process of gradient computing. The parameters not connected to

pruned neurons are nothing related to their activation in the gradient computation process, which naturally remains the same. Considering

this, we mainly focus on the parameters connected to the pruned neurons. Since the gradients of these parameters connected to the pruned

neurons are zero, we can prove this conclusion by showing that the gradients of parameters connected to the neurons with zero activation

are also zero. Specifically, we divide the parameters connected to the neuron into two types, inputting parameters and outputting parameters

according to their relative position to the given neuron. Define the non-activated feature as

𝑎𝑙,𝑖 =
𝑚𝑙−1

∑
𝑗=1

𝑤𝑙,𝑖, 𝑗ℎ𝑙−1, 𝑗 + 𝑏𝑙,𝑖 (34)

and the error received back from the 𝑝-th neuron in 𝑙 + 1-th layer as 𝛿𝑙+1,𝑝 . The gradient ∇𝑤𝑙,𝑖,𝑗 𝑓 (w) of each outputting parameter for the

𝑗-th neuron in the (𝑙 − 1)-th layer is

∇𝑤𝑙,𝑖,𝑗 𝑓 (w) = ℎ𝑙−1, 𝑗∇𝑎𝑙,𝑖ℎ𝑙,𝑖(𝑎𝑙,𝑖)
𝑚𝑙+1

∑
𝑝=1

𝑤𝑙+1,𝑝,𝑖𝛿𝑙+1,𝑝 . (35)

Obviously, by setting the activation ℎ𝑙−1, 𝑗 to be zero, its outputting parameters also become zero, which equals to pruning the neuron. Since

∇𝑎𝑙−1, 𝑗ℎ𝑙−1, 𝑗(𝑎𝑙−1, 𝑗) = 0 holds for each neuron with the ReLU activation function, the gradients of its connected inputting parameters are

∇𝑤𝑙−1, 𝑗,𝑞 𝑓 (w) = ℎ𝑙−2,𝑞∇𝑎𝑙−1, 𝑗ℎ𝑙−1, 𝑗(𝑎𝑙−1, 𝑗)
𝑚𝑙

∑
𝑖=1

𝑤𝑙,𝑖, 𝑗𝛿𝑙,𝑖 = ℎ𝑙−2,𝑞 ⋅ 0 ⋅
𝑚𝑙

∑
𝑖=1

𝑤𝑙,𝑖, 𝑗𝛿𝑙,𝑖 = 0, (36)

which completes the proof. □

Lemma 1 The error of the gradient calculated by the sub-model is bounded by

E∏︁∇ŵ𝑛
𝑘
𝑓𝑛(ŵ𝑛𝑘) −∇w𝑛

𝑘
𝑓𝑛(w𝑛𝑘)∏︁

2

2
≤𝐺2

ℎ𝐻
2

𝐿

∑
𝑙=1

E ∑
𝑖∈𝑆𝑙,𝑘

∏︁e𝑙,𝑖,𝑘∏︁
2

2
+

𝐿

∑
𝑙=1

E ∑
𝑖∈𝑆𝑐

𝑙,𝑘

∏︁∇ŵ𝑛
𝑙,𝑖,𝑘

𝑓𝑛(ŵ𝑛𝑘)∏︁
2

2
, (37)

where 𝑆𝑙,𝜏 is the set of selected neurons in the 𝑙-th layer and 𝑆
𝑐
𝑙,𝜏 denotes the set of un-selected neurons. ŵ

𝑛
𝑙,𝑖,𝑘−1

represents the parameters connected
to the neuron 𝑖 .

Proof. : E∏︁∇ŵ𝑛
𝑘−1

𝑓𝑛(ŵ𝑛𝑘−1
)−∇w𝑛

𝑘−1

𝑓𝑛(w𝑛𝑘−1
)∏︁2

2
measures the distance between the gradient computed from the full model and from the

sub-model. To calculate this distance, we use Lemma ?? to transform the gradient that was computed from the sub-model into the gradient

of the entire model.

Specifically, according to the chain rule of backward, the gradient of the parameters of 𝑖-th neuron in 𝑙-th layer for the entire model ŵ𝑛𝑘−1

is ∇ŵ𝑛
𝑙,𝑖,𝑘−1

h𝑛𝑙,𝑖,𝑘−1
∇h𝑛

𝑙,𝑖,𝑘−1

𝑓𝑛(h𝑛𝑘−1
). Similarly, the gradient of the parameters connected to the 𝑖-th non-pruned neuron in the 𝑙-th layer of

the sub-model w𝑛𝑘−1
= ŵ𝑛𝑘−1

⊙M𝑛
𝑘−1

is ∇ŵ𝑛
𝑙,𝑖,𝑘−1

h𝑛𝑙,𝑖,𝑘−1
∇h𝑛

𝑙,𝑖,𝑘−1

𝑓𝑛(h𝑛𝑚,𝑘−1
) where h𝑚,𝑘−1

= h𝑘−1
⊙m𝑘−1

. We define error between them is

e𝑛𝑘−1
= h𝑛𝑚,𝑘−1

− h𝑛𝑘−1
. We use 𝑆𝑙,𝑘−1

to denote the set of selected neurons in the 𝑙-th layer and 𝑆
𝑐
𝑙,𝑘−1

to denote its complementary set in

the 𝑙-th layer, i.e., the set of unselected neurons. We utilize Taylor expansion to ∇h𝑛
𝑙,𝑖,𝑘−1

𝑓𝑛(h𝑛𝑚,𝑘−1
) around the full activation point h𝑛𝑘−1

,

obtaining:

∇h𝑛
𝑙,𝑖,𝑘−1

𝑓𝑛(h𝑛𝑚,𝑘−1
) = ∇h𝑛

𝑙,𝑖,𝑘−1

𝑓𝑛(h𝑛𝑘−1
) + 𝑅(e𝑛𝑘−1

)

= ∇h𝑛
𝑙,𝑖,𝑘−1

𝑓𝑛(h𝑛𝑘−1
) +∇2

h𝑛
𝑙,𝑖,𝑘−1

𝑓𝑛(h𝑛𝑘−1
)𝑇 e𝑙,𝑖,𝑘−1

+ . . . , (38)
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where 𝑅(e𝑛𝑙,𝑖,𝑘−1
) denotes the infinite sum of all terms from the second partial derivatives. Based on the Assumption 3 and basics of the

Taylor series, we obtain the approximation error:

∏︁𝑅(e𝑛𝑙,𝑖,𝑘−1
)∏︁2

2
≤ 𝐻2∏︁e𝑙,𝑖,𝑘−1

∏︁2

2
. (39)

Then, we have the following inequality:

E∏︁∇ŵ𝑛
𝑘−1

𝑓𝑛(ŵ𝑛𝑘−1
) −∇w𝑛

𝑘−1

𝑓𝑛(w𝑛𝑘−1
)∏︁2

2

=
𝐿

∑
𝑙=1

E ∑
𝑖∈𝑆𝑙,𝑘−1

∏︁∇ŵ𝑛
𝑙,𝑖,𝑘−1

h𝑛𝑙,𝑖,𝑘−1
∇h𝑛

𝑙,𝑖,𝑘−1

𝑓𝑛(h𝑛𝑘−1
) −∇ŵ𝑛

𝑙,𝑖,𝑘−1

h𝑛𝑙,𝑖,𝑘−1
∇h𝑛

𝑙,𝑖,𝑘−1

𝑓𝑛(h𝑛𝑚,𝑘−1
)∏︁2

2

+
𝐿

∑
𝑙=1

E ∑
𝑖∈𝑆𝑐

𝑙,𝑘−1

∏︁∇ŵ𝑛
𝑙,𝑖,𝑘−1

h𝑛𝑙,𝑖,𝑘−1
∇h𝑛

𝑙,𝑖,𝑘−1

𝑓𝑛(h𝑛𝑘−1
)∏︁2

2

=
𝐿

∑
𝑙=1

E ∑
𝑖∈𝑆𝑙,𝑘−1

∏︁∇ŵ𝑛
𝑙,𝑖,𝑘−1

h𝑛𝑙,𝑖,𝑘−1
∇h𝑛

𝑙,𝑖,𝑘−1

𝑓𝑛(h𝑛𝑘−1
) −∇ŵ𝑛

𝑙,𝑖,𝑘−1

h𝑛𝑙,𝑖,𝑘−1
(∇h𝑛

𝑙,𝑖,𝑘−1

𝑓𝑛(h𝑛𝑘−1
) + 𝑅(e𝑛𝑘−1

))∏︁2

2

+
𝐿

∑
𝑙=1

E ∑
𝑖∈𝑆𝑐

𝑙,𝑘

∏︁∇ŵ𝑛
𝑙,𝑖,𝑘

𝑓𝑛(ŵ𝑛𝑘)∏︁
2

2

=
𝐿

∑
𝑙=1

E ∑
𝑖∈𝑆𝑙,𝑘−1

∏︁∇ŵ𝑛
𝑙,𝑖,𝑘−1

h𝑛𝑙,𝑖,𝑘−1
𝑅(e𝑛𝑘−1

)∏︁2

2
+

𝐿

∑
𝑙=1

E ∑
𝑖∈𝑆𝑐

𝑙,𝑘

∏︁∇ŵ𝑛
𝑙,𝑖,𝑘

𝑓𝑛(ŵ𝑛𝑘)∏︁
2

2
,

≤
(𝑎)

𝐿

∑
𝑙=1

E ∑
𝑖∈𝑆𝑙,𝑘−1

𝐺
2

ℎ𝐻
2∏︁e𝑙,𝑖,𝑘−1

∏︁2

2
+

𝐿

∑
𝑙=1

E ∑
𝑖∈𝑆𝑐

𝑙,𝑘

∏︁∇ŵ𝑛
𝑙,𝑖,𝑘

𝑓𝑛(ŵ𝑛𝑘)∏︁
2

2
, (40)

where (𝑎) follows from Assumption 4. The proof is done. □

C.2 Proof of Theorem 5
Theorem 5. Considering 𝐹∗ be the global minima of the loss function, 𝛾 and 𝛼 are constants with 𝛾 > 0, 0 ≤ 𝛼 < 1, and the learning rate 0 < 𝜂 ≤ 1

𝐿𝑠
,

then for all neural networks with ReLU activation function, the expected average of the squared gradient norms of 𝐹 obtained by Algorithm 1
satisfies the following bound for all 𝐾 ∈ N:

𝐾

∑
𝑘=1

E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
≤ 2(𝐹(w1) − 𝐹∗)

𝜂
+ 2𝐿

2

𝑠𝜂
2

𝛼𝐺
2(1 + 𝛾)(1 + 𝛾)𝐾−1 − 1

𝛾2
+ 𝐾𝐿𝑠𝜂𝜎

2

2

𝑁

+ 4𝐿
2

𝑠𝜂
2(1 + 1

𝛾
)𝐺2

ℎ𝐻
2

𝐾

∑
𝑘=1

𝑘−1

∑
𝜏=1

(1 + 𝛾)𝑘−1−𝜏 𝐿

∑
𝑙=1

E ∑
𝑖∈𝑆𝑙,𝜏

∏︁e𝑙,𝑖,𝜏∏︁
2

2
+ 16𝐾𝐿

2

𝑠𝜂
4

𝐸
2

𝐺
2(1 + 1

𝛾
), (41)

where 𝑆𝑙,𝜏 is the set of selected neurons in the 𝑙-th layer.

Proof. : Our proof starts from the L-smooth assumption (Assumption 1) that bounds the loss of one global iteration:

E(𝐹(w̃𝑘+1
) − 𝐹(w̃𝑘)) ≤ E ∐︀∇𝐹(w̃𝑘), w̃𝑘+1

− w̃𝑘̃︀ +
𝐿𝑠

2

E∏︁w̃𝑘+1
− w̃𝑘∏︁

2

2
. (42)

The inequality contains two items and we bound them separately in the following text:

E∏︁w̃𝑘+1
− w̃𝑘∏︁

2

2
= 𝜂2

E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝑓𝑛(ŵ𝑛𝑘)∏︁

2

2

=
(𝑎)

𝜂
2

E∏︁ 1

𝑁

𝑁

∑
𝑛=1

(∇ŵ𝑛
𝑘
𝑓𝑛(ŵ𝑛𝑘) −∇ŵ𝑛

𝑘
𝐹𝑛(ŵ𝑛𝑘))∏︁

2

2
+ 𝜂2

E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2

=
(𝑏)

𝜂
2 1

𝑁 2

𝑁

∑
𝑛=1

E∏︁∇ŵ𝑛
𝑘
𝑓𝑛(ŵ𝑛𝑘) −∇ŵ𝑛

𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
+ 𝜂2

E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2

≤
(𝑐)

1

𝑁
𝜂

2

𝜎
2

2
+ 𝜂2

E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
, (43)

where (𝑏) follows that E∇ŵ𝑛
𝑘
𝑓𝑛(ŵ𝑛𝑘) = E∇ŵ𝑛

𝑘
𝐹𝑛(ŵ𝑛𝑘) and E∏︁v∏︁

2 = E∏︁v − Ev∏︁2 + ∏︁Ev∏︁2
. (𝑏) is due to the independence among clients and

the zero mean and (𝑐) follows from the Assumption 2.
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For another item, we have

E ∐︀∇𝐹(w̃𝑘), w̃𝑘+1
− w̃𝑘̃︀ = E ̂︂∇𝐹(w̃𝑘),−𝜂

1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝑓𝑛(ŵ𝑛𝑘)]︁

= −𝜂E ̂︂∇𝐹(w̃𝑘),
1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)]︁

= −𝜂
2

⎨⎝⎝⎝⎪
E∏︁∇𝐹(w̃𝑘)∏︁

2

2
+ E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
− E∏︁∇𝐹(w̃𝑘) −

1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2

⎬⎠⎠⎠⎮
. (44)

Substituting (43) and (44) into (42) derives

E(𝐹(w̃𝑘+1
) − 𝐹(w̃𝑘)) ≤ −

𝜂

2

E∏︁∇𝐹(w̃𝑘)∏︁
2

2
− 𝜂 − 𝜂

2
𝐿𝑠

2

E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2

+ 𝜂
2

E∏︁∇𝐹(w̃𝑘) −
1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
+ 𝐿𝑠𝜂

2
𝜎

2

2

2𝑁

≤
(𝑎)
−𝜂

2

E∏︁∇𝐹(w̃𝑘)∏︁
2

2
+ 𝜂

2

E∏︁∇𝐹(w̃𝑘) −
1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
+ 𝐿𝑠𝜂

2
𝜎

2

2

2𝑁
,

≤ −𝜂
2

⎛
⎝
E∏︁∇𝐹(w̃𝑘)∏︁

2

2
+ E∏︁∇𝐹(w̃𝑘) −

1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2

⎞
⎠

+ 𝜂E∏︁∇𝐹(w̃𝑘) −
1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
+ 𝐿𝑠𝜂

2
𝜎

2

2

2𝑁
, (45)

where (𝑎) holds when 0 < 𝜂 < 1

𝐿
. Since the following inequality holds:

E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2

= E∏︁∇𝐹(w̃𝑘) − (∇𝐹(w̃𝑘) −
1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘))∏︁

2

2

≤ E∏︁∇𝐹(w̃𝑘)∏︁
2

2
+ E∏︁∇𝐹(w̃𝑘) −

1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
, (46)

we have the following inequality by re-organizing (45):

𝜂

2

E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
+ E(𝐹(w̃𝑘+1

) − 𝐹(w̃𝑘))

≤ 𝜂E∏︁∇𝐹(w̃𝑘) −
1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
+ 𝐿𝑠𝜂

2
𝜎

2

2

2𝑁
. (47)

We denote the minimum of the loss function by 𝐹∗. By computing the sum of (47) from 𝑘 = 1 to 𝐾 , we can obtain:

𝐾

∑
𝑘=1

𝜂

2

E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
+ (𝐹∗ − 𝐹(w̃1))

≤
𝐾

∑
𝑘=1

𝜂

2

E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
+ E(𝐹(w̃𝐾+1

) − 𝐹(w̃1))

≤ 𝜂
𝐾

∑
𝑘=1

E∏︁∇𝐹(w̃𝑘) −
1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
+ 𝐾𝐿𝑠𝜂

2
𝜎

2

2

2𝑁
. (48)

Now, we seek to present the bound of E∏︁∇𝐹(w̃𝑘) − 1

𝑁 ∑
𝑁
𝑛=1
∇ŵ𝑛

𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
:

E∏︁∇𝐹(w̃𝑘) −
1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2

= E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇𝐹𝑛(w̃𝑘) −
1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
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= 1

𝑁 2
E∏︁

𝑁

∑
𝑛=1

∇𝐹𝑛(w̃𝑘) −
𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2

≤ 1

𝑁

𝑁

∑
𝑛=1

E∏︁∇𝐹𝑛(w̃𝑘) −∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2

≤
(𝑎)

𝐿
2

𝑠

𝑁

𝑁

∑
𝑛=1

E∏︁w̃𝑘 − ŵ
𝑛
𝑘∏︁

2

2

≤ 𝐿
2

𝑠

𝑁

𝑁

∑
𝑛=1

E∏︁w̃𝑘 − w̄𝑘 + w̄𝑘 − ŵ
𝑛
𝑘∏︁

2

2
,

≤ 2𝐿
2

𝑠

𝑁

𝑁

∑
𝑛=1

(E∏︁w̃𝑘 − w̄𝑘∏︁
2

2
+ E∏︁w̄𝑘 − ŵ

𝑛
𝑘∏︁

2

2
) , (49)

where (a) follows from Assumption 1. The item ∏︁w̃𝑘 − w̄𝑘∏︁2

2
represents the error between the ideal model updated based on the entire model

and the real model updated based on the sub-model. The item ∏︁w̄𝑘 − ŵ𝑛𝑘∏︁
2

2
represents the error between the global model and the local

model. Next, we bound them separately.

First, considering the previous synchronization iteration is 𝑘0, we have

E∏︁w̄𝑘 − ŵ
𝑛
𝑘∏︁

2

2

= E∏︁(w̄𝑘0
− 𝜂

𝑘

∑
𝜏=𝑘0

1

𝑁

𝑁

∑
𝑛=1

∇w𝑛
𝜏
𝑓𝑛(w𝑛𝜏 )) − (ŵ𝑛𝑘0

− 𝜂
𝑘

∑
𝜏=𝑘0

∇w𝑛
𝜏
𝑓𝑛(w𝑛𝜏 ))∏︁2

2

=
(𝑎)

𝜂
2

E∏︁
𝑘

∑
𝜏=𝑘0

1

𝑁

𝑁

∑
𝑛=1

∇w𝑛
𝜏
𝑓𝑛(w𝑛𝜏 ) −

𝑘

∑
𝜏=𝑘0

∇w𝑛
𝜏
𝑓𝑛(w𝑛𝜏 )∏︁2

2

≤
(𝑏)

2𝜂
2

E∏︁
𝑘

∑
𝜏=𝑘0

1

𝑁

𝑁

∑
𝑛=1

∇w𝑛
𝜏
𝑓𝑛(w𝑛𝜏 )∏︁2

2
+ 2𝜂

2

E∏︁
𝑘

∑
𝜏=𝑘0

∇w𝑛
𝜏
𝑓𝑛(w𝑛𝜏 )∏︁2

2

≤
(𝑐)

2𝜂
2(𝑘 − 𝑘0)

𝑘

∑
𝜏=𝑘0

E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇w𝑛
𝜏
𝑓𝑛(w𝑛𝜏 )∏︁2

2
+ 2𝜂

2(𝑘 − 𝑘0)
𝑘

∑
𝜏=𝑘0

E∏︁∇w𝑛
𝜏
𝑓𝑛(w𝑛𝜏 )∏︁2

2

≤
(𝑑)

2𝜂
2(𝑘 − 𝑘0)

𝑘

∑
𝜏=𝑘0

1

𝑁

𝑁

∑
𝑛=1

E∏︁∇w𝑛
𝜏
𝑓𝑛(w𝑛𝜏 )∏︁2

2
+ 2𝜂

2(𝑘 − 𝑘0)
𝑘

∑
𝜏=𝑘0

E∏︁∇w𝑛
𝜏
𝑓𝑛(w𝑛𝜏 )∏︁2

2

≤
(𝑒)

4𝜂
2

𝐸
2

𝐺
2

, (50)

where (𝑎) holds because w̄𝑘0
= ŵ𝑛𝑘0

= w𝑘0
. (𝑐) − (𝑑) come from the Cauchy-Schwarz Inequality. (𝑒) is due to Assumption 2.

For another item, we have

E∏︁w̃𝑘 − w̄𝑘∏︁
2

2

= E∏︁(w̃𝑘−1
− 𝜂 1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘−1

𝑓𝑛(ŵ𝑛𝑘−1
)) − (w̄𝑘−1

− 𝜂 1

𝑁

𝑁

∑
𝑛=1

∇w𝑛
𝑘−1

𝑓𝑛(w𝑛𝑘−1
))∏︁2

2

=
(𝑎)

(1 + 𝛾)E∏︁w̃𝑘−1
− w̄𝑘−1

∏︁2

2
+ 𝜂2(1 + 1

𝛾
)E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘−1

𝑓𝑛(ŵ𝑛𝑘−1
) − 1

𝑁

𝑁

∑
𝑛=1

∇w𝑛
𝑘−1

𝑓𝑛(w𝑛𝑘−1
)∏︁2

2

≤ (1 + 𝛾)E∏︁w̃𝑘−1
− w̄𝑘−1

∏︁2

2
+ 𝜂2(1 + 1

𝛾
) 1

𝑁

𝑁

∑
𝑛=1

E∏︁∇ŵ𝑛
𝑘−1

𝑓𝑛(ŵ𝑛𝑘−1
) −∇w𝑛

𝑘−1

𝑓𝑛(w𝑛𝑘−1
)∏︁2

2

= (1 + 𝛾)E∏︁w̃𝑘−1
− w̄𝑘−1

∏︁2

2
+ 𝜂2(1 + 1

𝛾
) 1

𝑁

𝑁

∑
𝑛=1

E∏︁∇ŵ𝑛
𝑘−1

𝑓𝑛(ŵ𝑛𝑘−1
) −∇w𝑛

𝑘−1

𝑓𝑛(w𝑛𝑘−1
)∏︁2

2

=
𝑘−1

∑
𝜏=1

𝜂
2(1 + 𝛾)𝑘−1−𝜏(1 + 1

𝛾
) 1

𝑁

𝑁

∑
𝑛=1

E∏︁∇ŵ𝑛
𝜏
𝑓𝑛(ŵ𝑛𝜏 ) −∇w𝑛

𝜏
𝑓𝑛(w𝑛𝜏 )∏︁2

2
, (51)

where (𝑎) arises from the inequality (v1 + v2)2 ≤ (1 + 𝛾)v2

1
+ (1 + 1

𝛾
)v2

2
for 𝛾 > 0.
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Based on Assumption 4, obviously, there is a constant 0 < 𝛼 < 1 that

𝐿

∑
𝑙=1

E ∑
𝑖∈𝑆𝑐

𝑙,𝑘−1

∏︁∇ŵ𝑛
𝑙,𝑖,𝑘−1

𝑓𝑛(ŵ𝑛𝑘)∏︁
2

2

≤ 𝛼
𝐿

∑
𝑙=1

𝑚𝑙

∑
𝑖=1

E∏︁∇ŵ𝑛
𝑙,𝑖,𝑘−1

𝑓𝑛(ŵ𝑛𝑘−1
)∏︁2

2

= 𝛼E∏︁∇ŵ𝑛
𝑘−1

𝑓𝑛(ŵ𝑛𝑘−1
)∏︁2

2

≤ 𝛼𝐺2

. (52)

Then, according to Lemma 1, we have

E∏︁∇ŵ𝑛
𝑘−1

𝑓𝑛(ŵ𝑛𝑘−1
) −∇w𝑛

𝑘−1

𝑓𝑛(w𝑛𝑘−1
)∏︁2

2

≤
(𝑎)

𝐿

∑
𝑙=1

E ∑
𝑖∈𝑆𝑙,𝑘−1

𝐺
2

ℎ𝐻
2∏︁e𝑙,𝑖,𝑘−1

∏︁2

2
+ 𝛼𝐺2

. (53)

Bringing (53) back to (51) derives:

E∏︁w̃𝑘 − w̄𝑘∏︁
2

2
≤
𝑘−1

∑
𝜏=1

𝜂
2(1 + 𝛾)𝑘−1−𝜏(1 + 1

𝛾
)
⎛
⎝
𝐿

∑
𝑙=1

E ∑
𝑖∈𝑆𝑙,𝜏

𝐺
2

ℎ𝐻
2∏︁e𝑙,𝑖,𝜏∏︁

2

2
+ 𝛼𝐺2

⎞
⎠
. (54)

Substituting (54) and (50) back into (49), and then bringing the derived inequality back into (48) obtains:

𝐾

∑
𝑘=1

𝜂

2

E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
+ (𝐹∗ − 𝐹(w̃1))

≤ 2𝐿
2

𝑠𝜂
3(1 + 1

𝛾
)𝐺2

ℎ𝐻
2

𝐾

∑
𝑘=1

𝑘−1

∑
𝜏=1

(1 + 𝛾)𝑘−1−𝜏 𝐿

∑
𝑙=1

E ∑
𝑖∈𝑆𝑙,𝜏

∏︁e𝑙,𝑖,𝜏∏︁
2

2

+ 𝐿2

𝑠𝜂
3

𝛼𝐺
2(1 + 𝛾)(1 + 𝛾)𝐾−1

𝛾2
+ 8𝐾𝐿

2

𝑠𝜂
5

𝐸
2

𝐺
2(1 + 1

𝛾
) + 𝐾𝐿𝑠𝜂

2
𝜎

2

2

2𝑁
. (55)

Reorganizing the inequality proves the theorem. □

C.3 Proof of Theorem 6
Theorem 6. Considering 𝐹∗ be the global minima of the loss function and the learning rate 0 < 𝜂 ≤ 1

4𝐿𝑠
, then for all neural networks with ReLU

activation function, the expected average of the squared gradient norms of 𝐹 obtained by Algorithm 1 satisfies the following bound for all 𝑡 ∈ N:

1

𝑇

𝑇

∑
𝑡=1

∏︁∇w𝑡 𝐹(w𝑡 )∏︁2

2
≤ 4(𝐹(w1) − 𝐹∗)⌋︂

𝑇
+ 4𝐸( 𝐿𝑠⌋︂

𝑇
+ 1

2

)(𝐺2

ℎ𝐻
2

𝑟𝑀𝜖
2 + 𝛼𝐺2) + 8𝐸𝐿𝑠𝐸

2
𝐺

2

𝑇
, (56)

where 𝛼 is a constant relying on the extraction ratio of the sub-model with 0 ≤ 𝛼 < 1.

Proof. : Our proof also starts from the L-smooth assumption (Assumption 1) that bounds the loss of one global iteration:

E(𝐹(w̄𝑘+1
) − 𝐹(w̄𝑘))

≤ E ∐︀∇𝐹(w̄𝑘), w̄𝑘+1
− w̄𝑘̃︀ +

𝐿𝑠

2

E∏︁w̄𝑘+1
− w̄𝑘∏︁

2

2

= E ̂︂∇𝐹(w̄𝑘),−𝜂
1

𝑁

𝑁

∑
𝑛=1

∇w𝑛
𝑘
𝐹𝑛(w𝑛𝑘)]︁ +

𝐿𝑠

2

E∏︁ − 𝜂 1

𝑁

𝑁

∑
𝑛=1

∇w𝑛
𝑘
𝐹𝑛(w𝑛𝑘)∏︁

2

2

= 𝜂E ̂︂∇𝐹(w̄𝑘),−
1

𝑁

𝑁

∑
𝑛=1

∇w𝑛
𝑘
𝐹𝑛(w𝑛𝑘) +

1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)]︁ + 𝜂E ̂︂∇𝐹(w̄𝑘),−

1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)]︁

+ 𝐿𝑠𝜂
2

2

E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇w𝑛
𝑘
𝐹𝑛(w𝑛𝑘) −

1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘) +

1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2

≤
(𝑎)

𝜂

2

E∏︁∇𝐹(w̄𝑘)∏︁
2

2
+ 𝜂

2

E∏︁ − 1

𝑁

𝑁

∑
𝑛=1

∇w𝑛
𝑘
𝐹𝑛(w𝑛𝑘) +

1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
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− 𝜂
2

E∏︁∇𝐹(w̄𝑘)∏︁
2

2
− 𝜂

2

E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
+ 𝜂

2

E∏︁∇𝐹(w̄𝑘) −
1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2

+ 𝐿𝑠𝜂2

E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇w𝑛
𝑘
𝐹𝑛(w𝑛𝑘) −

1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
+ 𝐿𝑠𝜂2

E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2

= (𝐿𝑠𝜂2 + 𝜂
2

)E∏︁ − 1

𝑁

𝑁

∑
𝑛=1

∇w𝑛
𝑘
𝐹𝑛(w𝑛𝑘) +

1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2

− (𝜂
2

− 𝐿𝑠𝜂2)E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
+ 𝜂

2

E∏︁∇𝐹(w̄𝑘) −
1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2

≤
(𝑏)

(𝐿𝑠𝜂2 + 𝜂
2

) 1

𝑁

𝑁

∑
𝑛=1

E∏︁∇w𝑛
𝑘
𝐹𝑛(w𝑛𝑘) −∇ŵ𝑛

𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2

− (𝜂
2

− 𝐿𝑠𝜂2)E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
+ 𝜂

2

E∏︁∇𝐹(w̄𝑘) −
1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
, (57)

where (𝑎) holds because 2𝑎𝑏 ≤ 𝑎2 +𝑏2
and −2𝑎𝑏 = −𝑎2 −𝑏2 + (𝑎 −𝑏)2

, and (𝑏) is due to ∏︁∑𝑛𝑖=1
𝑎𝑖∏︁2

2
≤ 𝑛∑𝑛𝑖=1

∏︁𝑎𝑖∏︁2

2
. Considering the distance

between the gradient of the average model and the filled model, we have

E∏︁∇𝐹(w̄𝑘) −
1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2

= E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇𝐹(w̄𝑘) −
1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2

≤ 1

𝑁

𝑁

∑
𝑛=1

E∏︁∇𝐹(w̄𝑘) −∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2

≤
(𝑎)

𝐿𝑠

𝑁

𝑁

∑
𝑛=1

E∏︁w̄𝑘 − ŵ
𝑛
𝑘∏︁

2

2

≤
(𝑏)

4𝐿𝑠𝜂
2

𝐸
2

𝐺
2

, (58)

where (𝑎) follows from Assumption 1 and (𝑏) is derived by (50). Consider there are𝑀 total neurons, i.e., ∑𝐿𝑙=1
𝑚𝑙 = 𝑀 . Based on Lemma 1,

we have

E∏︁∇ŵ𝑛
𝑘
𝑓𝑛(ŵ𝑛𝑘) −∇w𝑛

𝑘
𝑓𝑛(w𝑛𝑘)∏︁

2

2

≤ 𝐺2

ℎ𝐻
2

𝐿

∑
𝑙=1

E ∑
𝑖∈𝑆𝑙,𝑘

∏︁e𝑙,𝑖,𝑘∏︁
2

2
+

𝐿

∑
𝑙=1

E ∑
𝑖∈𝑆𝑐

𝑙,𝑘

∏︁∇ŵ𝑛
𝑙,𝑖,𝑘

𝑓𝑛(ŵ𝑛𝑘)∏︁
2

2

≤
(𝑎)

𝐺
2

ℎ𝐻
2

𝐿

∑
𝑙=1

∑
𝑖∈𝑆𝑙,𝑘

𝜖
2 + 𝛼𝐺2

≤ 𝐺2

ℎ𝐻
2

𝑟𝑀𝜖
2 + 𝛼𝐺2

, (59)

where (𝑎) is derived from Lemma 1 and (52).

By bringing (58) and (59) back to (57), we can obtain

E(𝐹(w̄𝑘+1
) − 𝐹(w̄𝑘))

≤ (𝐿𝑠𝜂2 + 𝜂
2

)(𝐺2

ℎ𝐻
2

𝑟𝑀𝜖
2 + 𝛼𝐺2) − (𝜂

2

− 𝐿𝑠𝜂2)E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
+ 2𝐿𝑠𝜂

3

𝐸
2

𝐺
2

, (60)

Summing both sides of (60) from 𝑘 = 1 to 𝐾 gets

E(𝐹(w̄𝐾+1
) − 𝐹(w̄1))

≤ 𝐾(𝐿𝑠𝜂2 + 𝜂
2

)(𝐺2

ℎ𝐻
2

𝑟𝑀𝜖
2 + 𝛼𝐺2) −

𝐾

∑
𝑘=1

(𝜂
2

− 𝐿𝑠𝜂2)E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
+ 2𝐾𝐿𝑠𝜂

3

𝐸
2

𝐺
2

. (61)
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Considering w̄1 = w1 and 𝐹∗ ≤ 𝐹(w̄𝐾+1
), we re-organize (61) by moving∑𝐾𝑘=1

(𝜂
2
− 𝐿𝑠𝜂2)E∏︁ 1

𝑁 ∑
𝑁
𝑛=1
∇ŵ𝑛

𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
to left hand divide both

sides by 𝜂, and can obtain:

𝐾

∑
𝑘=1

(1

2

− 𝐿𝑠𝜂)E∏︁
1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2

≤ 𝐹(w1) − 𝐹∗
𝜂

+𝐾(𝐿𝑠𝜂 +
1

2

)(𝐺2

ℎ𝐻
2

𝑟𝑀𝜖
2 + 𝛼𝐺2) + 2𝐾𝐿𝑠𝜂

2

𝐸
2

𝐺
2

. (62)

Note that ŵ𝑘 = w𝑡 when 𝑡 ∗ 𝐸 = 𝑘 , we have
𝑇

∑
𝑡=1

E∏︁∇w𝑛
𝑘
𝐹(w𝑛𝑘)∏︁

2

2
≤

𝐾

∑
𝑘=1

E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2
. (63)

Also, we set

𝜂 < 1

4𝐿𝑠
(64)

such that

1

4

≤ 1

2

− 𝐿𝑠𝜂. (65)

Jointly considering the two above inequalities together, we can get

𝑇

∑
𝑡=1

E∏︁∇w𝑡 𝐹(w𝑡 )∏︁2

2

≤
𝐾

∑
𝑘=1

E∏︁ 1

𝑁

𝑁

∑
𝑛=1

∇ŵ𝑛
𝑘
𝐹𝑛(ŵ𝑛𝑘)∏︁

2

2

≤ 4(𝐹(w1) − 𝐹∗)
𝜂

+ 4𝐾(𝐿𝑠𝜂 +
1

2

)(𝐺2

ℎ𝐻
2

𝑟𝑀𝜖
2 + 𝛼𝐺2) + 8𝐾𝐿𝑠𝜂

2

𝐸
2

𝐺
2

. (66)

By approximately considering 𝐾 = 𝑇 ∗ 𝐸, we have

1

𝑇

𝑇

∑
𝑡=1

E∏︁∇w𝑡 𝐹(w𝑡 )∏︁2

2
≤ 4(𝐹(w1) − 𝐹∗)

𝑇𝜂
+ 4𝐸(𝐿𝑠𝜂 +

1

2

)(𝐺2

ℎ𝐻
2

𝑟𝑀𝜖
2 + 𝛼𝐺2) + 8𝐸𝐿𝑠𝜂

2

𝐸
2

𝐺
2

. (67)

Setting 𝜂 =
⌉︂

1

𝑇
, we can obtain that

1

𝑇

𝑇

∑
𝑡=1

∏︁∇w𝑡 𝐹(w𝑡 )∏︁2

2
≤ 4(𝐹(w1) − 𝐹∗)⌋︂

𝑇
+ 4𝐸( 𝐿𝑠⌋︂

𝑇
+ 1

2

)(𝐺2

ℎ𝐻
2

𝑟𝑀𝜖
2 + 𝛼𝐺2) + 8𝐸𝐿𝑠𝐸

2
𝐺

2

𝑇
, (68)

which completes the proof. □

D MORE EXPERIMENTAL DETAILS
The expermental setup for Table (1) (5(a)) (5(b)) (5(c)) Figure (10) and Figure (5) is listed in Table 3.

Table 3: Experimental setup details on EMNIST, CIFAR-10 and CIFAR-100.
EMNIST CIFAR-10 CIFAR-100

Local Epoch 2 2 2

Batch Size 16 16 16

Learning Rate 0.001 0.001 0.001

Decay Schedule

High Data Heterogeneity None None None

Low Data Heterogeneity None None None

Communication Rounds

High Data Heterogeneity 1000 2500 2500

Low Data Heterogeneity 1000 2500 2500

Optimizer SGD SGD SGD

Momentum 0.9 0.9 0.9

Weight Decay 5.00E-04 5.00E-04 5.00E-04

Inference Batch all all all

The Impact of client model heterogeneity distribution in CIFAR-100 Figure 10
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Figure 10: Impact of client model heterogeneity distribution in CIFAR-100.
The specify data of Figure 10 is listed in table 4.

Table 4: Impact of client model heterogeneity distribution in CIFAR-100.

CIFAR-100
𝜌

0 0.2 0.4 0.6 0.8 1

High Data Heterogeneity(%) 1.93 4.92 6.63 6.44 6.29 7.38

Low Data Heterogeneity(%) 1.76 5.98 8.36 9.14 9.18 8.70

The specify data of Figure 4(a) is listed in table 5.

Table 5: Impact of client model heterogeneity distribution in EMNIST.

EMNIST
𝜌

0 0.2 0.4 0.6 0.8 1

High Data Heterogeneity(%) 23.58 80.09 84.92 80.43 88.20 88.53

Low Data Heterogeneity(%) 51.19 93.44 96.12 94.79 95.13 94.33

The specify data of Figure 4(b) is listed in table 6.

Table 6: Impact of client model heterogeneity distribution in CIFAR-10.

CIFAR-10
𝜌

0 0.2 0.4 0.6 0.8 1

High Data Heterogeneity(%) 17.87 30.53 36.29 38.17 39.01 40.74

Low Data Heterogeneity(%) 19.54 37.92 43.31 47.06 49.86 53.06

Resource Savage of FedDSE The computation and communication costs are also obviously related to the consumption of energy. Besides,

they are highly related to intelligent service quality in terms of timeliness. To this end, via extracting neurons and only training sub-models

on the edge device, the method of our paper promotes the development of edge intelligence by reducing energy consumption, memory

footprint, and computational and communication cost. Besides, the benefits of our method can be found in Table 1 as training the ResNet18,

where our method can reduce three types of cost, thus also reducing the energy consumption. Thanks again for this constructive comment

that amplifies the impact of our method. We will add these discussions to the refined manuscript.

Table 1. Different metrics of different methods. 1⇑3 of neurons are extracted from the full model. The batch size is 8.

Method Memory (MB) Computation (GFlops) Communication (MB) FedAvg 569.67 14.48 44.59 FedDSE 188.17 5.68 16.17

Table 7: Comparison of resource consumption between FedDSE and FedAvg.

Method Memory (MB) Computation (GFlops) Communication (MB)

FedAvg 569.67 14.48 44.59

FedDSE 188.17 5.68 16.17
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