
SERL: A Software Suite for Sample-Efficient Robotic Reinforcement
Learning

Anonymous Author(s)

Abstract— Recent years have seen the development of many
methods for robotic reinforcement learning (RL), some of
which can even operate on complex image observations, train
in the real world, and incorporate auxiliary data, such as
demonstrations and prior experience. However, despite these
advances, robotic RL remains hard to use. It is acknowledged
among practitioners that the particular implementation details
of these algorithms are often just as important (if not moreso)
for performance as the choice of algorithm that is actually
used. We posit that a significant challenge to widespread
adoption of robotic RL, as well as further development of
robotic RL methods, is the comparative inaccessibility of such
methods. To address this challenge, we developed a carefully
implemented library containing a sample efficient off-policy
deep RL method, together with methods for computing rewards
and resetting the environment, high-quality controllers for a few
common robots, and a number of challenging example tasks. We
provide this library as a resource for the community, describe
its design choices, and present experimental results. Perhaps
surprisingly, we find that our implementation can achieve very
efficient learning, acquiring policies for PCB board assembly,
cable routing, and object relocation in less than an hour of
training per policy, matching or improving over state-of-the-
art results reported for similar tasks in the literature. We hope
that these promising results and our high-quality open-source
implementation will provide a tool for the robotics community
to study new developments in robotic RL. Our code and videos
can be found at https://serl-robot.github.io/

I. INTRODUCTION

Considerable progress on robotic reinforcement learning
(RL) over the recent years has produced impressive results,
with robots playing table tennis [1], manipulating objects
from raw images [2, 3, 4], grasping diverse objects [5, 6],
and performing a wide range of other skills. However, despite
the significant progress on the underlying algorithms, RL
remains challenging to use for real-world robotic learning
problems, and practical adoption has been more limited.
We argue that part of the reason for this is that the im-
plementation of RL algorithms, particularly for real-world
robotic systems, presents a very large design space, and
it is the challenge of navigating this design space, rather
than limitations of algorithms per se, that limit adoption.
It is often acknowledged by practitioners in the field that
details in the implementation of an RL algorithm might be
as important (if not more important) as the particular choice
of algorithm. Furthermore, real-world learning presents addi-
tional challenges with reward specification, implementation
of environment resets, sample efficiency, compliant and safe
control, and other difficulties that put even more stress on
this issue. Thus, adoption and further research progress
on real-world robotic RL may well be bottlenecked on

Fig. 1: Depiction of various tasks solved using SERL in the real world.
These include PCB board insertion (top left), cable routing (Franka, top
right, and UR5, bottom left), and object relocation (bottom right). SERL
provides an out-of-the-box package for real-world reinforcement learning,
with support for efficient learning, learned rewards, and automation of resets.

implementation rather than novel algorithmic innovations.
To address this challenge, our aim in this paper is to

provide an open-source software framework, which we call
Sample-Efficient Robotic reinforcement Learning (SERL),
that aims to facilitate wider adoption of RL in real-world
robotics. SERL consists of the following components: (1)
a high-quality RL implementation that is geared towards
real-world robotic learning and supports image observations
and demonstrations; (2) implementations of several reward
specification methods that are compatible with image ob-
servations, including classifiers and adversarial training; (3)
support for learning “forward-backward” controllers that can
automatically reset the task between trials [7]; (4) a software
package that can in principle connect the aforementioned RL
component to any robotic manipulator; and (5) an impedance
controller design principle that is particularly effective for
dealing with contact-rich manipulation tasks.

Our aim in this paper is not to propose novel algo-
rithms or methodology, but rather to offer a resource for
the community to provide roboticists with a well-designed
foundation both for future research on robotic RL, and other
methods that might employ robotic RL as a subroutine.
However, in the process of evaluating our framework, we
also make a scientifically interesting empirical observation:
when implemented properly in a carefully engineered soft-
ware package, current sample-efficient robotic RL methods
can attain very high success rates with relatively modest

https://serl-robot.github.io/

training times. The tasks in our evaluation are illustrated in
Fig. 1: precise insertion tasks involving dynamic contact,
deformable object manipulation with complex dynamics,
and object relocation where the robot must learn without
manually designed resets. For each of these tasks, SERL is
able to learn effectively within 15 - 60 min of training per
policy (in terms of total wall-clock time), achieving near-
perfect success rates, despite learning policies that operate
on image observations. This result is significant because RL,
particularly with deep networks and image inputs, is often
considered to be highly inefficient. Our results challenge this
assumption, suggesting careful implementations of existing
techniques, combined with well-designed controllers and
carefully selected components for reward specification and
resets, can provide an overall system that is efficient enough
for real-world use.

II. RELATED WORK

While our framework combines existing RL methods into
a complete robotic learning system, the particular combi-
nation of parts is carefully designed to provide for efficient
and out-of-the-box reinforcement learning directly in the real
world and, as shown in our experiments, achieves excellent
results on a wide range of tasks. Here, we summarize both
related prior methods and systems.
Algorithms for Real-World RL: Real-world robotic RL
demands algorithms that are sample-efficient, can utilize
onboard perception, and support easily specified rewards and
resets. A number of algorithms have shown the ability to
learn very efficiently directly in the real world [8, 9, 10,
11, 12, 13, 14], using variants of off-policy RL [15, 16],
model-based RL [17, 18, 19, 20], and on-policy RL [21].
These advances have been paired with advances in infer-
ring rewards from raw visual observation through success
classifiers [22, 23], foundation-model-based rewards [24,
25, 26], and rewards from videos [27, 28]. Additionally, to
enable autonomous training, there have been a number of
algorithmic advances in reset-free learning [2, 29, 30, 31,
32] that enable autonomous training with minimal human
interventions. While these algorithmic advances are impor-
tant, the contribution we make in this work is to provide a
framework and software package to enable sample efficient
reinforcement learning in the real world with a ready-made
choice of methods that can work well for a variety of
tasks. In doing so, we hope to lower the barrier of entry
for new researchers to build better algorithms and training
methodologies for robot learning in the real world.
Software Packages for RL: There are a number of pack-
ages [33, 34, 35, 36] for RL, though to our knowledge none
aim to directly address real-world robotic RL specifically.
SERL builds on the recently proposed RLPD algorithm,
which is an off-policy RL algorithm with high update-to-
data ratio. SERL is not a library of RL algorithms for
training agents in simulation, although it could be adapted
to be so. Rather, SERL offers a full stack pipeline for robot
control, going from low-level controllers to the interface for
asynchronous and efficient training with an RL algorithm,

to additional machinery for inferring rewards and training
without resets. In doing so, SERL provides an off-the-shelf
package to help non-experts start using RL to train their
physical robots in the real world, unlike prior libraries that
aim to provide implementations of many methods – that
is, SERL offers a full “vertical” integration of components,
whereas prior libraries focus on the “horizontal.” SERL is
also not an RL benchmark package such as [37, 38, 39].
SERL allows users to define their own tasks and success
metrics directly in the real world, providing the software
infrastructure for actually controlling and training robotic
manipulators in these tasks.
Software Packages for Real-World RL: There have been
several previous packages that have proposed infrastructure
for real world RL: for dexterous manipulation [40], tabletop
furniture assembly [41], legged locomotion [15], and peg
insertion [42]. These packages are effective in narrow
situations, either using privileged information or training set
ups such as explicit tracking [42, 40] or pure proprioception
[15], or limited to imitation learning. In SERL, we show
a full stack system that can be used for a wide variety of
robotic manipulation tasks without requiring privileging of
the training setups as in prior work.

III. PRELIMINARIES AND PROBLEM STATEMENT

Robotic reinforcement learning tasks can be defined via
an MDP M = {S,A, ρ,P, r, γ}, where s ∈ S is the
state observation (e.g., an image in combination with the
current end-effector position), a ∈ A is the action (e.g., the
desired end-effector pose), ρ(s0) is a distribution over initial
states, P is the unknown and potentially stochastic transi-
tion probabilities that depend on the system dynamics, and
r : S ×A → R is the reward function, which encodes the
task. An optimal policy π is one that maximizes the cumula-
tive expected value of the reward, i.e., E[

∑∞
t=0 γ

tr(st,at)],
where the expectation is taken with respect to the initial state
distribution, transition probabilities, and policy π.

While the specification of the RL task is concise and
simple, turning real-world robotic learning problems into RL
problems requires care. First, the sample efficiency of the
algorithm for learning π is paramount: when the learning
must take place in the real world, every minute and hour of
training comes at a cost. Sample efficiency can be improved
by using effective off-policy RL algorithms [43, 44, 45], but
it can also be accelerated by incorporating prior data and
demonstrations [46, 47, 48], which is important to achieve
the fastest training times.

Additionally, many of the challenges with robotic RL
lie beyond just the core algorithm for optimizing π. For
example, the reward function r might depend on image
observations, and difficult for the user to specify manually.
Additionally, for episodic tasks where the robot resets to an
initial state s0 ∼ ρ(s0) between trials, actually resetting the
robot (and its environment) into one of these initial states is
a mechanical operation that must somehow be automated.

Furthermore, the controller layer, which interfaces the
MDP actions a (e.g., end-effector poses) to the actual low-

level robot controls, also requires great care, particularly for
contact-rich tasks where the robot physically interacts with
objects in the environment. Not only does this controller need
to be accurate, but it must also be safe enough that the RL
algorithm can explore with random actions during training.

SERL will aim to provide ready-made solutions to each
of these challenges, with a high-quality implementation of a
sample-efficient off-policy RL method that can incorporate
prior data, several choices for reward function specification,
a forward-backward algorithm for learning resets, and a
controller suitable for learning contact-rich tasks without
damaging either the robot or objects in the environment.

IV. SAMPLE EFFICIENT ROBOTIC REINFORCEMENT
LEARNING IN THE REAL-WORLD

Our software package, which we call Sample-Efficient
Robotic reinforcement Learning (SERL), aims to make
robotic RL in the real world accessible by providing ready-
made solutions to the problems detailed in the previous
section. This involves providing efficient vision-based rein-
forcement learning algorithms and the infrastructure needed
to support these learning algorithms for autonomous learn-
ing. We note that the purpose of such an endeavor is not
to propose novel algorithms or tools, but rather to develop
a software package that anyone can use easily for robotic
learning, without complex setup procedures and painful
integration across libraries.

The core reinforcement learning algorithm is derived
from RLPD [47], which itself is a variant of soft actor-
critic [44]: an off-policy Q-function actor-critic method that
can readily incorporate prior data (either suboptimal data or
demonstrations) into the replay buffer for efficient learning.
The reward functions can be specified either with a binary
classifier or VICE [22], which provides a method to update
the classifier during RL training with additional negatives
from the policy. The reward function can also be specified
by hand in cases where the robot state is sufficient to evaluate
success (e.g., as in our PCB board assembly task). The resets
can be provided via a forward-backward architecture [29],
where the algorithm simultaneously trains two policies: a
forward policy that performs the task, and a backward policy
that resets the environment back to the initial state. On
the robot system side, we also provide a universal adapter
for interfacing our method to arbitrary robots, as well as
an impedance controller that is particularly well-suited for
contact-rich manipulation tasks.

A. Core RL Algorithm: RLPD

There are several desiderata for reinforcement learning al-
gorithm to be deployed in this setting: (1) it must be efficient
and able to make multiple gradient updates per time step,
(2) it must be able to incorporate prior data easily and then
continue improving with further experience, (3) it must be
simple to debug and build on for new users. To this end, we
build on the recently proposed RLPD [47] algorithm, which
has shown compelling results on sample-efficient robotic
learning. RLPD is an off-policy actor-critic reinforcement

learning algorithm that builds on the success of temporal
difference algorithms such as soft-actor critic [44], but makes
some key modifications to satisfy the desiderata above.
RLPD makes three key changes: (i) high update-to-data ratio
training (UTD), (ii) symmetric sampling between prior data
and on-policy data, such that half of each batch comes from
prior data and half from the online replay buffer, and (iii)
layer-norm regularization during training. This method can
train from scratch, or use prior data (e.g., demonstrations)
to bootstrap learning. Each step of the algorithm updates the
parameters of a parametric Q-function Qϕ(s,a) and actor
πθ(a|s) according to the gradient of their respective loss
functions:

LQ(ϕ)=Es,a,s′

[(
Qϕ(s,a)−

(
r(s,a)+γEa′∼πθ

[Qϕ̄(s
′,a′)]

))2]
Lπ(θ)=−Es

[
Ea∼πθ(a)[Qϕ(s,a)] + αH(πθ(·|s)

]
,

where Qϕ̄ is a target network [49], and the actor loss uses
entropy regularization with an adaptively adjusted weight
α [44]. Each update step uses a sample-based approxima-
tion of each expectation, with half of the samples drawn
from the prior data (e.g., demonstrations), and half drawn
from the replay buffer [49]. For efficient learning, multiple
update steps are performed per time step in the environment,
which is referred to as the update-to-date (UTD) ratio, and
regularizing the critic with layer normalization allows for
higher UTD ratios and thus more efficient training [47].

B. Reward Specification with Classifiers
Reward functions are difficult to specify by hand when

learning with image observations, as the robot typically
requires some sort of perception system just to determine if
the task was performed successfully. While some tasks, such
as the PCB board assembly task in Fig. 1, can accommodate
hand-specified rewards based on the location of the end
effector (under the assumption that the object is held rigidly
in the gripper), most tasks require rewards to be deduced
from images. In this case, the reward function can be defined
by a binary classifier that takes in the state observation s and
outputs the probability of a binary “event” e, corresponding
to successful completion. The reward is then given by r(s) =
log p(e|s).

This classifier can be trained either using hand-specified
positive and negative examples, or via an adversarial method
called VICE [22]. The latter addresses a reward exploitation
problem that can arise when learning with classifier based
rewards, and removes the need for negative examples in
the classifier training set: when the RL algorithm optimizes
the reward r(s) = log p(e|s), it can potentially discover
“adversarial” states that fool the classifier p(e|s) to erro-
neously output high probabilities. VICE addresses this issue
by adding all states visited by the policy into the training
set for the classifier with negative labels, and updating the
classifier after each iteration. In this way, the RL process is
analogous to a generative adversarial network (GAN) [50],
with the policy acting as the generator and the reward
classifier acting as the discriminator. Our framework thus
supports all three types of rewards.

Fig. 2: Software architecture and real-world robot training example codes.
The best practice with SERL contains three components: Actor, Learner, and
robot environments.

C. Reset-Free Training with Forward-Backward Controllers

When learning episodic tasks, the robot must reset the
environment between task attempts. For example, when
learning the object relocation task in Figure 1, each time
the robot successfully moves the object to the target bin,
it must then take it out and place it back into the initial
bin. To remove the need for human effort in “resets”, SERL
supports “reset-free” training by using forward and backward
controllers [51, 52]. In this setup, two policies are trained
simultaneously using two independent RL agents, each with
their own policy, Q-function, and reward function (specified
via the methods in the previous section). The forward agent
learns to perform the task, and the backward agent learns to
return to the initial state(s). While more complex reset-free
training procedures can also be possible [52], we find that
this simple recipe is sufficient for learning object manipula-
tion tasks like the repositioning skill in Figure 1.

D. Software Components

Environment Adapters: SERL aims to be easily usable for
many robot environments. Although we provide a set of Gym
environment wrappers and robot environments for the Franka
and UR robot arms as starter guides, users can also use their
own existing environments or develop new environments as
they see fit. Thus, the library does not impose additional
constraints on the robot environment as long as it is Gym-
like [53] as shown in Fig. 2. We welcome contributions from
the community to extend the support for readily deployable
environment wrappers for other robots and tasks.
Actor and Learner Nodes SERL includes options to train
and act in parallel to decouple inferring actions and updating
policies with a few lines of code as illustrated in Fig. 2.
We found this to be beneficial in sample-efficient real-world
learning problems with high UTD ratios. By separating actor
and learner on two different threads, SERL not only pre-
serves the control frequency at a fixed rate, which is crucial
for tasks that require immediate feedback and reactions, such
as deformable objects and contact-rich manipulations, but
also reduces the total wall-clock time spend training in the
real world.

E. Impedance Controller for Contact-Rich Tasks

Although our package should be compatible with any
OEM robot controller as described in Sec. IV, we found

Fig. 3: Visualization of controller logs from the robot when commanded
with different movements, for the z-axis of the end-effector. The orange
line is the commanded target (the output of RL), red is the smoothed target
sent to the real-time controller, blue is the clipped target, and green is the
robot position after executing this controller. Left: The robot end-effector
was commanded to move into contact with a hard surface and continue the
movement despite the contact. The reference limiting mechanism clipped
the target to avoid a hard collision. Right: The command is a fast free-
space movement, which our reference limiting mechanism does not block,
allowing fast motion to the target.

that the choice of controllers can heavily affect the final
performance. This is more pronounced for contact-rich ma-
nipulation. For example, in the PCB insertion task in Fig. 1,
an overly stiff controller might bend the fragile pins and
make insertion difficult, while an overly compliant controller
might struggle to move the object into position quickly.

A typical setup for robotic RL employs a two-layered
control hierarchy, where an RL policy produces set-point
actions at a much lower frequency than the downstream
real-time controller. The RL controller can set targets for
the low-level controller to cause physically undesirable con-
sequences. To illustrate this, let’s consider the hierarchical
controller structure presented in Fig. 4, where a high-level
RL controller π(a|s) sends control targets at 10HZ for the
low-level impedance controller to track at 1K HZ, so one
timestep from RL will block 100 timesteps of the low-level
controller to execute. A typical impedance control objective
for this controller is

F = kp · e+ kd · ė+ Fff + Fcor,

where e = p − pref , p is the measured pose, and pref is
the target pose computed by the upstream controller, Fff

is the feed-forward force, Fcor is the Coriolis force, this
objective will then be converted into joint space torques
by multiplying Jacobian transpose and offset by nullspace
torques. It acts like a spring-damper system around the
equilibrium set by pref with the stiffness coefficient being kp
and the damping coefficient being kd. As described above,
this system will yield large forces if pref is far away from the
current pose, which can lead to a hard collision or damage
when the arm is in contact with something. Therefore it’s
crucial to constrain the interaction force generated by it.
However, directly reducing gains will hurt the controller’s
accuracy. Thus, we should bound e so that |e| ≤ ∆, and
then the generated force from the spring-damper system will
be bounded to kp·|∆|+2kd·|∆|·f , f is the control frequency.

One might wonder if we should directly clip the action
output by the RL policy. This might seem reasonable, but

Fig. 4: A typical controller hierarchy for robotics RL. The output from the
RL policy is tracked within a block of time by the downstream controller.

can be impractical in some scenarios: some objects such
as the PCB board may require a very small interaction
force, implying a very small ∆, usually on the order of
micrometers; if the RL policy is only allowed to move at
increments of micrometers, it would result in an extremely
long learning process or very unstable training, because the
episode would need enough time steps to allow the arm to
move over long distances (e.g., approaching the insertion
point). However, if we directly clip at the real-time layer, this
will largely mitigate the issue without the need to constrain
the RL policy to small actions. It will not block the free space
movement of the RL policy as long as M · |∆| ≥ |a|max,
where M is the number of control time-steps inside a block,
as in Fig. 4. This value is usually large (e.g., M = 100). At
the same time, we strictly enforce the reference constraint
at the real-time level whenever in contact. One can also
wonder if it’s possible to achieve the same result by using
an external force/torque sensor. This may be undesirable for
several reasons: (1) force/torque sensors can have significant
noise, and obtaining the right hardware and calibration can
be difficult; (2) even if we get such a threshold value, it’s
nontrivial to design robot motions to accommodate policy
learning as well as obeying the force constraint. In practice,
we found that clipping the reference in this way is simple
but very effective, and is crucial to enable RL-based contact-
rich manipulation tasks. We tested our controller on a Franka
Panda robot and included the Franka Panda implementation
with our package. However, this principle can be easily
implemented on any torque-controlled robot. To verify the
actual performance of the proposed controller, we report the
actual tracking performance of moving the robot in free space
and in contact with a table surface as in Fig. 3, where we
can see the controller indeed clamps the reference whenever
in contact, while permitting fast movement in free space.

V. EXPERIMENTS

Our experimental evaluation aims to study how efficiently
our system can learn a variety of robotic manipulation tasks,
including contact-rich tasks, deformable object manipulation,
and free-floating object manipulation. These experiments
demonstrate the breadth of applicability and efficiency of
SERL. We use two robots: a Franka Panda arm and a
UR5 arm and use wrist cameras attached to their end-
effectors to get close-in views. Further details can be found
at https://serl-robot.github.io/. We use an
ImageNet pre-trained EfficientNet [58] as a vision backbone
for the policy network and connect it to a 2-layer MLP;
observations to the policy include camera images, robot pro-
prioceptive information such as end-effector pose, and twist.
The policy outputs a 6D end-effector delta pose from the

current pose, and gets tracked by the downstream controller.
The tasks are illustrated in Fig. 5 and described below:
PCB insertion: Inserting connectors into a PCB board
demands fine-grained, contact-rich manipulation with sub-
millimeter precision. This task is ideal for real-world train-
ing, as simulating and transferring such contact-rich interac-
tions can be challenging.
Cable routing: This task involves routing a deformable cable
into a clip’s tight-fitting slot. The challenge arises from man-
aging objects with intricate dynamics and relying on visual
perception. It is representative of typical manufacturing and
maintenance scenarios where robots route cables or hoses,
posing a unique challenge for robotic manipulation.
Object relocation: This task requires moving a free-floating
object between bins. It represents common pick-and-place
tasks during deployment. The intricacies of reward inference
and reset-free training become especially pronounced in
manipulation of such free-floating objects.

For each task, we initialize training from 20 teleoperated
demonstrations using a SpaceMouse. To confirm that these
demos alone are insufficient to solve the task, we include a
behavioral cloning (BC) baseline. All training was done on
a single Nvidia RTX 4090 GPU.

a) Results: We report the results in Table I, and show
their execution in Fig. 5. Our RL policies achieve a nearly
perfect success rate on two of these tasks within an hour
of wall-clock time, which includes computation, resets, and
intended stops. The object relocation task learns two policies
(forward and backward), and total time amounts to less than
an hour per policy. For the cable routing task and PCB
insertion task, our policies outperform BC baselines by a
large margin, suggesting the demos alone are insufficient.
We also visualize the learned Q values heatmap over time
during one trial of policy learning in Fig. 6: we fix the z
coordinate, and observe the changes of Q values over time
for different state-action pairs in that surface. We find that
the Q values converge as the learning proceeds, resulting in
deterministic maximizing actions.

b) Comparison to prior systems: While it’s difficult to
directly compare our results to those of prior systems due
to numerous differences in the setup, lack of consistently
open-sourced code, and other discrepancies, we provide a
summary of training times and success rates reported for
tasks that are most similar to our PCB board insertion task
in Table I. We chose this task because similar insertion
or assembly tasks have been studied in prior work, and
such tasks often present challenges with precision, compliant
control, and sample efficiency. Compared to these prior
works, our experiments do not use shaped rewards, which
might require extensive engineering, though we do utilize a
small amount of demonstration data (which some prior works
eschew). The results reported in these prior works generally
have either lower success rates or longer training times,
or both, suggesting our implementation of sample-efficient
RL matches or exceeds the performance of state-of-the-art
methods in the literature, at least on this type of task. The
closest performance to ours in the work of Spector et al. [57]

https://serl-robot.github.io/

Fig. 5: Illustration of the robot performing each task with our method: PCB insertion (top left), cable routing with UR5 (top right), cable routing with
Franka Panda (bottom left), and object relocation (bottom right). The green box indicates a state where the robot receives high reward for completing the
task. In the object relocation task, the orange and green boxes represent the completion of the forward and backward tasks in reset-free RL training.

Package Task Training time Success rate Demos Shaping? Vision? Open-sourced?
Levine et al. 2016 [4] Peg insertion 3 hours 70% 0 Yes Yes Yes

Vecerik et al. 2018 [54] Peg/clip insertion 1.5-2.5 hours 97% / 77% 30 No Yes No
Schoettler et al. 2019 [55] Connector insertion Not mentioned 52% ∼ 100% 0 Yes Yes No

Luo et al 2021 [56] Connector insertion 1.5 hours 99.8% 25 No Yes No
Spector et al 2021 [57] Connector insertion 40 mins 78.5% - 100% 0 Yes Yes No

Ours PCB Insertion 36 mins 100% 20 No Yes Yes

TABLE I: Comparison to results reported on similar tasks in prior work. The overall success rates for our method are generally higher, and the training
times are generally lower, as compared to prior results. Note also that the PCB board assembly task, shown in Figure 1, has very tight tolerances, likely
significantly tighter than the coarser peg and connector insertion tasks studied in the prior works.

Task RL Time RL Results
(ours)

BC Results
(baseline)

PCB Insertion 36 min 100/100 64/100
Object relocation 120 min 84/100 70/100

UR5 Cable Routing 90 min 96/100 N/A
Franka Cable Routing 60 min 100/100 61/100

TABLE II: Comparison to results reported on similar tasks in prior
work. The overall success rates for our method are generally higher, and
the training times are generally lower, as compared to prior results. Note
also that the PCB board assembly task, shown in Figure 1, has very tight
tolerances, likely significantly tighter than the coarser peg and connector
insertion tasks studied in the prior works.

Fig. 6: A visualization of learned Q values during training, we group states
nearby into a grid, sample actions using the current policy, and report the
average Q values.

includes a number of design decisions and inductive biases
that are specific to insertion, whereas our method is generic
and makes minimal task-specific assumptions. Although the
components of our system are all based on (recent) prior
work, the state-of-the-art performance of this combination
illustrates our main thesis: the details of how deep RL
methods are implemented can make a big difference.

VI. DISCUSSION

We described a system and software package for robotic
reinforcement learning that is aimed at making real-world RL
more accessible both to researchers and practitioners. Our
software package provides a carefully designed combination
of ingredients for sample-efficient RL, automating reward de-
sign, automating environment resets with forward-backward

controllers, and a controller framework that is particularly
well-suited for contact-rich manipulation tasks. Furthermore,
our experimental evaluation of our framework demonstrates
that it can learn a range of diverse manipulation tasks very ef-
ficiently, with under an hour of training per policy when pro-
vided with a small number of demonstrations. These results
qualitatively compare well to state-of-the-art results in RL for
manipulation in the literature, indicating that the particular
choices in our framework are well-suited for obtaining very
good real-world results even from image observations. Our
framework does have a number of limitations. First, we do
not aim to provide a comprehensive library of every possible
RL method, some tasks and settings might be outside of
our framework (e.g., non-manipulation tasks). Second, the
full range of reward specifications and reset-free learning
challenges still constitute an open problem in robotic RL
research. Our classifier-based rewards and forward-backward
controller might not be appropriate in every setting. Further
research on these topics is needed to make robotic RL more
broadly applicable but we do however hope that our software
package will provide a reasonable “default” starting point
for both researchers and practitioners wanting to experiment
with real-world RL methods.

REFERENCES

[1] D. Büchler, S. Guist, R. Calandra, V. Berenz, B. Schölkopf,
and J. Peters. “Learning to Play Table Tennis From Scratch
Using Muscular Robots”. In: IEEE Trans. Robotics 38.6
(2022), pp. 3850–3860. URL: https://doi.org/10.
1109/TRO.2022.3176207.

[2] A. Gupta, J. Yu, T. Z. Zhao, V. Kumar, A. Rovinsky, K.
Xu, T. Devlin, and S. Levine. “Reset-Free Reinforcement
Learning via Multi-Task Learning: Learning Dexterous Ma-
nipulation Behaviors without Human Intervention”. In: IEEE
International Conference on Robotics and Automation, ICRA
2021, Xi’an, China, May 30 - June 5, 2021. IEEE, 2021,
pp. 6664–6671. URL: https://doi.org/10.1109/
ICRA48506.2021.9561384.

[3] D. Kalashnikov, J. Varley, Y. Chebotar, B. Swanson, R. Jon-
schkowski, C. Finn, S. Levine, and K. Hausman. “MT-Opt:
Continuous Multi-Task Robotic Reinforcement Learning at
Scale”. In: CoRR abs/2104.08212 (2021). arXiv: 2104 .
08212. URL: https : / / arxiv . org / abs / 2104 .
08212.

[4] S. Levine, C. Finn, T. Darrell, and P. Abbeel. “End-to-end
training of deep visuomotor policies”. In: The Journal of
Machine Learning Research 17.1 (2016), pp. 1334–1373.

[5] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen.
“Learning hand-eye coordination for robotic grasping with
deep learning and large-scale data collection”. In: Int. J.
Robotics Res. 37.4-5 (2018), pp. 421–436. URL: https:
//doi.org/10.1177/0278364917710318.

[6] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu,
J. A. Ojea, and K. Goldberg. “Dex-Net 2.0: Deep Learning
to Plan Robust Grasps with Synthetic Point Clouds and
Analytic Grasp Metrics”. In: Robotics: Science and Sys-
tems XIII, Massachusetts Institute of Technology, Cambridge,
Massachusetts, USA, July 12-16, 2017. Ed. by N. M. Amato,
S. S. Srinivasa, N. Ayanian, and S. Kuindersma. 2017.
URL: http://www.roboticsproceedings.org/
rss13/p58.html.

[7] B. Eysenbach, S. Gu, J. Ibarz, and S. Levine. “Leave
no Trace: Learning to Reset for Safe and Autonomous
Reinforcement Learning”. In: 6th International Confer-
ence on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings. OpenReview.net, 2018. URL: https : / /
openreview.net/forum?id=S1vuO-bCW.

[8] M. Riedmiller, T. Gabel, R. Hafner, and S. Lange. “Rein-
forcement learning for robot soccer”. In: Autonomous Robots
27 (2009), pp. 55–73.

[9] T. Westenbroek, F. Castaneda, A. Agrawal, S. Sastry,
and K. Sreenath. “Lyapunov design for robust and effi-
cient robotic reinforcement learning”. In: arXiv preprint
arXiv:2208.06721 (2022).

[10] Y. Yang, K. Caluwaerts, A. Iscen, T. Zhang, J. Tan, and V.
Sindhwani. “Data efficient reinforcement learning for legged
robots”. In: Conference on Robot Learning. PMLR. 2020,
pp. 1–10.

[11] A. Zhan, R. Zhao, L. Pinto, P. Abbeel, and M. Laskin. “A
framework for efficient robotic manipulation”. In: Deep RL
Workshop NeurIPS 2021. 2021.

[12] Z. Hou, J. Fei, Y. Deng, and J. Xu. “Data-efficient hierar-
chical reinforcement learning for robotic assembly control
applications”. In: IEEE Transactions on Industrial Electron-
ics 68.11 (2020), pp. 11565–11575.

[13] J. Tebbe, L. Krauch, Y. Gao, and A. Zell. “Sample-efficient
reinforcement learning in robotic table tennis”. In: 2021
IEEE international conference on robotics and automation
(ICRA). IEEE. 2021, pp. 4171–4178.

[14] I. Popov, N. Heess, T. Lillicrap, R. Hafner, G. Barth-Maron,
M. Vecerik, T. Lampe, Y. Tassa, T. Erez, and M. Riedmiller.
“Data-efficient deep reinforcement learning for dexterous
manipulation”. In: arXiv preprint arXiv:1704.03073 (2017).

[15] I. Kostrikov, L. M. Smith, and S. Levine. “Demonstrating
A Walk in the Park: Learning to Walk in 20 Minutes With
Model-Free Reinforcement Learning”. In: Robotics: Science
and Systems XIX, Daegu, Republic of Korea, July 10-14,
2023. Ed. by K. E. Bekris, K. Hauser, S. L. Herbert, and
J. Yu. 2023. URL: https://doi.org/10.15607/
RSS.2023.XIX.056.

[16] Z. Hu, A. Rovinsky, J. Luo, V. Kumar, A. Gupta,
and S. Levine. “REBOOT: Reuse Data for Bootstrap-
ping Efficient Real-World Dexterous Manipulation”. In:
CoRR abs/2309.03322 (2023). arXiv: 2309.03322. URL:
https : / / doi . org / 10 . 48550 / arXiv . 2309 .
03322.

[17] T. Hester and P. Stone. “Texplore: real-time sample-efficient
reinforcement learning for robots”. In: Machine learning 90
(2013), pp. 385–429.

[18] P. Wu, A. Escontrela, D. Hafner, P. Abbeel, and K. Goldberg.
“DayDreamer: World Models for Physical Robot Learn-
ing”. In: Conference on Robot Learning, CoRL 2022, 14-
18 December 2022, Auckland, New Zealand. Ed. by K.
Liu, D. Kulic, and J. Ichnowski. Vol. 205. Proceedings of
Machine Learning Research. PMLR, 2022, pp. 2226–2240.
URL: https://proceedings.mlr.press/v205/
wu23c.html.

[19] A. Nagabandi, K. Konolige, S. Levine, and V. Kumar. “Deep
Dynamics Models for Learning Dexterous Manipulation”.
In: 3rd Annual Conference on Robot Learning, CoRL 2019,
Osaka, Japan, October 30 - November 1, 2019, Proceedings.
Ed. by L. P. Kaelbling, D. Kragic, and K. Sugiura. Vol. 100.
Proceedings of Machine Learning Research. PMLR, 2019,
pp. 1101–1112. URL: http://proceedings.mlr.
press/v100/nagabandi20a.html.

[20] R. Rafailov, T. Yu, A. Rajeswaran, and C. Finn. “Offline
Reinforcement Learning from Images with Latent Space
Models”. In: Proceedings of the 3rd Annual Conference
on Learning for Dynamics and Control, L4DC 2021, 7-8
June 2021, Virtual Event, Switzerland. Ed. by A. Jadbabaie,
J. Lygeros, G. J. Pappas, P. A. Parrilo, B. Recht, C. J.
Tomlin, and M. N. Zeilinger. Vol. 144. Proceedings of
Machine Learning Research. PMLR, 2021, pp. 1154–1168.
URL: http://proceedings.mlr.press/v144/
rafailov21a.html.

[21] H. Zhu, A. Gupta, A. Rajeswaran, S. Levine, and V. Ku-
mar. “Dexterous Manipulation with Deep Reinforcement
Learning: Efficient, General, and Low-Cost”. In: Interna-
tional Conference on Robotics and Automation, ICRA 2019,
Montreal, QC, Canada, May 20-24, 2019. IEEE, 2019,
pp. 3651–3657. URL: https://doi.org/10.1109/
ICRA.2019.8794102.

[22] J. Fu, A. Singh, D. Ghosh, L. Yang, and S. Levine. “Vari-
ational inverse control with events: A general framework
for data-driven reward definition”. In: Advances in neural
information processing systems 31 (2018).

[23] K. Li, A. Gupta, A. Reddy, V. H. Pong, A. Zhou, J. Yu,
and S. Levine. “MURAL: Meta-Learning Uncertainty-Aware
Rewards for Outcome-Driven Reinforcement Learning”. In:
Proceedings of the 38th International Conference on Ma-
chine Learning, ICML 2021, 18-24 July 2021, Virtual Event.
Ed. by M. Meila and T. Zhang. Vol. 139. Proceedings of
Machine Learning Research. PMLR, 2021, pp. 6346–6356.
URL: http://proceedings.mlr.press/v139/
li21g.html.

[24] Y. Du, K. Konyushkova, M. Denil, A. Raju, J. Landon, F.
Hill, N. de Freitas, and S. Cabi. “Vision-language models

https://doi.org/10.1109/TRO.2022.3176207
https://doi.org/10.1109/TRO.2022.3176207
https://doi.org/10.1109/ICRA48506.2021.9561384
https://doi.org/10.1109/ICRA48506.2021.9561384
https://arxiv.org/abs/2104.08212
https://arxiv.org/abs/2104.08212
https://arxiv.org/abs/2104.08212
https://arxiv.org/abs/2104.08212
https://doi.org/10.1177/0278364917710318
https://doi.org/10.1177/0278364917710318
http://www.roboticsproceedings.org/rss13/p58.html
http://www.roboticsproceedings.org/rss13/p58.html
https://openreview.net/forum?id=S1vuO-bCW
https://openreview.net/forum?id=S1vuO-bCW
https://doi.org/10.15607/RSS.2023.XIX.056
https://doi.org/10.15607/RSS.2023.XIX.056
https://arxiv.org/abs/2309.03322
https://doi.org/10.48550/arXiv.2309.03322
https://doi.org/10.48550/arXiv.2309.03322
https://proceedings.mlr.press/v205/wu23c.html
https://proceedings.mlr.press/v205/wu23c.html
http://proceedings.mlr.press/v100/nagabandi20a.html
http://proceedings.mlr.press/v100/nagabandi20a.html
http://proceedings.mlr.press/v144/rafailov21a.html
http://proceedings.mlr.press/v144/rafailov21a.html
https://doi.org/10.1109/ICRA.2019.8794102
https://doi.org/10.1109/ICRA.2019.8794102
http://proceedings.mlr.press/v139/li21g.html
http://proceedings.mlr.press/v139/li21g.html

as success detectors”. In: arXiv preprint arXiv:2303.07280
(2023).

[25] P. Mahmoudieh, D. Pathak, and T. Darrell. “Zero-Shot
Reward Specification via Grounded Natural Language”.
In: International Conference on Machine Learning, ICML
2022, 17-23 July 2022, Baltimore, Maryland, USA. Ed.
by K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvári, G.
Niu, and S. Sabato. Vol. 162. Proceedings of Machine
Learning Research. PMLR, 2022, pp. 14743–14752. URL:
https : / / proceedings . mlr . press / v162 /
mahmoudieh22a.html.

[26] L. Fan, G. Wang, Y. Jiang, A. Mandlekar, Y. Yang,
H. Zhu, A. Tang, D. Huang, Y. Zhu, and A. Anandkumar.
“MineDojo: Building Open-Ended Embodied Agents
with Internet-Scale Knowledge”. In: NeurIPS.
2022. URL: http : / / papers . nips . cc /
paper % 5C _ files / paper / 2022 / hash /
74a67268c5cc5910f64938cac4526a90 -
Abstract-Datasets%5C_and%5C_Benchmarks.
html.

[27] Y. J. Ma, S. Sodhani, D. Jayaraman, O. Bastani, V. Kumar,
and A. Zhang. “VIP: Towards Universal Visual Reward
and Representation via Value-Implicit Pre-Training”. In:
The Eleventh International Conference on Learning Rep-
resentations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.
OpenReview.net, 2023. URL: https://openreview.
net/pdf?id=YJ7o2wetJ2.

[28] Y. J. Ma, V. Kumar, A. Zhang, O. Bastani, and D. Jayaraman.
“LIV: Language-Image Representations and Rewards for
Robotic Control”. In: International Conference on Machine
Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii,
USA. Ed. by A. Krause, E. Brunskill, K. Cho, B. Engelhardt,
S. Sabato, and J. Scarlett. Vol. 202. Proceedings of Machine
Learning Research. PMLR, 2023, pp. 23301–23320. URL:
https : / / proceedings . mlr . press / v202 /
ma23b.html.

[29] A. Sharma, K. Xu, N. Sardana, A. Gupta, K. Hausman,
S. Levine, and C. Finn. “Autonomous Reinforcement Learn-
ing: Benchmarking and Formalism”. In: arXiv preprint
arXiv:2112.09605 (2021).

[30] H. Zhu, J. Yu, A. Gupta, D. Shah, K. Hartikainen, A.
Singh, V. Kumar, and S. Levine. “The Ingredients of Real
World Robotic Reinforcement Learning”. In: 8th Interna-
tional Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net,
2020. URL: https://openreview.net/forum?id=
rJe2syrtvS.

[31] A. Xie, F. Tajwar, A. Sharma, and C. Finn. “When to Ask for
Help: Proactive Interventions in Autonomous Reinforcement
Learning”. In: NeurIPS. 2022. URL: http://papers.
nips . cc / paper % 5C _ files / paper / 2022 /
hash / 6bf82cc56a5fa0287c438baa8be65a70 -
Abstract-Conference.html.

[32] A. Sharma, A. M. Ahmed, R. Ahmad, and C. Finn. “Self-
Improving Robots: End-to-End Autonomous Visuomotor Re-
inforcement Learning”. In: CoRR abs/2303.01488 (2023).
arXiv: 2303.01488. URL: https://doi.org/10.
48550/arXiv.2303.01488.

[33] T. Seno and M. Imai. “d3rlpy: An Offline Deep Reinforce-
ment Learning Library”. In: Journal of Machine Learning
Research 23.315 (2022), pp. 1–20. URL: http://jmlr.
org/papers/v23/22-0017.html.

[34] A. Nair and V. Pong. “rlkit”. In: Github (). URL: https:
//github.com/rail-berkeley/rlkit.

[35] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto,
R. Traore, P. Dhariwal, C. Hesse, O. Klimov, A. Nichol,
M. Plappert, A. Radford, J. Schulman, S. Sidor, and Y. Wu.

Stable Baselines. https://github.com/hill-a/
stable-baselines. 2018.

[36] S. Guadarrama, A. Korattikara, O. Ramirez, P. Castro,
E. Holly, S. Fishman, K. Wang, E. Gonina, N. Wu, E.
Kokiopoulou, L. Sbaiz, J. Smith, G. Bartók, J. Berent, C.
Harris, V. Vanhoucke, and E. Brevdo. TF-Agents: A library
for Reinforcement Learning in TensorFlow. https : / /
github.com/tensorflow/agents. [Online; accessed
25-June-2019]. 2018. URL: https://github.com/
tensorflow/agents.

[37] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn,
and S. Levine. “Meta-World: A Benchmark and Evaluation
for Multi-Task and Meta Reinforcement Learning”. In: 3rd
Annual Conference on Robot Learning, CoRL 2019, Osaka,
Japan, October 30 - November 1, 2019, Proceedings. Ed.
by L. P. Kaelbling, D. Kragic, and K. Sugiura. Vol. 100.
Proceedings of Machine Learning Research. PMLR, 2019,
pp. 1094–1100. URL: http://proceedings.mlr.
press/v100/yu20a.html.

[38] S. James, Z. Ma, D. R. Arrojo, and A. J. Davison. “RLBench:
The Robot Learning Benchmark & Learning Environment”.
In: IEEE Robotics Autom. Lett. 5.2 (2020), pp. 3019–3026.
URL: https://doi.org/10.1109/LRA.2020.
2974707.

[39] M. Mittal, C. Yu, Q. Yu, J. Liu, N. Rudin, D. Hoeller,
J. L. Yuan, P. P. Tehrani, R. Singh, Y. Guo, H. Mazhar,
A. Mandlekar, B. Babich, G. State, M. Hutter, and A. Garg.
ORBIT: A Unified Simulation Framework for Interactive
Robot Learning Environments. 2023. eprint: arXiv:2301.
04195.

[40] M. Ahn, H. Zhu, K. Hartikainen, H. Ponte, A. Gupta, S.
Levine, and V. Kumar. “ROBEL: Robotics Benchmarks for
Learning with Low-Cost Robots”. In: 3rd Annual Conference
on Robot Learning, CoRL 2019, Osaka, Japan, October
30 - November 1, 2019, Proceedings. Ed. by L. P. Kael-
bling, D. Kragic, and K. Sugiura. Vol. 100. Proceedings of
Machine Learning Research. PMLR, 2019, pp. 1300–1313.
URL: http://proceedings.mlr.press/v100/
ahn20a.html.

[41] M. Heo, Y. Lee, D. Lee, and J. J. Lim. “FurnitureBench: Re-
producible Real-World Benchmark for Long-Horizon Com-
plex Manipulation”. In: Robotics: Science and Systems XIX,
Daegu, Republic of Korea, July 10-14, 2023. Ed. by K. E.
Bekris, K. Hauser, S. L. Herbert, and J. Yu. 2023. URL:
https://doi.org/10.15607/RSS.2023.XIX.
041.

[42] S. Levine, C. Finn, T. Darrell, and P. Abbeel. “End-to-End
Training of Deep Visuomotor Policies”. In: J. Mach. Learn.
Res. 17 (2016), 39:1–39:40. URL: http://jmlr.org/
papers/v17/15-522.html.

[43] V. R. Konda and J. N. Tsitsiklis. “Actor-Critic Algorithms”.
In: Advances in Neural Information Processing Systems 12,
[NIPS Conference, Denver, Colorado, USA, November 29
- December 4, 1999]. Ed. by S. A. Solla, T. K. Leen,
and K. Müller. The MIT Press, 1999, pp. 1008–1014. URL:
http://papers.nips.cc/paper/1786-actor-
critic-algorithms.

[44] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. “Soft actor-
critic: Off-policy maximum entropy deep reinforcement
learning with a stochastic actor”. In: International conference
on machine learning. PMLR. 2018, pp. 1861–1870.

[45] S. Fujimoto, H. van Hoof, and D. Meger. “Addressing
Function Approximation Error in Actor-Critic Methods”. In:
Proceedings of the 35th International Conference on Ma-
chine Learning, ICML 2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018. Ed. by J. G. Dy and A. Krause.
Vol. 80. Proceedings of Machine Learning Research. PMLR,

https://proceedings.mlr.press/v162/mahmoudieh22a.html
https://proceedings.mlr.press/v162/mahmoudieh22a.html
http://papers.nips.cc/paper%5C_files/paper/2022/hash/74a67268c5cc5910f64938cac4526a90-Abstract-Datasets%5C_and%5C_Benchmarks.html
http://papers.nips.cc/paper%5C_files/paper/2022/hash/74a67268c5cc5910f64938cac4526a90-Abstract-Datasets%5C_and%5C_Benchmarks.html
http://papers.nips.cc/paper%5C_files/paper/2022/hash/74a67268c5cc5910f64938cac4526a90-Abstract-Datasets%5C_and%5C_Benchmarks.html
http://papers.nips.cc/paper%5C_files/paper/2022/hash/74a67268c5cc5910f64938cac4526a90-Abstract-Datasets%5C_and%5C_Benchmarks.html
http://papers.nips.cc/paper%5C_files/paper/2022/hash/74a67268c5cc5910f64938cac4526a90-Abstract-Datasets%5C_and%5C_Benchmarks.html
https://openreview.net/pdf?id=YJ7o2wetJ2
https://openreview.net/pdf?id=YJ7o2wetJ2
https://proceedings.mlr.press/v202/ma23b.html
https://proceedings.mlr.press/v202/ma23b.html
https://openreview.net/forum?id=rJe2syrtvS
https://openreview.net/forum?id=rJe2syrtvS
http://papers.nips.cc/paper%5C_files/paper/2022/hash/6bf82cc56a5fa0287c438baa8be65a70-Abstract-Conference.html
http://papers.nips.cc/paper%5C_files/paper/2022/hash/6bf82cc56a5fa0287c438baa8be65a70-Abstract-Conference.html
http://papers.nips.cc/paper%5C_files/paper/2022/hash/6bf82cc56a5fa0287c438baa8be65a70-Abstract-Conference.html
http://papers.nips.cc/paper%5C_files/paper/2022/hash/6bf82cc56a5fa0287c438baa8be65a70-Abstract-Conference.html
https://arxiv.org/abs/2303.01488
https://doi.org/10.48550/arXiv.2303.01488
https://doi.org/10.48550/arXiv.2303.01488
http://jmlr.org/papers/v23/22-0017.html
http://jmlr.org/papers/v23/22-0017.html
https://github.com/rail-berkeley/rlkit
https://github.com/rail-berkeley/rlkit
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
https://github.com/tensorflow/agents
https://github.com/tensorflow/agents
https://github.com/tensorflow/agents
https://github.com/tensorflow/agents
http://proceedings.mlr.press/v100/yu20a.html
http://proceedings.mlr.press/v100/yu20a.html
https://doi.org/10.1109/LRA.2020.2974707
https://doi.org/10.1109/LRA.2020.2974707
arXiv:2301.04195
arXiv:2301.04195
http://proceedings.mlr.press/v100/ahn20a.html
http://proceedings.mlr.press/v100/ahn20a.html
https://doi.org/10.15607/RSS.2023.XIX.041
https://doi.org/10.15607/RSS.2023.XIX.041
http://jmlr.org/papers/v17/15-522.html
http://jmlr.org/papers/v17/15-522.html
http://papers.nips.cc/paper/1786-actor-critic-algorithms
http://papers.nips.cc/paper/1786-actor-critic-algorithms

2018, pp. 1582–1591. URL: http://proceedings.
mlr.press/v80/fujimoto18a.html.

[46] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schul-
man, E. Todorov, and S. Levine. “Learning Complex Dex-
terous Manipulation with Deep Reinforcement Learning and
Demonstrations”. In: Proceedings of Robotics: Science and
Systems. Pittsburgh, Pennsylvania, June 2018.

[47] P. J. Ball, L. Smith, I. Kostrikov, and S. Levine. “Efficient
online reinforcement learning with offline data”. In: arXiv
preprint arXiv:2302.02948 (2023).

[48] A. Nair, M. Dalal, A. Gupta, and S. Levine. Accelerating
Online Reinforcement Learning with Offline Datasets. 2020.
arXiv: 2006.09359 [cs.LG].

[49] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I.
Antonoglou, D. Wierstra, and M. Riedmiller. “Playing
atari with deep reinforcement learning”. In: arXiv preprint
arXiv:1312.5602 (2013).

[50] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D.
Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. “Gen-
erative adversarial nets”. In: Advances in neural information
processing systems 27 (2014).

[51] W. Han, S. Levine, and P. Abbeel. “Learning compound
multi-step controllers under unknown dynamics”. In: Intel-
ligent Robots and Systems (IROS), 2015 IEEE/RSJ Interna-
tional Conference on. IEEE. 2015, pp. 6435–6442.

[52] A. Gupta, J. Yu, T. Z. Zhao, V. Kumar, A. Rovinsky, K. Xu,
T. Devlin, and S. Levine. “Reset-free reinforcement learning
via multi-task learning: Learning dexterous manipulation
behaviors without human intervention”. In: 2021 IEEE In-
ternational Conference on Robotics and Automation (ICRA).
IEEE. 2021, pp. 6664–6671.

[53] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J.
Schulman, J. Tang, and W. Zaremba. “Openai gym”. In:
arXiv preprint arXiv:1606.01540 (2016).

[54] M. Vecerik, O. Sushkov, D. Barker, T. Rothörl, T. Hester, and
J. Scholz. A Practical Approach to Insertion with Variable
Socket Position Using Deep Reinforcement Learning. 2018.
arXiv: 1810.01531 [cs.RO].

[55] G. Schoettler, A. Nair, J. Luo, S. Bahl, J. A. Ojea, E.
Solowjow, and S. Levine. Deep Reinforcement Learning for
Industrial Insertion Tasks with Visual Inputs and Natural
Rewards. 2019. arXiv: 1906.05841 [cs.RO].

[56] J. Luo, O. Sushkov, R. Pevceviciute, W. Lian, C. Su, M.
Vecerik, N. Ye, S. Schaal, and J. Scholz. “Robust Multi-
Modal Policies for Industrial Assembly via Reinforcement
Learning and Demonstrations: A Large-Scale Study”. In:
Proceedings of Robotics: Science and Systems. Virtual, July
2021.

[57] O. Spector and D. D. Castro. InsertionNet – A Scalable So-
lution for Insertion. 2021. arXiv: 2104.14223 [cs.RO].

[58] M. Tan and Q. Le. “Efficientnet: Rethinking model scaling
for convolutional neural networks”. In: International confer-
ence on machine learning. PMLR. 2019, pp. 6105–6114.

http://proceedings.mlr.press/v80/fujimoto18a.html
http://proceedings.mlr.press/v80/fujimoto18a.html
https://arxiv.org/abs/2006.09359
https://arxiv.org/abs/1810.01531
https://arxiv.org/abs/1906.05841
https://arxiv.org/abs/2104.14223

	Introduction
	Related Work
	Preliminaries and Problem Statement
	Sample Efficient Robotic Reinforcement Learning in the Real-World
	Core RL Algorithm: RLPD
	Reward Specification with Classifiers
	Reset-Free Training with Forward-Backward Controllers
	Software Components
	Impedance Controller for Contact-Rich Tasks

	Experiments
	Discussion

