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Abstract

The task of automatic dialect classification001
is typically tackled using traditional machine-002
learning models with bag-of-words unigram003
features. We explore two alternative methods004
for distinguishing dialects across 20 Spanish-005
speaking countries: (i) Support vector machine006
and decision tree models were trained on di-007
alectal features tailored to the Spanish dialects,008
combined with standard unigrams. (ii) A pre-009
trained BERT model was fine-tuned on the task.010
Results show that the tailored features gener-011
ally did not have a positive impact on traditional012
model performance, but provide a salient way013
of representing dialects in a content-agnostic014
manner. The BERT model wins over traditional015
models but with only a tiny margin, while sac-016
rificing explainability and interpretability.017

1 Introduction018

Dialects represent a type of language variety that019

we use and encounter in everyday life. Thus, auto-020

matic dialect classification to improve non-standard021

representations and enhance performance on down-022

stream tasks such as dialogue systems (e.g., as part023

of a costumer service) has become a vital NLP task.024

Differently to other NLP tasks, in automatic dialect025

classification simple traditional machine learning026

approaches like support vector machines (SVMs)027

remain competitive with transformer models (Chifu028

et al., 2024), presumably because transformers lack029

explicit knowledge of linguistic structures. They030

might therefore primarily rely on topic-related lexi-031

cal cues (Zampieri et al., 2013), instead of focusing032

on linguistic characteristics.033

Following this line of reasoning, we hypothesize034

that utilizing linguistic knowledge may be benefi-035

cial for dialect classification: We investigate the036

benefits of incorporating dialect-specific linguisti-037

cally tailored features into machine learning clas-038

sifiers using unigram features, and contrast them039

with a transformer-based model. We focus on Span-040

ish, which exhibits strong variations in vocabulary 041

and syntax across dialects, and has adequate re- 042

sources. We primarily leverage linguistic observa- 043

tions by Lipski (1994) to find potentially helpful 044

dialect-specific characteristics in corpus data en- 045

compassing 20 Spanish dialects. Our classification 046

task is considerably more challenging than previous 047

classification experiments which only considered a 048

handful of Spanish dialects. The features are added 049

to two unigram-based models, namely an SVM and 050

a decision tree (DT) model, and compared to the 051

models which only take individual feature types 052

into account. Our contributions are as follows:1 053

1. We curate an extensive set of dialect-specific em- 054

pirical features for Spanish dialect classification. 055

2. We conduct a battery of classification experi- 056

ments demonstrating that the linguistically tailored 057

features do not enhance unigram-based models, but 058

do provide a promising way of representing dialects 059

in a content-agnostic manner. 060

3. We show that our transformer model only 061

marginally outperforms traditional methods, rais- 062

ing doubts that this minor gain is worth sacrificing 063

efficiency, interpretability, and explainability. 064

2 Related Work 065

Variation in language poses considerable chal- 066

lenges for many NLP tasks, sparking growing inter- 067

est in the field. Concerning the dialect classification 068

task, interesting insights were obtained from early 069

shared tasks on discriminating between similar lan- 070

guages (DSL) (Zampieri et al., 2014, 2015), where 071

documents from different language varieties were 072

classified. Top-performing models used SVM clas- 073

sifiers or ensembles, a trend also observed in later 074

DSL tasks (Malmasi et al., 2016; Zampieri et al., 075

2017), suggesting that traditional classifiers tend to 076

outperform neural networks on this task (Zampieri 077

1Code and data can be found anonymously at: https://
anonymous.4open.science/r/spanish_variation-C5ED
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Figure 1: Distribution of vos, tú and usted in the corpus.

et al., 2020). Results from recent iterations however078

indicate that neither approach consistently domi-079

nates (Chifu et al., 2024).080

Since much of previous work is based on feature-081

based classifiers, the choice of features is of great082

importance. Best performing models in the DSL083

tasks used word-based representations or charac-084

ter n-grams of higher order (Zampieri et al., 2020).085

Furthermore, some studies incorporated linguisti-086

cally motivated features like POS tags, resulting087

in conflicting results about whether these features088

contribute positively to the model performance089

(Zampieri et al., 2013; Bestgen, 2017). Demszky090

et al. (2021) even manually selected dialect-specific091

features from linguistic literature to tackle the task092

of dialectal feature detection. These linguistic fea-093

tures are tailored to the specific dialects at hand.094

3 Data095

Our experiments on Spanish dialects rely on the096

Web/Dialects portion of the Corpus del Español097

(Davies, 2016-). It contains texts from about two098

million web pages from 21 Spanish-speaking coun-099

tries (>2bn words). Table 3 in Appendix A shows100

an overview of the data by country.2 The corpus101

consists of documents and is tokenized, lemmatized102

and POS-tagged. For pre-processing, we lower-103

cased tokens and removed punctuation and digits.104

Due to a significant imbalance in number of docu-105

ments per class, the data was balanced by randomly106

selecting from each class as many documents as107

the smallest class contains, such that every class is108

represented by an equal number of documents. The109

data was randomly split into train, development110

and test sets with a ratio of 80/10/10.111

4 Experimental Set-Up112

We conducted three experiments: (i) We trained113

and tested the classifiers on the pre-processed, bal-114

anced data set. (ii) We replaced named entities115

(NEs) and nationalities (e.g. “peruano”) with a116

2We did not include the data extracted from US websites.

Features Counted Items

Fr
eq

ue
nt

CLITIC clitics lo, le and les
DIFFTENSE 14 different verbal tenses/aspects

DIM -ito/a, -ico/a, -illo/a, -ingo/a
OVSUBJ 9 overtly realized subject pronouns

SER_ESTAR ser and estar for adjective predicates
VOSEO 1) “familiar” pron.s (vos, tú, usted)

2) verbs of the voseo paradigm
VOSOTROS pronouns vosotros and os

R
ar

e

ADA productive nouns ending in -ada
ARTPOSS indef. article, poss. adj. and noun
MASNEG más preceding negative adjectives

MUYISIMO muy preceding -ísimo
NONINV non-inverted WH questions
SUBJINF subj. pronoun and infinitive/gerund

Table 1: Description of the tailored features.

placeholder and trained and tested the models on 117

the altered data to reduce reliance on too obvious 118

lexical cues, as noted for BOW models in prior 119

research (Zampieri et al., 2013). (iii) We took a 120

broader view on dialect classes by clustering coun- 121

tries belonging to a linguistic grouping of dialects 122

according to Lipski (2012) (see Table 4), and train- 123

ing and testing the models with these new classes. 124

4.1 Models 125

We fine-tuned a pre-trained BERT model3 on our 126

data. For the feature-based models (SVM and DT) 127

we used the machine learning library scikit-learn 128

(Pedregosa et al., 2011). While transformers yield 129

state-of-the-art performance in many NLP tasks, 130

they are black-box methods which are computation- 131

ally very expensive. In contrast, statistical models 132

are more efficient as well as interpretable. 133

4.2 Features of the Statistical Models 134

Linguistically Tailored Features: Assuming that 135

features that are tailored to the dialects at hand are 136

beneficial to the models, we collected features with 137

indicative morphological and syntactic character- 138

istics from literature research (Lipski, 1994). For 139

example: Pronoun usage varies across Spanish di- 140

alects, with “vos” replacing “tú” in some dialects 141

(voseo), while others prefer the formal “usted” in 142

familiar settings. Corresponding counts in our cor- 143

pus capture these characteristics well (see Figure 1 144

for the above example), thus confirming linguistic 145

assumptions from prior research and suggesting 146

usefulness of these features. We group the tailored 147

features into (i) features that model distributions of 148

frequently occurring phenomena and (ii) features 149

that count the occurrences of rare phenomena. In 150

total, 13 features were extracted (Table 1). 151

3The model can be found on huggingface (Wolf et al.,
2020): dccuchile/bert-base-spanish-wwm-cased.
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Model Features Standard Classification Named Entity Filter Grouped Labels
Accuracy Macro-F Accuracy Macro-F Accuracy Macro-F

SVM
Tailored 0.10 0.08 - - 0.18 0.14
Unigrams 0.65 0.65 0.55 0.54 0.66 0.66
Both 0.65 0.65 0.55 0.55 0.66 0.66

DT
Tailored 0.09 0.09 - - 0.15 0.15
Unigrams 0.38 0.45 0.16 0.17 0.41 0.44
Both 0.38 0.45 0.17 0.17 0.42 0.44

BERT Embeddings 0.67 0.67 0.59 0.59 0.66 0.66

Table 2: Accuracy and Macro-F1 of all models on the test set in the initial experimental set-up.

Unigram-based Features: Here, we pursued a152

simple BOW approach, using term frequencies (tf )153

by means of scikit-learn’s TfidfVectorizer class:154

tf(t,D) =
#tD∑

t′∈D #t′D
(1)155

where #tD is the frequency of a token t in a docu-156

ment D, divided by the total amount of tokens in157

the document (Manning et al., 2008). Only tokens158

that occur at least twice in the training data were159

considered. We ignored tokens corresponding to160

tailored features in order to clearly distinguish the161

informativeness of the two approaches.162

Merged Features: We joined unigram-based and163

tailored features by normalizing the tailored feature164

vectors by the number of tokens in the document165

to match the tf scale and concatenating them with166

the corresponding unigram-based vectors.167

4.3 Hyperparameter Choice168

Hyperparameters for the traditional models were169

selected using scikit-learn’s GridSearchCV; results170

and best values are shown in Tables 5 and 7 in Ap-171

pendix A. For the transformer, we limited epochs to172

5 to keep runtime reasonable and set batch size to173

16 to avoid memory issues (Table 6 in Appendix A).174

5 Results175

Table 2 shows the results of the classification ex-176

periments, which are further discussed below.177

5.1 Standard Classification178

The BERT model achieves the best performance179

with an accuracy score of 0.67, closely followed180

by the SVM models (0.65) using purely unigram-181

based or merged features. The corresponding DT182

models lag behind with an accuracy of 0.38 in both183

settings. The tailored features perform much worse184

with scores around 0.1. While the confusion ma-185

trices of most models exhibit a typical diagonal,186

Figure 2 shows that the SVM model using tailored187

features mainly resorts to class ES (Spain), thus188

implying that this class exhibits characteristics that 189

are distinct from all other dialects, which is sup- 190

ported by linguistic literature (Lipski, 1994). The 191

DT model using solely BOW or merged features 192

behaves similarly (Figure 4 in Appendix A). 193

To exploit the interpretability of the models, we 194

calculate feature weights: Figure 3 shows that 195

the most important features of the SVM model 196

only using tailored features indicate a high fo- 197

cus on tenses and VOSEO and OVSUBJ features. 198

Generally, the most frequent features are also the 199

most relevant ones, which is also true for the DT 200

model. In unigram-based models, topic-related 201

tokens (e.g. nationalities, places) dominate the im- 202

portance rankings, which is consistent with prior 203

research (Zampieri et al., 2013). The merged mod- 204

els exhibit similar rankings, while some tailored 205

features like VOSEOvos appear among the most im- 206

portant ones (Figure 3). Given that these tokens 207

would anyway occur as unigram features, The tai- 208

lored features, however, provide little extra benefit. 209

5.2 Effect of Named Entity Features 210

When NEs and nationalities are removed from 211

the features, the overall performance drops signifi- 212

cantly, compared to the standard setup. Again, the 213

transformer model outperforms the other models 214

with a score of 0.59. The accuracy of the SVM is 215

the same for merged and unigram-based features 216

(0.55). The DT results are again low, showing 217

a slightly but significantly stronger performance 218

(0.17>0.16) with merged features (McNemar test; 219

Seabold and Perktold, 2010). The fact that all mod- 220

els deteriorate on this task shows that they heavily 221

rely on content-related textual cues. Now tailored 222

features play a bigger role for the models using 223

the merged feature set: More tailored features are 224

among the most important ones in SVM and DT 225

models (Figure 7 in Appendix A), such as indica- 226

tive simple preterite tense. This confirms that the 227

tailored features add explicit information to the 228

models that could not be obtained from unigrams. 229
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Figure 2: Confusion matrix (SVM, tailored features).

5.3 Effect of Grouped Dialects230

When grouping dialects into larger classes, all sta-231

tistical models show an increase in performance,232

as expected due to the label reduction of 50%, thus233

rendering the task easier. The transformer model,234

however, deteriorates and is now on par with the235

unigram-based SVM model (accuracy score: 0.66).236

Although the performance is still comparably low,237

the models using tailored features almost double238

their accuracy from 0.10 to 0.18 (SVM), and from239

0.09 to 0.15 (DT), while the unigram-based and240

merged features models only slightly increase their241

performances. These observations show that the242

change in inter-class similarity is clearly reflected243

by the models using tailored features, whereas it244

has little effect on the others, suggesting that the245

tailored features represent the dialectal differences246

better than the standard BOW features.247

5.4 Summary of Observations248

Our results show that the traditional classifiers did249

not outperform the fine-tuned transformer model.250

Yet, it is important to note that the performance251

gap to the SVM models, while statistically signifi-252

cant, was marginal (at most 0.04 points) and in the253

case of the grouped dialects non-existent. Consid-254

ering that SVMs have significantly shorter runtime255

than transformer models and are typically more256

interpretable and transparent, it is valid to question257

whether substituting slightly better performance258

for a more efficient, explainable and interpretable259

statistical model is reasonable.260

The study of the features has revealed that the tai-261

lored features perform much worse than the other262

features and, with one exception, do not improve263

performance of the unigram-based features. How-264

Figure 3: Feature relevance in SVM models: tailored
and merged features (only unigrams: see Appendix A).

ever, the high scores produced by the other features 265

and also the BERT model reflect a rather content- 266

dependent classification, which is not necessarily 267

desirable. In this light, we argue that due to their 268

content-agnostic manner and ability to reflect inter- 269

class similarity and the distinctiveness of specific 270

dialects, the use of tailored features is a promising 271

approach that deserves to be explored further. 272

6 Conclusion 273

In this work, we tackled the task of automatic di- 274

alect classification for dialects from 20 Spanish- 275

speaking countries. We compared two traditional 276

machine learning models, an SVM and a DT model, 277

to a fine-tuned BERT model and experimented with 278

three types of features for the feature-based models: 279

linguistically motivated dialect-specific features, 280

BOW unigram features and a merged version. The 281

traditional models could not outperform the trans- 282

former model. However, the margin to the best- 283

performing SVM model was at most 0.04 points 284

which raises the question of whether this slight im- 285

provement in performance is worth sacrificing the 286

efficiency, explainability and interpretability of tra- 287

ditional machine learning models. Regarding the 288

features, the current tailored feature set generally 289

did not contribute positively to the performance 290

of the traditional models. Still, we demonstrated 291

that they represent the dialects in a salient, content- 292

agnostic manner, and thus carry an inherent poten- 293

tial to go beyond obvious lexical cues like BOW 294

features and BERT embeddings, and to capture 295

inter-class similarity for broader linguistic areas. 296

Investigating the use of dialect-specific features 297

therefore constitutes a promising approach. 298
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Preslav Nakov, Ahmed Ali, Jörg Tiedemann, Yves 372
Scherrer, and Noëmi Aepli. 2017. Findings of the 373
VarDial evaluation campaign 2017. In Proceedings 374
of the Fourth Workshop on NLP for Similar Lan- 375
guages, Varieties and Dialects (VarDial), pages 1–15, 376
Valencia, Spain. Association for Computational Lin- 377
guistics. 378

Marcos Zampieri, Preslav Nakov, and Yves Scherrer. 379
2020. Natural language processing for similar lan- 380
guages, varieties, and dialects: A survey. Natural 381
Language Engineering, 26(6):595–612. 382

Marcos Zampieri, Liling Tan, Nikola Ljubešić, and Jörg 383
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A Appendix397

Country Country tag # of Documents
Argentina AR 177,920
Bolivia BO 43,293
Chile CL 71,620
Colombia CO 184,970
Costa Rica CR 33,255
Cuba CU 51,708
Rep Dom DO 47,065
Ecuador EC 63,160
España ES 421,520
Guatemala GT 61,434
Honduras HN 43,227
México MX 286,275
Nicaragua NI 35,696
Panamá PA 29,312
Perú PE 121,814
Puerto Rico PR 33,879
Paraguay PY 33,301
El Salvador SV 38,217
Uruguay UY 36,154
Venezuela VE 112,571

Table 3: Overview of the number of documents in the
Corpus del Español per country (Davies, 2016-).

Figure 4: Confusion matrix of the DT model using
tailored features.

Label Included Countries
ANT Cuba, Dominican Rep., Panama, Puerto Rico
GC Costa Rica, Guatemala

MCA El Salvador, Honduras, Nicaragua
CV Colombia, Venezuela
EP Bolivia, Ecuador, Peru
AU Argentina, Uruguay

Table 4: Mapping of country labels to more coarse-
grained labels. CL, MX, PY and ES retain their own
labels, so the total number of classes is 10.

C Acc. std
10 0.104 0.0010
0.1 0.094 0.0009
0.01 0.087 0.0009
0.001 0.080 0.0006

C Acc. std
10 0.637 0.0018
0.1 0.580 0.0019
0.01 0.496 0.0017
0.001 0.323 0.0015

Table 5: Accuracy and standard deviation results pro-
duced by SVM models using a different parameter value
for C using GridSearchCV. The tables show the results
for tailored (left) and unigram features (right).

Hyperparameter Name Value
Number of epochs 5
Batch size per device during training 16
Number of warm-up steps for LR scheduler 500
Weight decay 0.01

Table 6: Hyperparameters of transformer models.

Figure 5: Feature relevance in SVM model using BOW
features for the standard set-up.
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max_depth &
max_features

Acc. std

30_None 0.085 0.0002
50_None 0.085 0.0006
30_log2 0.083 0.0009
30_sqrt 0.083 0.0012
50_sqrt 0.083 0.0010
50_log2 0.082 0.0006

max_depth &
max_features

Acc. std

50_None 0.382 0.001
30_None 0.366 0.0018
50_sqrt 0.124 0.0105
30_sqrt 0.096 0.0056
50_log2 0.058 0.0012
30_log2 0.054 0.0009

Table 7: Accuracy and standard deviation results produced by DT models using different parameter combinations for
max_depth & max_features using GridSearchCV. Left table uses tailored and right table unigram-based features.

Figure 6: Confusion matrices of the SVM (left) and DT model (right) using BOW features.

Figure 7: Feature relevance in SVM (left) and DT (right) models using merged features when NEs are filtered out.
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