
Under review as submission to TMLR

BNEM: A Boltzmann Sampler Based on Bootstrapped
Noised Energy Matching

Anonymous authors
Paper under double-blind review

Abstract

Generating independent samples from a Boltzmann distribution is a highly relevant problem
in scientific research, e.g. in molecular dynamics, where one has initial access to the underlying
energy function but not to samples from the Boltzmann distribution. We address this problem
by learning the energies of the convolution of the Boltzmann distribution with Gaussian
noise. These energies are then used to generate independent samples through a denoising
diffusion approach. The resulting method, Noised Energy Matching (NEM), has lower
variance and only slightly higher cost than previous related works. We also improve NEM
through a novel bootstrapping technique called Bootstrap NEM (BNEM) that further
reduces variance while only slightly increasing bias. Experiments on a collection of problems
demonstrate that NEM can outperform previous methods while being more robust and that
BNEM further improves on NEM.

1 Introduction

A fundamental problem in probabilistic modeling and physical systems simulation is to sample from a target
Boltzmann distribution µtarget(x) ∝ exp(−E(x)) specified by an energy function E(x). A prominent example
is protein folding, which can be formalized as sampling from a Boltzmann distribution (Śledź & Caflisch,
2018) with energies determined by inter-atomic forces (Case et al., 2021). Having access to efficient methods
for solving the sampling problem could significantly speed up drug discovery (Zheng et al., 2024) and material
design (Komanduri et al., 2000).

Traditional methods for sampling from unnormalized densities include Monte Carlo techniques such as AIS
(Neal, 2001), HMC (Betancourt, 2018), and SMC (Doucet et al., 2001), which are computionally expensive.
Amortised methods using machine learning techniques have been developped in recent years (Noé et al.,
2019; Midgley et al., 2023; Vargas et al., 2023a;c; Berner et al., 2024; Albergo & Vanden-Eijnden, 2024;
Rissanen et al., 2025). However, most existing methods for sampling from Boltzmann densities have problems
scaling to high dimensions and/or are very time-consuming. As an alternative, Akhound-Sadegh et al. (2024)
proposed Iterated Denoising Energy Matching (iDEM), a neural sampler based on denoising diffusion models
which is not only computationally tractable but also seems to provide good coverage of modes. Nevertheless,
iDEM requires a large number of samples for its Monte Carlo (MC) score estimate to have low variance and
a large number of integration steps even when sampling from simple distributions. Also, its effectiveness
highly depends on the choice of noise schedule and score clipping. These disadvantages demand careful
hyperparameter tuning and raise issues when working with complicated energies.

To further push the boundary of diffusion-based neural samplers, we propose Noised Energy Matching
(NEM), which learns a series of noised energy functions instead of the corresponding score functions. Despite
a need to differentiate the energy network when simulating the diffusion sampler, NEM targets less noisy
objectives as compared with iDEM. Additionally, using an energy-based parametrization enables NEM to use
bootstrapping techniques for more efficient training and Metropolis-Hastings corrections for more accurate
simulation. By applying the bootstrapping technique, we propose a variant of NEM called Bootstrap
NEM (BNEM). BNEM estimates high noise-level energies by bootstrapping from current energy estimates at
slightly lower noise levels. BNEM increases bias but reduces variance in its training target.
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Figure 1: Both NEM and BNEM parameterize a time-dependent energy network Eθ(xt, t) to target the
energies of noised data. NEM targets an MC energy estimator computed from the target energy function;
BNEM targets a Bootstrap energy estimator computed from learned energy functions at a slightly lower noise
level. Contours are the ground truth energies at different noise levels; • represents samples used for computing
the MC energy estimator, • represents samples used for computing the Bootstrap energy estimator, and the
white contour line represents the learned energy at time u.

Our methods outperform alternative baselines on both experiments with synthetic and n-body system targets.
Additionally, we found that targeting energies instead of scores is more robust, requiring fewer MC samples
during training and fewer integration steps during sampling. The latter compensates for the need of our
methods to differentiate the energy networks during sampling for score calculation.

Our contributions are as follows:

• We introduce NEM and prove that targeting noised energies rather than noised scores has more
advantages through a theoretical analysis.

• We apply bootstrapping energy estimation to NEM and present a theoretical analysis of the Bias-
Variance trade-off for the resulting diffusion-based sampler.

• We perform experiments showing that BNEM and NEM significantly outperform alternative baseline
neural samplers on four different tasks, while also demonstrating robustness under various hyper-
parameter settings and efficiency in terms of number of function evaluations.

2 Preliminary

We consider learning a generative model for sampling from the Boltzmann distribution

µtarget(x) = exp(−E(x))
Z

, Z =
∫

e−E(x)dx, (1)

where E is the energy function and Z is the intractable partition function. Efficiently sampling from this
type of distribution is highly challenging. The recent success of Diffusion Models provides a promising way to
tackle this problem.

Diffusion Models (DMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020) learn a generative
process that starts from a known and tractable base distribution, a.k.a. denoising process, which is the
inverse of a tractable noising process that starts from the target distribution. Formally, given samples from
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the target distribution, x0 ∼ µtarget, the noising process is an SDE towards a known base distribution p1,
which is also known as the Diffusion SDE:

dxt = f(xt, t)dt + g(t)dwt, for t ∈ [0, 1], (2)

where f(xt, t) is called drift coefficient, g(t) is the diffusion coefficient and wt is standard Brownian Motion.
Diffusion Models work by approximately solving the following inverse SDE 1:

dxt = [f(xt, t)− g2(t)∇ log pt(xt)]dt + g(t)dw̃t, (3)

where w̃t is again standard Brownian Motion and pt is the marginal density of the diffusion SDE at time t.
In the example of the Variance Exploding (VE) noising process, f(xt, t) ≡ 0 and the perturbation kernel is
given by qt|0(xt|x0) = N (xt; x0, σ2

t ), where σ2
t :=

∫
g2(s)ds. Then the learning objective of DMs is obtained

by using Tweedie’s formula (Efron, 2011):

LDM (θ) = Ept|0(xt|x0)p0(x0)p(t)

[
w(t)

∥∥∥∥x0 − xt

σ2
t

− sθ(xt, t)
∥∥∥∥2
]

, (4)

where w(t) is a positive weighting function and sθ(xt, t) is a score network, parameterized by θ, which targets
the conditional scores ∇ log pt|0(xt|x0) = ∇ logN (xt; x0, σ2

t I). Minimising the above objective allows us to
approximate the marginal scores ∇ log pt(xt) with sθ(xt, t).

3 Methods

We aim to train a diffusion-based neural sampler that samples from µtarget(x) = e−E(x)/Z, where we assume
we only have access to the energy function E without any known data from the target distribution, as
illustrated in Fig. 1. To solve this problem, we introduce our proposed NEM framework and discuss the
theoretical advantages of energy matching over score matching. Finally, we describe how bootstrapping
(BNEM) can be used to obtain further gains. Full descriptions for training NEM and BNEM are provided in
Algs. 1 and 2, and visualized in Fig. 1.

3.1 Denoising diffusion-based Boltzmann sampler

We consider training an energy-based diffusion sampler (Salimans & Ho, 2021; Gao et al., 2021) corresponding
to a variance exploding (VE) noising process defined by dxt = g(t)dwt, where t ∈ [0, 1], g(t) is a function of time
and wt is Brownian motion. The reverse SDE with Brownian motion w̄t is dxt = −g2(t)∇ log pt(xt)dt+g(t)dw̄t,
where pt is the marginal of the diffusion process starting at p0 := µtarget.

Given the energy E(x) and the perturbation kernel qt(xt|x0) = N (xt; x0, σ2
t ), where exp(−E(x)) ∝ p0(x) and

σ2
t :=

∫ t

s
g2(s)ds, one can obtain the marginal noised density pt as

pt(xt) ∝
∫

exp(−E(x0))N (xt; x0, σ2
t I)dx0 = EN (x;xt,σ2

t I)[exp(−E(x))]. (5)

Going a step further, the RHS of Eq. (5) defines a Boltzmann distribution over the noise-perturbed distribution
pt. The noised energy is defined as the negative logarithm of this unnormalized density

Et(xt) := − logEN (x;xt,σ2
t I)[exp(−E(x))], where exp(−Et(xt)) ∝ pt(xt). (6)

Training on MC estimated targets We can approximate the gradient of log pt by fitting a score network
sθ(xt, t) to the gradient of Monte Carlo (MC) estimates of Eq. (6), leading to iDEM (Akhound-Sadegh et al.,
2024). The MC score estimator SK and the training objective are

SK(xt, t) : = ∇ log 1
K

K∑
i=1

exp(−E(x(i)
0|t)), x

(i)
0|t ∼ N (x; xt, σ2

t I) (7)

LDEM(xt, t) : = ∥SK(xt, t)− sθ(xt, t)∥2. (8)
1For simplicity, we denote ∇x by ∇ throughout the paper.
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Alternatively, we can fit an energy network Eθ(xt, t) to MC estimates of Eq. (6). The gradient of this energy
network w.r.t. input xt, i.e. ∇Eθ(xt, t), can then be used to estimate the score required for diffusion-based
sampling. The MC energy estimator EK and the training objective can be written as

EK(xt, t) : = − log 1
K

K∑
i=1

exp(−E(x(i)
0|t)), x

(i)
0|t ∼ N (x; xt, σ2

t I) (9)

LNEM(xt, t) : = ∥EK(xt, t)− Eθ(xt, t)∥2. (10)

Notice that SK(xt, t) = −∇EK(xt, t). To enable diffusion-based sampling, one is required to differentiate
the energy network to obtain the marginal scores, i.e. ∇Eθ(xt, t), which doubles the computation of just
evaluating Eθ(xt, t). Regressing the MC energy estimator EK does not require to compute the gradient of
the target energy E during training but it requires computing the gradient of Eθ during sampling. In other
words, we change the requirement of having to differentiate the energy function E for training, to having to
differentiate the learned neural network Eθ for sampling. Our method may have computational advantages
when evaluating the gradient of the target energy is difficult or expensive.

Bi-level iterative training scheme To train the diffusion model on the aforementioned Monte Carlo
targets, we should choose the input locations xt at which the targets are computed. Previous works (Akhound-
Sadegh et al., 2024; Midgley et al., 2023) used data points generated by a current learned denoising procedure.
We follow their approach and use a bi-level iterative training scheme for noised energy matching. This involves

• An outer loop that simulates the diffusion sampling process to generate informative samples x0.
These samples are then used to update a replay buffer B.

• A simulation-free inner loop that matches the noised energies (NEM) or scores (DEM) evaluated at
noised versions xt of the samples x0 stored in the replay buffer.

3.2 Energy-based learning v.s. score-based learning

In this section, we aim to answer the following questions.

(Q1) Do NEM and iDEM differ with infinite data, training time, and model capacity?

(Q2) Why might NEM outperform iDEM in practical settings?

To answer Q1, We assume that both NEM and iDEM use fully flexible energy and score networks and
that both have converged by training with unlimited clean data. Since both networks are regressing on the
MC estimates, at convergence, their network outputs are then the expectations Eθ∗(xt, t) = E[EK(xt, t)]
and sθ∗(xt, t) = E[SK(xt, t)]. Noticing that SK = −∇EK and by changing the order of differentiation and
expectation, we show that NEM and iDEM result in the same score in this optimal learning setting, i.e.
sθ∗ = −∇Eθ∗ , in Appendix D.1.

However, factors such as limited data and model capacity, will always introduce learning error, which is
related to the variance of targets Zhang et al. (2017); Belkin et al. (2019) and raises Q2. In the following, we
characterize EK by quantifying its bias and variance in order to address this question.

Proposition 3.1. If exp(−E(x(i)
0|t)) is sub-Gaussian, then with probability 1− δ over x

(i)
0|t ∼ N (xt, σ2

t ),
we have

∥EK(xt, t)− Et(xt)∥ ≤
exp(Et(xt))

√
2v0t(xt) log(2/δ)√

K
+O

(
1
K

)
, (11)

where v0t(xt) = VarN (x;xt,σ2
t I)[exp(−Et(x))].

Proposition 3.1 shows an error bound on the training target used by NEM. This bound is invariant to energy
shifts (i.e. adding a constant to the energy) because exp(Et(xt))

√
v0t(xt) is invariant under that operation.
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The bound depends on energy values at xt and in the vecinity of xt, i.e. Et(xt) and v0t(xt). In particular,
the error bound tends to be small in high-density regions (i.e., low-energy regions) where exp(Et(xt)) is
relatively low. This yields reliable energy estimates that may be effectively leveraged for Metropolis-Hastings
corrections. The bias and variance of EK can be characterised through the above error bound, as provided by
the following corollary:

Corollary 3.2. If exp(−E(x(i)
0|t)) is sub-Gaussian, then the bias and variance of EK are given by

Bias[EK(xt, t)] = E[EK(xt, t)]− Et(xt) = v0t(xt)
2m2

t (xt)K
+O

(
1

K2

)
, (12)

Var[EK(xt, t)] = v0t(xt)
m2

t (xt)K
+O

(
1

K2

)
, (13)

where mt(x) = exp(−Et(xt)) and v0t(xt) is defined in Proposition 3.1.

The complete proofs of Proposition 3.1 and Corollary 3.2 are given in Appendix B. Additionally, for 1-
dimensional inputs, the variances of SK and EK can be related as follows.

Proposition 3.3. Let x ∈ R. If exp(−Et(x)) > 0, exp(−E(x(i)
0|t)) is sub-Gaussian, and

∥∇ exp(−E(x(i)
0|t))∥ is bounded. Then

Var[SK(xt, t)]
Var[EK(xt, t)] = 4(1 + ∥∇Et(xt)∥)2+O

(
1
K

)
. (14)

Proposition 3.3 shows that the MC energy estimator has less variance than the MC score estimator in the
1-dimensional case, resulting in a less noisy training signal. The complete proof for the above results is
provided in Appendix C. We argue that this variance gap naturally extends to higher-dimensional settings,
which is trivial to show when there is perfect dependence or independence between data dimensions. Therefore,
we claim that NEM provides an easier learning problem than iDEM. While NEM uses targets with
lower variance, it still requires differentiating the energy Eθ during sampling, unlike iDEM, which directly
uses the learned score sθ. This makes it hard to quantify the actual differences between these methods
theoritically. Despite this, our experiments show that NEM performs better in practice than iDEM, in
terms of both performance and convergence rate, indicating that the differentiation of Eθ during sampling
does not introduce additional significant errors in NEM. To address potential memory issues arising from
differentiating the energy network in high-dimensional tasks, we also introduce a memory-efficient sampling
procedure in Appendix I.

3.3 Improvement with bootstrapped energy estimation

Using an energy network that directly models the noisy energy landscape has additional advantages. Intuitively,
the variances of EK and SK explode at high noise levels as a result of the VE noising process. However, we
can reduce the variance of the training target in NEM by using the learned noised energies at just slightly
lower noise levels rather than using the target energy at time t = 0. Based on this, we propose Bootstrap
NEM, or BNEM, which uses a novel MC energy estimator at high noise levels that is bootstrapped from
the learned energies at slightly lower noise levels. Suppose that Eθ(·, s) is an energy network that already
provides a relatively accurate estimate of the energy at a low noise level s, we can then construct a bootstrap
energy estimator at a higher noise level t > s:

EK(xt, t, s; θ) : = − log 1
K

K∑
i=1

exp(−Eθ(x(i)
s|t, s)), x

(i)
s|t ∼ N

(
x; xt, (σ2

t − σ2
s)I
)

, (15)

LBNEM(xt, t|s) : = ∥EK (xt, t, s; SG(θ))− Eθ(xt, t)∥2
, (16)
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where SG(θ) denotes a stop-gradient operation, preventing backpropagation through θ.

Let us consider a bootstrapping-once scenario (0→ s→ t) where we assume that we first learn an optimal
energy network at s by using the MC energy estimator Eq. (9) with unlimited training data and a fully
flexible model, resulting in Eθ∗

s
(xs, s) = E[EK(xs, s)]; then the Bootstrapped energy estimator is obtained by

plugging Eθ∗
s

into Eq. (15). Appendix F.1 shows that the bias of the bootstrapping-once estimator can then
be characterized as

Bias[EK(xt, t, s; θ∗
s)] = v0t(xt)

2m2
t (xt)K2 + v0s(xt)

2m2
s(xt)K

.

This illustrates that, theoretically, bootstrapping once from time s can quadratically reduce the bias
contributed at time t > s, while the bias contributed at time s is accumulated. By induction, given a chain of
bootstrapping 0 = s0 < ... < si < t, we sequentially optimize the network at (xsj , sj) by bootstrapping from
the previous level. Then the bias at (xt, t) can be charecterized as follows:

Proposition 3.4. Given {si}n
i=0 such that σ2

si
−σ2

si−1
≤ κ, where s0 = 0, sn = 1 and κ > 0 is a small

constant. suppose Eθ is incrementally optimized from t ∈ [0, 1] as follows: if t ∈ [si, si+1], Eθ(xt, t)
targets an energy estimator bootstrapped from ∀s ∈ [si−1, si] using Eq. (15). For ∀0 ≤ i ≤ n and
∀s ∈ [si−1, si], the variance of the bootstrap energy estimator is approximately given by

Var[EK(xt, t, s; θ)] = vst(xt)
v0t(xt)

Var[EK(xt, t)] (17)

and the bias of EK(xt, t, s; θ) is approximately given by

Bias[EK(xt, t, s; θ)] = v0t(xt)
2m2

t (xt)Ki+1 +
i∑

j=1

v0sj
(xt)

2m2
sj

(xt)Kj
, (18)

where vyz(xz) = VarN (x;xz,(σ2
z−σ2

y)I)[exp(−Ey(x))] and mz(xz) = exp(−Ez(xz)) for ∀0 ≤ y < z ≤ 1.

A detailed discussion and proof are given in Appendix F. Proposition 3.4 demonstrates that the bootstrap
energy estimator, which estimates the noised energies by sampling from an xt-mean Gaussian with smaller
variance, can reduce the variance of the training target, because the variance ratio vst(xt)/v0t(xt) < 1 is very
small, while this new target can introduce accumulated bias.

Proposition 3.4 shows that, the bias of BNEM consists of two components: (1) the target bias term which
is reduced by a factor of Ki compared to NEM, and (2) the sum of intermediate biases, which are each
reduced by factors of Kj where j ≥ 1. Since K is typically large and i ≥ 1, the target bias term in BNEM
is substantially smaller than in NEM. While BNEM does introduce additional accumulated terms, these
terms are also reduced by powers of K, resulting in an overall lower bias compared to NEM under similar
computational budgets. Therefore, with a proper choice of a number of MC samples K and bootstrap
trajectory {si}n

i=1, the bias of BNEM (Eq. (12)) can be smaller than that of NEM (Eq. (18)) while enjoying
a lower-variance training target.

Variance-controlled bootstrap schedule BNEM aims to trade the bias of the learning target to its
variance. To ensure that the variance of the Bootstrap energy estimator at t bootstrapped from s is controlled
by a predefined bound β, i.e. σ2

t − σ2
s ≤ β, we first split the time range [0, 1] with 0 = t0 < t1 < ... < tN = 1

such that σ2
ti+1
− σ2

ti
≤ β/2; then we uniformly sample s and t from adjacent time splits during training for

variance control.

Training of BNEM To train BNEM, it is crucial to account for the fact that bootstrap energy estimation
at t can only be accurate when the noised energy at s is well-learned. Given a partially trained NEM
energy network, we introduce a rejection scheme for bootstrap fine-tuning to balance the bootstrapped and
original MC estimators. Specifically, at each training step, we compute the normalized losses LNEM(xt, t)/σ2

t

and LNEM(xs, s)/σ2
s , and define an acceptance ratio proportional to their values. If accepted, we use the
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Table 1: Performance comparison of neural samplers across four target distributions. We evaluate each
method using three metrics: data Wasserstein-2 distance (x-W2), energy Wasserstein-2 distance (E-W2),
and Total Variation (TV). Each sampler is run with three random seeds; we report the mean ± standard
deviation. ∗ indicates divergent training. † denotes cases where only one seed converged, with the best result
reported. Best values are in bold.

Target → GMM-40 (d = 2) DW-4 (d = 8) LJ-13 (d = 39) LJ-55 (d = 165)
Sampler ↓ x-W2 E-W2 TV x-W2 E-W2 TV x-W2 E-W2 TV x-W2 E-W2 TV
DDS 15.04±2.97 305.13±186.06 0.96±0.01 0.82±0.21 558.79±787.92 0.38±0.14 * * * * * *
PIS 6.58±1.68 79.86±7.79 0.95±0.01 * * * * * * * * *
FAB 9.08±1.41 47.60±7.24 0.79±0.07 0.62±0.02 112.70±20.33 0.38±0.02 * * * * * *
iDEM 8.21±5.43 60.49±70.12 0.82±0.03 0.50±0.03 2.80±1.72 0.16±0.01 0.87±0.00 6770† 0.06±0.01 1.98±0.01 12615.77±991.43 0.14±0.01

NEM 5.28±0.89 44.56±39.56 0.91±0.02 0.48±0.02 0.85±0.52 0.14±0.01 0.87±0.01 5.01±3.14 0.03±0.00 1.90±0.01 118.58±106.63 0.10±0.02

BNEM 3.66±0.30 1.87±1.00 0.79±0.04 0.49±0.02 0.38±0.09 0.14±0.01 0.86±0.00 1.02±0.69 0.03±0.00 1.88±0.01 119.46±77.92 0.08±0.01

bootstrapped estimator; otherwise, we fall back to the original MC estimator. The detailed illustration could
be found in Appendix A.2 and Alg. 2.

4 Related works

Flow-based Neural Sampler. Flow AIS Bootstrap (Midgley et al., 2023, FAB) trains Normalizing Flows
to minimize the α=2-divergence, i.e. the variance of importance weights, which exhibits mode covering
properties. Notably, it employs a replay buffer for better exploitation.

Path-measure-based Neural Sampler. One can generate samples by a sequence of actions, which defines
a path of the sampling process. Path-measure-based methods train neural samplers by minimizing the
divergence between the sampling path and its reversal. Inspired by diffusion models (Song & Ermon, 2019;
Ho et al., 2020), Zhang & Chen (2022); Vargas et al. (2023a); Richter & Berner (2023) propose to learn the
sampling process by matching the time reversal of the diffusion process. Doucet et al. (2022) proposes to learn
the time-reversal of the AIS path, while Vargas et al. (2023c); Albergo & Vanden-Eijnden (2024) introduce a
learnable corrector to make sure the sampler transports between a sequence of predefined marginal densities.
On the other hand, inspired by reinforcement learning, Bengio et al. (2021) proposes GFlowNets, which
amortize MCMC by utilizing local information, such as (sub-)trajectory detailed-balance, to train a generative
model. Sendera et al. (2024) proposes techniques to improve GFlowNets. However, most of these methods
require simulation during training, which still poses challenges for scaling up to higher-dimensional tasks.

Monte-Carlo-based Neural Sampler. Huang et al. (2023) proposes to estimate the denoising score using
a Monte Carlo method. To boost scalability, iDEM (Akhound-Sadegh et al., 2024) introduces an off-policy
training loop to regress an MC score estimator. It achieves previous state-of-the-art performance on the tasks
below. Notably, this MC estimator is used in Vargas et al. (2023b); Grenioux et al. (2024) and resembles an
importance-weighted estimator of the Target Score Identity proposed by Bortoli et al. (2024). Woo & Ahn
(2024) proposes a variant to target the vector field.

Diffusion-based MCMC Sampler. Chen et al. (2024); Grenioux et al. (2024) combine MCMC with
diffusion sampling, by a Gibbs-style sampling procedure which alternates between the clean data space and
the noisy data space.

5 Experiments

We evaluate our methods and baseline models on 4 potentials. A complete description of all energy functions,
metrics, and experiment setups is in Appendix K. Supplementary experiments can be found in Appendix L.
We provide an anonymous link to our code for implementation reference2.

Datasets. We evaluate all neural samplers on 4 different problems: a GMM with 40 modes (d = 2), a
4-particle double-well (DW-4) potential (d = 8), a 13-particle Lennard-Jones (LJ-13) potential (d = 39) and

2https://anonymous.4open.science/r/BNEM-NeurIPS2025/README.md
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(a) Ground Truth (b) DDS (c) PIS (d) FAB (e) iDEM (f) NEM (ours) (g) BNEM (ours)

Figure 2: Sampled points from samplers applied to GMM-40 potentials, with the ground truth represented by contour lines. For
diffusion-based methods, the reverse SDE integration steps are limited to 100.

a 55-particle Lennard-Jones (LJ-55) potential (d = 165). For LJ-n potentials, the energy can be extreme
when particles are too close to each other, creating problems for estimating noised energies. To overcome this
issue, we smooth the Lennard-Jones potential through the cubic spline interpolation, according to Moore
et al. (2024).

Baseline. We compare NEM and BNEM to the following recent works: Denoising Diffusion Sampler (DDS,
Vargas et al., 2023a), Path Integral Sampler (PIS, Zhang & Chen, 2022)), Flow Annealed Bootstrap (FAB,
Midgley et al., 2023) and Iterated Denoising Energy Matching (iDEM, Akhound-Sadegh et al., 2024). Due to
the high complexity of DDS and PIS training due to their simulation-based nature, we limit their integration
step when sampling to 100. As shown in prior work (Akhound-Sadegh et al., 2024), all baselines perform
well on the GMM benchmark when using 1000 integration steps—our methods as well. To increase task
difficulty and better assess robustness, we reduce both the number of integration steps and MC samples to
100 in our evaluation. For other tasks, i.e. DW-4, LJ-13 and LJ-55, we stick to using 1000 steps for reverse
SDE integration and 1000 MC samples in the estimators. We notice that the latest codebase of iDEM uses
100 MC samples but employs 10 steps of Langevin dynamics before evaluation in the LJ-55 task. For fair
comparison, we disable these Langevin steps 3 and stick to using 1000 MC samples for iDEM. For BNEM, we
set β = 0.1 for all tasks. All samplers are trained using an NVIDIA-A100 GPU.

Architecture. We use the same network architecture (MLP for GMM and EGNN for n-body systems, i.e.
DW-4, LJ-13, and LJ-55) in DDS, PIS, iDEM, NEM and BNEM. To ensure a similar number of parameters
for each sampler, if the score network is parameterized by sθ(x, t) = fθ(x, t), the energy network is set to
be Eθ(x, t) = 1⊤fθ(x, t) + c with a learnable scalar c. Furthermore, this setting ensures SE(3)-invariance
for the energy network. Since FAB requires an invertible architecture, we use in this method a continuous
normalizing flow specified by fθ(x, t) so that it has a similar number of parameters as the other samplers.

Metrics. We applied the 2-Wasserstein distances on data (x-W2) and energy (E-W2) values as quality
metrics. Additionally, the Total Variation (TV) is also computed. TV is computed directly from data in
GMM experiments and from interatomic distances in n-body systems. To compute W2 and TV metrics, we
use pre-generated ground-truth samples: (a) For GMM, we sample from the ground truth distribution; (b)
For DW-4, LJ-13 and LJ-55, we use samples from Klein et al. (2023b). Note that we take SE(3) into account
when calculating x-W2 for n-body systems . For a detailed description of the evaluation metrics, please
refer to Appendix K.2.

5.1 Main Results

We report x-W2, E-W2, and TV for all tasks in Table 1. The table demonstrates that by targeting less noisy
objectives, NEM outperforms DEM on most metrics, particularly for complex tasks such as LJ-13 and LJ-55.
Fig. 2 visualizes the generated samples from each sampler in the GMM benchmark. When the compute
budget is constrained—by reducing neural network size for DDS, PIS, and FAB, and limiting the number of
integration steps and MC samples to 100 for all baselines—none of them achieve high-quality samples with
sufficient mode coverage. In particular, iDEM produces samples that are not concentrated around the modes
in this setting. Conversely, NEM generates samples with far fewer outliers and achieves the best performance

3In fact, running any MCMC on top of the generated samples is trivial, which can be employed by any of the baselines.
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Figure 3: Histogram for energy (top) and interatomic distance (bottom) of generated samples.

on all metrics. BNEM can further improve on top of NEM, generating data that are most similar to the
ground truth ones.

For the equivariant tasks, i.e. DW-4, LJ-13, and LJ-55, we compute the energies and interatomic distances
for each generated sample. Empirically, we found that smoothing the energy-distance function by a cubic
spline interpolation (Moore et al., 2024) to avoid extreme values (i.e. when the particles are too close) is a key
step when working with the Lennard Jones potential. Furthermore, this smoothing technique can be applied
in a wide range of many-particle systems (Pappu et al., 1998). Therefore, NEM and BNEM can be applied
without significant modeling challenges. We also provide an ablation study on applying this energy-smoothing
technique to score-based iDEM. The results in Table 3 suggest that it could help to improve the performance
of iDEM but NEM still outperforms it.

Fig. 3 shows the histograms of the energies and interatomic distances on each n-particle system. It shows
that both NEM and BNEM closely match the ground truth densities, outperforming all other baselines.
Moreover, for the most complex task, LJ-55, NEM demonstrates greater stability during training, generating
more low-energy samples, unlike iDEM, which is more susceptible to instability and variance from different
random seeds.

E-W2 is susceptible to outliers with high energy, especially in complex tasks like LJ-13 and LJ-55, where
an outlier that corresponds to a pair of particles that are close to each other can result in an extremely
large value of this metric. We find that for LJ-n tasks, NEM and BNEM tend to generate samples with low
energies and result in low E-W2, while iDEM can produce high energy outliers and therefore results in the
extremely high values of this metric. We also notice that for LJ-55, the mean value of E-W2 of BNEM is
similar to NEM, while its results have smaller variance indicating a better result. Overall, NEM consistently
outperforms iDEM, while BNEM can further improve over NEM and achieve state-of-the-art performance in
all tasks.

Robustness of NEM and BNEM. Table 1 highlights the superior robustness of NEM and BNEM,
requiring fewer integration steps and MC samples compared to iDEM and other baselines. We further examine
this robustness using the LJ-13 benchmark to showcase the advantages of NEM and BNEM. Fig. 4 illustrates
how metrics change when reducing integration steps and MC samples from 1000 to 100. A comprehensive
comparison across different computational budgets is provided in Table 4 (Appendix L). Results indicate
that under constrained budgets, iDEM performance significantly deteriorates in GMM and DW-4 potentials,
whereas NEM remains more robust. In LJ-13, both methods experience degradation, yet NEM-100 surpasses
iDEM-100 and even iDEM-1000 in terms of E-W2 and TV metrics. Moreover, BNEM-100 maintains strong

9
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Figure 4: Barplots comparing iDEM, NEM, and
BNEM evaluations with 1000 vs. 100 integration
steps and MC samples on the LJ-13 benchmark.

Figure 5: Number of energy evaluations vs. E-W2.
Left: GMM; Right: LJ-55. The y-axis is on a loga-
rithmic scale.

performance, matching iDEM-1000 in GMM and DW-4, and notably outperforming iDEM-1000 in the LJ-13
benchmark.

Efficiency of NEM and BNEM. Fig. 5 compares the efficiency of NEM and BNEM against iDEM. On
the simple GMM task, NEM reaches the same optimality as iDEM but requires 5–10 times fewer energy
evaluations. BNEM achieves similar results an order of magnitude faster and delivers better performance.
On the more challenging LJ55 task, all three methods require similar energy evaluations for convergence.
However, NEM and BNEM yield an order of magnitude improvement over iDEM. Notably, BNEM converges
more slowly than NEM due to bootstrapping instability but eventually reaches a more stable optimum with
significantly lower variance in E-W2. These results align with the variance advantage of energy estimators
over score estimators established in Proposition 3.3, suggesting that the lower-variance MC energy estimator
offers a more stable training signal. We report the memory and runtime (per-loop) overhead of iDEM, NEM,
and BNEM in Tables 7 and 8; see Appendix L.5 for more details.

6 Conclusion

We have proposed NEM and BNEM, two neural samplers targeting Boltzmann distributions. NEM regresses
a novel Monte Carlo energy estimator with reduced bias and variance, achieving faster convergence rate and
better optimality with more robustness to hyper-parameters when compared to iDEM. BNEM builds on
NEM, employing an energy estimator bootstrapped from lower noise-level data, theoretically trading bias
for variance. Empirically, NEM outperforms baselines on 4 different benchmarks, and BNEM improves over
NEM .

Limitations and future work. Though NEM/BNEM achieve better performance on multiple benchmark
sampling tasks, they have to differentiate through a neural network, which can increase memory cost. To
mitigate this, we have explored using an alternative estimator to reduce the memory trace for energy-based
modeling in Appendices I and L.7. Another limitation is that, to stabilize training with extreme energy
values, we had to use a cubic-spline interpolation technique for the LJ-n potentials, which can introduce small
biases in the generated samples. Future work could avoid this by using contrastive learning or an alternative
energy training scheme.

Broader Impact

This paper presents work whose goal is to advance the field of Machine Learning. There are many potential
societal consequences of our work, none which we feel must be specifically highlighted here.
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BNEM: A Boltzmann Sampler
Based on Bootstrapped Noised Energy Matching

Appendix

A Details of Training NEM & BNEM

A.1 Iterated Training for NEM and BNEM

Algorithm 1 Iterated training for (Bootstrapped) Noised Energy Matching
Input: Energy network Eθ, Batch size b, Noise schedule σ2

t , Replay buffer B, Num. MC samples K, L-step
Diffusion solver DL

1: while Outer-Loop do
2: B = Update(B, DL(−∇Eθ, b))
3: while Inner-Loop do
4: x0 ∼ B, t ∼ U(0, 1), xt ∼ N (x0, σ2

t )
5: LNEM(xt, t) = ∥EK(xt, t)− Eθ(xt, t)∥2

6: LBNEM(xt, t) = ∥EK(xt, t, s, SG(θ))− Eθ(xt, t)∥2, s ∼ U(ti, t) where ti ≤ t < ti+1

7: θ ← Update(θ,∇θLNEM)
8: end while
9: end while

A.2 Inner-loop of BNEM Training

In the training of BNEM, we first use NEM to obtain an initial energy network and then apply training with
the bootstrapped estimator. We then aim to use bootstrapping only when the energy network is significantly
better at time s than at time t. We quantify this by evaluating the NEM losses at times t and s given a
clean data point x0. In particular, we could compare l̃s(xs) = LNEM(xs, s) and l̃t(xt) = LNEM(xt, t), where
xs ∼ N (x0, σ2

sI) and xt ∼ N (x0, σ2
t I). However, a direct comparison of l̃s and l̃t is not reliable because

the intrinsic difficulty of the regression problem changes with time: even for an optimal regressor under
squared loss, the minimum achievable MSE equals the conditional variance of the regression target, i.e.,
inff E∥Y − f(X)∥2 = E[Var(Y | X)]. Along the noising path in Diffusion models, this variance typically
increases with the noise level, so a smaller raw loss at time s does not necessarily imply that the energy network
is better learned at s than at t. Heuristically, the conditional variance of the NEM regression target scales with
the variance of the noising kernel, which is σ2

t . To factor out this time-dependent scale and compare losses in
a roughly “noise-normalized” unit, we instead use ls(xs) = LNEM(xs, s)/σ2

s and lt(xt) = LNEM(xt, t)/σ2
t . We

then apply a rejection-based training rule—rather than a hard switch—to smooth this noisy loss ratio and
improve training stability, as follows.

(a) Given s, t and x0, we first noise x0 to s and t respectively, and compute the normalized losses defined
above, i.e. ls(xs) and lt(xt);

(b) These losses indicate how well the energy network fits the noised energies at different times; we then
compute α = min(1, ls(xs)/lt(xt));
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(c) With probability α, we accept targeting an energy estimator at t bootstrapped from s and otherwise,
we stick to targeting the original MC energy estimator.

Algorithm 2 Inner-loop of Bootstrap Noised Energy Matching training
Input: Network Eθ, Batch size b, Noise schedule σ2

t , Replay buffer B, Num. MC samples K
1: while Inner-Loop do
2: x0 ← B.sample()
3: t ∼ U(0, 1), xt ∼ N (x0, σ2

t )
4: n← arg{i : t ∈ [ti, ti+1]}
5: s ∼ U(tn−1, tn), xs ∼ N (x0, σ2

s)
6: ls(xs)← ∥EK(xs, s)− Eθ(xs, s)∥2/σ2

s

7: lt(xt)← ∥EK(xt, t)− Eθ(xt, t)∥2/σ2
t

8: α← min(1, lt(xt)/ls(xs))
9: with probability α,

10: LBNEM(xt, t) = LBNEM(xt, t|s)
11: Otherwise,
12: LBNEM(xt, t) = LNEM(xt, t)
13: θ ← Update(θ,∇θLBNEM)
14: end while

B Proof of Proposition 3.1 and Corollary 3.2

Proposition 3.1. If exp(−E(x(i)
0|t)) is sub-Gaussian, then with probability 1− δ over x

(i)
0|t ∼ N (xt, σ2

t ),
we have

∥EK(xt, t)− Et(xt)∥ ≤
√

2v0t(xt) exp(Et(xt))
√

log(2/δ)√
K

+O
(

1
K

)
(19)

where v0t(xt) = VarN (x;xt,σ2
t I)[exp(−Et(x))].

Corollary 3.2. If exp(−E(x(i)
0|t)) is sub-Gaussian, then the bias and variance of EK are given by

Bias[EK(xt, t)] = E[EK(xt, t)]− Et(xt) = v0t(xt)
2m2

t (xt)K
+O

(
1

K2

)
, (20)

Var[EK(xt, t)] = v0t(xt)
m2

t (xt)K
+O

(
1

K2

)
, (21)

where mt(x) = exp(−Et(xt)) and v0t(xt) is defined in Proposition 3.1.

Proof. Let’s define the following variables

mt(xt) = exp(−Et(xt)) (22)
vst(xt) = VarN (xt,(σ2

t −σ2
s)I)[exp(−E(x))] (23)

Notice that EK is a logarithm of an unbiased estimator and by the sub-Gaussian assumption of exp(−E(x(i)
0|t)),

one can derive that EK is also sub-Gaussian. Furthermore, the mean and variance can be approximated using
a Taylor expansion, a technique formally known as the Delta Method Casella & Berger (2002). Specifically,
if a random variable X has mean m and variance v, then its logarithm logX has the following mean and
variance:

E[log X] = log m− v

2m2 +O(v2), Var(log X) = v

m2 +O(v2). (24)
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Hence, according to the sub-Gaussianess of EK ’s negative exponential, we have

EEK(xt, t) = Et(xt) + v0t(xt)
2m2

t (xt)K
+O

(
1

K2

)
(25)

Var[EK(xt, t)] = v0t(xt)
m2

t (xt)K
+O

(
1

K2

)
(26)

Recall that a random variable X is σ-sub-Gaussian if

P (∥X − EX∥ ≥ ϵ) ≤ 2 exp
(
− ϵ2

2σ2

)
, (27)

for any ϵ > 0. Equivalently, for any δ ∈ (0, 1), with probability at least 1− δ, we have

∥X − EX∥ ≤
√

2σ2 log 2
δ

. (28)

Hence, one can obtain the concentration inequality for EK by incorporating the sub-Gaussianess. For any
δ ∈ (0, 1), with probability 1− δ, we have

∥EK(xt, t)− E[EK(xt, t)]∥ ≤

√
2 v0t(xt)

m2
0t(xt)K

log 2
δ

(29)

By using the above Inequality Eq. (29) and the triangle inequality

∥EK(xt, t)− Et(xt)∥ ≤ ∥EK(xt, t)− E[EK(xt, t)]∥+ ∥E[EK(xt, t)]− Et(xt)∥ (30)

= ∥EK(xt, t)− E[EK(xt, t)]∥+ v0t(xt)
2m2

t (xt)K
+O(1/K2) (31)

≤

√
2 v0t(xt)

m2
t (xt)K

log 2
δ

+ v0t(xt)
2m2

t (xt)K
+O(1/K2) (32)

=
√

2v0t(xt) exp(Et(xt))
√

log(2/δ)√
K

+O(1/K) (33)

holds with probability 1− δ for any δ ∈ (0, 1).

B.1 EK error bound v.s. SK error bound

To connect the bias of MC energy estimator and the MC score estimator, we introduce the error bound of
the MC score estimator SK , where SK = ∇EK , proposed by Akhound-Sadegh et al. (2024) as follows

∥SK(xt, t)− S(xt, t)∥ ≤
2C
√

log( 2
δ )(1 + ∥∇Et(xt)∥) exp(Et(xt))

√
K

(34)

which also assumes that exp(−E(x(i)
0|t)) is sub-Gaussian and further assumes sub-Gaussianess over ∥∇E(x(i)

0|t)∥
. On the other hand, by the sub-Gaussianess assumption of exp(−E(x(i)

0|t)), it’s easy to show that the constant
term C in Equation 34 is C =

√
2v0t(xt).

Therefore, we show that the energy estimator error bound would always be 2(1 + ∥∇Et(xt)∥) times tighter
than the score estimator error bound.

B.2 Invariant of the error bounds

At the end, we show that the above error bounds for both EK and SK is invariant to any energy shift, i.e. a
shifted system energy E(x) + C with any real value constant C will always result in the same bounds.
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The proof is simple. By noticing that

ṽst(xt) = VarN (xt,(σ2
t −σ2

s)I)[exp(−E(x) + C)] (35)
= e−2CVarN (xt,(σ2

t −σ2
s)I)[exp(−E(x))] (36)

m̃t(xt) =
∫

exp(−E(x + C))N (x; xt, σ2
t I) (37)

= e−Cmt(xt) (38)

the exponential shifted value will be cancelled when calculating vst(xt)/m2
t (xt). □

C Proof of Proposition 3.3

Proposition 3.3. Let x ∈ R. If exp(−Et(x)) > 0, exp(−E(x(i)
0|t)) is sub-Gaussian, and

∥∇ exp(−E(x(i)
0|t))∥ is bounded. Then

Var[SK(xt, t)]
Var[EK(xt, t)] = 4(1 + ∥∇Et(xt)∥)2+O

(
1
K

)
. (39)

Proof. Review that SK can be expressed as an importance-weighted estimator as follows:

SK(xt, t) =
1
K

∑K
i=1∇ exp(−E(x(i)

0|t))
1
K

∑K
i=1 exp(−E(x(i)

0|t))
(40)

According to the assumpsion that ∥∇ exp(−E(x(i)
0|t))∥ is bounded, let ∥∇ exp(−E(x(i)

0|t))∥ ≤M , where M > 0.
Since a bounded variable is sub-Gaussian, this assumption resembles a sub-Gaussianess assumption of
∥∇ exp(−E(x(i)

0|t))∥.

On the other hand, according to the assumption that exp(−Et(x)) > 0 for any x in the support, there exists
a constant c such that exp(−E(x(i)

0|t)) ≥ c > 0 and thus

∥SK(xt, t)∥ =

∥∥∥∥∥∥
1
K

∑K
i=1∇ exp(−E(x(i)

0|t))
1
K

∑K
i=1 exp(−E(x(i)

0|t))

∥∥∥∥∥∥ (41)

≤
∥
∑K

i=1∇ exp(−E(x(i)
0|t))∥

Kc
≤M/c (42)

Therefore, SK is bounded by M/c, suggesting it is sub-Gaussian. Recap that the error bound of SK is given
by Eq. (34) as follows.

∥SK(xt, t)− S(xt, t)∥ ≤
2C
√

log( 2
δ )(1 + ∥∇Et(xt)∥) exp(Et(xt))

√
K

(43)

which suggests that we can approximate the variance of SK(xt, t), by leveraging its sub-Gaussianess, as
follows,

Var[SK(xt, t)] = 4v0t(xt)(1 + ∥∇Et(xt)∥)2

m2
t (xt)K

+O
(

1
K2

)
(44)

Therefore, according to Eq. (26) we can derive that

Var[SK(xt, t)])
Var[EK(xt, t)] =

4v0t(xt)(1+∥∇Et(xt)∥)2

m2
t (xt)K

+O
( 1

K2

)
v0t(xt)

m2
t (xt)K

+O
( 1

K2

) (i)= 4(1 + ∥∇Et(xt)∥)2 +O
(

1
K

)
. (45)
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Step (i) follows from the asymptotic expansion of the ratio. By factoring out the leading order term 1/K
from both the numerator and denominator, the quotient converges to the ratio of the coefficients with a
residual error of order O(1/K). □

D Bias and Error for Learned Scores

In our diffusion sampling setting, the most essential component is the learned score, which can be given by
learning the MC score estimator (Eq. (7); iDEM) directly or differentiating a learned energy network (NEM
and BNEM). In this section, we discuss the scores learned by iDEM and NEM, as well as their bias and error
w.r.t. the ground truth noisy score St(xt) = −∇Et(xt). In D.1 we first show that in optimal case, where the
networks are infinitely capable and we train it for infinitely long, NEM would ultimately be equivalent to
iDEM in terms of learned scores. Then we characterize the bias and error w.r.t. St(xt):

• Bias of Learned Scores (D.2): the optimal scores learned by NEM and iDEM, i.e. E[EK(xt, t)],
are biased due to the bias of the learning targets EK (for NEM) and SK (for iDEM). It results in
inreducible errors to St(xt).

• Error of Learned Scores (D.3): the neural network is theoretically guaranteed to converge to the
optimal value, i.e. E[EK(xt, t)] for NEM and E[SK(xt, t)] for iDEM, with infinitely flexible network
and infinite training time. While in practice, the learned networks are often imprefect. It results in
non-zero learning errors in practice, which are theoretically reducible.

D.1 iDEM≡NEM in optimal case

Suppose both the score network sϕ(xt, t) and the energy network Eθ(xt, t) are capable enough and we
train both networks infinitely long. Then the optimal value they learn at (xt, t) would be the expected
value of their training targets, i.e. sϕ∗(xt, t) = E[SK(xt, t)] and Eθ∗(xt, t) = E[EK(xt, t)]. Notice that
SK(xt, t) = −∇xt

EK(xt, t), we can rewrite the optimal learned scores given by the energy network as follows:

−∇xt
Eθ∗(xt, t) = −∇xt

E[EK(xt, t)] (46)

= −∇xtEx
(1:K)
0|t

[
log 1

K

K∑
i=1

exp
(
−E(x(i)

0|t)
)]

, x
(i)
0|t ∼ N (x; xt, σ2

t I) (47)

= −∇xtEϵ
(1:K)
0|t

[
log 1

K

K∑
i=1

exp
(
−E(xt + ϵ

(i)
0|t)
)]

, ϵ
(i)
0|t ∼ N (ϵ; 0, σ2

t I) (48)

= E
ϵ

(1:K)
0|t

[
−∇xt log 1

K

K∑
i=1

exp
(
−E(xt + ϵ

(i)
0|t)
)]

(49)

= E
x

(1:K)
0|t

[
−∇xt log 1

K

K∑
i=1

exp
(
−E
(

x
(i)
0|t

))]
(50)

= E[−∇xt
EK(xt, t)] (51)

= sϕ∗(xt, t) (52)

Therefore, in the optimal case, scores learned by both NEM and iDEM would be equal. Then a question
arises as to "Why is NEM more favorable theoretically and practically, without concern about the additional
computation?". We will address this question after presenting the bias for the learned scores. Notice that the
above derivation also shows that, to compute the expected value of SK , one can first compute E[EK(xt, t)]
then differentiate this expectation w.r.t. xt.

D.2 Bias of Learned Scores

Since the regressing targets are biased, the optimal learned scores are biased. To derive the bias term, we
assume the sub-Gaussianess of E(x(i)

0|t) and leverage Eq. (46). According to Proposition 3.1 and Corollary 3.2,
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the optimal energy network is obtained as follows

Eθ∗(xt, t) = Et(xt) + v0t(xt)
2m2

t (xt)K
(53)

We first review mt(xt) (Eq. (22)) and v0t(xt) (Eq. (23)):

mt(xt) = exp(−Et(xt)) (54)
v0t(xt) = VarN (x;xt,σ2

t I)[exp(−E(x))] (55)

=
∫

exp(−2E(x))N (xt; x, σ2
t I)dx−m2

t (xt) (56)

We can derive their derivatives w.r.t. xt as follows:

mt(xt)′ = −mt(xt)∇Et(xt) (57)

v0t(xt)′ = ∇xt

∫
exp(−2E(x))N (xt; x, σ2

t I)dx− 2mt(xt)m′
t(xt) (58)

=
∫

exp(−2E(x))∇xt
N (xt; x, σ2

t I)dx− 2mt(xt)m′
t(xt) (59)

=
∫
− exp(−2E(x))∇xN (xt; x, σ2

t I)dx− 2mt(xt)m′
t(xt) (60)

= − exp(−2E(x))N (xt; x, σ2
t I)|x=+∞

x=−∞+∫
∇x exp(−2E(x))N (xt; x, σ2

t I)dx− 2mt(xt)m′
t(xt) (61)

=
∫
∇x exp(−2E(x))N (xt; x, σ2

t I)dx− 2mt(xt)m′
t(xt) (62)

= −2
∫

exp(−2E(x))∇xE(x)N (xt; x, σ2
t I)dx + 2m2

t (xt)∇Et(xt) (63)

Therefore, the predicted noisy score at (xt, t) is given by differentiating Eq. (53) w.r.t. xt, which is

−∇xt

(
Et(xt) + v0t(xt)

2m2
t (xt)K

)
(64)

=St(xt)−
1

2K

v′
0t(xt)m2

t (xt)− 2v0t(xt)mt(xt)m′
t(xt)

m4
t (xt)

(65)

=St(xt)−
v′

0t(xt) + 2v0t(xt)∇Et(xt)
2m2

t (xt)K
(66)

=St(xt)−
1

m2
t (xt)K

(∫
exp(−2E(x)) (∇xt

Et(xt)−∇xE(x))N (xt; x, σ2
t I)dx + m2

t (xt)∇Et(xt)
)

(67)

=
(

1 + 1
K

)
St(xt)−

1
K

∫
exp(−2E(x) + 2Et(xt)) (∇xt

Et(xt)−∇xE(x))N (xt; x, σ2
t I)dx (68)

=
(

1 + 1
K

)
St(xt) + 1

2K

∫
∇xt exp(2Et(xt)− 2E(xt + ϵ))N (ϵ; 0, I)dϵ (69)

Therefore, we can derive the bias of learned score as follows:

∥ − ∇xtE
∗
θ (xt, t)− St(xt)∥ (70)

=
∥∥∥∥ 1

K
St(xt)−

1
K

∫
exp(−2E(x) + 2Et(xt)) (∇xt

Et(xt)−∇xE(x))N (xt; x, σ2
t I)dx

∥∥∥∥ (71)

Eq. (71) shows that the score bias decreases linearly w.r.t. number of MC samples K. In particular, at low
noise level (i.e. small t), the latter term of Eq. (68) or Eq. (69) would vanish as (1) Et(x) is close to E(x) and
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(2) x ∼ N (xt, σ2
t I) are close to xt, resulting in a small bias of the scores given by both differentiating the

learned energy network and the directly learned score network.

For BNEM, given a bootstrapping schedule {si}n
i=1 with s0 = 0 and sn = 1, the optimal network is given by

Eθ∗∗(xt, t) = Et(xt) + v0t(xt)
2m2

t (xt)Ki+1 +
i∑

j=1

v0sj (xt)
2m2

sj
(xt)Kj

(72)

where t ∈ [si, si+1]. Then the learned score is obtained by differentiating Eθ∗∗

−∇xtEθ∗∗(xt, t) = −∇xt

Et(xt) + v0t(xt)
2m2

t (xt)Ki+1 +
i∑

j=1

v0sj
(xt)

2m2
sj

(xt)Kj

 (73)

=

1 +
i+1∑
j=1

1
Kj

St(xt) (74)

− 1
Ki+1

∫
exp(−2E(x) + 2Et(xt)) (∇xt

Et(xt)−∇xE(x))N (xt; x, σ2
t I)dx

−
i∑

j=1

1
Kj

∫
exp(−2E(x) + 2Esj (xt))

(
∇xtEsj (xt)−∇xE(x)

)
N (xt; x, σ2

sj
I)dx

which gives us the bias of learned scores for BNEM.

D.3 Error of Learned Scores

Even though the neural networks can converge to the optimal value in theory by assuming infinite training
time and infinitely flexible architecture, they are always imperfect in practice. To measure this imperfectness,
we define the "learning error" as the discrepancy between the actual learned value and the optimal learned
value. To address the question "Why is NEM more favorable theoretically and practically, without concern
about the additional computation?", we empirically claim that regressing the energy estimator EK is an easier
learning task against regressing the score estimator SK as the former target is shown to have smaller variance
in Proposition 3.3, resulting in smaller learning error.

Let Eθ(xt, t) = E[EK(xt, t)] + eE(xt, t) be the learned energy network and Sθ(xt, t) = E[SK(xt, t)] + eS(xt, t)
be the learned score network, where eE and eS are the corresponding learning errors. We also assume that eE
is differentiable w.r.t. xt. Then the score given by the energy network is

∇xt
Eθ(xt, t) = ∇xt

E[EK(xt, t)] +∇xt
eE(xt, t) (75)

= E[SK(xt, t)] +∇xt
eE(xt, t) (76)

Therefore, the errors of the network that affects the diffusion sampling are ∇xt
eE(xt, t) (for NEM) and

eS(xt, t) (for iDEM). Since learning the energy is easier due to the small variance of its training target, we
can assume that eE(xt, t) is L-Lipchitz. Therefore, the differentiated learning error of the energy network is
controlled by the Lipchitz constant L, i.e., ∥∇xt

eE(xt, t)∥ ≤ L.

In practice, this Lipchitz constant can be small because learning the energy estimator is an easier task
compared to learning the score estimator, resulting in L < eS(xt, t), which supports the empirical experiments
that NEM performs better than iDEM.

E Ideal Bootstrap Estimator ≡ Recursive Estimator

In this section, we will show that an ideal bootstrap estimator can polynomially reduce both the variance
and bias w.r.t. number of MC samples K. Let a local bootstrapping trajectory u→ s→ t, with u < s < t.
Suppose we have access to Eu. Let Eθ̃(xs, s) is learned from targetting an estimator bootstrapped from Eu to
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approximate Es. Suppose Eθ̃(xs, s) is ideal, i.e. Eθ̃(xs, s) ≡ EK(xs, s, u; Eu). The bootstrap energy estimator
(Eq. (15)) at t from s can be written as follows:

EK(xt, t, s; θ̃) = − log 1
K

K∑
i=1

exp(−Eθ̃(x(i)
s|t, s)), x

(i)
s|t ∼ N (x; xt, (σ2

t − σ2
s)I) (77)

By plugging Eθ̃(x(i)
s|t, s) = EK(x(i)

s|t, s, u; Eu) into the above equation, we have

EK(xt, t, s; θ̃) = − log 1
K

K∑
i=1

exp(−EK(x(i)
s|t, s, u; Eu)) (78)

= − log 1
K

K∑
i=1

1
K

K∑
j=1

exp(−Eu(x(ij)
u|s )), x

(ij)
u|s ∼ N (x; x(i)

s , (σ2
s − σ2

u)I) (79)

where x
(ij)
u|s ∼ N (x; x

(i)
s , (σ2

s − σ2
u)I). Notice that x

(i)
s|t = xt +

√
σ2

t − σ2
sϵ

(i)
s , x

(ij)
u|s = x

(i)
s +

√
σ2

s − σ2
uϵ

(ij)
u , and

ϵ
(j)
s and ϵ

(ij)
u are independent, we can combine these Gaussian-noise injection:

EK(xt, t, s; θ̃) = − log 1
K2

K∑
i=1

K∑
j=1

exp(−Eu(x(ij)
u|t )) = EK2(xt, t, u; Eu) (80)

where x
(ij)
u|t ∼ N (x; xt, (σ2

t − σ2
u)I). Therefore, the ideal bootstrapping at t from s over this local trajectory

(u→ s→ t) is equivalent to using quadratically more samples compared with estimating t directly from u.
With initial condition E0 = E and σ0 = 0, we can simply show that: Given a bootstrap trajectory {si}n

i=0
where s0 = 0, sn = 1. For any t ∈ [si, si+1] and any s ∈ [si−1, si], with i = 0, ..., n− 1, the ideal bootstrap
estimator is equivalent to

EK(xt, t, s; θ̃) ≡ EK(i+1)(xt, t) (81)

which polynomially reduces the variance and bias of the estimator. In other words, the ideal bootstrap
estimator is equivalent to recursively approximating Es with EK(xs, s) utill the initial condition E .

For simplification in appendix F, we term the ideal bootstrap estimator with bootstrapping n times as the
Sequential(n) Estimator, ESeq(n), i.e.

E
Seq(n)
K (xt, t) : = EKn+1(xt, t) (82)

F Proof of Proposition 3.4

Proposition 3.4. Given a bootstrap trajectory {si}n
i=0 such that σ2

si
−σ2

si−1
≤ κ, where s0 = 0, sn = 1

and κ > 0 is a small constant. Suppose Eθ is incrementally optimized from t ∈ [0, 1] as follows: if
t ∈ [si, si+1], Eθ(xt, t) targets an energy estimator bootstrapped from ∀s ∈ [si−1, si] using Eq. (15). For
∀0 ≤ i ≤ n and ∀s ∈ [si−1, si], the variance of the bootstrap energy estimator is approximately given by

Var[EK(xt, t, s; θ)] = vst(xt)
v0t(xt)

Var[EK(xt, t)] (83)

and the bias of EK(xt, t, s; θ) is approximately given by

Bias[EK(xt, t, s; θ)] = v0t(xt)
2m2

t (xt)Ki+1 +
i∑

j=1

v0sj (xt)
2m2

sj
(xt)Kj

. (84)

where mz(xz) = exp(−Ez(xz)) and vyz(xz) = VarN (x;xz,(σ2
z−σ2

y)I)[exp(−Ey(x))] for ∀0 ≤ y < z ≤ 1.
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Proof. The variance of EK(xt, t, s; θ) can be simply derived by leveraging the variance of a sub-Gaussian
random variable similar to Eq. (26). While the entire proof for bias of EK(xt, t, s; θ) is organized as follows:

1. we first show the bias of Bootstrap(1) estimator, which is bootstrapped from the system energy

2. we then show the bias of Bootstrap(n) estimator, which is bootstrapped from a lower level noise
convolved energy recursively, by induction.

F.1 Bootstrap(1) estimator

The Sequential estimator and Bootstrap(1) estimator are defined by:

E
Seq(1)
K (xt, t) : = − log 1

K

K∑
i=1

exp(−EK(x(i)
s|t, s)), x

(i)
s|t ∼ N (x; xt, (σ2

t − σ2
s)I) (85)

= − log 1
K2

K∑
i=1

K∑
j=1

exp(−E(x(ij)
0|t )), x

(ij)
0|t ∼ N (x; xt, σ2

t I) (86)

E
B(1)
K (xt, t, s; θ) : = − log 1

K

K∑
i=1

exp(−Eθ(x(i)
s|t, s)), x

(i)
s|t ∼ N (x; xt, (σ2

t − σ2
s)I) (87)

The mean and variance of a Sequential estimator can be derived by considering it as the MC estimator with
K2 samples:

E[ESeq(1)
K (xt, t)] = Et(xt) + v0t(xt)

2m2
0t(xt)K2 and Var(ESeq(1)

K (xt, t)) = v0t(xt)
m2

0t(xt)K2 (88)

While an optimal network obtained by targeting the original MC energy estimator Eq. (9) at s is 4 :

Eθ∗(xs, s) = E[EK(xs, s)] = − log ms(xs) + v0s(xs)
2m2

s(xs)K (89)

Then the optimal Bootstrap(1) estimator can be expressed as:

E
B(1)
K (xt, t, s; θ∗) = − log 1

K

K∑
i=1

exp

−
− log ms(x(i)

s|t) +
v0s(x(i)

s|t)

2m2
s(x(i)

s|t)K

 (90)

Before linking the Bootstrap estimator and the Sequential one, we provide the following approximation which
is useful. Let a, b two random variables and {ai}K

i=1, {bi}K
i=1 are corresponding samples. Assume that {bi}K

i=1

4We consider minimizing the L2-norm, i.e. θ∗ = arg minθ Ex0,t[∥Eθ(xt, t) − EK(xt, t)∥2]. Since the target, EK , is noisy, the
optimal outputs are given by the expectation, i.e. E∗

θ = E[EK ].
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are close to 0 and concentrated at mb (hence mb closes to 0), while {ai}K
i=1 are concentrated at ma, then

log 1
K

K∑
i=1

exp(−(ai + bi)) = log 1
K

{
K∑

i=1
exp(−ai)

[∑K
i=1 exp(−(ai + bi))∑K

i=1 exp(−ai)

]}
(91)

= log 1
K

K∑
i=1

exp(−ai) + log
∑K

i=1 exp(−(ai + bi))∑K
i=1 exp(−ai)

(92)

= log 1
K

K∑
i=1

exp(−ai) + log
∑K

i=1 exp(−ai)(1− bi)∑K
i=1 exp(−ai)

+O(max
i
|bi|2) (93)

= log 1
K

K∑
i=1

exp(−ai) + log
(

1−
∑K

i=1 exp(−ai)bi∑K
i=1 exp(−ai)

)
+O(max

i
|bi|2) (94)

= log 1
K

K∑
i=1

exp(−ai)−
∑K

i=1 exp(−ai)bi∑K
i=1 exp(−ai)

+O(max
i
|bi|2) (95)

= log 1
K

K∑
i=1

exp(−ai)−mb +O(max
i
|bi|2) (96)

where approximation Eq. (93) applies a first order Taylor expansion of ex ≈ 1 + x around x = 0 since {bi}K
i=1

are close to 0; while Approximation uses log(1 + x) ≈ x under the same assumption. Notice that when K

is large and ∆σ2
st := σ2

t − σ2
s ≤ κ is small , {

v0s(x
(i)
s|t

)

2m2
s(x

(i)
s|t

)K
}K

i=1 are close to 0 and concentrated at v0s(xt)
2m2

s(xt)K .

Therefore, by plugging them into Eq. (96), Eq. (90) can be approximated by

E
B(1)
K (xt, t, s; θ∗) ≈ − log 1

K

K∑
i=1

ms(x(i)
s|t) + v0s(xt)

2m2
s(xt)K

. (97)

When K is large and σ2
t − σ2

s is small, the bias and variance of EK(x(i)
s|t, s) are small, then we have

− log 1
K

K∑
i=1

ms(x(i)
s|t) ≈ − log 1

K

K∑
i=1

exp(−EK(x(i)
s|t, s)) = E

Seq(1)
K (xt, t). (98)

Therefore, the optimal Bootstrap estimator can be approximated as follows:

E
B(1)
K (xt, t, s; θ∗) ≈ E

Seq(1)
K (xt, t) + v0s(xt)

2m2
s(xt)K

, (99)

where its mean and variance depend on those of the Sequential estimator (Eq. (88)):

E[EB(1)
K (xt, t, s; θ∗)] = Et(xt) + v0t(xt)

2m2
t (xt)K2 + v0s(xt)

2m2
s(xt)K

, (100)

Var[EB(1)
K (xt, t, s; θ∗)] = v0t(xt)

m2
t (xt)K2 . (101)

F.2 Bootstrap(n) estimator

Given a bootstrap trajectory {si}n
i=1 where s0 = 0 and sn = s, and Eθ is well learned at [0, s]. Let the energy

network be optimal for u ≤ sn by learning a sequence of Bootstrap(i) energy estimators (i ≤ n). Then the
optimal value of Eθ(xs, s) is given by E[EB(n−1)

K (xs, s)]. We are going to show the variance of a Bootstrap(n)
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estimator by induction. Suppose we have:

Eθ∗(xs, s) = Es(xs) +
n∑

j=1

v0sj
(xs)

2m2
sj

(xs)Kj
(102)

= E[ESeq(n−1)
K (xs, s)] +

n−1∑
j=1

v0sj (xs)
2m2

sj
(xs)Kj

(103)

Then for any t ∈ (s, 1], the learning target of Eθ(xt, t) is bootstrapped from sn = s,

E
B(n)
K (xt, t) = − log 1

K

K∑
i=1

exp(−Eθ∗(x(i)
s|t, s)), x

(i)
s|t ∼ N (x; xt, (σ2

t − σ2
s)I) (104)

= − log 1
K

K∑
i=1

exp

−E[ESeq(n−1)
K (x(i)

s|t, s)]−
n−1∑
j=1

v0sj (x(i)
s|t)

2m2
sj

(x(i)
s|t)Kj

 (105)

Assume that σ2
t − σ2

s is small and K is large, then we can apply Approximation Eq. (96) and have

E
B(n)
K (xt, t) = − log 1

K

K∑
i=1

exp
(
−E[ESeq(n−1)

K (x(i)
s|t, s)]

)
+

n−1∑
j=1

v0sj (xt)
2m2

sj
(xt)Kj

(106)

The first term in the RHS of the above equation can be further simplified as 5 :

− log 1
K

K∑
i=1

exp
(
−E[ESeq(n−1)

K (x(i)
s|t, s)]

)
(107)

=E

[
− log 1

K

K∑
i=1

exp
(
−E

Seq(n−1)
K (x(i)

s|t, s)
)]

+
Var[ESeq(n−1)

K (x(i)
s|t, s)]

2 +O

Var[ESeq(n−1)
K (x(i)

s|t, s)]
K


(108)

=Eϵ(j)

− log 1
Kn+1

K∑
i=1

Kn∑
j=1

exp
(
−E
(

x
(i)
s|t + ϵ(j)

))+ v0s(xt)
2m2

s(xt)Kn
(109)

where ϵj i.i.d.∼ N (0, I). Therefore, Eq. (106) can be simplified as

E
B(n)
K (xt, t) = Eϵ(j)

− log 1
Kn+1

K∑
i=1

Kn∑
j=1

exp
(
−E
(

x
(i)
s|t + ϵ(j)

))+
n∑

j=1

v0sj (xt)
2m2

sj
(xt)Kj

(110)

Taking the expectation over Eq. (110) yields an expectation of the Sequential(n) estimator on its RHS, we
therefore complete the proof by induction:

E
[
E

B(n)
K (xt, t)

]
= E

ϵ(j),x
(i)
s|t

− log 1
Kn+1

K∑
i=1

Kn∑
j=1

exp
(
−E
(

x
(i)
s|t + ϵ(j)

))+
n∑

j=1

v0sj (xt)
2m2

sj
(xt)Kj

(111)

= E
[
E

Seq(n)
K (xt, t)

]
+

n∑
j=1

v0sj
(xt)

2m2
sj

(xt)Kj
(112)

= Et(xt) + v0t(xt)
2m2

t (xt)Kn+1 +
n∑

j=1

v0sj
(xt)

2m2
sj

(xt)Kj
(113)

5This simplication leverages the fact that, if Xi are i.i.d. bounded sub-Gaussian random variables, then log
∑K

i=1 exp(−EXi)
can be approximated by E[log

∑K

i=1 exp(−Xi)] − 1
2 Var(X) + O (Var(X)/K) .
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which suggests that the accumulated bias of a Bootstrap(n) estimator is given by

Bias[EB(n)
K (xt, t)] = v0t(xt)

2m2
t (xt)Kn+1 +

n∑
j=1

v0sj
(xt)

2m2
sj

(xt)Kj
(114)

□

G Incorporating Symmetry Using NEM

We consider applying NEM and BNEM in physical systems with symmetry constraints like n-body system.
We prove that our MC energy estimator EK is G-invariant under certain conditions, given in the following
Proposition.

Proposition G.1. Let G be the product group SE(3)× Sn ↪→ O(3n) and p0 be a G-invariant density
in Rd. Then the Monte Carlo energy estimator of EK(xt, t) is G-invariant if the sampling distribution
x0|t ∼ N (x0|t; xt, σ2

t ) is G-invariant, i.e.,

N (x0|t; g ◦ xt, σ2
t ) = N (g−1x0|t; xt, σ2

t ).

Proof. Since p0 is G-invariant, then E is G-invariant as well. Let g ∈ G acts on x ∈ Rd where g ◦ x = gx.
Since x

(i)
0|t ∼ N (x0|t; xt, σ2

t ) is equivalent to g ◦ x
(i)
0|t ∼ N (x0|t; g ◦ xt, σ2

t ). Then we have

EK(g ◦ xt, t) = − log 1
K

K∑
i=1

exp(−E(g ◦ x
(i)
0|t)) (115)

= − log 1
K

K∑
i=1

exp(−E(x(i)
0|t)) = EK(xt, t) (116)

x
(i)
(0|t) ∼ N (x0|t; xt, σ2

t ) (117)

Therefore, EK is invariant to G = SE(3)× Sn. □

Furthermore, EK(xt, t, s; ϕ) is obtained by applying a learned energy network, which is G-invariant, to the
analogous process and therefore is G-invariant as well.

H Generalizing NEM

This section generalizes NEM in two ways: we first generalize the SDE setting, by considering a broader
family of SDEs applied to sampling from Boltzmann distribution; then we generalize the MC energy estimator
by viewing it as an importance-weighted estimator.

H.1 NEM for General SDEs

Diffusion models can be generalized to any SDEs as dxt = f(xt, t)dt + g(t)dwt, where t ≥ 0 and wt is a
Brownian motion. Particularly, we consider f(x, t) := −α(t)x, i.e.

dxt = −α(t)xtdt + g(t)dwt (118)

Then the marginal of the above SDE can be analytically derived as:

xt = β(t)x0 + β(t)

√∫ t

0
(g(s)β(s))2dsϵ, β(t) := e

−
∫ t

0
α(s)ds (119)
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where ϵ ∼ N (0, I). For example, when g(t) =
√

β̄(t) and α(t) = 1
2 β̄(t), where β̄(t) is a monotonic function

(e.g. linear) increasing from β̄min to β̄max, the above SDE resembles a Variance Preserving (VP) process
(Song et al., 2020). In DMs, VP can be a favor since it constrains the magnitude of noisy data across t; while
a VE process doesn’t, and the magnitude of data can explode as the noise explodes. Therefore, we aim to
discover whether any SDEs rather than VE can be better by generalizing NEM and DEM to general SDEs.

In this work, we provide a solution for general SDEs (Eq. (118)) rather than a VE SDE. For simplification,
we exchangeably use β(t) and βt. Given a SDE as Eq. (118) for any integrable functions α and g, we can
first derive its marginal as Eq. (119), which can be expressed as:

β−1
t xt = x0 +

√∫ t

0
(g(s)β(s))2dsϵ (120)

Therefore, by defining yt = β−1
t xt we have y0 = x0 and therefore:

yt = y0 +

√∫ t

0
(g(s)β(s))2dsϵ (121)

which resembles a VE SDE with noise schedule σ̃2(t) =
∫ t

0 (g(s)β(s))2ds. We can also derive this by changing
variables:

dyt = (β−1(t))′xtdt + β−1(t)dxt (122)
= β−1(t)α(t)xtdt + β−1(t)(−α(t)xtdt + g(t)dwt) (123)
= β−1(t)g(t)dwt (124)

which also leads to Eq. (121). Let p̃t be the marginal distribution of yt and pt the marginal distribution of xt,
with y

(i)
0|t ∼ N (y; yt, σ̃2

t I) we have

p̃t(yt) ∝
∫

exp(−E(y))N (yt; y, σ̃2
t I)dy (125)

S̃t(yt) = ∇yt log p̃t(yt) ≈ ∇yt log
K∑

i=1
exp(−E(y(i)

0|t)) (126)

Ẽt(yt) ≈ − log 1
K

K∑
i=1

exp(−E(y(i)
0|t)) (127)

Therefore, we can learn scores and energies of yt simply by following DEM and NEM for VE SDEs. Then for
sampling, we can simulate the reverse SDE of yt and eventually, we have x0 = y0.

Instead, we can also learn energies and scores of xt. By changing the variable, we can have

pt(xt) = β−1
t p̃t(β−1

t xt) = β−1
t p̃t(yt) (128)

St(xt) = β−1
t S̃t(β−1

t xt) = β−1
t S̃t(yt) (129)

which provides us the energy and score estimator for xt:

Et(xt) ≈ − log β−1
t

1
K

K∑
i=1

exp(−E(x(i)
0|t)) (130)

St(xt) ≈ β−1
t ∇xt

log
K∑

i=1
exp(−E(x(i)

0|t)) (131)

x
(i)
0|t ∼ N (x; β−1

t xt, σ̃2(t)I) (132)
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Typically, α is a non-negative function, resulting in β(t) decreasing from 1 and can be close to 0 when t is
large. Therefore, the above equations realize that even though both the energies and scores for a general
SDE can be estimated, the estimators are not reliable at large t since β−1

t can be extremely large; while the
SDE of yt (Eq. (124)) indicates that this equivalent VE SDE is scaled by β−1

t , resulting that the variance of
yt at large t can be extremely large and requires much more MC samples for a reliable estimator. This issue
can be a bottleneck of generalizing DEM, NEM, and BNEM to other SDE settings, therefore developing
more reliable estimators for both scores and energies is of interest in future work.

H.2 MC Energy Estimator as an Importance-Weighted Estimator

As for any SDEs, we can convert the modeling task to a VE process by changing variables, we stick to
considering NEM with a VE process. Remember that the MC energy estimator aims to approximate the
noised energy given by Eq. (6), which can be rewritten as:

Et(xt) = − log
∫

exp(−E(x))N (xt; x, σ2
t I)dx (133)

= − log
∫

exp(−E(x))N (xt; x, σ2
t I)

q0|t(x|xt)
q0|t(x|xt)dx (134)

= − logEq0|t(x|xt)

[
exp(−E(x))N (xt; x, σ2

t I)
q0|t(x|xt)

]
(135)

The part inside the logarithm of Eq. (135) suggests an Importance Sampling technique for approximation, by
using a proposal q0|t(x|xt). Notice that when choosing a proposal symmetric to the perturbation kernal, i.e.
q0|t(x|xt) = N (x; xt, σ2

t ), Eq. (135) resembles the MC energy estimator we discussed in Sec. 3.2. Therefore,
this formulation allows us to develop a better estimator by carefully selecting the proposal q0|t(x|xt).

However, Owen (2013) shows that to minimize the variance of the IS estimator, the proposal q0|t(x|xt) should
be chosen roughly proportional to f(x)µtarget(x), where f(x) = exp(−E(x)) in our case. Finding such a
proposal is challenging in high-dimension space or with a multimodal µtarget. A potential remedy can be
leveraging Annealed Importance Sampling (AIS; Neal (2001)).

I Memory-Efficient NEM

Differentiating the energy network to get denoising scores in (B)NEM raises additional computations compared
with iDEM, which are usually twice the computation of forwarding a neural network and can introduce
memory overhead due to saving the computational graph. The former issue can be simply solved by reducing
the number of integration steps to half. To solve the latter memory issue, we propose a Memory-efficient
NEM by revisiting Tweedie’s formula (Efron, 2011). Given a VE noising process, dxt = g(t)dwt, where wt is
Brownian motion and σ2

t :=
∫ t

s=0 g(s)2ds, the Tweedie’s formula can be written as:

∇ log pt(xt) = E[x0|xt]− xt

σ2
t

(136)

E[x0|xt] =
∫

x0p(x0|xt)dx0 (137)

=
∫

x0
p(xt|x0)p0(x0)

pt(xt)
dx0 (138)

By revisiting Eq. (5), it’s noticable that the noised energy, Et (Eq. (6)), shares the same partition function as
E , i.e.

∫
exp(−Et(x))dx =

∫
exp(−E(x))dx, ∀t ∈ [0, 1]. Hence, Eq. (138) can be simplified as follows, which

further suggests an MC estimator for the denoising score with no requirement for differentiation

E[x0|xt] =
∫

x0
N (xt; x0, σ2

t I) exp(−E(x0))
exp(−Et(xt))

dx0 (139)

≈ exp
(
−
(
E(x0|t)− Et(xt)

))
x0|t (140)
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where x0|t ∼ N (x; xt, σ2
t I). Given learned noised energy, we can approximate this denoiser estimator as

follows:

Dθ(xt, t) : = exp
(
−
(
E(x0|t)− Eθ(xt, t)

))
x0|t (141)

D̃θ(xt, t) : = exp
(
−
(
Eθ(x0|t, 0)− Eθ(xt, t)

))
x0|t (142)

where we can alternatively use Dθ or D̃θ according to the accessability of clean energy E , the relative
computation between E(x) and Eθ(x, t), and the accuracy of Eθ(x, 0).

Experimental results of the memory-efficient NEM could be found in appendix L.7.

J TweeDEM: training denoising mean by Tweedie’s formula

In this supplementary work, we propose TWEEdie DEM (TweeDEM), by leveraging the Tweedie’s formula
(Efron, 2011) into DEM, i.e. ∇x log pt(x) = Ep(x0|xt)

[
(x0 − xt)/σ2

t

]
. TweeDEM is similar to the iEFM-VE

proposed by Woo & Ahn (2024), which is a variant of iDEM corresponding to another family of generative
model, flow matching. However iEFM targets the vector field, while TweeDEM targets the expected value of
clean data given noisy data.

We first derive an MC denoiser estimator, i.e. the expected clean data given a noised data xt at t

E[x0|xt] =
∫

x0p(x0|xt)dx0 (143)

=
∫

x0
qt(xt|x0)p0(x0)

pt(xt)
dx0 (144)

=
∫

x0
N (xt; x0, σ2

t I) exp(−E(x0))
exp(−Et(xt))

dx0 (145)

where the numerator can be estimated by an MC estimator EN (xt,σ2
t I)[x exp(−E(x))] and the denominator

can be estimated by another similar MC estimator EN (xt,σ2
t I)[exp(−E(x))], suggesting we can approximate

this denoiser through self-normalized importance sampling as follows

DK(xt, t) : =
K∑

i=1

exp(−E(x(i)
0|t))∑K

j=1 exp(−E(x(j)
0|t))

x
(i)
0|t (146)

=
K∑

i=1
wix

(i)
0|t (147)

where x
(i)
0|t ∼ N (xt, σ2

t I), wi are the importance weights and DK(xt, t) ≈ E[x0|xt]. Then a another MC score
estimator can be constructed by plugging the denoiser estimator DK into Tweedie’s formula, which resembles
the one proposed by Huang et al. (2023)

S̃K(xt, t) :=
K∑

i=1
wi

x
(i)
0|t − xt

σ2
t

(148)

where
x

(i)
0|t

−xt

σ2
t

resembles the vector fields vt(xt) in Flow Matching. In another perspective, these vector fields
can be seen as scores of Gaussian, i.e. ∇ logN (x; xt, σ2

t I), and therefore S̃K is an importance-weighted sum
of Gaussian scores while SK can be expressed as an importance-weighted sum of system scores −∇E . In
addition, Karras et al. (2022) demonstrates that in Denoising Diffusion Models, the optimal scores are an
importance-weighted sum of Gaussian scores, while these importance weights are given by the corresponding
Gaussian density, i.e. SDM(xt, t) =

∑
i w̃i(x(i)

0|t − xt)/σ2
t and w̃i ∝ N (x(i)

0|t; xt, σ2
t I). We summarize these

three different score estimators in Table 2.
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Table 2: Comparison between DEM, DDM, and TweeDEM.

Score estimator:
∑

i wisi, with wi = Softmax(w̃)[i]
Sampler↓ Components→ Weight Type w̃i Score Type si

DEM(Akhound-Sadegh et al., 2024) System Energy exp(−E(x(i)
0|t)) System Score −∇E(x(i)

0|t))
DDM(Karras et al., 2022) Gaussian Density N (x(i)

0|t; xt, σ2
t I) Gaussian Score ∇ logN (x(i)

0|t; xt, σ2
t I)

TweeDEM System Energy exp(−E(x(i)
0|t)) Gaussian Score ∇ logN (x(i)

0|t; xt, σ2
t I)

K Experimental Details

K.1 Energy functions

GMM. A Gaussian Mixture density in 2-dimensional space with 40 modes, which is proposed by Midgley
et al. (2023). Each mode in this density is evenly weighted, with identical covariances,

Σ =
(

40 0
0 40

)
(149)

and the means {µi}40
i=1 are uniformly sampled from [−40, 40]2, i.e.

pgmm(x) = 1
40

40∑
i=1
N (x; µi, Σ) (150)

Then its energy is defined by the negative-log-likelihood, i.e.
EGMM (x) = − log pgmm(x) (151)

For evaluation, we sample 1000 data from this GMM with TORCH.RANDOM.SEED(0) following Midgley
et al. (2023); Akhound-Sadegh et al. (2024) as a test set.

DW-4. First introduced by Köhler et al. (2020), the DW-4 dataset describes a system with 4 particles in
2-dimensional space, resulting in a task with dimensionality d = 8. The energy of the system is given by the
double-well potential based on pairwise Euclidean distances of the particles,

EDW (x) = 1
2τ

∑
ij

a(dij − d0) + b(dij − d0)2 + c(dij − d0)4 (152)

where a, b, c and d0 are chosen design parameters of the system, τ the dimensionless temperature and
dij = ∥xi − xj∥2 are Euclidean distance between two particles. Following Akhound-Sadegh et al. (2024), we
set a = 0, b = −4, c = 0.9 d0 = 4 and τ = 1, and we use validation and test set from the MCMC samples in
Klein et al. (2023a) as the “Ground truth” samples for evaluating.

LJ-n. This dataset describes a system consisting of n particles in 3-dimensional space, resulting in a task
with dimensionality d = 3n. Following Akhound-Sadegh et al. (2024), the energy of the system is given by
ET ot(x) = ELJ(x) + cEosc(x) with the Lennard-Jones potential

ELJ(x) = ϵ

2τ

∑
ij

((
rm

dij

)6
−
(

rm

dij

)12
)

(153)

and the harmonic potential

Eosc(x) = 1
2
∑

i

∥xi − xCOM∥2 (154)

where dij = ∥xi − xj∥2 are Euclidean distance between two particles, rm, τ and ϵ are physical constants,
xCOM refers to the center of mass of the system and c the oscillator scale. We use rm = 1, τ = 1, ϵ = 1 and
c = 0.5 the same as Akhound-Sadegh et al. (2024). We test our models in LJ-13 and LJ-55, which correspond
to d = 65 and d = 165 respectively. And we use the MCMC samples given by Klein et al. (2023a) as a test
set.
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K.2 Evaluation Metrics

2-Wasserstein distance W2. Given empirical samples µ from the sampler and ground truth samples ν, the
2-Wasserstein distance is defined as:

W2(µ, ν) = (infπ
∫

π(x, y)d2(x, y)dxdy) 1
2 (155)

where π is the transport plan with marginals constrained to µ and ν respectively. Following Akhound-Sadegh
et al. (2024), we use the Hungarian algorithm as implemented in the Python optimal transport package
(POT) (Flamary et al., 2021) to solve this optimization for discrete samples with the Euclidean distance
d(x, y) = ∥x− y∥2. x-W2 is based on the data and E-W2 is based on the corresponding energy. For n-body
systems, i.e. DW-4, LJ-13, and LJ-55, we take SE(3), i.e. rotational and translation equivariance into
account. For given n-body point cloud pair (X, Y ), instead of using Euclidean distance, the distance is defined
as dKabsch(X, Y ) = minR,t∈SE(3) ∥X − (Y R⊤ + t)∥2, where Kabsch algorithm is applied to find the optimal
rotation and translation.

Total Variation (TV). The total variation measures the dissimilarity between two probability distributions.
It quantifies the maximum difference between the probabilities assigned to the same event by two distributions,
thereby providing a sense of how distinguishable the distributions are. Given two distribution P and Q, with
densities p and q, over the same sample space Ω, the TV distance is defined as

TV (P, Q) = 1
2

∫
Ω
|p(x)− q(x)|dx (156)

Following Akhound-Sadegh et al. (2024), for low-dimentional datasets like GMM, we use 200 bins in each
dimension. For larger equivariant datasets, the total variation distance is computed over the distribution of
the interatomic distances of the particles.

K.3 Experiment Settings

We pin the number of reverse SDE integration steps for iDEM, NEM, BNEM and TweeDEM (see appendix J)
as 1000 and the number of MC samples as 1000 in most experiments, except for the ablation studies.

GMM-40. For the basic model fθ, we use an MLP with sinusoidal and positional embeddings which has 3
layers of size 128 as well as positional embeddings of size 128. The replay buffer is set to a maximum length
of 10000.

During training, the generated data was in the range [−1, 1] so to calculate the energy it was scaled
appropriately by unnormalizing by a factor of 50. Baseline models are trained with a geometric noise schedule
with σmin = 1e− 5, σmax = 1; NEM and BNEM are trained with a cosine noise schedule with σmin = 0.001
and σmax = 1. We use K = 500 samples for computing the Bootstrap energy estimator EB

K . We clip the
norm of SK , sθ and ∇Eθ to 70 during training and sampling. The variance controller for BNEM is set to be
β = 0.2. All models are trained with a learning rate of 5e− 4.

DW-4. All models use an EGNN with 3 message-passing layers and a 2-hidden layer MLP of size 128. All
models are trained with a geometric noise schedule with σmin = 1e− 5, σmax = 3 and a learning rate of 1e− 3
for computing SK and EK . We use K = 500 samples for computing the Bootstrap energy estimator EB

K . We
clip the norm of SK , sθ, and ∇Eθ to 20 during training and sampling. The variance controller for BNEM is
set to be β = 0.2.

LJ-13. All models use an EGNN with 5 hidden layers and hidden layer size 128. Baseline models are
trained with a geometric noise schedule with σmin = 0.01 and σmax = 2; NEM and BNEM are trained with a
geometric noise schedule with σmin = 0.001 and σmax = 6.0 to ensure the data well mixed to Gaussian. We
use a learning rate of 1e− 3, K = 500 samples for EB

K , and we clipped SK , sθ and ∇Eθ to a max norm of 20
during training and sampling. The variance controller for BNEM is set to be β = 0.5.

LJ-55. All models use an EGNN with 5 hidden layers and hidden layer size 128. All models are trained with
a geometric noise schedule with σmin = 0.5 and σmax = 4. We use a learning rate of 1e− 3, K = 500 samples
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Table 3: Ablation Study on applying energy smoothing based on Cubic Spline for iDEM

Energy → LJ-55 (d = 165)
Sampler ↓ x-W2↓ E-W2↓ TV↓
iDEM 2.077 ± 0.0238 169347 ± 2601160 0.165 ± 0.0146
iDEM (cubic spline smoothed) 2.086 ± 0.0703 12472 ± 8520 0.142 ± 0.0095
NEM (ours) 1.898 ± 0.0097 118.57 ± 106.62 0.0991 ± 0.0194

for EB
K . We clipped SK and sθ to a max norm of 20 during training and sampling. And we clipped ∇Eθ to a

max norm of 1000 during sampling, as our model can capture better scores and therefore a small clipping
norm can be harmful for sampling. The variance controller for BNEM is set to be β = 0.4.

For all datasets. We use clipped scores as targets for iDEM and TweeDEM training for all tasks. Meanwhile,
we also clip scores during sampling in outer-loop of training, when calculating the reverse SDE integral. These
settings are shown to be crucial especially when the energy landscape is non-smooth and exists extremely
large energies or scores, like LJ-13 and LJ-55. In fact, targeting the clipped scores refers to learning scores of
smoothed energies. While we’re learning unadjusted energy for NEM and BNEM, the training can be unstable,
and therefore we often tend to use a slightly larger σmin. Also, we smooth the Lennard-Jones potential
through the cubic spline interpolation, according to Moore et al. (2024). Besides, we predict per-particle
energies for DW-4 and LJ-n datasets, which can provide more information on the energy system. It shows
that this setting can significantly stabilize training and boost performance.

L Supplementary Experients

L.1 Explaination on baseline performance difference on LJ55 dataset

In our experiment, we observed a notable difference in performance on the LJ55 dataset compared to the
results reported in previous work (Akhound-Sadegh et al., 2024). Upon examining the experimental setup, we
found that the author of the previous study employed an additional round of Langevin dynamic optimization
when sampling from the LJ55 target distribution. Specifically, the iDEM method only provides initial samples
for subsequent optimization. However, this technique is not utilized with simpler distributions, which could
lead to increased computational burdens when sampling from more complex distributions. And notibly, these
Langevin steps could be applied to samples generated by any samplers. To ensure a fair comparison, we did
not conduct any post-optimization in our experiments.

L.2 Comparing the Robustness of Energy-Matching and Score-Matching

In this section, we discussed the robustness of the energy-matching model(NEM) with the score-matching
model(DEM) by analyzing the influence of the numbers of MC samples used for estimators and choice of
noise schedule on the sampler’s performance.

Robustness with limited compute budget. We first complete the robustness discussed in Section 5, by
conducting experiments on a more complex benchmark - LJ-13. reports different metrics of each sampler in
different settings, i.e. 1000 integration steps and MC samples v.s. 100 integration steps and MC samples,
and different tasks.

Robustness v.s. Number of MC samples. As in Fig. 6, NEM consistently outperforms iDEM when
more than 100 MC samples are used for the estimator. Besides, NEM shows a faster decline when the number
of MC samples increases. Therefore, we can conclude that the low variance of Energy-matching makes it
more beneficial when we boost with more MC samples.

Robustness v.s. Different noise schedules. Then, we evaluate the performance differences when applying
various noise schedules. The following four schedules were tested in the experiment:

31



Under review as submission to TMLR

Figure 6: Comparison of the Energy Wasserstein-2 distance in DW4 benchmark between DEM and NEM
across varying numbers of MC samples.

Table 4: Neural sampler performance comparison for 3 different energy functions. The number after the
sampler, e.g. NEM-100, represents the number of integration steps and MC samples is 100. We measured
the performance using data Wasserstein-2 distance(x-W2), Energy Wasserstein-2 distance(E-W2) and Total
Variation(TV).

Energy → GMM-40 (d = 2) DW-4 (d = 8) LJ-13 (d = 39)
Sampler ↓ x-W2↓ E-W2↓ TV↓ x-W2↓ E-W2↓ TV↓ x-W2↓ E-W2↓ TV↓
iDEM-1000 4.21±0.86 1.63±0.61 0.81±0.03 0.42±0.02 1.89±0.56 0.13±0.01 0.87±0.00 77515.90±115028.07 0.06±0.01

iDEM-100 8.21±5.43 60.49±70.12 0.82±0.03 0.50±0.03 2.80±1.72 0.16±0.01 0.88±0.00 1190.59±590 0.07±0.00

NEM-1000 2.73±0.55 1.68±0.98 0.81±0.00 0.46±0.02 0.28±0.08 0.28±0.13 0.02±0.01 5.01±2.56 0.03±0.00

NEM-100 5.28±0.89 44.56±39.56 0.91±0.02 0.48±0.02 0.85±0.52 0.14±0.01 0.88±0.00 13.14±225.45 0.04±0.00

BNEM-1000 2.55±0.47 0.36±0.12 0.66±0.08 0.49±0.01 0.29±0.05 0.15±0.01 0.86±0.00 0.62±0.01 0.03±0.00

BNEM-100 3.66±0.30 1.87±1.00 0.79±0.04 0.49±0.02 0.38±0.09 0.14±0.01 0.87±0.00 5.93±3.01 0.03±0.00

• Geometric noise schedule: The noise level decreases geometrically in this schedule. The noise at
step t is given by: σt = σ1−t

0 · σt
1 where σ0 = 0.0001 is the initial noise level, σ1 = 1 is the maximum

noise level, and t is the time step.

• Cosine noise schedule: The noise level follows a cosine function over time, represented by:
σt = σ1 · cos(π/2 1+δ−t

1+δ )2, where δ = 0.008 is a hyper-parameter that controls the decay rate.

• Quadratic noise schedule: The noise level follows a quadratic decay:σt = σ0t2 where σ0 is the
initial noise level. This schedule applies a slow decay initially, followed by a more rapid reduction.

• Linear noise schedule: In this case, the noise decreases linearly over time, represented as: σt = σ1t

The experimental results are depicted in Fig. 7. It is pretty obvious that for iDEM the performance varied
for different noise schedules. iDEM favors noise schedules that decay more rapidly to 0 when t approaches
0. When applying the linear noise schedules, the samples are a lot more noisy than other schedules. This
also proves our theoretical analysis that the variance would make the score network hard to train. On the
contrary, all 4 schedules are able to perform well on NEM. This illustrates that the reduced variance makes
NEM more robust and requires less hyperparameter tuning.

Robustness in terms of Outliers. Based on main experimental results, we set the maximum energy
as (GMM-40: 100; DW-4: 0; LJ-13: 0; LJ-55: −150). We remove outliers based on these thresholds and
recomputed the E-W2. We report the new values as well as percentage of outliers in Table 5, which shows
that the order of performance (BNEM>NEM>iDEM) still holds in terms of better E-W2 value and less
percentage of outliers.
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(a) Geometric: 4.16 (b) Cosine: 6.32 (c) Quadratic: 3.95 (d) Linear: 9.87

(a) Geometric: 2.64 (b) Cosine: 2.29 (c) Quadratic: 2.53 (d) Linear: 3.13

Figure 7: Comparison of different sampler (Above: iDEM; Below: NEM) when employing different noise
schedules. The performances of x-W2 are listed.

Table 5: E-W2 w/o outliers (outlier%) for different models and datasets. Bold indicates the best value and
underline indicates the second one.

Sampler↓ Energy→ GMM-40 (d = 2) DW-4 (d = 8) LJ-13 (d = 39) LJ-55 (d = 165)
iDEM 0.138 (0.0%) 8.658 (0.02%) 88.794 (4.353%) 21255 (0.29%)
NEM (ours) 0.069 (0.0%) 4.715 (0.0%) 5.278 (0.119%) 98.206 (0.020%)
BNEM (ours) 0.032 (0.0%) 1.050 (0.0%) 1.241 (0.025%) 11.401 (0.0%)

L.3 Empirical Analysis of the Variance of EK and SK

To justify the theoretical results for the variance of the MC energy estimator (Eq. (9)) and MC score estimator
(Eq. (7)), we first empirically explore a 2D GMM. For better visualization, the GMM is set to be evenly
weighted by 10 modes located in [−1, 1]2 with identical variance 1/40 for each component, resulting in the
following density

p′
GMM (x) = 1

10

10∑
i=1
N
(

x; µi,
1
40I

)
(157)

while the marginal perturbed distribution at t can be analytically derived from Gaussian’s property:

pt(x) = (p′
GMM ∗ N (0, σ2

t ))(xt) = 1
10

10∑
i=1
N
(

x; µi,

(
1
40 + σ2

t

)
I

)
(158)

given a VE noising process.

We empirically estimate the variance for each pair of (xt, t) by simulating 10 times the MC estimators. Besides,
we estimate the expected variance over x for each time t, i.e. Ept(xt)[Var(EK(xt, t))] and Ept(xt)[Var(SK(xt, t))].
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(a) Ground truth energy across t ∈ [0, 1]

(b) Expected variance of estimators (c) Point-wise variance for t ∈ [0.9, 1]

Figure 8: (a) the ground truth energy of the target GMM from t = 0 to t = 1; (b) the estimation of expected
variance of x from t = 0 to t = 1, computed by a weighted sum over the variance of estimator at each
location with weights equal to the marginal density pt; (c) the variance of MC score estimator and MC energy
estimator, and their difference (Var[score]-Var[energy]) for t from 0.9 to 1, we ignore the plots from t ∈ [0, 0.9]
since the variance of both estimators are small. The colormap ranges from blue (low) to red (high), where
blues are negative and reds are positive.

Fig. 8a shows that, the variance of both MC energy estimator and MC score estimator increase as time
increases. In contrast, the variance of EK can be smaller than that of SK in most areas, especially when the
energies are low (see Fig. 8c), aligning our Proposition 3.3. Fig. 8b shows that in expectation over true data
distribution, the variance of EK is always smaller than that of SK across t ∈ [0, 1].

L.4 Empirical Analysis of the Bias of Bootstrapping

To show the improvement gained by bootstrapping, we deliver an empirical study on the GMM-40 energy in
this section. As illustrated in appendix K.3, the modes of GMM-40 are located between [−40, 40]2 with small
variance. Therefore, the sub-Gaussianess assumption is natural. According to appendix B and appendix C,
the analytical bias of the MC energy estimator (Eq. (9)) and Bootstrapped energy estimator (Eq. (17)) can
be computed by Eq. (25) and Eq. (18), respectively. We provide these two bias terms here for reference,

Bias(EK(xt, t)) = v0t(xt)
2mt(xt)2K

(159)

Bias(EK(xt, t, s; θ)) = v0t(xt)
2m2

t (xt)Kn+1 +
n∑

j=1

v0sj
(xt)

2m2
sj

(xt)Kj
(160)

Given a Mixture of Gaussian with K components, p0(x) =
∑

k πkN (x; µk, Σk) and E(x) = − log p0(x), mt(x)
and v0t can be calculated as follows:

mt(xt) = exp(−Et(xt)) (161)

=
∫
N (xt; x, σ2

t I) exp(−E(x))dx (162)

=
∫
N (xt; x, σ2

t I)p0(x)dx (163)

=
∑

k

πk

∫
N (xt; x, σ2

t I)N (x; µk, Σk)dx (164)

=
∑

k

πkN (xt; µk, σ2
t I + Σk) (165)
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and

v0t(xt) = VarN (x;xt,σ2
t I)(exp(−E(X))) (166)

=
∫
N (xt; x, σ2

t I)p0(x)2dx−m2
t (xt) (167)

=
∑
j,k

πjπk

∫
N (xt; x, σ2

t I)N (x; µk, Σk)N (x; µj , Σj)dx−m2
t (xt) (168)

=
∑
j,k

πjπk

∫
N (xt; x, σ2

t I)N (x; µjk, Σjk)Cjk
|Σjk|1/2

(2π)d/2|Σj |1/2|Σk|1/2 dx−m2
t (xt) (169)

=
∑
j,k

πjπkCjk
|Σjk|1/2

(2π)d/2|Σj |1/2|Σk|1/2N (xt; µjk, σ2
t I + Σjk)−m2

t (xt), (170)

where

Σjk = (Σ−1
j + Σ−1

k )−1 (171)
µjk = Σjk(Σ−1

j µj + Σ−1
k µk) (172)

Cjk = exp
(
−1

2
[
µ⊤

j Σ−1
j µj + µ⊤

k Σ−1
k µk − (Σ−1

j µj + Σ−1
k µk)⊤Σjk(Σ−1

j µj + Σ−1
k µk)

])
(173)

In our GMM-40 case, the covariance for each component are identical and diagonal, i.e. Σk ≡ Σ = vI. By
plugging it into the equations, we can simplify the mt(xt) and v0t(xt) terms as follows

mt(xt) =
∑

k

1
K
N (xt; µk, (σ2

t + v)I) (174)

v0t(xt) =
∑
j,k

1
K2

exp
(
− 1

4v (µj − µk)⊤(µj − µk)
)

√
2(2πv)

N
(

xt;
1
2(µj + µk), (σ2

t + v/2)I
)
−m2

t (xt) (175)

We computed the analytical bias terms and visualize in Fig. 9. Fig. 9a visualizes the bias of the both NEM and
BNEM over the entire space. It shows that (1) bootstrapped energy estimator can have less bias (contributed
by bias of EK and variance of training target); (2) If EK is already bias, i.e. the “red” regions in the first
row of Fig. 9a when t = 0.1, bootstrapping can not gain any improvement, which is reasonable; (3) However,
if EK has low bias, i.e. the “blue” regions when t = 0.1, the Bootstrapped energy estimator can result in
lower bias estimation, superioring MC energy estimator; (4) In low energy region, both MC energy estimator
and Bootstrapped one result in accurate estimation. However, in a bi-level iterated training fashion, we
always probably explore high energy at the beginning. Therefore, due to the less biasedness of Bootstrapped
estimator at high energy regions, we’re more likely to have more informative pseudo data which can further
improve the model iteratively.

On the other hand, we ablate different settings of Num. of MC samples and the variance-control (VC)
parameter. We visualize the results in Fig. 9b. The results show that, with proper VC, bootstrapping
allows us to reduce the bias with less MC samples, which is desirable in high-dimensional and more complex
problems.

L.5 Complexity Analysis

To compare the time complexity between iDEM, NEM and BNEM, we let: (1) In the outer-loop of training,
we have T integration steps and batch size B; (2) In the inner-loop, we have L epochs and batch size B.
Let ΓNN(B) be the time complexity of evaluating a neural network w.r.t. B data points, ΓE(B) be the
time complexity of evaluating the clean energy w.r.t. B data points, and K be the number of MC samples
used. Since differentiating a function f using the chain rule requires approximately twice the computation as
evaluating f , we summurise the time complexity of iDEM, NEM, and BNEM in Table 6. It shows that in
principle, in the inner-loop, NEM can be slightly faster than iDEM, while BNEM depends on the relativity
between complexity of evaluating the neural network and evaluating the clean energy function.
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(a) Bias with VC=0.1 (b) Bias with different VC and Num. MC samples.

Figure 9: Empirical analysis on bias with bootstrapping, on GMM-40.

Table 6: Time complexity of different neural samplers.

Sampler↓ Phase→ Inner-loop Outer-loop (or Sampling)
iDEM O (L(2KΓE(B) + 2ΓNN(B))) O (TΓNN(B))
NEM (ours) O (L(KΓE(B) + 2ΓNN(B))) O (2TΓNN(B))
BNEM (ours) O (L(KΓNN(B) + 2ΓNN(B))) O (2TΓNN(B))

Table 7: Time comparison (in seconds) of different samplers for both inner-loop (network training) and
outer-loop (denoising sampling) across different energies

Energy → GMM-40 (d = 2) DW-4 (d = 8) LJ-13 (d = 39) LJ-55 (d = 165)
Sampler ↓ Inner-loop Outer-loop Inner-loop Outer-loop Inner-loop Outer-loop Inner-loop Outer-loop
iDEM 1.657 1.159 6.783 2.421 21.857 21.994 36.158 47.477
NEM (ours) 1.658 2.252 5.217 8.517 14.646 52.563 17.171 114.601
BNEM (ours) 1.141 2.304 25.552 7.547 68.217 52.396 113.641 115.640

Table 8: Memory comparison (in GiB) of different samplers during sampling across different energies

Sampler ↓ Energy → GMM-40 (d = 2) DW-4 (d = 8) LJ-13 (d = 39) LJ-55 (d = 165)
iDEM 0.02 0.06 0.08 1.30
NEM/BNEM (ours) 0.02 0.11 0.25 4.30

Table 7 reports the time usage per inner-loop and outer-loop. It shows that due to the need for differentiation,
the sampling time, i.e. outer-loop, of BNEM/NEM is approximately twice that of iDEM. In contrast, the
inner-loop time of NEM is slightly faster than that of iDEM, matching the theoretical time complexity, and
the difference becomes more pronounced for more complex systems such as LJ-13 and LJ-55. For BNEM,
the sampling time is comparable to NEM, but the inner-loop time depends on the relative complexity of
evaluating the clean energy function versus the neural network, which can be relatively higher.

Table 8 reports the GPU memory overhead of iDEM, NEM, and BNEM, where the network architectures are
detailed in appendix K. The batch size for calculation are 1024, 1024, 128, and 128, respectively.
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Table 9: Comparison between iDEM, NEM, and BNEM, with similar computational budget.

Energy → LJ-13 (d = 39) LJ-55 (d = 165)
Sampler ↓ x-W2↓ E-W2↓ TV↓ x-W2↓ E-W2↓ TV↓
iDEM 0.870 6670 0.0600 2.060 17651 0.160
NEM-500 (ours) 0.870 31.877 0.0377 1.896 11018 0.0955
BNEM-500 (ours) 0.866 2.242 0.0329 1.890 25277 0.113

Table 10: Performance comparison between NEM and ME-NEM.

Energy → GMM-40 (d = 2) DW-4 (d = 8) LJ-13 (d = 39)
Sampler ↓ x-W2↓ E-W2↓ TV↓ x-W2↓ E-W2↓ TV↓ x-W2↓ E-W2↓ TV↓
NEM (ours) 1.808 0.846 0.838 0.479 2.956 0.14 0.866 27.362 0.0369
ME-NEM (ours) 2.431 0.107 0.813 0.514 1.649 0.164 0.88 20.161 0.0338

L.6 Performance Gain Under the Same Computational Budget

It’s noticable that computing the scores by differentiating the energy network outputs, i.e. ∇xt
Eθ(xt, t),

requires twice of computation compared with iDEM which computes sθ(xt, t) by one neural network evaluation.
In this section, we limit the computational budget during sampling of both NEM and BNEM by reducing
their integration steps to half. We conduct experiment on LJ-13 and LJ-55, where we reduce the reverse SDE
integration steps in both NEM and BNEM from 1000 to 500. Metrics are reported in Table 9. It shows that
with similar computation, NEM and BNEM can still outperform iDEM.

L.7 Experiments for Memory-Efficient NEM

In this section, we conduct experiments on the proposed Memory-Efficient NEM (ME-NEM). The number of
integration steps and MC samples are all set to 1000. ME-NEM is proposed to reduce the memory overhead
caused by differentiating the energy network in NEM, which leverages the Tweedie’s formula to establish
a 1-sample MC estimator for the denoising score. In principle, ME-NEM doesn’t require neural network
differentiation, avoiding saving the computational graph. Though it still requires evaluating the neural network
twice (see Eq. (142)), this only requires double memory usage of iDEM and can be computed parallelly,
resulting in a similar speed of sampling with iDEM. In this section, we simply show a proof-of-concept
experiment on ME-NEM, while leaving more detailed experiments as our future work.

Table 10 reports the performance of NEM and ME-NEM, showcasing that ME-NEM can achieve similar
results even though it leverages another MC estimator during sampling.

L.8 Experiments for TweeDEM

In appendix J, we propose TweeDEM, a variant of DEM by leveraging Tweedie’s formula (Efron, 2011),
which theoretically links iDEM and iEFM-VE and suggests that we can simply replace the score estimator
SK (Eq. (7)) with S̃K (Eq. (148)) to reconstruct a iEFM-VE. We conduct experiments for this variant with
the aforementioned GMM and DW-4 potential functions.

Setting. We follow the ones aforementioned, but setting the steps for reverse SDE integration 1000, the
number of MC samples 500 for GMM and 1000 for DW-4. We set a quadratic noise schedule ranging from 0
to 3 for TweeDEM in DW-4.

To compare the two score estimators SK and S̃K fundamentally, we first conduct experiments using these
ground truth estimations for reverse SDE integration, i.e. samplers without learning. In addition, we
consider using a neural network to approximate these estimators, i.e. iDEM and TweeDEM.
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(a) S̃K (ours) (b) SK (c) TweeDEM (ours) (d) DEM

Figure 10: Sampled points from samplers applied to GMM-40 potentials, with the ground truth represented
by contour lines. S̃K and SK represent using these ground truth estimators for reverse SDE integration.

Table 11: Sampler performance comparison for GMM-40 and DW-4 energy function. we measured the
performance using data Wasserstein-2 distance(x-W2), Energy Wasserstein-2 distance(E-W2), and Total
Variation(TV). † We compare the optimal number reported by Woo & Ahn (2024) and Akhound-Sadegh
et al. (2024). . - indicates metric non-reported.

Energy → GMM-40 (d = 2) DW-4 (d = 8)
Sampler ↓ x-W2↓ E-W2↓ TV↓ x-W2↓ E-W2↓ TV↓
SK 2.864 0.010 0.812 1.841 0.040 0.092
S̃K (ours) 2.506 0.124 0.826 1.835 0.145 0.087
iDEM† 3.98 - 0.81 2.09 - 0.09
iDEM (rerun) 6.406 46.90 0.859 1.862 0.030 0.093
iEFM-VE† 4.31 - - 2.21 - -
iEFM-OT† 4.21 - - 2.07 - -
TweeDEM (ours) 3.182 1.753 0.815 1.910 0.217 0.120

Table 11 reports x-W2, E−W2, and TV for GMM and DW-4 potentials. Table 11 shows that when using the
ground truth estimators for sampling, there’s no significant evidence demonstrating the privilege between SK

and S̃K . However, when training a neural sampler, TweeDEM can significantly outperform iDEM (rerun),
iEFM-VE, and iEFM-OT for GMM potential. While for DW4, TweeDEM outperforms iEFM-OT and
iEFM-VE in terms of x−W2 but are not as good as our rerun iDEM.

Fig. 10 visualizes the generated samples from ground truth samplers, i.e. SK and S̃K , and neural samplers,
i.e. TweeDEM and iDEM. It shows that the ground truth samplers can generate well mode-concentrated
samples, as well as TweeDEM, while samples generated by iDEM are not concentrated on the modes and
therefore result in the high value of W2 based metrics. Also, this phenomenon aligns with the one reported
by Woo & Ahn (2024), where the iEFM-OT and iEFM-VE can generate samples more concentrated on the
modes than iDEM.

Above all, simply replacing the score estimator SK with S̃K can improve generated data quality and outperform
iEFM in GMM and DW-4 potentials. Though TweeDEM can outperform the previous state-of-the-art sampler
iDEM on GMM, it is still not as capable as iDEM on DW-4. Except scaling up and conducting experiments
on larger datasets like LJ-13, combing SK and S̃K is of interest in the future, which balances the system
scores and Gaussian ones and can possibly provide more useful and less noisy training signals. In addition,
we are considering implementing a denoiser network for TweeDEM as our future work, which might stabilize
the training process.
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Table 12: Experimental results for GMM and DW-4 compared with Hamiltonian Monte Carlo (HMC) and
Parallel Tempering (PT). The number of evaluations of the energy function is indicated in parentheses. HMC
and PT evaluate the true target energy, while NEM and BNEM use learned energy functions.

Energy → GMM-40 (d = 2) DW-4 (d = 8)
Sampler ↓ x-W2↓ E-W2↓ TV↓ x-W2↓ E-W2↓ TV↓
HMC(100) 12.40 5.73 0.87 0.56 455.00 0.45
HMC(1000) 11.26 0.03 0.85 0.42 3.44 0.11
PT(100) 9.02 1945.67 0.79 0.47 38.53 0.20
PT(1000) 5.24 2.17 0.85 0.49 3.70 0.10
NEM(100) 5.28 44.56 0.91 0.48 0.85 0.14
BNEM(100) 3.66 1.87 0.79 0.49 0.38 0.14

L.9 Experimental results on non-neural samplers

As shown in Table 12, we compared our methods with traditional samplers that necessitate direct evaluation
of the target energy function during sampling. We conducted a hyperparameter sweep on the step sizes for
both methods based on E-W2. The results presented in Table 12 represent the mean performance from three
runs with varying random seeds.

In the GMM-40 experiments, Hamiltonian Monte Carlo (HMC) demonstrates impressive performance in
sampling low-energy data points. However, it struggles to accurately weigh the different modes that yield
high x-W2. Merely increasing the number of sampling steps does not address this issue, indicating that HMC
often becomes trapped in local minima when dealing with sharply defined target distributions. On the other
hand, introducing more randomness into the sampling process significantly increases the number of outliers.
For Parallel Tempering (PT), increasing the number of sampling steps results in lower energy values and a
more accurate capture of the modes of the target distribution. However, even with ten times the sampling
steps of BNEM, it still underperforms compared to our best neural sampler. In the DW-4 experiments, both
PT and HMC demonstrate good performance on x-W2; however, they still produce a significant number of
outliers, which contribute to high energy.
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Assets and Licenses

Datasets

• DW-4, LJ-13, and LJ-55 (Klein et al., 2023b): MIT license

Codebases

• DW-4, LJ-13, and LJ-55 target energy functions: MIT license (https://github.com/noegroup/bgflow)

• FAB (Midgley et al., 2023): MIT license (https://github.com/lollcat/fab-torch)

• iDEM (Akhound-Sadegh et al., 2024): MIT license (https://github.com/jarridrb/DEM)
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