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1 Background

Transformer based LLMs have shown to have impressive capabilities across various Natural Language
Processing (NLP) tasks (Chen et al. [2023], Wang et al. [2023], Thirunavukarasu et al. [2023]). Such
models, however, have significant computational overheads to their memory size. For example, the
Llama Touvron et al. [2023] model can have 8 billion up to 405 billion parameters, with future
models being even larger (Kaplan et al. [2020]). With a datatype of 16-bit floating point weights, such
models can require 16 GB up to 810 GB of memory storage. Additionally, floating-point arithmetic
operations require significantly more computational power than integer arithmetic. Therefore, weight
quantization methods have been proposed (Deng et al. [2020]) for hardware deployment, which
for example quantize the model weights down to 8-bit integers, or in the most extreme case, 1-bit
weights. With quantization, the memory footprint of the LLM model is smaller, and the computational
overhead is reduced which can have significant impact both for the speed and energy costs for very
big models. However, this method comes at a cost of a drop in the model inference accuracy.
Furthermore, additional scaling parameters S,Z (elaborated in Section 2) have to be kept track of, in
order to prevent exploding datatype sizes. Currently, there are several popular quantization schemes,
namely Post Training Dynamic Quantization (PTDQ), Post Training Static Quantization (PTSQ),
Quantization Aware Training (QAT).

2 Definition

The affine quantization scheme for float32 to int8 can for example be defined to be

x = xq/S + Z (1)

where x is the original floating-point value, xq is the quantized int8 value associated with x, S is a
positive float32 scaling value, Z is a int8 zero-point, which represents 0 in the float32 domain.

Quantization methods: We will briefly discuss the Post Training Quantization (PTQ) and Quantiza-
tion Aware Training (QAT) quantization methods.

During Training: PTQ does not require any modification during training. The model is trained
in standard floating-point precision, typically 32-bit, and the weights and activations are saved. In
QAT, the model is trained with quantization effects simulated in each forward pass while retaining
floating-point precision during the backward pass. This approach allows the model to adapt to
quantization.

During Inference: In PTQ, the weights and activations are quantized after training. This can be
done using static or dynamic quantization methods. For QAT, the backward pass uses the original
floating-point weights w and activations a for gradient updates.

Quantization Step Each weight w and activation a is quantized as in Equation 1, where S and Z are
parameters that adjust the range and offset for the integer representation.

Dequantization Step During inference, the quantized values are converted back to approximate
floating-point values for computation, for example:

result = (Sw · wint8 + Zw) · (Sa · aint8 + Za) (2)

Inference in QAT is the same as in PTQ, with quantized weights and activations used directly.

3 Related Work

Quantization of large language models is a well-established and evolving area of machine learning
research. Numerous quantization algorithms are already used to optimize models for various cases1.
However, research in quantization remains highly active with new, more efficient techniques being
developed (for instance, Egiazarian et al. [2024]). Generally, quantization algorithms are divided in
three categories:

1https://huggingface.co/docs/transformers/v4.46.0/quantization/overview

2

https://huggingface.co/docs/transformers/v4.46.0/quantization/overview


• Post Training Dynamic Quantization (PTDQ). The range (precision) of each activation is
computed during the runtime. This approach provides positive results without much prepro-
cessing effort, as it eliminates the need for a calibration dataset and does not involve model
retraining or fine-tuning. However, it introduces runtime overhead due to the inference-time
computation of activation ranges, which leads to slower performance (PyTorch [2024]).

• Post Training Static Quantization (PTSQ). The range for each activation is computed in
advance at quantization-time, usually by passing representative data (calibration dataset)
through the model and recording the activation values. It is an efficient and fast approach,
however, very dependent on the choice of calibration dataset and is not flexible during the
runtime (PyTorch [2024]).

• Quantization Aware Training (QAT). The range for each activation is computed at training-
time: the loss of the training also depends on the degree of quantization. This is a potentially
very efficient method, capable of reducing the weight sizes to several bits (i. e. more efficient
than PTQ approaches), however, requires a lot of time to train, modifications to the training
pipeline and usually significant amount of training data (Nagel et al. [2021]).

Currently, there exist several state-of-the-art PTQ algorithms used for LLM quantization, which we
may use as the baseline for our research.

• GPTQ (Frantar et al. [2023]). The working principle is based on minimizing the quantization
error using second-order optimization. GPTQ is extremely efficient: it can quantize GPT
models with 175 billion parameters in approximately four GPU hours while maintaining
reasonable accuracy

• AQLM(Egiazarian et al. [2024]). Achieves extreme compression by breaking down weight
matrices into smaller components and optimizing them in a way that adapts to the input
structure of the model. It achieves significant results when encoding weights using just 2-3
bits without sacrificing much performance.

Huang et al. [2024] have done an empirical study on the quantization of the state-of-the-art LLaMA3
model using different quantization schemes. They experimented with eleven Post-Training Quan-
tization and two Quantization-Aware Training techniques. Their results showed that even though
LLaMA3 still demonstrated superior performance after quantization, the performance degradation
associated with quantization was significant and could lead to larger declines. PTQ techniques turned
out to show better performance than the techniques that included retraining the model, likely due to
insufficient re-training data.

4 Proposed Method

We propose to use the LLaMA 3.1 8B model for our initial model. First, we pick the baseline at
the float16 datatype, and evaluate its inference accuracy for different datasets and different PTQ
and potentially ATQ techniques. Additionally, if possible, we evaluate the inference speed2. Then,
given the obtained results of the different quantization techniques, we will experiment with the most
optimal algorithms and modify them in a way that could potentially improve their performance on
LLaMa 3.1 8B model. In particular, a promising idea is to combine PTSQ and PTDQ techniques, so
that the model would be quantized both during quantization-time and also certain range adaptations
could occur during the inference. In this way, the benefits of both approaches could be utilized.

We will compare our new approaches with several baseline approaches that correspond to the current
state-of-the-art algorithms, such as GPTQ, AQLM, etc. The datasets that we propose to experiment
on are similar to the ones that our initial model was trained on: publicly available text datasets such
as WikiText3, Common Crawl 4 and others. Last, in order optimize time, we will aim to utilize the
existing codebase for conducting the experiments, for instance, the libaries that are presented in the
Hugginface5 website.

2This metric is heavily subject to the underlying hardware, the implementation of the computations on the
hardware, and the measurement itself

3https://huggingface.co/datasets/Salesforce/wikitext
4https://commoncrawl.org/
5https://huggingface.co/docs/transformers/main/main_classes/quantization
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