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ABSTRACT

Large Vision-Language Models (LVLMs) have demonstrated impressive capabil-
ities for capturing and reasoning over multimodal inputs. However, these models
are prone to parametric knowledge conflicts, which arise from inconsistencies of
represented knowledge between their vision and language components. In this
paper, we formally define the problem of cross-modality parametric knowledge
conflict and present a systematic approach to detect, interpret, and mitigate them.
We introduce a pipeline that identifies conflicts between visual and textual an-
swers, showing a persistently high conflict rate across modalities in recent LVLMs
regardless of the model size. We further investigate how these conflicts interfere
with the inference process and propose a contrastive metric to discern the conflict-
ing samples from the others. Building on these insights, we develop a novel dy-
namic contrastive decoding method that removes undesirable logits inferred from
the less confident modality components based on answer confidence. For mod-
els that do not provide logits, we also introduce two prompt-based strategies to
mitigate the conflicts. Our methods achieve promising improvements in accuracy
on both the ViQuAE and InfoSeek datasets. Specifically, using LLaVA-34B, our
proposed dynamic contrastive decoding improves an average accuracy of 2.24%.

1 INTRODUCTION

Large Vision-Language Models (LVLMs; OpenAI 2023; Anil et al. 2023; Liu et al. 2024) have
demonstrated potent capabilities for perceiving and understanding information across different
modalities. These models typically consist of a visual encoder and a large language model (LLM),
aligned by a projection layer (Li et al., 2022a; Alayrac et al., 2022; Liu et al., 2024). This alignment
and collaboration mechanism between language and vision components allows users to input text
and images simultaneously, breeding some of the wildest applications, including retrieving informa-
tion based on a combination of textual and visual queries (Karthik et al., 2023) and accomplishing
complex real-world tasks with multimodal agents (Zhang & Zhang, 2023; Zheng et al., 2024).

However, the disentangled training processes and distinct learning resources leveraged by the vision
and language components of an LVLM, respectively, inherently bring along inconsistencies in their
learned representations, captured knowledge, as well as their influence during inference (Bartsch
et al., 2023; Rabinovich et al., 2023). Given that the visual encoder and the LLM are separately
trained on different datasets with distinct training objectives, their parametric knowledge across
language and vision modalities is susceptible to conflicts (Wang et al., 2024), potentially leading
to hallucinations (Ji et al., 2023) and inconsistencies in prediction (Chang & Bergen, 2024). As
illustrated in Fig. 1, we present a conflict case from an LVLM. When asked a question about the
same entity presented in two different modalities, the LVLM provides two contradictory answers.
Even though the visual encoder is able to recognize the Sydney Opera House , the model still
fails to integrate this information coherently across modalities. This phenomenon reveals a crucial
challenge: the disparity between the knowledge captured by the vision and language components
of LVLMs. However, there has been limited research on parametric knowledge conflicts within
these models, especially concerning cross-modality conflicts. Thus, in this paper, we systematically
investigate the phenomenon of cross-modality parametric knowledge conflict as defined in §3.
We aim to address several principled research questions, as further detailed below:

RQ1: How to detect cross-modality parametric knowledge conflicts?
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Figure 1: A conflict case of different input modalities with the same information. The conflict still
happens even when the visual components recognize the Sydney Opera House.

In §4, we introduce a pipeline for detecting such conflicts using a multiple-choice question an-
swering format focused on named entities. Specifically, we present each named entity in different
modalities and pose the same question about it. The resulting answers derived from the knowledge
of each modality are then compared to determine if a conflict exists. Our findings reveal a per-
sistently high conflict rate across various model scales and architectures, indicating that increasing
model size alone does not resolve these conflicts.

RQ2: How can cross-modality parametric knowledge conflicts be interpreted, especially how they
intervene the inference process?

Given the severity of knowledge conflicts in LVLMs, this intriguing question arises. One might ini-
tially assume that such cross-modal conflicts would reduce the prediction confidence in the original
answer due to conflicting parametric knowledge. However, our analyses demonstrate that confidence
cannot reliably distinguish between correct and incorrect answers, necessitating a more nuanced in-
terpretation of these conflicts. To address this issue, we propose a contrastive metric in §5 that
more effectively identifies conflicting samples. This metric suggests that cross-modality knowledge
conflicts actually widen the information gap embedded in the tokens.

RQ3: What strategies can be introduced to mitigate cross-modality knowledge conflicts at inference?

Having gained an understanding of how these conflicts affect the inference, we seek to address this
question. Inspired by the strong discriminatory power of the contrastive metric, we propose a dy-
namic contrastive decoding method in §6. This method selectively removes undesired logits inferred
from the less reliable modality based on answer confidence. Additionally, we propose two prompt-
based strategies to mitigate cross-modality knowledge conflicts in cases where the model does not
provide logits. Our dynamic contrastive decoding method provides more consistent improvements.

In summary, the main contributions of this paper are threefold: 1) To the best of our knowledge,
this is the first-of-its-kind work to define and study cross-modality parametric knowledge conflicts
in LVLMs. 2) We propose a practical pipeline for detecting such conflicts, along with a metric that
distinguishes conflicting samples from non-conflicting ones. 3) We introduce a dynamic contrastive
decoding method to mitigate these conflicts, as well as two prompt-based strategies for resolving
conflicts in closed-source models.

2 RELATED WORK

Knowledge Conflict. Knowledge conflict is a critical problem in context-specific tasks, such as
machine reading comprehension (Longpre et al., 2021; Zhou et al., 2023; Wang et al., 2023a) and
information extraction (Wang et al., 2022; Fang et al., 2024; Xu et al., 2022; Wang et al., 2023b;c)
In the realm of LLMs, recent studies can be categorized into context-memory conflict, inter-context
conflict, and intra-memory conflict (Xu et al., 2024). The context-memory conflict and the inter-
context conflict are concerned mainly in the process of Retrieval Augmented Generation (RAG).
They find that LLMs tend to overly rely on their own parametric memory when facing contradictory
evidence (Xie et al., 2023; Wu et al., 2024). The intra-memory conflict, on the other hand, is rooted
in the pre-training corpus which contains inaccurate and misleading information (Bender et al., 2021;
Lin et al., 2021; Kandpal et al., 2023). The inconsistency of knowledge causes LLMs to generate
outputs that are contradictory to each other when given different prompts with the same information
(Elazar et al., 2022; Grosse et al., 2023), undermining their reliability. In this context, prior work
has not systematically studied this problem for LVLMs, which is exactly the focus of this work.
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Robustness Issues of LVLMs. Although LVLMs have demonstrated significant potential in un-
derstanding and reasoning over multimodal inputs, they also face several robustness challenges,
including language bias (Niu et al., 2021; Zhang et al., 2024; Wang et al., 2024), hallucinations
(Huang et al., 2024; Zhu et al., 2024), and the visual perception gap (Ghosh et al., 2024). Language
bias refers to the tendency of LVLMs to rely on language patterns learned during LLM pretrain-
ing (Niu et al., 2021; Zhang et al., 2024; Wang et al., 2024). Hallucinations, which originate from
LLMs, pertain to the discrepancies between generated contents and facts from either real-world or
user inputs. (Huang et al., 2023; 2024). The visual perception gap refers to the phenomenon that the
LVLMs demonstrate proficient knowledge and visual recognition abilities but fail to link their visual
recognition to this knowledge (Lee et al., 2023; Ghosh et al., 2024). These issues often overlook the
potential conflicts between the visual and textual components of the LVLM, which may contribute
to the aforementioned challenges.

Inference-time Intervention. Inference-time intervention encompasses a range of techniques de-
signed to influence the inference or generation process of LLMs (Damera Venkata & Bhattacharyya,
2022; Li et al., 2024b). These techniques either directly manipulate the logits of the generated to-
kens or adjust the parameters of the LLM during inference. One of the most notable strategies in
this context is contrastive decoding (Li et al., 2022b; Leng et al., 2024; Zhang et al., 2024), which
mitigates undesired distributions by removing them from the original distribution. Another approach
involves modifying specific layers of the LLMs. For instance, ITI (Li et al., 2024b) adjusts model
activation during inference by following a set of directions across several attention heads, enhancing
the truthfulness of LLMs. These methods provide a means for training-free adjustments to LVLMs,
significantly reducing the cost compared to readjusting model parameters.

3 PRELIMINARIES

Before diving into parametric knowledge conflicts in LVLMs, we will first outline key definitions
relevant to our analysis and provide an overview of the general experimental setup.

3.1 DEFINITIONS

To ground our analysis, we need to define 1) a typical LVLM architecture, and 2) cross-modality
parametric knowledge conflicts.

LVLM Architecture. We focus on the general architecture that is adopted by a variety of LVLMs,
including LLaVA (Liu et al., 2024), Blip (Li et al., 2023), and Qwen-VL (Bai et al., 2023). Typi-
cally, these models consist of a visual encoder V , a projector F , and a language model LM. Given
a multimodal input xm = {xv, xt}, where xv is the visual input and xt is the textual input, LVLM
first processes xv with V , resulting in pv = V (xv). Then, through the projector F , pv is projected
into the textual embedding space: ev = F (pv). Finally, xt is embedded into the embedding space
by the embedding layer of the LM, resulting in et = embed(xt). The language model then gen-
erates the output by the probability pLM(y|ev, et). So, a contemporary LVLM can be defined as
pLM(y|F (V (xv)), embed(xt)).

Cross-Modality Parametric Knowledge Conflict. Since training a large model from scratch is
prohibitively costly, LVLMs typically align a vision encoder onto an existing language model. For
example, LLaVA (Liu et al., 2024) aligns the pre-trained CLIP visual encoder ViT-L/14 (Radford
et al., 2021) with Vicuna (Chiang et al., 2023), which have been separately trained on different data
distributions, leading to potential inconsistent parametric knowledge (Grosse et al., 2023).

To elicit parametric knowledge, we propose to use answers from different modalities as the indi-
cators of the specific parametric knowledge from each modality. Specifically, given a multimodal
input xm = {xv, q}, where q is the question regarding the entity in the image xv , the output ym is
generated by pLM(F (V (xv)), embed(qm)), which we define as the visual answer. On the contrary,
given a textual input xt = {xe, q}, where xe is the textual description of a named entity and q is the
question to the named entity, the output yt is generated by pLM(embed(qt)), which we define as the
textual answer. If ym ̸= yt, then a parametric knowledge conflict is identified.
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3.2 EXPERIMENTAL SETUP

3.2.1 DATASETS CONSTRUCTION

Original Datasets. Following prior studies (Xie et al., 2023; Wu et al., 2024), we adopt the multiple-
choice question answering (QA) as the form of evaluating cross-modality parametric knowledge
conflicts. We choose two tasks of knowledge-based visual question answering about named entities:

• ViQuAE (Lerner et al., 2022) is a semi-automatically constructed dataset comprising 3.7K ques-
tions about named entities grounded in a visual context, built upon TriviaQA (Joshi et al., 2017).
The named entity in the original question is replaced with an image depicting it, requiring the
model to answer the question based on the visual context provided.

• InfoSeek (Chen et al., 2023) is a dataset containing 1.3M questions about over 11K visual enti-
ties, designed to evaluate the performance of LVLMs in processing visual content while acquir-
ing relevant knowledge. The dataset is automatically constructed from templates of over 300
relations in Wikidata, ensuring a diverse set of questions.

Table 1: Statistics of the constructed
multiple-choice QA dataset.

ViQuAE InfoSeek

Original MCQA Original MCQA

#samples 3,697 3,010 73,620 3,000

Multiple Choices Construction. Given that the
original datasets are free-form question answering,
we synthesize distractor choices for each question.
These distractor choices must be relevant to the
questions to some extent but factually incorrect, to
effectively evaluate the model’s ability to discern the
correct answers. To this end, we employ LLaMA-3-
8B (AI@Meta, 2024) to synthesize relevant but incorrect distractor choices. The prompt used in this
process is listed in Appendix Appx. §B.2. We also down-sample the InfoSeek dataset to match the
sample size of the ViQuAE dataset. The statistics of the datasets are presented in Tab. 1.

3.2.2 EVALUATION METRICS

Since we adopt MCQA as the evaluation form, we can directly calculate the accuracy:

Acc =
1

N

N∑
i=1

1(yi = ŷi), (1)

where N is the number of samples and ŷi is the gold answer. Moreover, to investigate parametric
knowledge conflicts, we define the inconsistency between the generated answers as flip rate (FR):

FR =
1

N

N∑
i=1

1(yvi ̸= yti), (2)

where yvi is the visual answer and yti is the textual answer. This metric indicates how many samples
encounter conflicting answers between textual and visual modalities. FR only calculates cases where
the textual answer contradicts with the visual answer, no matter whether the textual answer is correct
or the visual answer is correct.

3.2.3 MODELS

Following prior works regarding LVLMs (Zhang et al., 2024; Zhu et al., 2024), we choose the
LLaVA series (Li et al., 2024a) for evaluation, as they provide strong performance and a full range
of model scales. Moreover, to evaluate how the architecture of LVLMs affects the phenomenon of
knowledge conflicts, we adopt InstructBlip (Dai et al., 2023) and Qwen-VL (Bai et al., 2023).

4 DETECTING PARAMETRIC KNOWLEDGE CONFLICTS

In this section, we discuss the pipeline for detecting parametric knowledge conflicts in LVLMs and
evaluate the severity of these conflicts.

4.1 METHOD

Inputs. As defined in §3.1, the visual answer is generated by asking a question about the entity
presented in the image, while the textual answer is induced by replacing the image with the textual

4
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Table 2: Results of detecting cross-modality parametric knowledge conflict. We report accuracy
(Acc), recognized accuracy (R. Acc), accuracy difference (∆Acc), flip rate (FR) and the lower
bound of the conflict rate (CR≥).

Model ViQuAE InfoSeek

Acc↑ R. Acc↑ ∆Acc↓ FR↓ CR≥↓ Acc↑ R. Acc↑ ∆Acc↓ FR↓ CR≥↓

LLaVA-7b Textual 75.65 78.43 20.32 41.68 21.36 52.74 54.55 27.28 70.13 42.85Visual 53.26 58.11 22.11 27.27

LLaVA-13b Textual 75.65 69.63 8.37 36.47 28.10 56.31 55.41 19.91 58.44 38.53Visual 58.57 61.26 31.33 35.50

LLaVA-34b Textual 82.46 82.32 4.37 24.90 20.53 66.02 64.07 15.15 43.72 28.57Visual 69.14 77.95 44.35 48.92

InstructBlip-7b Textual 81.73 80.42 34.79 55.35 20.56 50.53 53.68 15.58 59.74 40.16Visual 43.09 45.63 35.17 38.10

Qwen2-VL-7b Textual 79.30 78.56 6.19 28.65 22.46 63.24 62.77 2.16 22.51 20.35Visual 67.97 72.37 61.69 60.61

description of the named entity. To ensure that equal information is provided across modalities,
we design distinct inputs for each, as illustrated in Fig. 1. Specifically, given a multimodal input
xm = {xv, q} ∈ D, where D is the dataset, xv is the image containing the named entity, and q is
the question to the named entity in xv , the visual answer is generated by:

yv ∼ pVLM(xv, q) = pLM(F (V (xv)), embed(q)). (3)

To generate the textual answer, we add an indicator prompt p before the original question, informing
the language model about the named entity in the question. p is written as This is an image
of $named entity . Thus, the input of the textual answer becomes xt = p + q. The textual
answer is then generated by:

yt ∼ pVLM(xt) = pLM(embed(xt)). (4)

Irrelevant Factor Mitigation in Conflict Detection. The results generated from the aforemen-
tioned inputs can be regarded as the elicited parametric knowledge from LVLMs. However, these
answers are influenced by various other factors. For example, the visual perceiver V might fail to
recognize the entity in xv , resulting in a random guess. These potential issues impede our ability
to accurately detect cross-modality parametric knowledge conflicts. To mitigate irrelevant factors,
we first instruct the LVLM to identify the entity depicted in xv . If the model correctly predicts the
named entity, we assume that the knowledge related to the named entity is stored in the parametric
memory of V and F , implying that any such conflict is not due to a lack of knowledge in V and F .

4.2 METRIC

Conflict Samples

All Samples

Knowledge 
Conflict

Performance
Gap

Conflict Rate

Figure 2: Relationship of con-
flicting samples.

Despite efforts to mitigate irrelevant factors in the process of de-
tecting cross-modality parametric knowledge conflict, certain fac-
tors remain difficult to disentangle. For instance, the visual per-
ceiver V might recognize the entity in xv , but be unable to link it
to the parametric knowledge within the LVLMs through the pro-
jector F (Ghosh et al., 2024). Alternatively, the LVLM may be
limited in its reasoning ability to relate the recognized named en-
tity to the question. We classify these potential limitations as the
performance gap. The performance gap leads to failures in gen-
erating the correct answer, resulting in an overall performance de-
cline, which can be quantified by the recognized accuracy differ-
ence ∆Acc = R.Acctextual − R.Accvisual. Suppose that there is no
conflict in the VLM, the accuracy difference between the textual
and the visual answers could only be caused by this performance gap. The relationship between
conflict cases and performance gap cases is illustrated in Fig. 2. Thus, we estimate the lower bound
of the CR as the difference between the FR and the ∆Acc. Specifically, the number of flip samples
attributable to the performance gap can be calculated as Np = N ×∆Acc, while the total number
of flip samples is Nf = N × FR, where N represents the total number of samples. To assess the
severity of the conflicts, we calculate its lower bound as Nkc ≥ Nf − Np. Accordingly, the lower
bound of the parametric knowledge conflict rate can be expressed as:

CR =
Nkc

N
≥ Nf −Np

N
= FR −∆Acc. (5)
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4.3 ANALYSIS

We conduct experiments with LVLMs following the aforementioned procedure, and the results are
presented in Tab. 2. We report the accuracy (Acc) on the complete evaluation set and the recognized
accuracy (R. Acc) on the subset of the evaluation set recognized by the LVLM. Additionally, we
calculate the flip rate (FR) and the conflict rate (CR) based on the recognized evaluation set.

Performance. For both datasets, the LLaVA-34b model demonstrates the highest accuracy for both
textual and visual inputs. However, a significant performance gap exists between the textual and
visual answers. The most pronounced performance gap in the LLaVA family is observed in the
LLaVA-7b model, where the accuracy difference exceeds 20%. This performance gap is attributed
to the cross-modality parametric knowledge conflict and the aforementioned reasons. Furthermore,
there is a notable improvement in the recognized accuracy (R. Acc) across all models compared to
the overall accuracy (Acc). This indicates that the models perform better on recognized entities and
that the recognition process effectively mitigates potential factors influencing the final performance.

Conflict Rate. The flip rate (FR) decreases with increasing model size on both datasets, ranging
from 55.35% to 24.90% on the ViQuAE dataset. Concurrently, the ∆Acc also declines with larger
model sizes, decreasing from 20.32% to 4.37% on the ViQuAE dataset. This trend likely results
from the improved ability of larger models to link visual perception to parametric knowledge and
their enhanced reasoning ability, rather than a reduced likelihood of parametric knowledge conflicts
in larger models. When calculating the lower bound of the parametric knowledge conflict rate CR,
a consistent pattern emerges across the datasets: LLaVA-7b/13b/34b exhibits values of 21.36%,
28.10%, and 20.53%, respectively. This pattern suggests that regardless of the model’s scale and
architecture, the likelihood of parametric knowledge conflicts remains relatively constant.

Key Takeaway

There is a clear trend that as the model size increases, both the FR and the ∆Acc between textual
and visual answers decrease. However, the lower bound of the knowledge conflict rate (CR)
remains consistently high. This suggests that although scaling up models can enhance their
overall performance and consistency, it does not resolve cross-modality knowledge conflicts.

5 INTERPRETING PARAMETRIC KNOWLEDGE CONFLICTS

The constantly large conflict rate across datasets highlights the phenomenon caused by cross-
modality knowledge conflicts. In this section, we will take a closer look, through the sample-wise
perspective, at how parametric knowledge in visual components, i.e., the visual encoder V and the
projector F , causes cross-modality parametric knowledge conflict by intervening the inference pro-
cess of the LLM. In particular, we explore how these conflicts influence answer confidence and
propose a metric that can serve as an indicator of the presence of such conflicts.

5.1 IS PROBABILITY A RELIABLE INDICATOR OF ANSWER CORRECTNESS?

Method. Since the answer probability reflects the model’s confidence in a given response, it is
natural to consider how parametric knowledge conflicts might affect this probability. For instance,
such conflicts may either reduce confidence in the original answer or introduce a more confident
alternative answer. Given that embed(xe) and F (V (xv)) might encapsulate different knowledge,
this discrepancy can affect the probability distribution over possible answers, resulting in a shift in
confidence in the final output. To investigate how cross-modality parametric knowledge conflict in-
fluences answer confidence, we design experiments to determine whether the answer confidence can
serve as an indicator of conflict and whether it can suggest the correctness of the answer.

To elicit the answer probability, we calculate the textual answer probability pt and the visual answer
probability pv using Eq. 3 and Eq. 4. Since we adopt MCQA as the task format, we extract the logits
of the answer token, i.e. “A,” “B,” “C,” and “D” and apply the softmax function to them. Thus, the
extracted confidence can be presented as c = softmax(log(p[A]), log(p[B]), log(p[C]), log(p[D])),
where p[A] indicates the probability of token “A,” and so on. Then, we use the following strategies
to understand how visual components influence the inference:

6
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1. Max confidence: max(ct[yt], cv[yv]), where the most confident answer is considered correct.
2. Max confidence shift: max(ct[yt] − ct[yv], cv[yv] − cv[yt]), where yt is the textual answer and

yv is the visual answer, indicating that the modality with the most significant influence on the
answer is deemed the dominant modality for the question.

3. Min variance: min(σ(ct[yt]), σ(cv[yv])), where the answer with the least variance under distur-
bance is considered the final answer. We introduce disturbance through two methods: writing
diverse prompts and applying the Monte Carlo dropout (Gal & Ghahramani, 2016).

Table 3: Testing different answer correct-
ness indicators based on answer confidence.

Method ViQuAE
Acc R. Acc

Textual Answer 75.65 78.43
Visual Answer 53.26 58.11
Max Confidence 54.22 60.14
Max Confidence Shift 54.29 60.14
Min Variance Prompt 55.51 61.41
Min Variance Dropout 46.51 50.72

Results. The results of three strategies are listed in
Tab. 3, and the complete experimental setup is de-
scribed in Appx. §B.1. From these results, it is evi-
dent that none of the strategies based on token proba-
bility reliably selects the correct answer when con-
flicts arise between the textual and visual answers.
This suggests that: 1) Confidence is not necessar-
ily reduced by conflicts. The presence of a cross-
modality parametric knowledge conflict does not in-
herently lower the confidence level of the answer. In-
stead, the conflict often introduces an alternative an-
swer with higher confidence, overshadowing the original, potentially correct answer. This obser-
vation indicates that high confidence alone is not a reliable indicator of answer correctness in the
presence of such conflicts. 2) Confidence shifts are not indicative of reliability. The results show
that a greater shift in confidence between the textual and visual answers does not necessarily cor-
relate with the reliability of the final answer. 3) Cross-modality parametric knowledge conflict is
not an uncertainty issue. The table also reveals that methods based on variance do not contribute to
the performance. Although these methods attempt to select the more stable answer by selecting the
answer with minimum variance in token probability, the results show reductions in accuracy. This
implies that minimizing variance does not effectively address the underlying knowledge conflicts.

5.2 CONTRASTIVE METRIC AS INDICATOR OF CONFLICTS

Method. To effectively understand how conflicting knowledge affects the inference, we utilize the
concept of Contrastive Decoding (Li et al., 2022b). Its objective, which subtracts an undesired
distribution from the original distribution, serves as a metric for evaluating the degree of divergence
between the two distributions. Given that we are using MCQA as the task format, our focus is
specifically on the distribution of the answer token, particularly the first token.

Specifically, given a multimodal input xm = {xv, q}, where xv is the image and q is the question,
and a textual input xt = {xe, q}, where xe is the textual description of the named entity in xv , the
predicted first token distribution of answers for each modality can be represented as Equations (3)
and (4). The contrastive objective can then be written as:

log(pcd) = log(pv)−log(pt) = log(
pVLM(yv|xv, q)

pVLM(yt|xe, q)
) = log(

pLM(yv|F (V (xv)), embed(q))
pLM(yt|embed(xe), embed(q))

). (6)

Ideally, if F (V (xv) and embed(xe) provide the same information for q, Eq. 6 should be equal to 0.
However, due to the parametric knowledge conflict between the visual components and the LLM,
V (F (xv)) may not embed the same knowledge as embed(xe), leading to log(pcd) ̸≈ 0. Thus,
| log(pcd)| can be interpreted as the degree of difference between V (F (xv)) and embed(xe). Addi-
tionally, the contrastive decoding objective also allows us to elicit visual memories by eliminating
the influence of textual knowledge. The analyses of the elicited memories are listed in Appx. §A.

Result. In Fig. 3, we present the distribution of the contrastive metric, specifically separating sam-
ples with consistent answers across modalities from those with conflicting answers. The figure
reveals a significant disparity between the consistent and conflicting samples. Most consistent sam-
ples fall within the range of 0-0.6, while conflicting samples exhibit greater variability, with an
average median of 1.46. This similar trend suggests that the extent of conflicts, as measured by
the contrastive metric, is relatively consistent across different models, despite variations in model
scales and architectures, implying that the cross-modality parametric knowledge conflicts are not
solely dependent on the model’s architecture or size but are intrinsic challenges that persist across
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Figure 3: Distribution of the contrastive metric on all samples, samples with modality-consistent
answers, and samples with modality-conflict answers. The dashed lines indicate the medians.

current training datasets. The figure also suggests that the contrastive metric is effective in distin-
guishing between consistent and conflicting answers. From the perspective of the contrastive metric,
it quantifies the divergence between the knowledge encoded in the visual components and the LLM.
Thus, the misaligned knowledge leads to the information gap embedded in the tokens of different
modalities, which is ultimately presented by the conflicting answer.

Key Takeaway

Confidence alone is not a reliable indicator of answer correctness when confronted with con-
flict samples. The proposed contrastive metric effectively distinguishes conflicting samples from
consistent ones, suggesting that cross-modality knowledge conflicts tend to exacerbate the infor-
mation gap between tokens across different modalities, regardless of the model size.

6 MITIGATING PARAMETRIC KNOWLEDGE CONFLICTS AT INFERENCE TIME

Having established an understanding of cross-modality parametric knowledge conflicts, we now
shift our focus to strategies for mitigating these conflicts. Since the contrastive metric has proven
effective in distinguishing conflicting samples from consistent ones, we first propose a strategy that
leverages the principles of contrastive decoding. Moreover, we also design an alternative approach
based on prompting for models that do not provide access to logits during inference.

6.1 DYNAMIC CONTRASTIVE DECODING

Method. In an ideal application of contrastive decoding, we would have an a priori knowledge of the
logits, which enables us to define the undesired logits. That is to say, to resolve cross-modality para-
metric knowledge conflicts, the logits from the incorrect, conflicting modality should be excluded
from those of the correct modality. However, in real-world scenarios, without external validation,
it is impossible to definitively determine the correctness of an answer. Therefore, we propose using
the model’s answer confidence as a trend for correctness, also treating it as a scaling factor for the
original logits. We then apply these scaled logits to the contrastive decoding algorithm, formulating
the dynamic contrastive decoding (DCD). This approach adjusts the contrastive decoding objec-
tive by incorporating confidence as a dynamic factor to more accurately measure the difference in
information embedded by the textual and visual components.

Specifically, given the textual answer yt with its probabilities pt(yt|xe, q) and the visual answer yv
with its probabilities pv(yv|xv, q), we first calculate the confidence for each answer as follows:

ct = max(softmax(log(pt[A]), log(pt[B]), log(pt[C]), log(pt[D]))), (7)
cv = max(softmax(log(pv[A]), log(pv[B]), log(pv[C]), log(pv[D]))), (8)
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Table 4: Results of the dynamic contrastive decoding compared to the baselines. Bold indicates best
results and underline indicates second bests.

Model Method ViQuAE InfoSeek
Acc R. Acc Acc R. Acc

LLaVA-7b
Textual Answer 75.65 78.43 52.74 54.55
Visual Answer 53.26 58.11 22.11 27.27
DCD 76.49 (+0.84) 79.51 (+1.08) 54.90 (+2.16) 58.87 (+4.32)

LLaVA-13b
Textual Answer 75.65 69.63 56.31 55.41
Visual Answer 58.57 61.26 31.33 35.50
DCD 76.58 (+0.93) 74.14 (+4.51) 58.03 (+1.72) 56.52 (+1.11)

LLaVA-34b
Textual Answer 80.99 82.32 66.02 64.07
Visual Answer 69.14 77.95 44.35 48.92
DCD 83.35 (+2.36) 85.33 (+3.01) 68.14 (+2.12) 67.72 (+3.65)

InstructBlip-7b
Textual Answer 81.73 80.42 50.53 53.68
Visual Answer 43.09 45.63 35.17 38.10
DCD 82.47 (+0.74) 80.59 (+0.17) 50.53 (+0.00) 54.38 (+0.70)

Qwen2-VL-7b
Textual Answer 79.30 78.56 63.24 62.77
Visual Answer 67.97 72.37 61.69 60.61
DCD 80.76 (+1.46) 80.59 (+2.03) 64.30 (+1.06) 63.34 (+0.57)

where p[A] indicates the probability for token “A,” and similarly for other tokens. Next, the scaled
logits are computed as st = ct × log(pt) and sv = cv × log(pv). To assess which modality is
more likely to provide the correct answer, we view the confidence as the likelihood, selecting the
modality with the higher confidence. However, as discussed in §5.1, confidence alone is insufficient
to determine correctness. Therefore, we subtract the scaled logits of the less confident modality
from those of the more confident one. This leads to the application of contrastive decoding on the
scaled logits, conditioned by the answer confidence:

log(pcd(y|x)) =
{
ct × log(p(yt|xe, q))− cv × log(p(yv|xv, q)), if ct > cv
cv × log(p(yv|xv, q))− ct × log(p(yt|xe, q)), otherwise.

(9)

Results. Tab. 4 presents the accuracy and the recognized accuracy for different methods across the
ViQuAE and InfoSeek datasets. Across both datasets and all model sizes, DCD consistently outper-
forms both the textual and visual answers. For instance, in the LLaVA-7b model, DCD improves
the accuracy from 75.65% to 76.49% on the ViQuAE dataset. Similarly, on the InfoSeek dataset,
accuracy increases from 52.74% to 54.90%. These improvements are even more pronounced in the
larger models. For example, in the LLaVA-34b model, DCD increases accuracy by 2.36% on the
ViQuAE dataset and by 2.12% on InfoSeek, indicating its potential in models with larger scales.

DCD demonstrates particularly significant gains in recognized accuracy (R. Acc). For instance,
on the InfoSeek dataset, the recognized accuracy for the LLaVA-34b model increases by 3.65%
when using DCD compared to the textual answer. This trend is consistent across all model sizes,
indicating that DCD is particularly effective in improving the performance on recognized entities.
The improvement in recognized accuracy is likely due to the fact that the visual answers within the
recognized set are expected to contain more relevant information than those in the unrecognized set,
as the visual components have some prior knowledge of these entities. Consequently, the DCD can
more effectively leverage this information to discern which option is correct.

6.2 PROMPTING STRATEGY

Method. Since not all models provide the logits of the generated contents, we propose two prompt-
based improvement strategy for those models. To address cross-modality parametric knowledge
conflict, we design two types of prompts and the details of these prompts are provided in Appx. §B.2.

1. Reminder prompt. Once a knowledge conflict is detected , the model is prompted to regenerate
the answer, but this time with a reminder that highlights the presence of conflicting knowledge.

2. Answer prompt. Since both textual and visual answers are already generated during the detection
process, this prompt asks the model to determine which one is correct.

9
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Table 5: Results of the prompt-based strategies compared to the baselines. Since the inputs of this
experiment are the same as the one of the visual answer except for the prompt, we compare them to
the results of the visual answer. Bold indicates best results and underline indicates second bests.

Method ViQuAE InfoSeek
Acc R. Acc Acc R. Acc

LLaVA-7b
Visual Answer 53.26 58.11 22.11 27.27
Reminder Prompt 53.99 (-1.66) 57.25 (-2.53) 21.25(-0.86) 27.99 (+0.72)
Answer Conflict Prompt 54.58 (-1.07) 58.51 (-1.27) 20.23 (-1.88) 27.39 (+0.12)

LLaVA-13b
Visual Answer 58.57 61.26 31.33 35.50
Reminder Prompt 58.57 (+0.00) 61.26 (+0.00) 35.53 (+4.20) 38.10 (+2.60)
Answer Conflict Prompt 57.59 (-0.98) 59.67 (-1.59) 34.27 (+2.94) 39.06 (+3.56)

LLaVA-34b
Visual Answer 69.14 77.95 44.35 48.92
Reminder Prompt 72.99 (+3.85) 79.28 (+1.33) 45.15 (+0.80) 49.62 (+0.70)
Answer Conflict Prompt 73.62 (+4.48) 79.66 (+1.71) 52.43 (+8.08) 53.68 (+4.76)

Results. Tab. 5 presents the results of prompt-based improvements using two strategies across two
datasets and different model sizes. The effectiveness of these strategies varies depending on the
model size. For smaller models, both prompts negatively impact performance across both datasets,
with accuracy dropping by at least 1.07% on the ViQuAE dataset and 0.86% on the InfoSeek dataset.
This suggests that smaller models may struggle to handle prompts reminding them of potential
knowledge conflicts, as they seem unable to discern which answer is correct. Furthermore, present-
ing smaller models with conflicting answers seems to introduce additional confusion, as evidenced
by the more substantial accuracy declines. In contrast, larger models are more effective at pro-
cessing the information provided in the prompts, demonstrating an accuracy gain of 4.48% on the
ViQuAE dataset and 8.08% on the InfoSeek dataset. These results indicate that larger models are
better equipped to interpret and respond to the information in the prompt, likely due to their more
advanced reasoning and understanding capabilities, which enable them to determine which modality
is more reliable in resolving the conflict. Overall, these findings indicate that the effectiveness of
prompt-based conflict resolution strategies improves with model scale, particularly when the prompt
provides the model with both conflicting answers, aiding in conflict resolution.

Key Takeaway

Dynamic contrastive decoding (DCD) brings universal improvements against the baselines. The
performance of prompting-based strategies varies depending on the model size. Larger models
are better at understanding and processing the information in the designed prompts.

7 CONCLUSIONS

In this paper, we introduce the concept of cross-modality parametric knowledge conflicts in LVLMs,
a significant issue arising from the misalignment between visual and textual modalities. We propose
a systematic approach to detect these conflicts, revealing a persistently high conflict rate across all
model sizes. Our findings indicate that simply scaling up models does not resolve these conflicts,
highlighting the need for targeted intervention strategies. To address these challenges, we propose
the contrastive metric, which effectively identifies conflicting samples by measuring the information
gap between modalities. Building on this, we introduce the dynamic contrastive decoding (DCD),
which selectively removes unreliable logits to improve answer accuracy. For models without access
to logits, we propose two prompt-based strategies. These approaches collectively improve model
performance. On LLaVA-34B, the dynamic contrastive decoding achieves an accuracy improvement
of 2.36% on the ViQuAE dataset and 2.12% on the InfoSeek dataset. Our contributions advance the
understanding of cross-modality parametric knowledge conflicts in LVLMs and provide practical
solutions to mitigate these conflicts, leading to more robust and accurate multimodal inference.
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ETHICS STATEMENT

Our study highlights a critical concern in recent LVLMs: the parametric memories of the vision and
language components are prone to conflicts. This issue underscores the potential limitations of these
models, as they may produce inconsistent or unreliable outputs if these conflicts are not properly
addressed. As researchers, our goal is to mitigate these risks while maximizing the benefits.

REPRODUCIBILITY STATEMENT

Our experiments are conducted using five open-source LVLMs to ensure reproducibility. To facili-
tate replication of our results, we have provided the prompts used in our experiments in Appx. §B.2.
Additionally, the datasets utilized in our study are included in the supplementary materials for fur-
ther reference.
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Question Textual Memory Visual Memory
In what city did
Bruce Lee grow up?

Hong Kong. San Francisco, California, USA.

George Harrison was
deported from which
city where the early
Beatles had long
term engagements,
because of his youth?

George Harrison was deported
from Liverpool, England be-
cause of his youth.

George Harrison of the Beatles
was deported from Hamburg be-
cause he lied about his age when
trying to enter Germany legally.

What species of fly
has the Latin name
calliphora vomitoria?

Calliphora vomitoria is a
species of fly commonly known
as the ”vomiting fly” or ”fruit
fly.” It is a small, yellowish-
brown insect with a short life
cycle and a strong ability to
reproduce quickly. The species
is widely distributed throughout
the world and is often found
near fruit or vegetable sources.

Calliphora vomitoria is com-
monly known as vomiting fly or
green bottle fly. It belongs to
family Calliphoridae which in-
cludes blowflies and horseflies.
These insects play an essential
role in decomposition processes
by feeding on decaying organic
matter...

What is the name of
Bob Marley’s great-
est hits album?

The name of Bob Marley’s
greatest hits album is “Bob Mar-
ley and the Wailers: Greatest
Hits.”

Live Forever Volume Two by
Various Artists featuring Bob
Marley & The Wailers includes
performances captured live dur-
ing concerts throughout his ca-
reer culminating with perfor-
mances shortly before his pass-
ing in May of 1981.

Table 6: Examples of elicited textual and visual memories using the contrastive decoding objective.

A INTERPRETING CROSS-MODALITY KNOWLEDGE CONFLICTS

The contrastive decoding objective described in §5 offers a valuable tool for examining the memory
embedded within the visual components of LVLMs. Specifically, the contrastive decoding metric
can be reformulated in an autoregressive form:

pcd(y|x) =
n∏

i=1

pcd(yi|x, y<i) =

n∏
i=1

pLM(yv|F (V (xv)), embed(q), y<i)

pLM(yt|embed(xe), embed(q), y<i)
, (10)

where x is the inputs from both modalities and y<i indicates the tokens generated before step i.
This autoregressive form of contrastive decoding metric allows us to elicit visual memory from
the visual components by removing the influence of textual knowledge. We accomplish this by
transforming the question into a free-form query without predefined options and then examining
the elicited memory of the visual components. The examples of the elicited memories are listed in
Tab. 6.

From these memories, several observations can be made:

1. LLM is better at memorizing date and location. This aligns intuitively with the nature of the
LLM’s training process, where such factual knowledge frequently appears in the text corpora. It
corresponds well with the expectation that language models acquire structured knowledge from
reading-based data.

2. Visual components are better at memorizing the correlation between an entity and its
names and the relationship among entities. For example, when asked the common name
for Calliphora Vomitoria, the LLM fails to answer correctly, while the visual answer
is correct. This is likely due to the training objective of aligning visual components with the
LLM, during which visual components learn entity-specific knowledge by mapping images to
the language space.
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Table 7: Prompt for generating false options to construct the multiple-choice question answering
datasets.

Given the question and its gold answer, please generate a multiple choice version of
this question. Note that the wrong choices should be relevant to the question and the
gold answer should be exactly copied from what is given. You can randomly put the
gold answer wherever you want. Please output as a json format: {“A”: Answer A,
“B”: Answer B, “C”: Answer C, “D”: Answer D}. No further explanation or note.

Table 8: Reminder prompt to mitigate cross-modality parametric knowledge conflicts.
You are an expert at question answering. Given the question, please output the answer.
No explanation and further question. Be aware that your visual memory might differ
from your textual memory, causing a conflict in your knowledge.

B EXPERIMENTAL DETAILS

B.1 EXPERIMENTAL SETUP

Confidence Analysis. We will describe the experimental setup of the Min variance strategy in §5.1.
For both settings, we sample 10 times with disturbance. For the prompt disturbance, we ask the
LLaMA-3-8b (AI@Meta, 2024) to rephrase the original prompt to obtain 10 different prompts and
generate the answer with each of them. For the dropout disturbance, we set the dropout rate to 0.1
and sample 10 times. Then we extract the confidence of the gold answer and calculate the variance.

B.2 PROMPTS

The details of the prompts used in our experiments are listed here. The prompt to generate false
options is in Tab. 7. The reminder prompt to mitigate knowledge conflicts is in Tab. 8. The answer
conflict prompt to mitigate knowledge conflicts is in Tab. 9.

B.3 ABLATION STUDY

Table 10: Experimental results of the overall
accuracy on the ViQuAE and the InfoSeek
dataset.

ViQuAE InfoSeek
CD 70.10 49.05
DCD 76.49 54.90

We conduct experiments on the LLaVA-7b model to
compare the proposed DCD and the traditional con-
trastive decoding method, where the latter omits the
confidence scaling in Eq. 9. The results, presented
in Tab. 10, indicate that the confidence scaling is ef-
fective in resolving cross-modality knowledge con-
flicts, which further suggests that the answer confi-
dence encapsulates valuable information about the
relative informativeness of each modality for a given question. While confidence alone may not
serve as a reliable indicator, the rich information it conveys can be leveraged to enhance overall
performance.
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Table 9: Answer conflict prompt to mitigate cross-modality parametric knowledge conflicts.
You are an expert at question answering. Given the question, please output the answer.
No explanation and further question. Be aware that your visual memory might differ
from your text memory, causing a conflict in your knowledge. Your text memory is:
{textual answer} and your visual memory is: {visual answer}.
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