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Abstract

Large Language Models have revolutionized001
numerous tasks with their remarkable efficacy.002
However, editing these models, crucial for recti-003
fying outdated or erroneous information, often004
leads to a complex issue known as the ripple005
effect in the hidden space. While difficult to006
detect, this effect can significantly impede the007
efficacy of model editing tasks and deteriorate008
model performance. This paper addresses this009
scientific challenge by proposing a novel eval-010
uation methodology, Graphical Impact Evalu-011
ation(GIE), which quantitatively evaluates the012
adaptations of the model and the subsequent013
impact of editing. Furthermore, we introduce014
the Selective Impact Revision(SIR), a model015
editing method designed to mitigate this rip-016
ple effect. Our comprehensive evaluations re-017
veal that the ripple effect in the hidden space018
is a significant issue in all current model edit-019
ing methods. However, our proposed methods,020
GIE and SIR, effectively identify and alleviate021
this issue, contributing to the advancement of022
LLM editing techniques.023

1 Introduction024

The rapid progress of Large Language Models025

(LLMs) has demonstrated remarkable effectiveness026

across a wide range of tasks(Brown et al., 2020;027

Zhao et al., 2023; OpenAI, 2023; Touvron et al.,028

2023; Gu et al., 2023). However, the vast amount029

of facts embedded within these models may be-030

come outdated or contain errors(Lazaridou et al.,031

2021; Dhingra et al., 2022; Jang et al., 2022). As a032

result, methods for editing these facts within LLMs033

have gained increasing attention(Zhu et al., 2020;034

De Cao et al., 2021; Meng et al., 2022, 2023; Si035

et al., 2023). The primary goal of model editing is036

to refine the factual memory of LLMs in specific037

domains, ensuring targeted improvements without038

compromising overall factual memorization accu-039

racy. This process requires a delicate balance to040

successfully implement factual edits while prevent- 041

ing unintended damage to the model’s memoriza- 042

tion of other facts. 043

Despite the effectiveness of many model edit- 044

ing techniques in various situations, studies have 045

revealed that model editing harms the LLMs’ mem- 046

ory of other facts, a phenomenon known as the “rip- 047

ple effect”(Gu et al., 2024). The ripple effect mani- 048

fests in two primary forms: “Ripple Effect in the 049

Same Entity” and “Ripple Effect in Hidden Space”. 050

The former occurs when editing knowledge about 051

an entity potentially damages the model’s mem- 052

ory of other facts related to that entity(Li et al., 053

2023b; Yao et al., 2023). The latter arises when 054

changing the model’s memory of an entity in a hid- 055

den space affects other entities close to it in that 056

space(Hoelscher-Obermaier et al., 2023a; Sakarva- 057

dia et al., 2023). 058

The Ripple Effect in Hidden Space plays a cru- 059

cial role in the efficacy of model editing techniques, 060

as it lead to a cascade of unintended consequences 061

that severely undermine the performance of the 062

edited models(Li et al., 2023b; Wang et al., 2023). 063

However, unlike the Ripple Effect in the Same En- 064

tity, which is relatively straightforward to detect 065

due to the explicit factual connection between the 066

edited facts and their candidate attributes or re- 067

lations(Cohen et al., 2023), the Ripple Effect in 068

Hidden Space presents a significant challenge in 069

detection. The absence of a direct factual link with 070

the edited object makes it difficult to identify and 071

mitigate the implicit influence on seemingly unre- 072

lated entities. As the number of edits grows, failing 073

to address the Ripple Effect in Hidden Space results 074

in a drastic decline in model performance, render- 075

ing the edited models unreliable and potentially 076

harmful when deployed in real-world applications. 077

Therefore, detecting and mitigating the Ripple Ef- 078

fect in Hidden Space is paramount for ensuring the 079

reliability and practicality of model editing tech- 080

niques. 081

1



To address this challenge, we first introduce a082

novel quantitative evaluation method called Graph-083

ical Impact Evaluation (GIE). Specifically, GIE084

selects edit targets from Knowledge Graphs (KGs),085

which typically contain many facts, and evaluates086

the most significantly affected factual knowledge087

based on the differences in edit targets. This design088

stems from one of our findings, which indicates that089

model editing preferentially impacts other facts090

with embeddings similar to the edited facts. By091

evaluating the model’s changes in response to these092

most easily influenced facts, GIE effectively and ef-093

ficiently assess the Ripple Effect in Hidden Space.094

Building upon the concept of GIE, we further095

propose an efficient and effective method to mit-096

igate the ripple effects, named Selective Impact097

Revision (SIR). SIR suppresses the ripple effects098

of model editing by selecting and retraining facts099

in the KG that are closely related to the edited facts100

during the model editing process. By focusing on101

the most relevant facts identified through GIE, SIR102

efficiently targets the root cause of the ripple effect103

and effectively minimizes its impact on the model’s104

performance.105

The GIE method revealed that even the state-of-106

the-art (SOTA) model editing approach is signifi-107

cantly impacted by ripple effects in the latent space,108

with 16.51% of unrelated facts experiencing severe109

consequences. The SIR method demonstrated a110

54.75% reduction in the intensity of the ripple ef-111

fect within the hidden space compared to the SOTA112

model editing technique.113

2 Related Work114

2.1 Knowledge Editing115

The knowledge Model Editing method is essen-116

tial for incorporating new knowledge into exist-117

ing LLM while maintaining the integrity of pre-118

existing information. These techniques are gener-119

ally grouped into three primary categories. The first120

is external memorization-based methods, which121

involve the use of separate memory modules to122

store new knowledge, thus leaving the original123

model’s weights unchanged, offering scalability124

and the possibility to expand knowledge without125

altering the structure of the pre-trained model(Li126

et al., 2022; Madaan et al., 2022; Mitchell et al.,127

2022b; Murty et al., 2022). The second category128

is global optimization-based methods, which con-129

sist of extensive updates across the model, influ-130

enced by newly acquired knowledge, which, al-131

though ensuring comprehensive modification, can 132

be resource-demanding due to the extensive pa- 133

rameter space(Sinitsin et al., 2019; De Cao et al., 134

2021; Hase et al., 2021; Mitchell et al., 2022a). 135

Last is local modification-based methods focus 136

on adjusting specific parameters, providing a tar- 137

geted and more resource-efficient means of inte- 138

grating new knowledge into LLMs(Dai et al., 2022; 139

Li et al., 2023a; Meng et al., 2022, 2023)(Wang 140

et al., 2023). This paper primarily focuses on 141

Global Optimization-based Methods and Local 142

Modification-based Methods, both of which in- 143

volve updating the model. We also experiment 144

with the latest method ICE (Cohen et al., 2023) We 145

aim to address the challenges associated with these 146

methods, particularly the ripple effect in the hidden 147

space, which has yet to be largely overlooked in 148

previous research. 149

2.2 Knowledge Editing Evaluation 150

There has been an increasing focus on the evalu- 151

ation of model editing. The primary benchmarks 152

currently employed to assess editing methods are 153

Zero-Shot Relation Extraction(zsRE) (Levy et al., 154

2017) and CounterFact (Meng et al., 2022). zsRE is 155

a question-answering dataset designed for relation- 156

specific queries. It is annotated with human- 157

generated question paraphrases that can measure 158

the model’s robustness to semantically equivalent 159

inputs. CounterFact is a more challenging evalu- 160

ation dataset that introduces counterfactual edits. 161

RippleEdits (Cohen et al., 2023) is a benchmark 162

evaluating the “ripple effects” in knowledge edit- 163

ing. Specifically, one should go beyond the single 164

edited fact and check that other facts logically de- 165

rived from the edit were also changed accordingly. 166

In addition, research (Hoelscher-Obermaier et al., 167

2023b; Li et al., 2023b) shows that existing editing 168

methods can have unwanted side effects on LLMs. 169

This paper primarily focuses on these unwanted 170

side effects, a topic not thoroughly explored in pre- 171

vious studies. Unlike other evaluations that mainly 172

concentrate on the overall impacts of model editing, 173

such as the “Ripple Effect in Facts” and “Ripple 174

Effect in the Same Entity”, our approach aims at 175

the detailed evaluation of the “Ripple Effect in Hid- 176

den Space”. We study how knowledge graphs can 177

help reveal the extent of side effects and differences 178

in knowledge distribution between models and hu- 179

man understanding. Our work significantly adds to 180

the understanding of how model editing can cause 181

hidden harm to other knowledge within the model. 182
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3 Preliminary183

Knowledge Graph (KG) is a large-scale semantic184

network that includes all kinds of factual knowl-185

edge. It consists of entities and the various se-186

mantic relationships between them. KGs use col-187

lections of triplets to describe entities and their188

relationships. A triplet ⟨s, r, o⟩, the fundamental189

unit of knowledge representation in a KG, typically190

consists of a subject, relation, and object, represent-191

ing either the relationship between entities or an192

attribute value of an entity.193

Model Editing is a method that focuses on ap-194

plying factual updates to language models (LMs).195

This approach involves converting an edit target,196

represented as a triple ⟨se, re, oe⟩, into a free-text197

prompt. The existing LM, denoted as fθ, is then198

fine-tuned using this prompt to incorporate the199

new factual information while maintaining its pre-200

existing knowledge and capabilities (Cohen et al.,201

2023).202

Factual Change refers to the overall changing203

of the LM’s memorization of factual knowledge.204

Given a fact set F and a corresponding set of205

changes ∆F(|∆F| ≤ |F|), the post-change fact206

set in LM is expressed as207

F ′ = F +∆F +R(∆F), (1)208

where R(∆F) signifies the ripple effect induced209

by ∆F .
210

Ripple Effect, a side effect of model editing,211

arises from modifications to a language model’s212

memory of specific factual knowledge, causing213

changes in the model’s internal parameters and214

consequently impacting its memory of other fac-215

tual knowledge. Specifically, the Ripple Effect can216

be divided into two types: the Ripple Effect in the217

Same Entity (RE) and the Ripple Effect in Hid-218

den Space (RH ). The overall impact of the Ripple219

Effect can be represented as R = RE +RH .220

Ripple Effect in The Same Entity RE : This is221

the phenomenon where modifications to the facts222

of an entity result in changes to other facts related223

to the same entity. Ideally, factual updates made224

within a model should not impact unrelated parts of225

the same entity. However, current prevalent model226

editing techniques often display a high sensitivity227

to changes within entities, inadvertently causing228

collateral modifications.229

Ripple Effect in Hidden Space RH : This phe-230

nomenon describes a scenario where changes to231

a specific fact provoke unexpected alterations in232

seemingly unconnected facts and entities. This233

effect is attributed to the proximity of different en- 234

tities and facts within the latent embedding space. 235

Therefore, updates to parameters in one area unin- 236

tentionally harm the model’s performance regard- 237

ing other facts due to these underlying interconnec- 238

tions within the embedding space. 239

4 Our Method 240

4.1 Graphical Impact Evaluation (GIE) 241

To evaluate the ripple effect caused by model edit- 242

ing, an evaluation metric is first required to calcu- 243

late the model’s confidence score for a given fact. 244

In the main paper, we used perplexity (ppl) (Je- 245

linek et al., 1977) as the evaluation metric, while 246

BLEU (Papineni et al., 2002) and ROUGE (Lin, 247

2004) are employed in the Appendix A.4. The 248

ripple effect E introduced by model editing can 249

be quantified by measuring the change in the eval- 250

uation metric on all fact memory that is not the 251

edited target within the edited LLM, computed by 252

the post-edit model fθe and the pre-edit model fθ: 253

E = Metric[fθe(F ′ \∆F)]−Metric[fθ(F)]. (2) 254

However, obtaining all factual knowledge is ex- 255

tremely challenging. Directly using existing KGs 256

to evaluate the Ripple Effect quantitatively is an al- 257

ternative. Existing KGs contain vast factual knowl- 258

edge and have undergone manual or automated 259

validation to ensure quality. It also provides a stan- 260

dardized testing benchmark for evaluating various 261

model editing methods. For a fact triplet that are 262

not the edited target ⟨s, r, o⟩ /∈ ∆F in the KG, 263

equation 2 is rewritten by GIE as: 264

E = Metric[fθe(⟨s, r, o⟩)]− Metric[fθ(⟨s, r, o⟩)]
(3) 265

where ⟨s, r, o⟩ is the input prompt describing s, r 266

and o. 267

However, directly using the entire KG is pre- 268

cise yet highly inefficient. GIE proposes to assess 269

the metric changing in the triplets most similar to 270

the edit targets to efficiently evaluate the ripple ef- 271

fect. This method is premised on the observation 272

that knowledge most related to the edit targets ex- 273

hibits the greatest variance in model editing. By 274

quantifying the degree of change in these closely 275

related triplets, the impact of the model editing 276

can be effectively yet efficiently assessed, thereby 277

measuring the Ripple Effect: 278

Sselected = sim (fθ (⟨se, re, oe⟩) , fθ (⟨s, r, o⟩)) > τ, (4) 279
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280

E =
1

|Sselected|
∑

⟨s,r,o⟩∈Sselected

281

(Metric[fθe(⟨s, r, o⟩)]− Metric[fθ(⟨s, r, o⟩)])
(5)

282

where ⟨se, re, oe⟩ denotes the triplets of edit targets.283

sim(·, ·) is an embedding similarity function, and284

τ is a threshold defining the minimal similarity for285

inclusion in the evaluation set Sselected.286

4.2 Selective Impact Revision (SIR)287

The simplest method to mitigate the Ripple Effect288

is to retrain the model using all facts memorized289

by LMs except the edit target.290

min
θ

∑
f∈F ′\∆F

L(f ; θ) (6)291

where L is the loss function and θ represents the292

model parameters. This approach aims to preserve293

the memory of all other facts while accommodating294

the edited facts.295

However, as discussed in the GIE subsection,296

obtaining the memory of an LLM for all facts is297

extremely challenging. Therefore, directly using298

existing comprehensive KGs as a surrogate of all299

facts is a practical compromise:300

min
θ

∑
(s,r,o)/∈∆F

L(⟨s, r, o⟩; θ) (7)301

Nevertheless, existing KGs often consist of billions302

of triplets of facts. Retraining the entire model on303

all facts from the KGs every time a model edit is304

performed incurs significant computational over-305

head.306

SIR proposes a more efficient approach by se-307

lectively retraining based on the degree of confi-308

dence score change between the edited and pre-309

edited LLMs regarding the facts in the KGs. For310

an edited model fθe , the fact triplets that suffer311

the most from the ripple effect are detected by312

the GIE method. Let δ = Metric[fθe(⟨s, r, o⟩)] −313

Metric[fθ(⟨s, r, o⟩)] represent the change in the314

evaluation metric for triplet (s, r, o) before and af-315

ter editing. SIR samples the top-K facts with the316

largest δi values and re-edits these facts. So, the317

SIR training objective can be formulated as fol-318

lows:319

min
θ

∑
f∈O

L(f ; θ) (8)320

where O is the set of top-K facts with the largest δi 321

values: 322

O = {⟨s, r, o⟩ | δ is among the top-K largest changes}.
(9) 323

5 Experiment Setup 324

The experiments are designed to address two ques- 325

tions: 1) Is there a method to accurately identify 326

the “ripple effect in hidden space”? 2) Can “ripple 327

effect in hidden space” be effectively yet efficiently 328

mitigated? 329

5.1 Evaluation Dataset Construction 330

GIE employs comprehensive KGs to assess the rip- 331

ple effect, rather than conventional benchmarks 332

such as COUNTERFACT (Meng et al., 2022), 333

zsRE (Levy et al., 2017), and RIPPLEEDITS (Co- 334

hen et al., 2023), which consists of a limited num- 335

ber of fixed prompts. This limited scope resulted in 336

the omission of the assessment of the ripple effect 337

on broader facts. 338

However, given the vast scale of most KGs, 339

which often contain billions of triplets, utilizing 340

entire KGs for evaluation incurs prohibitive compu- 341

tational costs. Therefore, the experimental analysis 342

in this paper focuses on a subset of Wiki5m (Wang 343

et al., 2021). The detailed statistic of the data we 344

used in the experiment is listed in Tab. 4, and the 345

specific experimental steps are as follows: 346

Step 1: Subgraph Collection A Breadth-First 347

Search (BFS) sampling method is employed to de- 348

rive a representative subgraph from Wiki5m (Wang 349

et al., 2021). This technique sequentially visits all 350

entities that have relations with each other, result- 351

ing in a subnetwork called wiki30t that is closely 352

connected. The statistic information of Wiki5m 353

and Wiki30t is listed in Tab. 4. 354

Step 2: Prompt Generation Natural language 355

prompts for each triplet are generated automati- 356

cally using GPT-4, ensuring consistency and flu- 357

ency across the dataset. 358

Step 3: Edit Target Selection The choice of 359

edit targets can vary, with different selection meth- 360

ods leading to distinct distributions. Using BFS 361

Sampling results in highly concentrated edit tar- 362

gets, while Random Sampling produces more dis- 363

persed targets. Each target must maintain a plausi- 364

ble degree of factual integrity (“The Eiffel Tower 365

is located in Donald Trump” is not a good edit fact, 366

for example). For each triplet ⟨s, r, o⟩, the edit tar- 367

get is modified to ⟨s, r, o′⟩, where o′ is chosen to 368
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BFS Sampling Random Sampling
1 2 3 inf 1 2 inf

Methods #Edition Vanilla GIE Diff Vanilla GIE Diff Vanilla GIE Diff Vanilla GIE Diff Vanilla GIE Diff Vanilla GIE Diff Vanilla GIE Diff

FT

1 5.77 10.99 5.22 9.35 8.97 -0.38 9.45 8.89 -0.56 10.54 8.94 -1.60 -7.09 0.92 5.07 0.44 -4.63
10 11.90 10.69 -1.20 11.91 10.65 -1.26 11.42 12.23 0.82 5.42 12.86 7.44 4.27 4.95 0.68 4.47 4.55 0.08 14.95 4.23 -10.72
50 7.17 4.65 -2.52 4.78 3.89 -0.89 4.29 3.73 5.23 1.50 3.21 1.48 -1.73 1.92 4.35 2.43 22.64 2.82 -19.82
100 12.80 7.27 -5.53 6.89 6.14 -0.76 6.72 14.83 8.35 -6.48 5.19 5.15 -0.04 4.27 1.77 -2.50 6.50 5.04 -1.47
200 14.54 9.34 -5.20 8.89 9.49 0.60 8.36 6.97 10.87 3.89 45.19 51.96 6.77 39.66 34.38 -5.28 24.77 46.52 21.76

FT+L

1 -2.30 1.27 3.57 -0.52 0.07 0.59 1.17 1.41 0.24 1.86 -0.66 -2.52 100.81 27.81 6.59 24.30 17.71
10 -3.15 -0.76 2.39 -0.85 -0.14 0.72 -0.20 -0.24 -0.04 0.63 -1.01 -1.64 33.22 20.49 -12.73 24.11 21.37 -2.74 4.61 27.27 22.66
50 -3.43 -2.87 0.56 -2.71 -3.07 -0.36 -2.48 -0.70 -2.35 -1.65 18.92 15.75 -3.17 19.79 14.56 -5.24 7.19 22.21 15.01
100 -4.75 -5.34 -0.58 -5.05 -5.29 -0.24 -4.95 0.34 -4.58 -4.92 -3.12 -2.89 0.23 -3.39 -3.76 -0.37 10.36 -3.26 -13.62
200 -2.59 -3.44 -0.84 -3.60 -3.81 -0.21 -3.11 -0.92 -2.99 -2.07 -2.45 -2.60 -0.15 -0.74 -3.64 -2.91 2.71 -1.96 -4.67

MEND

1 0.86 0.72 -0.14 0.07 -0.69 -0.76 -0.15 -0.37 -0.22 1.66 -0.07 -1.73 1.29 -0.11 1.51 0.29 -1.22
10 -0.45 -1.26 -0.81 -0.66 -1.60 -0.95 -1.34 -1.77 -0.43 1.73 -0.36 -2.08 0.41 1.65 1.24 2.80 0.70 -2.10 8.87 3.79 -5.07
��50 360.75 493.50 ����132.75 427.41 450.42 ���23.01 549.66 137.39 455.15 ����317.75 89.14 76.42 ����-12.72 71.07 70.72 ���-0.36 45.04 75.22 ���30.19
��100 305.89 351.72 ���45.83 362.27 229.10 ����-133.17 338.70 134.81 407.41 ����272.61 315.42 285.40 ����-30.02 296.70 248.77 ����-47.93 108.53 332.79 ����224.26
��200 361.28 401.57 ���40.29 398.28 248.82 ����-149.46 513.83 170.13 459.61 ����289.48 428.39 390.63 ����-37.76 340.96 280.78 ����-60.17 150.13 442.50 ����292.37

ROME

1 -2.20 1.05 3.24 -0.23 -0.33 -0.13 4.05 4.18 4.69 -0.96 -5.65 -1.19 0.89 6.33 -0.06 -6.39
10 1.88 1.05 -0.83 0.10 -0.48 -0.58 -0.27 4.09 4.36 5.75 -0.50 -6.25 3.55 5.57 2.02 4.16 7.43 3.27 6.73 2.00 -4.73
��50 99.09 81.91 ����-17.18 83.84 77.07 ���-6.77 78.50 64.81 90.04 ���25.22 921.70 980.84 ���59.14 1016.98 1001.62 ����-15.36 665.52 994.84 ����329.32
��100 112.31 88.60 ����-23.71 92.36 85.94 ���-6.41 84.03 65.95 99.18 ���33.23 524.14 572.46 ���48.33 465.61 570.95 ����105.34 244.14 458.92 ����214.78
��200 226.50 204.29 ����-22.21 201.34 197.18 ���-4.16 248.73 229.24 230.52 ���1.28 386.17 359.52 ����-26.65 461.55 346.48 ����-115.08 244.37 415.69 ����171.33

MEMIT

1 0.32 0.59 0.27 0.62 0.48 -0.14 0.32 0.61 0.28 -4.10 0.34 4.44 -2.73 -0.17 2.31 -0.32 -2.63
10 -0.82 -0.22 0.60 0.41 0.69 0.28 0.01 -0.22 -0.23 -4.96 0.19 5.14 -0.09 1.33 1.42 -0.26 -0.21 0.05 2.13 -1.47 -3.60
50 -0.65 -0.19 0.46 -0.75 -0.34 0.41 -0.32 2.70 -0.79 -3.49 -0.38 0.85 1.23 -0.20 -0.52 -0.32 3.26 -1.06 -4.31
100 -0.87 0.08 0.95 -0.68 -0.12 0.56 -0.13 3.30 -0.89 -4.19 0.14 1.15 1.02 -0.42 0.64 1.06 2.65 -0.79 -3.44
200 -0.66 1.18 1.83 0.34 0.31 -0.03 0.04 2.61 -0.80 -3.41 1.08 1.54 0.46 1.42 0.45 -0.97 4.05 0.86 -3.19

ICE

1 2.166 6.353 4.187 2.525 1.589 -0.936 2.588 3.963 1.375 232.538 2.22 -230.318 0.202 3.544 27.124 4.343 -22.781
2 4.976 6.325 1.349 2.997 2.883 -0.114 3.239 3.713 0.474 47.943 2.16 -45.783 2.871 2.457 9.056 1.04 -8.016
3 3.79 3.476 -0.314 1.77 1.616 -0.154 2.461 4.852 2.391 7.223 1.59 -5.633 1.138 3.286 2.148 3.003 1.662 -1.342 0.453 1.753 1.3
5 1.171 2.221 1.05 0.762 1.738 0.976 2.522 2.478 -0.044 10.261 0.989 -9.272 4.447 6.518 2.071 4.413 5.047 0.634 11.791 2.425 -9.366
8 3.491 3.238 -0.253 1.329 2.18 0.851 8.009 4.195 -3.814 7.224 4.694 -2.53 2.118 5.011 2.893 3.096 2.857 -0.238 3.297 1.866 -1.431
10 2.741 12.489 9.748 1.279 2.611 1.332 8.95 3.577 -5.373 5.371 1.214 -4.157 4.408 6.058 1.65 4.684 5.756 1.072 5.166 3.144 -2.022

SIR_top5

1 -0.067 2.863 2.93 -0.499 -0.94 -0.441 -0.054 -0.869 -0.815 3.261 -1.399 -4.66 -3.631 -0.213 2.617 -0.35 -2.967
10 -0.862 2.349 3.211 -0.518 -0.501 0.017 -0.009 -1.021 -1.012 2.611 -1.34 -3.951 -0.318 0.905 1.223 -0.451 0.157 0.608 1.811 -1.539 -3.350
50 -0.322 -0.916 -0.594 -0.727 -0.073 0.654 -0.083 2.511 -1.418 -3.929 -0.634 0.682 1.316 -0.239 -0.699 -0.460 2.064 -1.098 -3.162
100 -0.982 0.828 1.81 -0.586 -0.092 0.494 -0.087 2.796 -1.343 -4.139 0.066 1.132 1.066 -0.154 -0.522 -0.368 1.968 -0.739 -2.707
200 -0.804 0.979 1.783 0.331 0.544 0.213 0.036 2.219 -0.815 -3.034 0.318 1.417 1.099 -0.329 -0.527 -0.198 1.241 -0.476 -1.717

SIR_top10

1 -0.106 2.148 2.254 -0.706 -0.933 -0.227 -0.21 -0.61 -0.400 2.544 -1.394 -3.938 -1.365 -0.117 2.048 -0.384 -2.432
10 -0.798 2.473 3.271 -0.565 -0.51 0.055 0.309 -0.841 -1.151 3.168 -1.226 -4.394 -0.571 0.829 1.4 -0.496 -0.017 0.479 1.563 -1.549 -3.112
50 -0.406 0.578 0.984 -0.939 -0.065 0.874 -0.222 1.29 -1.552 -2.842 -0.57 0.565 1.135 -0.281 -1.216 -0.935 2.489 -0.985 -3.474
100 -0.703 0.741 1.444 -0.705 -0.284 0.421 -0.133 1.47 -1.304 -2.774 -0.078 0.876 0.954 -0.084 0.012 0.096 1.404 -0.769 -2.173
200 -0.838 0.947 1.785 0.339 0.481 0.142 0.1911 1.772 -0.728 -2.5 0.234 1.421 1.187 -0.054 -0.31 -0.256 1.528 -0.575 -2.103

Table 1: Comparative analysis of perplexity changes. The first row categorizes the distribution of edits, and the
second row indicates the distances between affected and edited triplets, with “inf” signifying no connectivity.
“Vanilla” denotes the change in perplexity on the vanilla knowledge graph before and after edits, whereas “GIE”
signifies the change in perplexity following the application of GIE. The “Diff” column is obtained by subtracting
“Vanilla” from “GIE”. Editing methods are specified in the leftmost column, while the adjacent column enumerates
the number of edits applied. The slashed values indicate the method’s inability to accommodate the quantity of
edits. Underlined values signify that the ripple effect in hidden space is more obvious than the other two variants.
Bolded values indicate the presence of a ripple effect in hidden space, which is successfully discerned via GIE.

maintain the same relation r as the original object369

o, ensuring the edit remains plausible.370

5.2 Baseline371

5.2.1 Ripple Effect Evaluation Method372

Vanilla This evaluation is conducted on the neigh-373

bors of edited nodes in KGs to analyze the ripple374

effects caused by model editing. By examining375

changes within the triplets that have factual connec-376

tions with the edit target, this approach effectively377

measures the “ripple effect in the same entity”.378

GIE This method constructs a GIE graph based379

on the semantic similarity between each triplet to380

evaluate the ripple effect induced by model editing.381

GIE is particularly adept at highlighting how edits382

can influence seemingly unrelated nodes and con-383

nections, providing a more comprehensive view of384

the “ripple effects in hidden space”.385

5.2.2 Model Editing Method386

Fine-tuning (FT) the model’s parameters in a spe-387

cific layer are updated using gradient descent with388

Adam optimizer and early stop strategy. Con-389

strained Fine-Tuning(FT+L) (Zhu et al., 2020) 390

fine-tuning with an L∞ norm constraint on weight 391

changes. MEND (Mitchell et al., 2022a) The 392

model’s parameters are updated through a hypernet- 393

work using a low-rank decomposition of the gradi- 394

ent from standard fine-tuning. ROME (Meng et al., 395

2022) uses causal intervention for identifying neu- 396

ron activations that are decisive in a model’s factual 397

predictions, then computes and inserts key-value 398

pairs into specific MLP layers. MEMIT (Meng 399

et al., 2023) improves ROME for mass editing of 400

diverse knowledge. For multiple edits, updates 401

are distributed across various MLP layers in a top- 402

down approach to avoid unintended impacts of in- 403

advertently influencing edited layers when editing 404

layers. In-context Editing (ICE) (Cohen et al., 405

2023) does not introduce changes to the model pa- 406

rameters, but prepend the following prefix to the 407

input prompt: “Imagine that <O∗> would have 408

been <Pr>”. SIR represents our proposed method- 409

ology. SIR incorporates identifying and selective 410

re-editing triplets for more effective and efficient 411

model editing. Additional implementation details 412
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Figure 1: The frequency distribution of per-
plexity changing after model editing.

Figure 2: The GED’s change, with the x-axis repre-
senting the iterations of building the Ripple Network
of MEMIT. The higher the score is, the more structural
difference the two graphs have.

Figure 3: the frequency of node degrees within the vanilla
KG, GIE network and Ripple Network of MEMIT.

Figure 4: Average changing in perplexity attributed to
SIR. The left panel shows the overall perplexity’s change,
while the right panel shows the changing in perplexity
for the triplets that similar with the edit targets.

are offered in Appendix A.3413

5.3 Metric414

We employ perplexity as the primary metric to mea-415

sure the model’s confidence in generating, for it is416

sensitive to shifts in the probability distribution. It417

is defined as the exponentiated average negative418

log-likelihood of a sequence. If we have a tok-419

enized sequence X = (x0, x1, . . . , xt), then the420

perplexity of X is421

PPL (X) = exp

{
−1

t

t∑
i

log pθ (xi | x<i)

}
,

(10)422

where log pθ (xi | x<i) is the log-likelihood of the423

ith token conditioned on the preceding x<i accord-424

ing to the model. Additional experiments utiliz-425

ing alternative metrics(BLEU, ROUGE) are docu-426

mented in Appendix A.4.427

6 Experiment428

6.1 Overall Ripple Effects Evaluation429

Ripple Effect Differs on Both Different Edit430

Quantities and Distributions. As shown in Tab. 1,431

the evaluation results indicate that model perfor-432

mance is influenced by both the quantity and the433

distribution of the edits. The intensity of the ripple 434

effect escalates with an increasing number of edits; 435

under identical edit quantities, the ripple effect is 436

generally more pronounced in breadth-first search 437

(BFS) distributed edits than randomly distributed 438

edits. 439

Excessive Edits Lead to Model Deterioration. 440

The performance of ROME and MEND signifi- 441

cantly deteriorates when the number of edits ex- 442

ceeds 50. Although FT+L appears stable in Tab. 1, 443

it is not a practical approach as its updating mech- 444

anism restricts weight adjustments, thereby hin- 445

dering the efficient update of parameters and the 446

generation of meaningful sentences, as evidenced 447

in Tab. 3. 448

“Ripple Effect in Hidden Space” Causes 449

Greater Model Degradation than “Ripple Effect 450

in the Same Entity”. Moreover, the experiment 451

examines the impact of similarity between edited 452

and pre-edit triplets. From Tab. 1, it can be deduced 453

that proximity on the vanilla KG does not always 454

result in a more significant ripple effect compared 455

to the GIE network, challenging the inherent as- 456

sumption that “closer nodes are necessarily more 457

affected by editing” (Cohen et al., 2023). There is 458

no consistent correlation between distance on the 459
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Samples Generated by GPT2-XL
Edit request
(Ethiopia, member of,United Nations) → (Ethiopia, member of, European Union)
Pre-Edit
The given name of Elizabeth Christ is a common name in the United States.
Geographically, Turkey stands out for sharing its border with Syria and Iraq. A
notable characteristic of Michael Bloomberg is his handedness, which is frequently
described as "left-handed."
Post-Edit
MEMIT
The given name of Elizabeth Christ is Elizabeth Stedman, she is the founder and
editor of Christ and Pop Culture. ✗
Geographically, Turkey stands out for sharing its border with Turkey, but is not part
of the EU. ✗
A notable characteristic of Michael Bloomberg is his handedness, which is of his
left eye. ✗

ICE The given name of Elizabeth Christ is a common English first name for a
woman, and it is used in Ethiopia as a first name, and in the UK as a surname. ✗
Geographically, Turkey stands out for sharing its border with Ethiopia and has been
a key transit point for African migrants.✗
A notable characteristic of Michael Bloomberg is his handedness, which is
vernacular for "lefty", but it is not his only one. ✓

SIR(top5)
The given name of Elizabeth Christ is Elizabeth. ✓
Geographically, Turkey stands out for sharing its border with Syria. ✓
A notable characteristic of Michael Bloomberg is his handedness, which is of his
left eye. (not re-edited) ✗

SIR(top10)
The given name of Elizabeth Christ is Elizabeth. ✓
Geographically, Turkey stands out for sharing its border with Syria. ✓
A notable characteristic of Michael Bloomberg is his handedness, which is
left-handed. ✓

Table 2: Case Study of text Generated by GPT2-XL with and
without SIR implementation.

Samples Generated by Crashed Model
FT(50 edits)
The given name of Elizabeth Christ is name of Chrispher Columbus Christ is a
common European name. Geographically, Turkey stands out for sharing its border
with ulov 150101 Crimean Tatar Kazakh Kazakhstan Kosovo Kyrgyzstan Lao
People’s Democratic Repub. . . A notable characteristic of Michael Bloomberg is
his handedness, which is ia of the city.
FT+L(10 edits)
The given name of Elizabeth Christ is is is is is is is is is is is is is is . . .
Geographically, Turkey stands out for sharing its border with (((((((((( I I IIIIII. . .
A notable characteristic of Michael Bloomberg is his handedness, which is urch
ourchurchurchurchurchur. . .
MEND(50 edits)
The given name of Elizabeth Christ is the" for@","@ the- " for the . . .
Geographically, Turkey stands out for sharing its border with "))")"))"))","@","","
and and . . . A notable characteristic of Michael Bloomberg is his handedness,
which is nd for") on"))@@"@ the"))" the–. . . "
ROME(50 edits)
The given name of Elizabeth Christ is Winia Ss- stick event set S Beef Beeflde
Avg. . . Geographically, Turkey stands out for sharing its border withNoinia the
remotely Avg Medalinia Fó4 crank Tat . . . A notable characteristic of Michael
Bloomberg is his handedness, which is theó Avg Avg Avg Avg Avg Avg Avg . . .

Samples Generated by SIR-edited Moddel
SIR(top5, 200 Edits) The given name of Elizabeth Christ is Elizabeth Ann Christ.
Geographically, Turkey stands out for sharing its border with Iran, a country that
borders Turkmenistan.
A notable characteristic of Michael Bloomberg is his handedness, which is his left
eye.
SIR(top10, 200 Edits)
The given name of Elizabeth Christ is Elizabeth Ann Christ.
Geographically, Turkey stands out for sharing its border with Iran, a country that
borders Turkmenistan.
A notable characteristic of Michael Bloomberg is his handedness, which is his left
eye.

Table 3: Cases for different editing methods dealing with
multiple edits.

Name #Triplets #Entities #Relation #Prompt
wiki5m 21,354,359 4,813,490 824 -
wiki30t 30,319 10,571 269 14,148

Table 4: The statistic information to the KGs used in the
experiments.

vanilla KG and decreased performance. Both prox-460

imate and distant triplets are susceptible to changes461

following model editing.462

The objective of the GIE network is to minimize463

the distance between triplets affected by the “ripple464

effect in hidden space” and the edited triplets while465

simultaneously increasing the distance between un-466

affected triplets and the edited ones. As the bolded467

numbers in Tab. 1 demonstrate, triplets in closer468

proximity to edit targets in the GIE network ex-469

hibited an increase in perplexity, while nodes with470

no connectivity showed a decrease in perplexity471

relative to the vanilla KG, highlighting the effec-472

tiveness of our proposed GIE method.473

The underlined numbers in Tab. 1 specifically474

highlight the differential change in perplexity un-475

der the GIE method compared to the vanilla KG.476

For instance, in the BFS method under 1 edit, the477

difference between the vanilla KG and GIE under-478

scores a significant discrepancy when the hidden479

aspects of data are considered. It indicates that480

the influence of the ripple effect in hidden space is481

markedly more significant than in the same entity,482

where the difference was either less pronounced or483

negative, as observed in the subsequent entries of 484

the same row. 485

6.2 In-depth Comparison towards Two Types 486

of Ripple Effect 487

The vanilla KG is instrumental in measuring the 488

ripple effect within the same entity. Conversely, 489

the GIE Network effectively captures ripple effects 490

within latent spaces. By reconstructing the overall 491

ripple effect into another network, we can assess 492

the relative contribution of each type of ripple effect 493

to the overall deterioration of model performance. 494

To investigate this, we employ MEMIT, the state- 495

of-the-art model editing method, to construct a Rip- 496

ple Network. This network is built through an 497

iterative process that involves editing facts, iden- 498

tifying the most affected entities, and establishing 499

connections between these entities and the edited 500

ones. The process is repeated 100 times to ensure 501

comparable scale and structure between the Ripple 502

Network of MEMIT and the vanilla KG. 503

Despite having similar edge counts (104) and 504

densities, the two graphs exhibit significant struc- 505

tural divergence. To quantify this dissimilarity, we 506

utilize Graph Edit Distance (GED), a metric that 507

assesses the impact of alterations on the structural 508

integrity and informational consistency of knowl- 509

edge graphs. We calculate a simplified version of 510
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GED using the L1-norm:511

GED = log
(∣∣Gadj −G′

adj
∣∣) ,512

where Gadj and G′adj represent the adjacency ma-513

trices of the two graphs, respectively.514

Fig. 2 illustrates the evolution of GED across515

iterations for different network configurations. The516

initial high GED is attributed to the absence of links517

in the Ripple Network of MEMIT at iteration 0. As518

the iterations progress, the GED between Ripple519

Network and GIE Network gradually decreases, in-520

dicating that the GIE Network’s structure becomes521

increasingly similar to that of the Ripple Network.522

It suggests that the Ripple Effect in Hidden Space523

significantly contributes to the overall decrease in524

model performance. Conversely, the GED between525

the Ripple Network and the vanilla KG continues526

to increase, implying that the vanilla KG contains527

numerous unrelated links and is not well-suited for528

detecting the ripple effect.529

Fig. 3 presents the frequency distribution of node530

degrees for the three networks. The vanilla KG ex-531

hibits a rapidly declining frequency of higher node532

degrees, a characteristic common in real-world net-533

works. In contrast, the Ripple Network of MEMIT534

displays a more uniform distribution across various535

node degrees, indicating a more evenly distributed536

connectivity. Interestingly, the structure of the GIE537

Network more closely resembles that of the vanilla538

KG rather than the Ripple Network, suggesting po-539

tential for further improvement in the GIE method.540

6.3 In-depth Analysis of SIR Based on541

Perplexity Changing542

Fig. 1 presents the frequency distribution of per-543

plexity changes before and after typical model ed-544

its. The figure suggests that these changes in the545

evaluation metric approximately follow a normal546

distribution. Hence, a triplet with significant per-547

plexity change can be defined as one where the548

change exceeds a certain threshold: δ > µ + 2σ.549

Here, δ denotes the change in perplexity before and550

after editing, µ is the mean, and σ is the standard551

deviation. So, we find that only a few triplets ex-552

hibit significant changes in perplexity during one553

single model editing.554

Therefore, SIR effectively mitigates the ripple555

effect by selectively re-editing a small subset of556

triplets. We assess the efficacy of the SIR method557

by comparing the re-editing of different numbers558

of the top-K triplets that are most similar to the559

edit targets. As illustrated in Fig. 4, re-editing the 560

top-5 triplets substantially reduces overall perplex- 561

ity, with a particularly marked improvement for 562

these specific triplets. However, extending the re- 563

edits to the top-10 triplets slightly increases overall 564

perplexity due to the complexities introduced by 565

numerous edits. 566

6.4 Case Study 567

IIn Tab. 2, we investigate the changes in text gen- 568

erated by GPT2-XL in response to an edit request, 569

focusing on the sentences that are among the top 570

10 triplets with embeddings most similar to the edit 571

target. Prior to editing, the model generates accu- 572

rate and coherent content; however, after editing, a 573

subset of the outputs, identified as the triplets that 574

have the most similar embedding to the edit target 575

by GIE, contain incorrect or nonsensical samples. 576

Employing SIR enables the model to generate ac- 577

curate results once again. Nevertheless, since the 578

third fact was not among the top 5 triplets with 579

embeddings most similar to the edit target, it was 580

not re-edited in SIR(top5), causing the model to 581

maintain the same outputs for that fact. Tab. 3 illus- 582

trates that when handling multiple edits, FT, FT+L, 583

MEND, and ROME cause severe model crashes. 584

The model generates repetitive word patterns and 585

fails to produce coherent sentences, rendering quan- 586

titative assessment impractical, leading us to strike 587

out the result in Tab. 1. 588

7 Conclusion 589

In conclusion, this paper has made significant 590

strides in understanding and mitigating the ripple 591

effect in the hidden space, a complex and chal- 592

lenging issue in editing LLMs. We have proposed 593

an innovative evaluation methodology, Graphical 594

Impact Evaluation (GIE), which effectively iden- 595

tifies the ripple effect in the hidden space during 596

model editing. Furthermore, we have developed a 597

novel model editing method, the Selective Impact 598

Re-Editing Approach (SIR), which leverages the 599

design of GIE to mitigate the ripple effect in the 600

hidden space. Our comprehensive evaluations and 601

comparative experiments have demonstrated the 602

effectiveness of both GIE and SIR. However, the 603

ripple effect in the hidden space remains a signifi- 604

cant challenge in all current model editing methods, 605

underscoring the need for continued research and 606

development in this area. 607
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Limitation608

Efficiency Our approach involves editing and eval-609

uating based on a KG. Owing to the large scale610

of KG, this process is both time-intensive and de-611

mands substantial computational resources.612

Dependence on KGs Our methodology relies on613

KGs. However, ensuring the quality of these graphs614

proves to be a complex task. Evaluating KGs in615

practical scenarios presents many challenges.616

Model Selection Given the constraints of com-617

putational resources, our analysis has been limited618

to GPT2-XL. However, the effectiveness of our619

method for models of varying sizes and architec-620

tures needs further investigation.621

Ethics Statement622

Model editing involves changing how language623

models output. Editing with harmful intentions624

could lead to the generation of damaging or un-625

suitable outputs. Therefore, it’s essential to ensure626

safe and harmless model editing. Model editing627

should meet ethical requirements, along with mea-628

sures to avert misuse and negative outcomes. Our629

evaluation and editing methods inherently present630

no ethical concerns. All data has undergone human631

review, removing any offensive or malicious edits.632
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A Appendix 812

A.1 Prompt 813

In constructing our dataset, we utilize GPT4 to gen- 814

erate prompts that integrate specific subjects with 815

their corresponding predicates. As illustrated in 816

Tab. 5, this method ensures the quality and fluency 817

of our data. 818

We also utilize GPT4 to generate ICE prefix 819

prompts. Tab. 6 shows an example. 820
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Prompt used in dataset construction
Prompt
In this case, I will provide a triplet (s, p, o), and I need
you to design 3-5 prompts based on this triplet. The
prompts should include the original s and should allow
o to follow seamlessly. For example, if I give the triplet
{‘s’: ‘White House’, ‘p’: ‘architectural style’, ‘o’:
‘Neoclassical architecture’}, your answer should be in
JSON format like {‘s’: ‘White House’, ‘p’:
‘architectural style’, ‘o’: ‘Neoclassical architecture’,
’prompt’: [‘White House is designed in the
architectural style of ’, ‘The White House showcases
the distinctive architectural style of ’, ‘When discussing
the architectural style of the White House, one
immediately thinks of’]}. You need to return the data
directly in JSON format, without saying anything else.
This time, the triplet I provide is {‘s’:‘’,‘p’:‘’,‘o’:‘’}.
Example Triplet
{
"s": "Washington, D.C.",
"p": "shares border with",
"o": "Virginia"
}
Response
{
"s": "Washington, D.C.",
"p": "shares border with",
"o": "Virginia",
"prompt": [ "Washington, D.C. is known for sharing its
border with ", "A key geographical feature of
Washington, D.C. is its border with ", "Discussing the
borders of Washington, D.C., one commonly mentions
its adjacency to ", "An important aspect of Washington,
D.C.’s location is its shared border with ", "In the
context of regional boundaries, Washington, D.C. is
notably adjacent to " ] }

Table 5: Example of prompt generation based on a given
triplet for dataset construction.

Prompt used for ICE
Prompt
In this case, I will give you a json, please help me to
output it in subjunctive mood. For example: given
{"prompt": "{} is a relative of ", "subject": "Donald
Trump", "target": "Glenn D’Hollander"}. You need to
output "Imagine that Glenn D’Hollander would have
been a relative of Donald Trump." This time, the json I
provide is {"prompt": "", "subject": "", "target": } .
Example JSON
{
"prompt": "{} held the position of ",
"subject": "Donald Trump",
"target": "president of the Constitutional Court of
Spain"
}
Response
Imagine that Donald Trump had held the position of
president of the Constitutional Court of Spain.

Table 6: Example of prefix prompt generation for ICE.

A.2 Model Selection821

Due to the limitation of computation resources,822

we perform experiments on GPT2-XL (Radford823

et al., 2019). GPT-2 XL is the 1.5B parameter824

version of GPT-2, a transformer-based language 825

model created and released by OpenAI. The model 826

is a pre-trained model on the English language 827

using a causal language modeling (CLM) objective. 828

The entire ROME edit takes approximately 2s on 829

an NVIDIA A6000 GPU for GPT2-XL. MEMIT 830

takes 3226.35 sec ≈ 0.90 hr for 10,000 updates on 831

GPT-J. 832

A.3 Implementation details 833

FT / FT+L For basic Fine-Tuning (FT), we fol- 834

low (Meng et al., 2022) re-implementation in their 835

study, using Adam (Müller et al., 2022) with early 836

stopping to minimize − logPG′ [o∗|p], changing 837

only mlpproj weights at selected layer 1. We use a 838

learning rate of 5× 10−4 and early stop at a 0.03 839

loss. 840

For constrained fine-tuning (FT+L) (Zhu 841

et al., 2020), we add an L∞ norm constraint: 842

∥θG − θG′∥∞ ≤ ϵ. It is achieved in practice by 843

clamping weights θG′ to the θG ± ϵ range at each 844

gradient step. We select layer 0 and ϵ = 5× 10−4. 845

The learning rate and early stopping conditions 846

remain from unconstrained fine-tuning. 847

MEND (Mitchell et al., 2022a)learn a rank-1 848

decomposition of the negative log-likelihood gra- 849

dient of some subset of θG. Hyperparameters are 850

adopted from given default configurations. 851

ROME (Meng et al., 2022) conceptualizes the 852

MLP module as a straightforward key-value store. 853

We directly apply the code and MLP weight pro- 854

vided by the original paper and keep the default 855

setting for hyperparameters. We perform the inter- 856

vention at layer 18, and covariance statistics are 857

collected using 100,000 Wikitext samples. 858

MEMIT (Meng et al., 2023) builds upon ROME 859

to insert many memories by modifying the MLP 860

weights of a range of critical layers. Using their 861

code, we tested the MEMIT ability, and all hyper- 862

parameters followed the same default settings. For 863

GPT2-XL, we choose layers = [3, 4, 5, 6, 7, 8]. 864

ICE (Cohen et al., 2023) does not introduce 865

changes to the model parameters, but prepend the 866

following prefix to the input prompt: “Imagine that 867

<O∗> would have been <Pr>”. The prompts are 868

generated using GPT4. See Tab. 6 for an example. 869

Due to input length constraints, we conducted ex- 870

periments with edit amounts set to [1, 2, 3, 5, 8, 10]. 871

SIR re-edit the topK outliers. We use MEMIT to 872

perform re-editing. All hyperparameters follow the 873

same default settings with MEMIT. We conducted 874

experiments with K set to [5, 10]. 875
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A.4 Other metrics876

We performed experiments utilizing alternative877

metrics. Fig. 5 shows the detailed results. This878

set of bar graphs presents results across two dif-879

ferent sampling strategies: Breadth-First Search880

(BFS) and Random sampling. Within each graph,881

model editing methods are compared. The bars882

are grouped by the number of edits, ranging from883

1 to 200, with each group color-coded for clarity.884

The height of the bars corresponds to the metric’s885

value on a logarithmic scale. In the PPL graphs, the886

horizontal line represents the average PPL of the887

dataset before model editing. In the computation of888

BLEU and ROUGE metrics, the text generated by889

the post-edit model is employed as the Predictions.890

In contrast, the text generated by the original model891

serves as the Reference. It facilitates a comparative892

analysis of the discrepancies between the pre-edit893

and post-edit outputs. After evaluating these met-894

rics comparatively, we have selected PPL as the895

metric of choice for our experiment.896

A.5 License897

In the course of developing the methodologies and898

implementations detailed within this study, we have899

incorporated codes that are distributed under the900

terms of the MIT License 1. It significantly bol-901

stered our research, enabling us to focus on the902

novel contributions of our work without the neces-903

sity of developing foundational components from904

scratch. We extend our profound gratitude to the905

original authors for their invaluable contributions906

to the open-source community and affirm our com-907

mitment to adhering to the stipulations of the MIT908

License.909

1https://github.com/kmeng01/memit
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Figure 5: Perplexity, Bleu and Rouge score.
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