
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HADAMARD REPRESENTATIONS: AUGMENTING HY-
PERBOLIC TANGENTS IN RL

Anonymous authors
Paper under double-blind review

ABSTRACT

Activation functions are one of the key components of a deep neural network.
The most commonly used activation functions can be classed into the category
of continuously differentiable (e.g. tanh) and piece-wise linear functions (e.g.
ReLU), both having their own strengths and drawbacks with respect to downstream
performance and representation capacity through learning (e.g. measured by
the number of dead neurons and the effective rank). In reinforcement learning,
the performance of continuously differentiable activations often falls short as
compared to piece-wise linear functions. We provide insights into the vanishing
gradients associated with the former, and show that the dying neuron problem
is not exclusive to ReLU’s. To alleviate vanishing gradients and the resulting
dying neuron problem occurring with continuously differentiable activations, we
propose a Hadamard representation. Using deep Q-networks, proximal policy
optimization and parallelized Q-networks in the Atari domain, we show faster
learning, a reduction in dead neurons and increased effective rank.

1 INTRODUCTION

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Sc

or
e

Atari
Tanh
ReLU

Figure 1: Normalized performance training DQN
in the Atari domain where the nonlinear activation
function of the representation, defined as the final
hidden layer, is either ReLU or tanh. A strong
performance discrepancy due to a relatively small
architectural change can be observed.

Out of all activation functions, the Rectified
Linear Unit (ReLU) (Fukushima, 1969; Nair &
Hinton, 2010) and its variants (Xu et al., 2015;
Klambauer et al., 2017) have emerged as the
most widely used and generally best-performing
activation functions up until this day (Jarrett
et al., 2009; Goodfellow et al., 2016). The
strength of the ReLU activation lies in its ability
to naturally avoid vanishing gradients when used
in deeper networks, in contrast to the continu-
ously differentiable activation functions, such as
the sigmoid and the hyperbolic tangent (Glorot
& Bengio, 2010).

A common drawback of using the ReLU acti-
vation is its limited expressivity in the context
of shallow networks (see Fig. 2), as well as the
phenomenon known as the dying ReLU problem
(He et al., 2015; Lu et al., 2019). As training
progresses, the number of dying ReLU’s tend to
increase, resulting in a dying network and loss
of network capacity (Dubey et al., 2022).

In reinforcement learning (RL) (Sutton & Barto, 2018), the dying neuron phenomenon is more
prevalent than in supervised learning due to the use of non-stationary targets (Sokar et al., 2023).
However, even though training results in a large number of dying ReLU’s (Gulcehre et al., 2022;
Sokar et al., 2023), the ReLU function still remains the most popular activation for performance
reasons (Henderson et al., 2018). Similar to supervised learning (Teney et al., 2024), continuously
differentiable activation functions such as the hyperbolic tangent are therefore not commonly used
in RL (see Fig. 1). However, one might argue that their symmetrical, bounded shape and smooth

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

6 4 2 0 2 4 6
30

20

10

0

10

20

30
Shallow Tanh, Loss = 13.39

Target
Tanh Network

6 4 2 0 2 4 6
30

20

10

0

10

20

30
Shallow ReLU, Loss = 128.48

Target
ReLU Network

6 4 2 0 2 4 6
30

20

10

0

10

20

30
Shallow Tanh (HR), Loss = 1.71

Target
Tanh (HR) Network

Figure 2: A regression of three shallow neural network architectures on a random complex sinusoidal
function (y = 10∗ torch.sin(7∗x)+15∗ torch.sin(10∗x)+5∗ torch.cos(5∗x)). The Tanh (HR)
network emerges as the strongest function approximator, even while having less trainable parameters
(501 vs 601 for Tanh & ReLU). To make a fair comparison, the Tanh and ReLU networks have one
single hidden layer of size 200, while the Tanh (HR) network has a hidden layer of size 100. For the
Tanh (HR) network however, we use two parallel linear layers preceding the hidden layer in order to
be able to use the single hidden layer as the Hadamard product of two activations (see Section 3). For
experiments comparing deeper networks, we refer the reader to Appendix C.1.

gradient landscape offer optimization advantages that the ReLU lacks. Recent findings also indicate
that a hidden layer activated by a hyperbolic tangent displays a high effective rank and thus a high
layer expressivity (Kumar et al., 2021; Gulcehre et al., 2022). Despite being a theoretically sound
candidate, its lack of success in RL has not been thoroughly investigated.

We therefore aim to provide insights into the hyperbolic tangent’s suboptimality, revealing that the
vanishing gradient problem leads to dying neurons and under-utilization of the full network capacity.
Based on these insights, we mitigate said effects by augmenting the original architecture. Specifically,
we focus our research on the activations of the compressed representation of an encoder, defined as
the hidden layer, and provide an alternative to the conventional parameterization of this representation.
Our contributions can be summarized as follows:

• We show that, in reinforcement learning, dying hyperbolic tangents are a phenomenon of a
similar scale as the dying ReLU problem.

• A Hadamard representation (HR) is proposed, defining a latent representation as the
Hadamard product of two separate, individually parameterized activation vectors.

• We empirically show that, without hyperparameter tuning or the use of auxiliary losses,
using Hadamard representations yields significant performance gains in multiple algorithms
in the Atari domain, and reveal how it decreases dying neurons and increases the internal
representations’ effective rank.

2 PRELIMINARIES

We consider an agent acting within its environment, where the environment is modeled as a discrete
Markov Decision Process (MDP) defined as a tuple (S,A, T,R, γ). S is the state space, A is the
action space, T : S × A → S is the environment’s transition function, R : S × A → R is the
environment’s reward function and γ ∈ [0, 1) is the discount factor. A replay buffer B is used to
store visited states st ∈ S that were followed by actions at ∈ A and resulted in the rewards rt ∈ R
and the next states st+1. One entry in B contains a tuple of past experience (st, at, rt, st+1). The
agent’s goal is to learn a policy π : S → A that maximizes the expectation of the discounted return
V π(s) = Eτ [

∑∞
t=0 γ

tR(st, at) | st = s], where τ is a trajectory following the policy π.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Furthermore, we examine the setting where a high-dimensional state (st ∈ Rv) is compressed into
lower-dimensional activations zt ∈ Z = Rw where we call Z the representation space with w ≤ v.
This is done by means of a neural network encoding e : S → Z where e represents the encoder.

3 AUGMENTING HYPERBOLIC TANGENTS

Continuously differentiable activations such as the hyperbolic tangent (tanh) and the sigmoid (σ)
activations are fundamentally different than the ReLU or its piece-wise linear descendants, which
are non-symmetric and have a large part of the input space mapped to zero (leading to sparsity). The
hyperbolic tangent and the sigmoid output values in the ranges [−1, 1] and [0, 1], respectively. These
functions are defined as:

tanh(x) =
ex − e−x

ex + e−x
, σ(x) =

1

1 + e−x
(1)

Both functions have the advantage of being differentiable everywhere, as well as being bounded.
Furthermore, the sigmoid is well suited for output probabilities, while the tanh is convenient when
requiring a zero-centered symmetrical output. However, both functions exhibit the vanishing gradient
problem for saturating activations (Glorot & Bengio, 2010; Goodfellow et al., 2016).

DYING HYPERBOLIC TANGENTS

Although common literature has focused on the dying ReLU problem (He et al., 2015; Lu et al., 2019;
Gulcehre et al., 2022; Sokar et al., 2023), we find that hidden layers activated by hyperbolic tangents
similarly show strong dying neuron behavior. When using any activation function in a deep neural
network, a single neuron αi, i ∈ Rw, with w the layer dimension, is saturated or dying if:

αi ≈ Ω ∀ st ∈ B (2)

Where Ω represents the saturation value and st is an observation in buffer B. In practice, a batch of
observations is evaluated instead of the whole dataset in B. For the hyperbolic tangent, given that it is
an asymptotic function near its saturation point, an approximate equality must be considered, as the
classification of its saturation will always remain qualitative (|αi| ≠ 1 ∀ st ∈ B) . To approximate
the condition given in Eq. 2, the amount of dying hyperbolic tangents is calculated by using a kernel
density estimation (KDE) (Silverman, 1986) on the activations αi, i ∈ Rw of each individual neuron
in the activation layer. In order to visualize activations in a hidden layer, a fixed subset of the KDE’s
of the neurons αi is taken. A clear visualization of dying hyperbolic tangents during training in the
Atari Breakout environment can be seen by analyzing sixteen individual neuron KDE’s in Fig. 3.

0

5

De
ns

ity

0

10

0

10

0

5

0

5

De
ns

ity

0

10

0

10

0

5

0

5

De
ns

ity

0

10

0

20

0

5

1 0 1
0

5

De
ns

ity

1 0 1
0

5

1 0 1
0

10

1 0 1
0

10

(a) Tanh - 106 iterations

0

1

D
e
n
si
ty

0.0

0.5

0.0

2.5

0

1

0

500

D
e
n
si
ty

0

1000

0

200

0

2

0

5

D
e
n
si
ty

0

2

0.0

0.5

0

1

1 0 1
0

10000

D
e
n
si
ty

1 0 1
0

1

1 0 1
0

20

1 0 1
0

200

(b) Tanh - 107 iterations

Figure 3: Kernel Density Estimations (KDE) over a subset of 16 neurons in the compressed repre-
sentation zt after training DQN Mnih et al. (2015) in the Breakout environment using a hyperbolic
tangent activation for zt. Each neuron represents one dimension of the representation zt ∈ R512. Red
outlines represent dying neurons, where a near infinite sized density spike occurs at either 1 or -1.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

1 0 1

Figure 4: A visualisation of the Hadamard Representation architecture combined with the nature
DQN architecture applied on a snapshot of the ‘SpaceInvaders’ Atari environment (Mnih et al.,
2015). Vertical and horizontal bars represent convolutional and linear layers, respectively. A parallel
linear layer providing independently parameterized hidden layer activations is integrated, where
the Hadamard product of the two activations represents the final latent representation zt used for
downstream learning.

More details on the KDE calculation and dying neuron classification can be found in Appendix B.

HADAMARD REPRESENTATIONS (HR)

As Fig. 3 indicates that the activation of zt with a hyperbolic tangent leads to saturation and dying
neurons, an augmentation of the representation architecture is proposed. In the conventional encoder
setting, the networks’ final hidden layer is defined as zenc(x) = f(A1x + B1), with Ai and Bi

representing weight and bias parameters, the function f() representing a nonlinear activation function
while x is the set of activations from the previous layer. In order to reduce the information dependence
on a single set of neurons, we propose using a Hadamard representation that augments the original
representation with a parallel representation layer z∗. This can be interpreted as using a single
highway layer with a closed carry gate (Srivastava et al., 2015), or as an augmented version of the
Gated Linear Unit (GLU) (Dauphin et al., 2017). The final representation is defined as the Hadamard
product between the aforementioned activations z(x) = zenc(x)·z∗(x), where z∗(x) = f(A2x+B2).
A visualization of the proposed architecture can be found in Fig. 4.

PREVENTING DYING NEURONS

Our key hypothesis is that the Hadamard representation can prevent saturation, hence alleviating
vanishing gradients and dying neurons (See Eq. 2). To support our hypothesis, we investigate the
derivative of a product of two functions. For the product of two arbitrary functions g(x) · h(x), the
derivative is defined as g′(x)h(x) + g(x)h′(x). In the context of using a sigmoid activation function
for f(x), the derivative of z(x) becomes:

z′(x) = A1σ(A1x+B1)(1− σ(A1x+B1))σ(A2x+B2)

+A2σ(A1x+B1)σ(A2x+B2)(1− σ(A2x+B2))

If a neuron from f(A1x+ B1) = 0 ∀ x, the gradient of the product becomes 0 while if a positive
saturation is experienced i.e. f(A1x+B1) = 1 ∀ x, z′(x) can remain nonzero. For a product of two
hyperbolic tangent functions, the derivative is defined as:

z′(x) = A1sech2(A1x+B1) tanh(A2x+B2) +A2sech2(A2x+B2) tanh(A1x+B1)

In this context, sech2 is the derivative of the hyperbolic tangent function. Unlike the sigmoid, the
hyperbolic tangent saturates to nonzero values, ensuring that if and only if both parts are saturated,
product saturation occours. Thus, when g(x) saturates, h(x) still keeps a non-trivial gradient in
the product, providing a mechanism to avoid vanishing gradients. We visualize the kernel densities
during training with a Hadamard representation in Fig. 5. The individual representations before
taking the Hadamard product can be found in Appendix B.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Taking a more formal approximation of neuron collapse, we start by defining the probability of
a single neuron saturating as p. Furthermore, in the case of a sigmoid or hyperbolic tangent, we
assume symmetric saturation probabilities to both ends, defining the probability of a neuron saturating
to one end of the spectrum as 0.5p. Lastly, we make an independence assumption between two
individual neurons. Under these assumptions, we show that interpreting a neuron as the product
of two individual neurons can change saturation probabilities depending on the neuron’s activation
function.

0

1

D
e
n
si
ty

0.0

0.5

0

1

0

1

0

1

D
e
n
si
ty

0

2

0

1

0

20

0

2

D
e
n
si
ty

0.0

0.5

0

1

0

1

1 0 1
0

2

D
e
n
si
ty

1 0 1
0

2

1 0 1
0.0

0.5

1 0 1
0

1

(a) Tanh (HR) - 106 iterations

0.0

0.5

De
ns

ity

0

1

0

2

0

1

0

1

De
ns

ity

0

1

0.0

0.5

0

2

0.0

2.5

De
ns

ity

0

1

0

1

0

5

1 0 1
0

1

De
ns

ity

1 0 1
0

2

1 0 1
0

2

1 0 1
0

1

(b) Tanh (HR) - 107 iterations

Figure 5: Kernel Density Estimations (KDE) over a subset of 16 neurons in the compressed repre-
sentation zt after training DQN in the Breakout environment using a Hadamard representation (HR)
with hyperbolic tangents. The Hadamard representation tends to quickly utilize the full range of the
hyperbolic tangent while also mitigating dying neurons.

Hyperbolic Tangent: In the case of the hyperbolic tangent, product saturation only occurs if strictly
both neurons are saturated. This results in a probability of p ·p = p2. Taking a product of hyperbolic
tangent activated neurons thus reduces the probability of neuron saturation from p to p2.

Sigmoid: For the sigmoid function, product saturation occurs in two scenarios: Either one of the
neurons is saturated towards zero or both neurons are saturated towards 1. The probability that a
single neuron does not saturate towards zero is (1 − 0.5p), and subsequently the probability that
neither neuron saturates towards zero is (1 − 0.5p)2. The probability that at least one of the two
neurons saturates to zero is therefore 1− (1−0.5p)2 = p−0.25p2. Adding the probability that both
neurons saturate towards 1, which is (0.5p)2 = 0.25p2, the final probability of the neuron product
saturation is p − 0.25p2 + 0.25p2 = p. Taking a product of sigmoid activated neurons therefore
does not reduce the probability of neuron collapse.

Rectified Linear-Unit: In the case of a ReLU activation, we also assume the probability of a single
neuron dying to be p. As we look at the product of two neurons, the probability that one of the two
neurons does not saturate is therefore 1− p, and the probability that both neurons do not saturate is
(1− p)2. The probability that at least one neuron saturates is thus equal to 1− (1− p)2 = 2p− p2.
As the ReLU saturation results in strict zeroes, this results in the product also being zero. Taking a
product of ReLU activated neurons therefore increases the final neuron saturation probability from p
to 2p− p2. For an overview, we refer the reader to both Table 1 and the corresponding empirical
evidence in Appendix C.3.

Table 1: Predicted dying neuron probabilities with and without a Hadamard representation.

Activation Function Dying Neuron Probability Probability with HR Difference

Hyperbolic Tangent p p2 −(p− p2)
Sigmoid p p 0
ReLU p 2p− p2 +(p− p2)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4 EXPERIMENTS

The main experiments and discussion are conducted with the value-based DQN algorithm (Mnih et al.,
2015) in Atari, and complemented by an evaluation on the policy-based proximal policy optimization
algorithm (PPO) (Schulman et al., 2017) and the parallelized Q-network (PQN) (Gallici et al., 2024).
For more details on the PPO, DQN and PQN implementation, we refer the reader to Appendix A.1.
For both DQN and PPO, we define the representation zt ∈ R512 as the last hidden layer of the
network, which serves as the compressed representation of the pixel observation st (see Fig. 4).

We perform qualitative experiments on 8 common, non-exploration driven Atari games. We aim
to show the effect of a Hadamard representation on the representation’s fraction of dying neurons,
its effective rank and its downstream performance. For more information on the dying neuron and
effective rank calculations, we refer the reader to Appendix. B.1 and Appendix. B.2, respectively.
The performance is aggregated over 8 environments and normalized using the ReLU baseline scores.
The PQN experiments are done on 51 Atari games, showing the Median Human-Normalized scores.

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 d

ea
d

ne
ur

on
s

Atari
Tanh
Sigmoid
Tanh (HR)
ReLU

(a) Dead Neurons

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

100

150

200

250

300

350

400

450

Ef
fe

ct
iv

e
Ra

nk

Atari

Tanh
Sigmoid
Tanh (HR)
ReLU

(b) Effective Rank

Figure 6: The average fraction of dead neurons (a) and the average effective rank (Kumar et al.,
2021) (b) of the representation zt when training DQN in the Atari domain for 10M iterations (40M
frames). Similar to the well-known dying ReLU problem, hyperbolic tangent and sigmoid activations
also exhibit strong dying neuron behavior during training. A Hadamard product of hyperbolic tangents
reduces dead neurons in zt and subsequently increases the effective rank of the representation.

MITIGATING DYING HYPERBOLIC TANGENTS

As mentioned in Section 3 and defined in Eq. 2, the number of dead neurons is equal to the amount
of neurons that display the same saturated output for any given observation st. The amount of
dead neurons over time when training on Atari can be seen in Fig. 6a. For the ReLU activation,
around 60% of the neurons in the representation zt die during training, while for the sigmoid and
hyperbolic tangent activation this number is around 40%. When using a hyperbolic tangent Hadamard
representation, a reduction in dead neurons as compared to using a single hyperbolic tangent can
be observed. We credit this to the inherent ability of a Hadamard product of hyperbolic tangents
to minimize long-term activation saturation, as explained in Section 3. Quantitative results of dead
neurons can be found in Table 2, which is correlated with earlier predictions from Table 1.

Table 2: Dying neuron fractions with and without a Hadamard representation (HR).

Activation Function Dead Neuron Fraction Dead Neuron Fraction (HR) Difference
Hyperbolic Tangent 0.39 0.30 -23%
Sigmoid 0.44 0.45 +2%
ReLU 0.62 0.73 +18%

For more dying neuron graphs related to the ReLU and the Sigmoid activations, we refer the reader
to Appendix C.3.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

INCREASING EFFECTIVE RANK

We additionally investigate the effective rank (Kumar et al., 2021) of the representation zt during
training, which can be seen in Fig. 6b. As observed by Gulcehre et al. (2022), a representation
activated by a hyperbolic tangent or a sigmoid, already has a relatively high effective rank compared
to a representation activated by a ReLU. Furthermore, similar to the results in our supervised learning
experiments (see Fig. 2), using a Hadamard representation with hyperbolic tangents significantly
improves the effective rank, which is strongly correlated to a network’s ‘expressivity’. Employing
a Hadamard representation with ReLU activations significantly decreased the effective rank of the
representation, as was expected.

ANALYZING PERFORMANCE IN ATARI

The influence of a Hadamard representation on downstream performance can be seen in Fig. 7.
Correlating with the reduction in dying neurons and an increase in effective rank, a significant
improvement over the standard hyperbolic tangent baseline is obtained, as well as an improvement
over the default ReLU baseline. Furthermore, a comparison is made with the novel Rational (Delfosse
et al., 2024) activation function as the activation in the final hidden layer. Fig. 7a shows that, although
the Rational activation seems to be a stable learnable activation, it remains comparable to the ReLU.

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Sc

or
e

Atari
Tanh
ReLU
Tanh (HR)
Rational

(a) Normalized Score

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0.0

0.2

0.4

0.6

0.8

1.0
No

rm
al

ize
d

Sc
or

e

Atari
Tanh
LayerNorm
Tanh (HR)
Latent Dim 1024

(b) Ablations

Figure 7: Normalized performance with the standard deviation over the means in the Atari domain,
after training DQN for 10M iterations (40M Frames). In (a), the Tanh (HR) significantly outperforms
the baseline Tanh. The recently proposed Rational Activation (Delfosse et al., 2024) seems to have
comparable performance to the ReLU in the 40M frame setting. In (b), several ablations including
layer normalization (Ba et al., 2016) on hyperbolic tangent activations are shown. Notably, a decrease
in performance when using a conventional representation with twice the neurons (zt ∈ R1024) shows
that more parameters are often undesirable.

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Sc

or
e

Atari
Tanh (HR)
SELU
Tanh (+)
Tanh (2HR)

Figure 8: Additional ablations run on DQN in
the Atari domain. Tanh (+) represents an addition
rather than a Hadamard product, and Tanh (2HR)
uses a triple Hadamard product.

Examining further ablations in Fig. 8 shows that
using a sophisticated piece-wise linear function
such as the SELU activation (Klambauer et al.,
2017) or using an addition rather than a prod-
uct of hyperbolic tangents seems detrimental to
performance. Furthermore, taking a product of
3 hyperbolic tangents (2HR) also appears to en-
hance performance, though there seems to be
a negative effect in the early stages of training
as compared to using a single Hadamard prod-
uct. We hypothesize that this is the result of
increased contracting behavior in the early stage
of training due to increasing multiplication of
hyperbolic tangent activations whose absolute
values are < 1. Additional experiments com-
bining the ReLU activation with a Hadamard
representation can be found in Appendix C.4.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

INCREASING REPRESENTATION DIMENSIONALITY

A Hadamard representation increases the amount of trainable parameters in the encoder without
increasing the dimension of the representation zt ∈ R512. This is an important feature as simply
increasing the dimension of the representation to R1024 is not often effective (see Fig. 7b). Even
though the fraction of dying neurons decreases and the effective rank increases when using zt ∈
R1024, it seems that the ’relative’ effective rank, defined as the ratio rank

dim(zt)
, actually goes down

(See Appendix. C.2). We therefore hypothesize that reducing dying neurons and increasing a
representation’s effective rank is only superficially solved by expanding representation dimensionality.

EVALUATING HADAMARD REPRESENTATIONS ON PPO

To evaluate results on a policy-based algorithm, additional experiments are run using the PPO
algorithm (Schulman et al., 2017). For PPO, the internal architectural difference with DQN is that the
compressed representation zt precedes both a critic and an actor network, and thus receives policy
and value gradients (see Appendix A.2). The results can be found in Fig. 9. Similarly to the results
on DQN, the Tanh (HR) exhibits the highest effective rank and the best performance. The Tanh (HR)
and the ReLU also seem to have consistent strong performance across both algorithms, whereas the
pure hyperbolic tangent and sigmoid activations can be relatively unreliable across algorithms.

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d
Sc

or
e

Atari
Tanh
ReLU
Sigmoid
Tanh (HR)

(a) Normalized Score

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

280

300

320

340

360

380

400

420
Ef

fe
ct

iv
e

Ra
nk

Atari

Tanh
ReLU
Sigmoid
Tanh (HR)

(b) Effective Rank

Figure 9: Normalized performance (a) and effective rank (b) in the Atari domain for 10M iterations
(40M Frames) when training the PPO algorithm (Schulman et al., 2017).

A qualitative overview of our results can be found in Table 3.

Table 3: High-level summary of the strengths of a Hadamard representation.

Activation function Performance Few dead neurons Effective rank
Tanh (HR) ++ + ++
Tanh - - +
ReLU + -- --
Sigmoid - - -

EVALUATING HADAMARD REPRESENTATIONS ON PQN

To more reliably test the performance gains one can achieve using Hadamard Representations, we
evaluate their effects on the Parallelized Q-Network (PQN)in the full Atari suite without hard-
exploration environments, for a total of 51 games with 5 seeds per game. PQN has recently emerged
as a vectorized-friendly version of DQN, reporting both a speed up from DQN as well as better
convergence (Gallici et al., 2024). We run tests implementing the Hadamard Representation in both
all hidden layers and only the final linear hidden layer. The median human-normalized scores after

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

training for 40M frames are shown in Fig. 10. We can clearly see a similar trend for the 51-game
Atari suite, where using a Hadamard representation for all layers significantly increases the median
performance as compared to the baseline PQN and CReLU (Abbas et al., 2023)

HYPERBOLIC TANGENTS TURN WEIGHTS INTO BIASES

Interestingly, it seems that the ReLU activations’ performance is less correlated to its low effective
rank and high amount of dying neurons than the continuously differentiable activations.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Env Frames 1e7

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
ed

ia
n

Hu
m

an
-N

or
m

al
ize

d
Sc

or
e

Atari (51 Games)
ReLU / ReLU (Baseline)
Tanh_HR / Tanh_HR
CReLU

Figure 10: Median Human-Normalized scores on
PQN in 51 Atari games for 5 seeds over 40M
frames. Labels represent MLP / CNN activations.
Employing a Hadamard Representation in the Con-
volutional layers as well as the MLP layer provides
a significant performance improvement over the
recent PQN baseline, as well as a CReLU (Abbas
et al., 2023) implementation of PQN.

As also indicated by Teney et al. (2024), the ex-
act reasons for the broad success of the ReLU
activations are not yet fully understood. How-
ever, in the case of dying neurons, we aim to
shed some light on this phenomenon.

When dying neurons occur in ReLU-activated
layers, it basically prunes these neurons and the
associated weights to the next layer. However, in
hyperbolic tangent activated layers, dying neu-
rons lead to an unintended phenomenon where
weights associated with dead neurons effectively
become biases.
Theorem 4.1. When any set of neurons αj in a
hidden layer zj collapses into nonzero values,
the output to the next layer effectively changes
from (Ajzj + Bj) to (Aj

−∗z
j
i−∗ + Bj+1 +

Aj
∗z

j
i∗), where Aj

−∗z
j
−∗ represent the active neu-

rons multiplied by their corresponding forward-
connected weights and Aj

∗z
j
i∗ = Bj+1

∗ repre-
sent the dead neurons, inducing a hidden bias.

Proof. Take a set of neurons αj
i and forward connected weights wj

αi
in layer zj . The influence of

these neurons on the next layer zj+1 is calculated as:

zj+1 =
∑
i

αj
iw

j
αi

+Bj+1. (3)

If the set of neurons dies and collapses into 0 (αj
i = 0 ∀ s ∈ S), which occurs when using ReLU

activations, the influence on the next layer becomes 0, representing basic pruning:∑
i

0 · w̄j
αi

= 0 ∀s ∈ S. (4)

Where w̄j
αi

is the set of weights connected to the dying neurons. However, for a hyperbolic tangent
activation, if the set of neurons saturate into either -1 or 1 (αj

i = {1,−1}∀s ∈ S), the output is∑
i

{1,−1} · w̄j
αi

= Bj+1
∗ ∀s ∈ S. (5)

As a result, the weight vector w̄j
αi

corresponding to the dying activations only influences a bias Bj+1
∗

on the resulting hidden layer. Note that the bias Bj+1
∗ is constant for any input observation.

This emergent bias can hinder the optimization process by introducing unintended fixed contributions
to a networks’ next hidden layer or Q-values, reducing the flexibility of the network’s representations
and potentially reducing its performance in RL or supervised learning.

5 RELATED WORK

Network Capacity in RL. Liu et al. (2019) investigated the need for sparse representations in
the continuous control domain. Gulcehre et al. (2022) analyzed network expressiveness in RL by

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

measuring the effective rank (Kumar et al., 2021) of the compressed representation, and found that
hyperbolic tangent representations generally maintain high rank while not suffering strongly from
rank decay as training continues. Related work used normalization techniques and action penalization
to counteract high variance in pixel-based robotic control (Bjorck et al., 2022). Other work by Lyle
et al. (2022) investigated capacity loss in RL and similarly found that, as training progresses, the
inherent network capacity of RL algorithms decays. Further research by Nikishin et al. (2022) used
network resets to counteract the primacy bias and Sokar et al. (2023) evaluated and mitigated the
dying ReLU phenomenon in DQN, both operating in the sample efficiency setting. Nikishin et al.
(2023) further studied plasticity injection for long-term training and Delfosse et al. (2024) applied
rational activations (Molina et al., 2019) in RL to increase plasticity. Concurrent work by Dohare
et al. (2024) used continual back-propagation to further alleviate plasticity loss. In another related
direction, recent work has investigated network sparsity in RL, showing that a large part of network
capacity might be unnecessary when training reinforcement learning (Arnob et al., 2021; Graesser
et al., 2022; Sokar et al., 2022; Tan et al., 2023; Obando-Ceron et al., 2024). This provides further
insights into why a ReLU can achieve strong performance despite resulting in a significant number of
dead neurons.

Network Architecture in RL The origin of network optimization problems with hyperbolic
tangents and sigmoids were empirically investigated by Glorot & Bengio (2010), where, according
to the authors, a lot of mystery still surrounds the subject. Work by Srivastava et al. (2015) in
supervised learning first looked at the idea of using products of hidden layers together with a ’gate’
that determined the amount of information flow (Hochreiter & Schmidhuber, 1997). Using these
ideas, the Resnet was invented (He et al., 2016) and also showed strong performance in combination
with RL (Espeholt et al., 2018). Further work by Henderson et al. (2018) showed differences in RL
performances over different network architectures and nonlinear activations. Work by Abbas et al.
(2023) successfully applied ReLU concatenation (Shang et al., 2016) to improve continual learning
while keeping a similar performance when training from scratch. Finally, recent work by Grooten
et al. (2024) investigated raw pixel masking for distractions in RL using a parallel CNN input layer.

6 CONCLUSIONS AND DISCUSSION

This paper analyzed issues with continuously differentiable activations in RL and demonstrated that
these activation functions also suffer from the dying neuron problem. Based on this analysis, we
propose a novel representation architecture, the Hadamard Representation (HR), which enhances
an encoder’s final hidden layer by taking the Hadamard product with a parallel, independently
parameterized activation layer. We further discussed and empirically showed that applying the
Hadamard representation with hyperbolic tangents reduces the occurrence of dead neurons in the
representation and increases layer expressiveness. In DQN, PQN and PPO, this approach significantly
improved performance in Atari games compared to both standard representation parameterizations
and merely increasing the representation dimension. Finally, we have given insights into the ability
of the ReLU activation to be less affected the symptoms of dying neurons, as opposed to non-zero
saturating activations such as the hyperbolic tangent.

Future work could focus on further identifying the intricacies of the effects that different activation
functions have on the resulting representation, in an attempt to push the potential of non piece-wise
linear activations in reinforcement learning or even in a supervised learning setting (see Fig. 2). Also,
we believe that an implementation of Hadamard-style architectures in a continual learning setting as
in Abbas et al. (2023) or in Delfosse et al. (2024) could be promising.

7 LIMITATIONS

A Hadamard representation can represent the Hadamard product of any two or more activations. Due
to the vast amount of activation functions and the theoretical sound candidacy for the hyperbolic
tangent, we have mostly focused our research on the combination of hyperbolic tangents. Furthermore,
a hyperparameter search could strengthen our results, since the baselines are specifically tuned for the
ReLU activation. Finally, as this research performs experiments on DQN, PPO and PQN, integration
of a Hadamard representation into more complex algorithms and architectures such as Rainbow
(Hessel et al., 2018) and Impala (Espeholt et al., 2018) would be interesting.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

Constructing a Hadamard representation is a relatively straightforward process, of which the Pytorch
pseudocode can be found in Appendix A.1. The DQN and PPO algorithms used are adopted from
the compact cleanrl baselines (Huang et al., 2022). The PQN algorithm uses the implementation
in the Github repository of Gallici et al. (2024). Finally, the details on the KDE calculation and the
effective rank calculation can be found in Appendix B.1 and Appendix B.2.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

REFERENCES

Zaheer Abbas, Rosie Zhao, Joseph Modayil, Adam White, and Marlos C. Machado. Loss of plasticity
in continual deep reinforcement learning. In Sarath Chandar, Razvan Pascanu, Hanie Sedghi, and
Doina Precup (eds.), Proceedings of The 2nd Conference on Lifelong Learning Agents, volume
232 of Proceedings of Machine Learning Research, pp. 620–636. PMLR, 22–25 Aug 2023. URL
https://proceedings.mlr.press/v232/abbas23a.html.

Samin Yeasar Arnob, Riyasat Ohib, Sergey M. Plis, and Doina Precup. Single-shot pruning for
offline reinforcement learning. CoRR, abs/2112.15579, 2021. URL https://arxiv.org/
abs/2112.15579.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016. URL
http://arxiv.org/abs/1607.06450. cite arxiv:1607.06450.

Johan Bjorck, Carla P Gomes, and Kilian Q Weinberger. Is high variance unavoidable in RL? a case
study in continuous control. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=9xhgmsNVHu.

Yann N. Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with
gated convolutional networks. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the
34th International Conference on Machine Learning, volume 70 of Proceedings of Machine
Learning Research, pp. 933–941. PMLR, 06–11 Aug 2017. URL https://proceedings.
mlr.press/v70/dauphin17a.html.

Quentin Delfosse, Patrick Schramowski, Martin Mundt, Alejandro Molina, and Kristian Kersting.
Adaptive rational activations to boost deep reinforcement learning. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=g90ysX1sVs.

Shibhansh Dohare, J. Fernando Hernandez-Garcia, Qingfeng Lan, Parash Rahman, A. Rupam
Mahmood, and Richard S. Sutton. Loss of plasticity in deep continual learning. Nature, 632
(8026):768–774, 2024. ISSN 1476-4687. doi: 10.1038/s41586-024-07711-7. URL https:
//doi.org/10.1038/s41586-024-07711-7.

Shiv Ram Dubey, Satish Kumar Singh, and Bidyut Baran Chaudhuri. Activation functions in
deep learning: A comprehensive survey and benchmark. Neurocomputing, 503:92–108, 2022.
ISSN 0925-2312. doi: https://doi.org/10.1016/j.neucom.2022.06.111. URL https://www.
sciencedirect.com/science/article/pii/S0925231222008426.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam Doron,
Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu. IMPALA: Scalable
distributed deep-RL with importance weighted actor-learner architectures. In Jennifer Dy and
Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pp. 1407–1416. PMLR, 10–15 Jul 2018.
URL https://proceedings.mlr.press/v80/espeholt18a.html.

Kunihiko Fukushima. Visual feature extraction by a multilayered network of analog threshold
elements. IEEE Transactions on Systems Science and Cybernetics, 5(4):322–333, 1969. doi:
10.1109/TSSC.1969.300225.

Matteo Gallici, Mattie Fellows, Benjamin Ellis, Bartomeu Pou, Ivan Masmitja, Jakob Nicolaus
Foerster, and Mario Martin. Simplifying deep temporal difference learning, 2024. URL https:
//arxiv.org/abs/2407.04811.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Yee Whye Teh and Mike Titterington (eds.), Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, volume 9 of Proceedings of
Machine Learning Research, pp. 249–256, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010.
PMLR. URL https://proceedings.mlr.press/v9/glorot10a.html.

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. Adaptive computation and machine
learning. MIT Press, 2016. ISBN 9780262035613. URL https://books.google.co.in/
books?id=Np9SDQAAQBAJ.

12

https://proceedings.mlr.press/v232/abbas23a.html
https://arxiv.org/abs/2112.15579
https://arxiv.org/abs/2112.15579
http://arxiv.org/abs/1607.06450
https://openreview.net/forum?id=9xhgmsNVHu
https://proceedings.mlr.press/v70/dauphin17a.html
https://proceedings.mlr.press/v70/dauphin17a.html
https://openreview.net/forum?id=g90ysX1sVs
https://openreview.net/forum?id=g90ysX1sVs
https://doi.org/10.1038/s41586-024-07711-7
https://doi.org/10.1038/s41586-024-07711-7
https://www.sciencedirect.com/science/article/pii/S0925231222008426
https://www.sciencedirect.com/science/article/pii/S0925231222008426
https://proceedings.mlr.press/v80/espeholt18a.html
https://arxiv.org/abs/2407.04811
https://arxiv.org/abs/2407.04811
https://proceedings.mlr.press/v9/glorot10a.html
https://books.google.co.in/books?id=Np9SDQAAQBAJ
https://books.google.co.in/books?id=Np9SDQAAQBAJ

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Laura Graesser, Utku Evci, Erich Elsen, and Pablo Samuel Castro. The state of sparse training in deep
reinforcement learning. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari,
Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learning Research, pp. 7766–7792. PMLR, 17–
23 Jul 2022. URL https://proceedings.mlr.press/v162/graesser22a.html.

Bram Grooten, Tristan Tomilin, Gautham Vasan, Matthew E. Taylor, A. Rupam Mahmood, Meng
Fang, Mykola Pechenizkiy, and Decebal Constantin Mocanu. Madi: Learning to mask distrac-
tions for generalization in visual deep reinforcement learning. In International Conference on
Autonomous Agents and Multiagent Systems, AAMAS, 2024.

Caglar Gulcehre, Srivatsan Srinivasan, Jakub Sygnowski, Georg Ostrovski, Mehrdad Farajtabar,
Matthew Hoffman, Razvan Pascanu, and Arnaud Doucet. An empirical study of implicit regular-
ization in deep offline RL. Transactions on Machine Learning Research, 2022. ISSN 2835-8856.
URL https://openreview.net/forum?id=HFfJWx60IT.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Im-
age Recognition. In Proceedings of 2016 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR ’16, pp. 770–778. IEEE, June 2016. doi: 10.1109/CVPR.2016.90. URL
http://ieeexplore.ieee.org/document/7780459.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. In Proceedings of the Thirty-Second AAAI Confer-
ence on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence
Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence,
AAAI’18/IAAI’18/EAAI’18. AAAI Press, 2018. ISBN 978-1-57735-800-8.

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney,
Dan Horgan, Bilal Piot, Mohammad Gheshlaghi Azar, and David Silver. Rainbow: Combining
improvements in deep reinforcement learning. In Sheila A. McIlraith and Kilian Q. Weinberger
(eds.), AAAI, pp. 3215–3222. AAAI Press, 2018. URL http://dblp.uni-trier.de/db/
conf/aaai/aaai2018.html#HesselMHSODHPAS18.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735–1780, 1997. doi: 10.1162/neco.1997.9.8.1735.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Kinal
Mehta, and João G.M. Araújo. Cleanrl: High-quality single-file implementations of deep rein-
forcement learning algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022. URL
http://jmlr.org/papers/v23/21-1342.html.

Kevin Jarrett, Koray Kavukcuoglu, Marc’Aurelio Ranzato, and Yann LeCun. What is the best
multi-stage architecture for object recognition? In 2009 IEEE 12th International Conference on
Computer Vision, pp. 2146–2153, 2009. doi: 10.1109/ICCV.2009.5459469.

Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing
neural networks. In Advances in Neural Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,
pp. 971–980, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
5d44ee6f2c3f71b73125876103c8f6c4-Abstract.html.

Aviral Kumar, Rishabh Agarwal, Dibya Ghosh, and Sergey Levine. Implicit under-parameterization
inhibits data-efficient deep reinforcement learning. In International Conference on Learning
Representations, 2021.

Vincent Liu, Raksha Kumaraswamy, Lei Le, and Martha White. The utility of sparse represen-
tations for control in reinforcement learning. In Proceedings of the Thirty-Third AAAI Con-
ference on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelli-
gence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence,

13

https://proceedings.mlr.press/v162/graesser22a.html
https://openreview.net/forum?id=HFfJWx60IT
http://ieeexplore.ieee.org/document/7780459
http://dblp.uni-trier.de/db/conf/aaai/aaai2018.html#HesselMHSODHPAS18
http://dblp.uni-trier.de/db/conf/aaai/aaai2018.html#HesselMHSODHPAS18
http://jmlr.org/papers/v23/21-1342.html
https://proceedings.neurips.cc/paper/2017/hash/5d44ee6f2c3f71b73125876103c8f6c4-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/5d44ee6f2c3f71b73125876103c8f6c4-Abstract.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

AAAI’19/IAAI’19/EAAI’19. AAAI Press, 2019. ISBN 978-1-57735-809-1. doi: 10.1609/aaai.
v33i01.33014384. URL https://doi.org/10.1609/aaai.v33i01.33014384.

Lu Lu, Yeonjong Shin, Yanhui Su, and George E. Karniadakis. Dying relu and initialization: Theory
and numerical examples. CoRR, abs/1903.06733, 2019. URL http://dblp.uni-trier.
de/db/journals/corr/corr1903.html#abs-1903-06733.

Clare Lyle, Mark Rowland, and Will Dabney. Understanding and preventing capacity loss in
reinforcement learning. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=ZkC8wKoLbQ7.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, et al. Human-level control through deep
reinforcement learning. Nature, 518(7540):529–533, 2 2015. doi: 10.1038/nature14236.

Alejandro Molina, Patrick Schramowski, and Kristian Kersting. Padé activation units: End-to-end
learning of flexible activation functions in deep networks. In International Conference on Learning
Representations, 2019.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
ICML 2010, pp. 807–814, 2010.

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The
primacy bias in deep reinforcement learning. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pp.
16828–16847. PMLR, 17–23 Jul 2022.

Evgenii Nikishin, Junhyuk Oh, Georg Ostrovski, Clare Lyle, Razvan Pascanu, Will Dabney,
and Andre Barreto. Deep reinforcement learning with plasticity injection. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neu-
ral Information Processing Systems, volume 36, pp. 37142–37159. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/75101364dc3aa7772d27528ea504472b-Paper-Conference.pdf.

Johan Obando-Ceron, Aaron Courville, and Pablo Samuel Castro. In deep reinforcement learning, a
pruned network is a good network. arXiv preprint arXiv:2402.12479, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proxi-
mal policy optimization algorithms. ArXiv, abs/1707.06347, 2017. URL https://api.
semanticscholar.org/CorpusID:28695052.

Wenling Shang, Kihyuk Sohn, Diogo Almeida, and Honglak Lee. Understanding and improving
convolutional neural networks via concatenated rectified linear units. In Maria Florina Balcan
and Kilian Q. Weinberger (eds.), Proceedings of The 33rd International Conference on Machine
Learning, volume 48 of Proceedings of Machine Learning Research, pp. 2217–2225, New York,
New York, USA, 20–22 Jun 2016. PMLR. URL https://proceedings.mlr.press/
v48/shang16.html.

Bernard W Silverman. Density Estimation for Statistics and Data Analysis. Chapman and Hall, 1986.

Ghada Sokar, Elena Mocanu, Decebal Constantin Mocanu, Mykola Pechenizkiy, and Peter Stone.
Dynamic sparse training for deep reinforcement learning. In Lud De Raedt (ed.), Proceedings of
the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-22, pp. 3437–3443.
International Joint Conferences on Artificial Intelligence Organization, 7 2022. doi: 10.24963/
ijcai.2022/477. URL https://doi.org/10.24963/ijcai.2022/477. Main Track.

Ghada Sokar, Rishabh Agarwal, Pablo Samuel Castro, and Utku Evci. The dormant neuron phe-
nomenon in deep reinforcement learning. In Proceedings of the 40th International Conference on
Machine Learning, ICML’23. JMLR.org, 2023.

Rupesh K Srivastava, Klaus Greff, and Jürgen Schmidhuber. Training very deep net-
works. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 28. Curran Associates, Inc.,
2015. URL https://proceedings.neurips.cc/paper_files/paper/2015/
file/215a71a12769b056c3c32e7299f1c5ed-Paper.pdf.

14

https://doi.org/10.1609/aaai.v33i01.33014384
http://dblp.uni-trier.de/db/journals/corr/corr1903.html#abs-1903-06733
http://dblp.uni-trier.de/db/journals/corr/corr1903.html#abs-1903-06733
https://openreview.net/forum?id=ZkC8wKoLbQ7
https://proceedings.neurips.cc/paper_files/paper/2023/file/75101364dc3aa7772d27528ea504472b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/75101364dc3aa7772d27528ea504472b-Paper-Conference.pdf
https://api.semanticscholar.org/CorpusID:28695052
https://api.semanticscholar.org/CorpusID:28695052
https://proceedings.mlr.press/v48/shang16.html
https://proceedings.mlr.press/v48/shang16.html
https://doi.org/10.24963/ijcai.2022/477
https://proceedings.neurips.cc/paper_files/paper/2015/file/215a71a12769b056c3c32e7299f1c5ed-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/215a71a12769b056c3c32e7299f1c5ed-Paper.pdf

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
second edition, 2018. URL http://incompleteideas.net/book/the-book-2nd.
html.

Yiqin Tan, Pihe Hu, Ling Pan, Jiatai Huang, and Longbo Huang. Rlx2: Training a sparse deep
reinforcement learning model from scratch. CoRR, abs/2205.15043, 2023. URL https://
arxiv.org/abs/2205.15043.

Damien Teney, Armand Mihai Nicolicioiu, Valentin Hartmann, and Ehsan Abbasnejad. Neural
redshift: Random networks are not random functions. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 4786–4796, June 2024.

Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified activations in
convolutional network. CoRR, abs/1505.00853, 2015. URL http://arxiv.org/abs/1505.
00853.

15

http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://arxiv.org/abs/2205.15043
https://arxiv.org/abs/2205.15043
http://arxiv.org/abs/1505.00853
http://arxiv.org/abs/1505.00853

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A IMPLEMENTATION DETAILS

A.1 HYPERPARAMETERS

To evaluate, 8 different Atari environments are tested, using 5 different random seeds. For the mean
scores, we take the mean over the eight environments. Our normalized score is calculated according
to our baseline, the original implementation using a ReLU activation.

All the hyperparameters used in our experiments for DQN and PPO, respectively, are as reported in
cleanrl (Huang et al., 2022). The hyperparameters can be found in Table 1 and Table 2.

Table 4: DQN Hyperparameters

Hyperparameter Value Description

Learning Rate 1× 10−4 Learning rate for the optimizer
Discount Factor (γ) 0.99 Discount for future rewards
Replay Memory Size 1,000,000 Size of the experience replay buffer
Mini-batch Size 32 Number of samples per batch update
Target Network Update Frequency 1000 Update frequency for the target network
Initial Exploration 1.0 Initial exploration rate in ϵ-greedy
Final Exploration 0.1 Final exploration rate in ϵ-greedy
Final Exploration Frame 1,000,000 Frame number to reach final exploration
Exploration Decay Frame 1,000,000 Frames over which exploration rate decays
Action Repeat (Frame Skip) 4 Number of frames skipped per action
Reward Clipping [-1, 1] Range to which rewards are clipped
Input Dimension 84 x 84 Dimensions of the input image
Latent Dimension 512 Dimension of the latent representation
Input Frames 4 Number of frames used as input
Training Start Frame 80,000 Frame number to start training
Loss Function Mean Squared Error Loss function used for updates
Optimizer Adam Optimization algorithm used
Optimizer ϵ 10−5 Adam Epsilon

Table 5: PPO Hyperparameters

Hyperparameter Value Description

Learning Rate 2.5× 10−4 Learning rate for the optimizer
Discount Factor (γ) 0.99 Discount factor for future rewards
Number of Steps 128 Number of steps per environment before update
Anneal LR True Whether to anneal the learning rate
GAE Lambda 0.95 Lambda parameter for GAE
Number of Minibatches 4 Number of minibatches to split the data
Update Epochs 4 Number of epochs per update
Normalize Advantage True Whether to normalize advantage estimates
Clipping Coefficient 0.1 Clipping parameter for PPO
Clip Value Loss True Whether to clip value loss
Entropy Coefficient 0.01 Coefficient for entropy bonus
Value Function Coefficient 0.5 Coefficient for value function loss
Maximum Gradient Norm 0.5 Maximum norm for gradient clipping
Target KL None Target KL divergence between updates
Latent Dimension 512 Dimension of the latent representation
Optimizer Adam Optimization algorithm used
Optimizer ϵ 10−5 Adam Epsilon

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 6: PQN Hyperparameters (Gallici et al., 2024)

Hyperparameter Value Description
Total Timesteps 10,000,000 Total timesteps for training
Timesteps for Decay 10,000,000 Timesteps for decay functions (epsilon and lr)
Number of Environments 128 Number of parallel environments
Steps per Environment 32 Steps per environment in each update
Number of Epochs 2 Number of epochs per update
Number of Minibatches 32 Number of minibatches per epoch
Starting Epsilon 1.0 Starting epsilon for exploration
Final Epsilon 0.001 Final epsilon for exploration
Epsilon Decay Ratio 0.1 Decay ratio for epsilon
Epsilon for Test Policy 0.0 Epsilon for greedy test policy
Learning Rate 0.00025 Learning rate
Learning Rate Linear Decay True Use linear decay for learning rate
Max Gradient Norm 10.0 Max gradient norm for clipping
Discount Factor (γ) 0.99 Discount factor for reward
Lambda (λ) 0.65 Lambda for generalized advantage estimation
Episodic Life True Terminate episode when life is lost
Reward Clipping True Clip rewards to range [-1, 1]
Frame Skip 4 Number of frames to skip
Max No-Ops on Reset 30 Max number of no-ops on reset
Test During Training True Run evaluation during training
Number of Test Envs 8 Number of environments used for testing

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

HADAMARD IMPLEMENTATION

Constructing a Hadamard representation is a straightforward process that only requires an addi-
tional, parallel linear layer. Starting from the flattened convolutional features in DQN, the Pytorch
pseudocode is defined as follows:

flattened_features = conv_features.flatten(1)
representation1 = nn.Tanh(linear1(flattened_features))
representation2 = nn.Tanh(linear2(flattened_features))
hadamard = representation1 * representation2
Q-values = linear_q(hadamard)

REINFORCEMENT LEARNING

In DQN, the action at is chosen following an ϵ-greedy policy. With probability ϵ, a random action is
selected, and with (1− ϵ), the action maximizing the Q-value is chosen. The target Yt is defined as:

Yt = rt + γQ′(zt+1, argmax
a∈A

Q(zt+1, a)), (6)

where Q′(z, a) denotes the target Q-network, an auxiliary network that stabilizes the learning by
providing a stable target for Q(z, a). The parameters of Q′ are updated less frequently to enhance
learning stability. The loss function for training the network is:

LQ =
∣∣Yt −Q(zt, a)

∣∣2. (7)

Proximal Policy Optimization (PPO) operates on a different principle, utilizing policy gradient
methods for policy improvement. PPO seeks to update the policy by maximizing an objective
function while preventing large deviations from the previous policy through a clipping mechanism in
the objective’s estimator. The clipped policy gradient loss LCLIP is defined as:

LCLIP (θ) = E
[
min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)

]
, (8)

where rt(θ) represents the ratio of the probabilities under the new policy versus the old policy, and
Ât is the advantage estimate at timestep t. This clipped surrogate objective ensures gradual and stable
policy updates.

A.2 PPO ARCHITECTURE

1 0 1

Figure 11: A visualisation of the Hadamard representation (HR) architecture combined with the
PPO architecture applied on a snapshot of the ’SpaceInvaders’ Atari environment. A parallel linear
layer providing an independent representation is integrated, where the Hadamard product of the two
parallel representations represents the final representation zt.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

B KERNEL DENSITY ESTIMATIONS

As discussed in Section 3, we hypothesize that the differences between a hyperbolic tangent with and
without an HR are due to the increased ability of the product of hyperbolic tangents being able to
negate dying neurons. We further see this phenomenom when plotting a random selection of neurons
from both the mask and the base representation in Fig. 12a.

0

1

De
ns

ity

0

2

0

10

0

1

0

1

De
ns

ity

0

1

0

1

0

2500

0

200

De
ns

ity

0.0

2.5

0

2

0

2

1 0 1
0

2

De
ns

ity

1 0 1
0

50

1 0 1
0.0

2.5

1 0 1
0

1

(a) Tanh (HR) - 5 · 106 iterations

0.0

0.5

D
e
n
si
ty

0

1

0

2

0.0

0.5

0

1

D
e
n
si
ty

0

1

0

1

0

5

0.0

2.5

D
e
n
si
ty

0.0

0.5

0

2

0

5

1 0 1
0

1

D
e
n
si
ty

1 0 1
0

20

1 0 1
0

2

1 0 1
0.0

0.5

(b) Final Tanh (HR) - 5 · 106 iterations

0

1

D
e
n
si
ty

0.0

0.5

0

2

0

2

0

250

D
e
n
si
ty

0

10

0

25

0

2

0

2

D
e
n
si
ty

0

10

0.0

0.5

0

1

1 0 1
0

1000

D
e
n
si
ty

1 0 1
0

1

1 0 1
0

500

1 0 1
0

5000

(c) Tanh (no HR) - 5 · 106 iterations

Figure 12: Kernel Density Estimations (KDE) over a subset of 16 neurons in the representations zenct
and z∗t in (a), the resulting Hadamard product zt in (b) and the representation zt when training without
an HR (c). These representations are obtained after training DQN in the ’Breakout’ environment.
Red outlines represent dead (collapsed) neurons. In (a), a closer look at neurons 3, 8 and 9 shows
that when one of the representations saturates, the other is able to compensate, leading to a non-dead
neuron in their product zt in (b).

B.1 KDE CALCULATION

Firstly, to stabilize the KDE computation and avoid singularity issues, a small noise ϵ, following a
normal distribution, is added to each neuron’s activations:

α′
i = αi + ϵ, ϵ ∼ N (0, σ2)

where σ2 = 1× 10−5. The bandwidth for KDE, crucial for the accuracy of the density estimate, is
calculated using Scott’s rule, adjusted by the standard deviation of the jittered activations:

bw = n− 1
5 · std(α′

i)

where n is the number of samples in αi. The density of activations is then estimated using a Gaussian
kernel:

f(x) =
1

n · bw

n∑
j=1

K

(
x− α′

ij

bw

)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Values

0.0

0.5

1.0

1.5

2.0

2.5

De
ns

ity

Latent Kernel Density Estimation

(a) Tanh - 107 iterations

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Values

0.0

0.5

1.0

1.5

2.0

De
ns

ity

Latent Kernel Density Estimation

(b) Tanh (HR) - 107 iterations

0.0 0.2 0.4 0.6 0.8 1.0
Values

0

2

4

6

8

10

12

14

De
ns

ity

Latent Kernel Density Estimation

(c) Sigmoid - 107 iterations

0.0 0.2 0.4 0.6 0.8 1.0
Values

0

2

4

6

8

10

12

14

De
ns

ity

Latent Kernel Density Estimation

(d) Sigmoid (HR) - 107 iterations

Figure 13: Kernel Density Estimations of the final representation zt after training DQN for 107
iterations in the Breakout environment. A hyperbolic tangent Hadamard representation allows the
representation to avoid strong saturation, keeping sufficient kernel density in the central sections of
the hyperbolic tangent. As a sigmoid can saturate into zero, using a Hadamard representation remains
less effective for preventing saturation, as any zero will lead to a Hadamard product of zero.

Here, K denotes the Gaussian kernel function. In order to finally determine if a neuron is dead, the
maximum value of the estimated density function f(x) is compared against a predefined threshold:

max(f(x)) ≥ ω

where ω represents the predetermined threshold. In practice, after analyzing the individual neuron
KDE’s, using an ω of 20 provides a strong approximation of actual dead neurons.

B.2 EFFECTIVE RANK CALCULATION

In line with Kumar et al. (2021), the effective rank of a feature matrix for a threshold δ (δ = 0.01),
denoted as srankδ(Φ), is given by srankδ(Φ) = min

{
k :

∑k
i=1 σi(Φ)∑d
i=1 σi(Φ)

≥ 1− δ
}

, where {σi(Φ)}
are the singular values of Φ in decreasing order, i.e., σ1 ≥ · · · ≥ σd ≥ 0. Intuitively, the effective
rank of a feature matrix represents the number of “effective” unique components that form the basis
for linearly approximating the resulting Q-values. The calculation in Python is done as follows:

def compute_rank_from_features(feature_matrix, rank_delta=0.01):
sing_values = np.linalg.svd(feature_matrix, compute_uv=False)
cumsum = np.cumsum(sing_values)
nuclear_norm = np.sum(sing_values)
approximate_rank_threshold = 1.0 - rank_delta
threshold_crossed = (cumsum >= approximate_rank_threshold * nuclear_norm)
effective_rank = sing_values.shape[0] - np.sum(threshold_crossed) + 1
return effective_rank

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

C ADDITIONAL EXPERIMENTS

C.1 SHALLOW AND DEEP FUNCTION APPROXIMATION

To further showcase the effect of activations on complex function approximation, we compare the
single hidden layer Tanh (HR) network from Fig. 2 with a deep ReLU and Tanh network containing
three hidden layers each. The comparison with shallow networks can be found in Fig. 14a and a
comparison with deep networks can be found in Fig. 14b.

6 4 2 0 2 4 6
30

20

10

0

10

20

30
Shallow Tanh, Loss = 13.39

Target
Tanh Network

6 4 2 0 2 4 6
30

20

10

0

10

20

30
Shallow ReLU, Loss = 128.48

Target
ReLU Network

6 4 2 0 2 4 6
30

20

10

0

10

20

30
Shallow Tanh (HR), Loss = 1.71

Target
Tanh (HR) Network

(a) Comparison of shallow networks for a nonlinear regression task. The Tanh and ReLU networks have a
single hidden layer of 200 neurons, while the Tanh (HR) has a single hidden layer of 100 neurons but two
preceding linear layers. The Tanh and ReLU networks have 601 parameters, while the Tanh (HR) network
has 501 parameters. As found by Gulcehre et al. (2022), a shallow network activated by ReLU has a lower
effective rank and consequently reduced network expressivity as compared to a Tanh activated network. Using a
Hadamard representation, we achieve better function approximation while using less parameters.

6 4 2 0 2 4 6
30

20

10

0

10

20

30
Deep Tanh, Loss = 81.70
Target
Tanh Network

6 4 2 0 2 4 6
30

20

10

0

10

20

30

Deep ReLU, Loss = 7.83

Target
ReLU Network

6 4 2 0 2 4 6
30

20

10

0

10

20

30
Shallow Tanh (HR), Loss = 1.71

Target
Tanh (HR) Network

(b) Comparison of two deep networks and one shallow network for the same nonlinear regression task. The Tanh
and ReLU networks have 3 hidden layers of 200 neurons each, while the Tanh (HR) network remains shallow.
In line with common observations in deep learning, the ReLU activation thrives in deeper networks, in contrast
to the Tanh activation. Interestingly, the shallow Tanh (HR) network still achieves better function approximation
with only 0.6% of the deeper networks’ parameters (81001 vs 501). No hyperparameter tuning or architecture
search has been applied. Additional tests using deep Tanh (HR) networks gave similar function approximation
as compared to the shallow Tanh (HR) network.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

C.2 INCREASING REPRESENTATION PARAMETERS

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0.0

0.2

0.4

0.6

0.8

1.0
No

rm
al

ize
d

Sc
or

e
Atari

Tanh
Tanh (HR)
Latent Dim 1024

(a) Performance

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0.1

0.2

0.3

0.4

Fr
ac

tio
n

of
 d

ea
d

ne
ur

on
s

Atari
Latent Dim 1024
Tanh
Tanh (HR)

(b) Dead Neurons

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0

100

200

300

400

500

600

700

800

Ef
fe

ct
iv

e
Ra

nk

Atari

Tanh
Tanh (HR)
Latent Dim 1024

(c) Effective Rank

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d
Sc

or
e

Atari
1024 LR 1e-5
1024 LR 5e-5
1024 LR 1e-4

(d) Learning Rates zt ∈ R1024

Figure 15: Comparison of a normal hyperbolic tangent (Tanh), a hyperbolic tangent with a higher
representation dimension zt ∈ R512→1024 and a Hadamard representation using hyperbolic tangents.
Comparisons are done on performance (a), the fraction of dead neurons (b), the effective rank of
the representation zt (c) and learning rates of the higher-dimensional latent. Naturally, increasing
the representation dimension zt increases the effective rank of the representation, but using a larger
representation dimension is not always preferable as it can negatively impact actual convergence. In
(d), an ablation of learning rates shows that using a larger layer can sometimes prefer lower learning
rates. However, it also shows that the improvement due to the Hadamard representation is likely not
correlated with the parameter increase, as the Hadamard representation still significantly outperforms
any of the 1024-dimensional latent state learning rate ablations.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

C.3 VALIDATING DYING NEURON PROBABILITY DERIVATIONS

As discussed in Section 3, the effect of using a Hadamard representation strongly depends on the
activation function. These derivations are empirically validated by the results in Fig. 16. In practice,
since a neural network prefers symmetry, a sigmoid saturates slightly faster to 0 than to 1. This could
explain the very slight increase in dead neurons when using an HR with activations. Note that, since
we use neuron independence assumptions in our theoretically calculated dying neuron probabilities,
the empirical results differ in magnitude from the theoretical predictions.

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fr
ac

tio
n

of
 d

ea
d

ne
ur

on
s

Atari
Sigmoid
Sigmoid (HR)

(a) Sigmoid with and without HR

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fr
ac

tio
n

of
 d

ea
d

ne
ur

on
s

Atari
Tanh
Tanh (HR)

(b) Tanh with and without HR

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 d

ea
d

ne
ur

on
s

Atari
ReLU
ReLU (HR)

(c) ReLU with and without HR

Figure 16: By evaluating the effect of an HR on dying neurons through the lens of probability theory,
we predicted that only the hyperbolic tangent benefits in this metric. Specifically, only a hyperbolic
tangent was speculated to have a decrease in dying neurons. Using an HR with sigmoid activations
would have no notable difference, and for an HR with ReLU activations an increase in dead neurons
was expected. This empirically validates our hypotheses in Section 3.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

C.4 RELU ACTIVATED HADAMARD REPRESENTATION

Additional Atari experiments are provided comparing a ReLU activation with and without an HR.
The normalized scores, dying neurons and the effective rank during training can be seen in fig. 17.

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Sc

or
e

Atari
ReLU
ReLU (HR)

(a) Normalized Score

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 d

ea
d

ne
ur

on
s

Atari
ReLU
ReLU (HR)

(b) Dead Neurons

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

50

100

150

200

250

Ef
fe

ct
iv

e
Ra

nk

Atari

ReLU
ReLU (HR)

(c) Effective Rank

Figure 17: As a Rectified Linear Unit creates sparse representations, it does not benefit from using
an HR, since the final representation will consist of the Hadamard product between two sparse
representations. Therefore, a decrease in both performance and effective rank and an increase in dead
neurons can be expected.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

C.5 HYPERBOLIC TANGENT CONVOLUTIONAL ACTIVATION

We additionally run tests in DQN on 8 Atari games. The baseline ReLU is used, except for the
convolutional activations which are changed to a hyperbolic tangent.

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Sc

or
e

Atari
ReLU (MLP) / Tanh (Conv)
ReLU (MLP) / ReLU (Conv)

Figure 18: Baseline normalized performance in the Atari domain for 10M iterations (40M Frames)
on DQN.

It is evident that using non-Hadamard hyperbolic tangents in the convolutional layers can lead to only
a fraction of the performance of the ReLU-activated baseline.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

D ATARI

D.1 DQN EVALUATION DETAILS

We normalize performance with respect to the ReLU baseline in cleanrl Huang et al. (2022).
The minimum and maximum score of the ReLU baseline are taken for each environment, and the
normalized score for each environment is calculated as follows:

Normalized Score =
Score − Min Score

Max Score − Min Score
(9)

where Score refers to the raw performance score of the model being evaluated, Min Score is a single
value representing the lowest score obtained by the ReLU baseline (usually equivalent to random
policy or even slightly worse), and Max Score is a single value representing the highest score achieved
by the ReLU baseline in the same environment. To average, we sum the normalized scores for every
run and take the mean.

The more official Human-Normalized Score, as referenced in Mnih et al. (2015), is calculated
similarly but using human and random performance benchmarks:

Human-Normalized Score =
Score − Random Score

Human Score − Random Score
(10)

where Human Score and Random Score refer to the scores recorded by human players and random
agents, respectively. Calculating our performance according to the Human-Normalized Score leads to
the plot seen in Fig. 19. Due to taking a subset of the full atari domain, the VideoPinball environment
is extremely dominant in the Human-Normalized Score calculation. For a more realistic comparison
of the methods, we therefore decided to use baseline-normalized scores in the main paper.

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0

10

20

30

40

50

60

70

No
rm

al
ize

d
Sc

or
e

Atari
Tanh
ReLU
Tanh (HR)
Sigmoid

Figure 19: Human-Normalized performance (in multiples) with the standard deviation over the means
in the Atari domain for 10M iterations (40M Frames).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

D.2 INDIVIDUAL ENVIRONMENT SCORES

0.0 0.5 1.0
Iterations 1e7

0

100

200

300

Sc
or

e

AmidarNoFrameskip-v4

0.0 0.5 1.0
Iterations 1e7

0

200

400

Sc
or

e

BreakoutNoFrameskip-v4

0.0 0.5 1.0
Iterations 1e7

20

10

0

10

Sc
or

e

PongNoFrameskip-v4

0.0 0.5 1.0
Iterations 1e7

0

5000

10000

15000

Sc
or

e

QbertNoFrameskip-v4
Tanh
ReLU
Tanh (HR)
Rational

0.0 0.5 1.0
Iterations 1e7

0

2000

4000

Sc
or

e

SeaquestNoFrameskip-v4

0.0 0.5 1.0
Iterations 1e7

0

500

1000

1500

Sc
or

e

SpaceInvadersNoFrameskip-v4

0.0 0.5 1.0
Iterations 1e7

0

200000

400000

Sc
or

e

VideoPinballNoFrameskip-v4

0.0 0.5 1.0
Iterations 1e7

0

10000

20000

30000

Sc
or

e

AsterixNoFrameskip-v4

Figure 20: DQN Performance comparison on the individual Atari Environments. Plotted lines
represent the mean taken over 5 seeds, with the standard deviations expressed as the shaded region.
Eight popular Atari games in the RL community that are non-exploration driven were chosen due to
computational limitations. No other games were tested.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0
Iterations 1e7

0

200

400

600

800

Sc
or

e

Amidar-v5

0.0 0.5 1.0
Iterations 1e7

0

100

200

300

400

Sc
or

e

Breakout-v5

0.0 0.5 1.0
Iterations 1e7

20

10

0

10

Sc
or

e

Pong-v5

Tanh (HR)
ReLU
Tanh

0.0 0.5 1.0
Iterations 1e7

0

5000

10000

15000

Sc
or

e

Qbert-v5

0.0 0.5 1.0
Iterations 1e7

0

500

1000

1500

2000

Sc
or

e

Seaquest-v5

0.0 0.5 1.0
Iterations 1e7

250

500

750

1000

Sc
or

e

SpaceInvaders-v5

0.0 0.5 1.0
Iterations 1e7

0

20000

40000

60000

Sc
or

e

VideoPinball-v5

0.0 0.5 1.0
Iterations 1e7

0

2000

4000

Sc
or

e

Asterix-v5

Figure 21: PPO Performance comparison on the individual Atari Environments. Plotted lines
represent the mean taken over 5 seeds, with the standard deviations expressed as the shaded region.
Eight popular Atari games in the RL community that are non-exploration driven were chosen due to
computational limitations. No other games were tested.

28

	Introduction
	Preliminaries
	Augmenting Hyperbolic Tangents
	Experiments
	Related Work
	Conclusions and Discussion
	Limitations
	Implementation Details
	Hyperparameters
	PPO Architecture

	Kernel Density Estimations
	KDE calculation
	Effective Rank calculation

	Additional Experiments
	Shallow and Deep Function Approximation
	Increasing Representation Parameters
	Validating dying neuron probability derivations
	ReLU activated Hadamard representation
	Hyperbolic Tangent Convolutional Activation

	Atari
	DQN Evaluation Details
	Individual Environment Scores

