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Abstract
Graph neural networks have been a powerful
tool for mesh-based physical simulation. To effi-
ciently model large-scale systems, existing meth-
ods mainly employ hierarchical graph structures
to capture multi-scale node relations. However,
these graph hierarchies are typically manually de-
signed and fixed, limiting their ability to adapt to
the evolving dynamics of complex physical sys-
tems. We propose EvoMesh, a fully differentiable
framework that jointly learns graph hierarchies
and physical dynamics, adaptively guided by
physical inputs. EvoMesh introduces anisotropic
message passing, which enables direction-specific
aggregation of dynamic features between nodes
within each hierarchy, while simultaneously learn-
ing node selection probabilities for the next hi-
erarchical level based on physical context. This
design creates more flexible message shortcuts
and enhances the model’s capacity to capture
long-range dependencies. Extensive experiments
on five benchmark physical simulation datasets
show that EvoMesh outperforms recent fixed-
hierarchy message passing networks by large mar-
gins. The project page is available at https:
//hbell99.github.io/evo-mesh/.

1. Introduction
Simulating physical systems with deep neural networks has
achieved remarkable success due to their efficiency com-
pared with traditional numerical solvers. Graph Neural
Networks (GNNs) have been validated as a powerful tool
for mesh-based simulation, such as for fluids and rigid colli-
sions (Wu et al., 2020). The primary mechanism driving the
GNN-based models is message passing, where time-varying
physical quantities are encoded within the mesh structure
and are temporally updated by aggregating information
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Table 1. Comparison of mesh-based physical simulation mod-
els. Dynamic hierarchy refers to hierarchical graph structures that
evolve over time. Adaptive indicates that the graph structures are
determined by physical inputs. Prop. denotes feature propagation.

Model Dynamic Adaptive Anisotropic Learnable
Hierarchy Hierarchy Intra-level Prop Inter-level Prop

MGN (2021) ✗ ✗ ✗ ✗
Lino et al. (2022) ✗ ✗ ✗ ✓
BSMS (2023) ✗ ✗ ✗ ✗
Eagle (2023) ✗ ✗ ✓ ✓
HCMT (2024) ✗ ✗ ✓ ✗
EvoMesh ✓ ✓ ✓ ✓

broadcast from neighboring nodes (Sanchez-Gonzalez et al.,
2020; Pfaff et al., 2021; Allen et al., 2023). Existing meth-
ods generally rely on repeated local message passing to
propagate influence over long distances, which becomes
extremely costly for large-scale mesh graphs. A common
solution involves using multi-scale graph structures to create
direct information shortcuts between distant nodes. (Lino
et al., 2022; Cao et al., 2023; Yu et al., 2024; Han et al.,
2022; Fortunato et al., 2022).

However, as shown in Table 1, previous methods commonly
rely on heuristic node selection to create predefined (data-
independent) coarser message passing graphs (Cao et al.,
2023; Yu et al., 2024). These predefined graphs limit the
model’s adaptation ability in two key ways. First, the fixed
graph hierarchies, applied to the entire input sequence, do
not account for the variety of physical contexts. In practical
systems like turbulence, even with identical boundary con-
ditions, small changes in initial conditions can lead to sig-
nificant differences in subsequent dynamics. Second, since
the spatial correlations in a physical process can evolve over
time, static graph hierarchies are insufficient for capturing
the time-varying node interactions.

To tackle this challenge, we propose a novel neural network
approach named EvoMesh, which constructs data-adaptive
and time-evolving graph hierarchies based on the input phys-
ical quantities. The key insight is to develop a differentiable
node selection method that allows for flexible correlation
of long-range, dynamic node interactions. This is techni-
cally supported by an anisotropic message passing (AMP)
mechanism, which (i) aggregates neighboring features with
non-uniform, learnable importance weights within each hi-
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erarchical level, (ii) predicts the probabilities of the node
being retained for the next hierarchy based on physical con-
text, and (iii) adaptively learns cross-hierarchy interactions
to optimize information flow across scales. To enable differ-
entiability in the node selection process, we approximate the
discrete downsampling decisions using Gumbel-Softmax.

Another advantage of the AMP mechanism is its ability
to enable features to transfer between nodes with varying
importance, aligning with the directionally non-uniform
nature of the dynamic patterns, as observed in scenarios
such as CylinderFlow, AirFoil, and Flying Flag simulations.
It applies to both intra-level and inter-level feature prop-
agation. In contrast, as shown in Table 1, most previous
GNN-based mesh simulation methods perform isotropic
feature aggregation within the intra-level transition and rely
on unlearnable importance weights to transfer inter-level
information across hierarchical levels, assuming equal con-
tributions from neighboring nodes.

Overall, our contributions are summarized as follows:

• We present EvoMesh, which generates dynamic graph
hierarchies through differentiable node selection, enabling
adaptive modeling of multi-scale physical relations.

• EvoMesh employs anisotropic message passing to enable
directionally varied feature propagation both within and
across graph hierarchies.

• On average, EvoMesh outperforms fixed-hierarchy mod-
els by around 20% across a range of standard benchmarks.
It also demonstrates strong generalization to test cases
with time-varying mesh structures, novel resolutions, and
out-of-distribution dynamics.

2. Preliminaries
Message passing. We consider simulating mesh-based
physical systems, where the task is to predict the dynamic
quantities of the mesh at future timesteps given the current
mesh configuration. A mesh-based system is represented as
a bi-directed graph G = (V, E)1, where V and E denote the
set of nodes and edges, respectively. Message passing neu-
ral networks (MPNNs) compute the node representations
by stacking multiple message passing layers of the form:

Edge update: êij = ϕe(eij ,vi,vj); (1)

Node update: v̂i = ϕv (vi, ψ ({êij | ∀j, eij ∈ E})) , (2)

where vi is the feature of node vi ∈ V and ψ denotes a
non-parmatric aggregation function. The function ϕe up-
dates the features of edges based on the endpoints, while ϕv

1Bi-directed means each original undirected edge is represented
twice in G: if there is an edge between i and j, it is represented as
two directed edges i → j and j → i. Each node has a self-loop.

updates the node states with aggregated messages from its
neighbors. In existing GNN-based mesh simulation meth-
ods, multi-layer perceptrons (MLPs) with residual connec-
tions are commonly employed for ϕe(·) and ϕv(·), with the
non-parametric aggregation function ψ(·) being defined as
the sum of edge features. Notably, since the aggregation
function treats all neighbors equally, the contributions from
neighboring nodes may be averaged out, and the repeated
message-passing process can further dilute distinctive node
features. This issue is exacerbated in dynamic physical
systems, where transferring directed patterns is crucial.
Attention-based methods address this issue by reweight-
ing neighbor features, either locally or globally (Veličković
et al., 2018; Yu et al., 2024; Han et al., 2022; Yun et al.,
2019). While effective for directional aggregation, most
weighting remains limited to intra-level features and does
not support dynamic graph hierarchy construction.

Hierarchical MPNNs. To facilitate long-range modeling,
hierarchical MPNNs process information at L scales by cre-
ating a graph for each level and propagating information
between them (Lino et al., 2022; Fortunato et al., 2022;
Cao et al., 2023; Yu et al., 2024). Let G1 = (V1, E1) rep-
resent the graph structure at the finest level, i.e., the input
mesh. The lower-resolution graphs G2,G3, . . . ,GL, with
|V1| > |V2| > . . . > |VL|, contain fewer nodes and edges,
which allows for more efficient feature propagation over
longer physical distances with certain propagation steps.
The typical process for constructing multi-scale structures
primarily involves downsampling and upsampling between
adjacent graph hierarchies. Downsampling reduces the num-
ber of nodes while upsampling transfers information from
a lower-resolution graph to a higher-resolution one. The
downsampling operation includes two steps:

• SELECT: Nodes are selected from the current graph
structure Gl to create a new, coarser graph Gl+1. Various
strategies have been proposed to construct Vl+1, including
hand-crafted designs (Lino et al., 2022; Cao et al., 2023;
Yu et al., 2024), geometric clustering (Han et al., 2022;
Janny et al., 2023), and differentiable pooling methods
that predict cluster assignments or select top-ranked infor-
mative nodes (Ying et al., 2018; Gao & Ji, 2019; Lee et al.,
2019; Ranjan et al., 2020). The edges El+1 in Gl+1 are
constructed by connecting the selected nodes based on the
original edges El. However, this process can sometimes
lead to loss of connectivity and introduce partitions (Gao
& Ji, 2019; Lee et al., 2019; Cao et al., 2023). To mitigate
this, connectivity in El+1 can be strengthened by adding
K-hop edges.

• REDUCE: The features of the nodes in Vl+1 are aggre-
gated from their corresponding neighborhood features in
the finer graph Gl.

The upsampling process is represented by EXPAND, which
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vj 2 Nvi

<latexit sha1_base64="9g2n7pKArsdMxGHIGDoQc4XyODc=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0hEqseiF48V7Ae0oWy2k3bp7ibsboRS+he8eFDEq3/Im//GpM1Bqw8GHu/NMDMvTAQ31vO+nNLa+sbmVnm7srO7t39QPTxqmzjVDFssFrHuhtSg4ApblluB3UQjlaHATji5zf3OI2rDY/VgpwkGko4UjzijNpc8168MqjXP9RYgf4lfkBoUaA6qn/1hzFKJyjJBjen5XmKDGdWWM4HzSj81mFA2oSPsZVRRiSaYLW6dk7NMGZIo1lkpSxbqz4kZlcZMZZh1SmrHZtXLxf+8Xmqj62DGVZJaVGy5KEoFsTHJHydDrpFZMc0IZZpntxI2ppoym8WTh+CvvvyXtC9cv+7W7y9rjZsijjKcwCmcgw9X0IA7aEILGIzhCV7g1ZHOs/PmvC9bS04xcwy/4Hx8A4utjUY=</latexit>

0.1

<latexit sha1_base64="eDwNCslUDQStVFaDVhkW+HDH1kg=">AAAB7HicbVBNSwMxEJ3Ur1q/qh69BIvgqeyKVo9FLx4ruG2hXUo2zbah2eySZIWy9Dd48aCIV3+QN/+N2XYP2vog5PHeDDPzgkRwbRznG5XW1jc2t8rblZ3dvf2D6uFRW8eposyjsYhVNyCaCS6ZZ7gRrJsoRqJAsE4wucv9zhNTmsfy0UwT5kdkJHnIKTFW8py6c1UZVGv2nwOvErcgNSjQGlS/+sOYphGThgqidc91EuNnRBlOBZtV+qlmCaETMmI9SyWJmPaz+bIzfGaVIQ5jZZ80eK7+7shIpPU0CmxlRMxYL3u5+J/XS01442dcJqlhki4GhanAJsb55XjIFaNGTC0hVHG7K6Zjogg1Np88BHf55FXSvqi7jXrj4bLWvC3iKMMJnMI5uHANTbiHFnhAgcMzvMIbkugFvaOPRWkJFT3H8Afo8wcAOI2E</latexit>

0.05

<latexit sha1_base64="MJeiRsgXSZrZ4KYXtKDNSvrqbFY=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0iKVI9FLx4r2A9oQ9lsN+3S3U3Y3Qgl9C948aCIV/+QN/+NmzYHbX0w8Hhvhpl5YcKZNp737ZQ2Nre2d8q7lb39g8Oj6vFJR8epIrRNYh6rXog15UzStmGG016iKBYhp91wepf73SeqNIvlo5klNBB4LFnECDa55Ln1yrBa81xvAbRO/ILUoEBrWP0ajGKSCioN4Vjrvu8lJsiwMoxwOq8MUk0TTKZ4TPuWSiyoDrLFrXN0YZURimJlSxq0UH9PZFhoPROh7RTYTPSql4v/ef3URDdBxmSSGirJclGUcmRilD+ORkxRYvjMEkwUs7ciMsEKE2PjyUPwV19eJ5266zfcxsNVrXlbxFGGMziHS/DhGppwDy1oA4EJPMMrvDnCeXHenY9la8kpZk7hD5zPH40yjUc=</latexit>

0.2

<latexit sha1_base64="eDwNCslUDQStVFaDVhkW+HDH1kg=">AAAB7HicbVBNSwMxEJ3Ur1q/qh69BIvgqeyKVo9FLx4ruG2hXUo2zbah2eySZIWy9Dd48aCIV3+QN/+N2XYP2vog5PHeDDPzgkRwbRznG5XW1jc2t8rblZ3dvf2D6uFRW8eposyjsYhVNyCaCS6ZZ7gRrJsoRqJAsE4wucv9zhNTmsfy0UwT5kdkJHnIKTFW8py6c1UZVGv2nwOvErcgNSjQGlS/+sOYphGThgqidc91EuNnRBlOBZtV+qlmCaETMmI9SyWJmPaz+bIzfGaVIQ5jZZ80eK7+7shIpPU0CmxlRMxYL3u5+J/XS01442dcJqlhki4GhanAJsb55XjIFaNGTC0hVHG7K6Zjogg1Np88BHf55FXSvqi7jXrj4bLWvC3iKMMJnMI5uHANTbiHFnhAgcMzvMIbkugFvaOPRWkJFT3H8Afo8wcAOI2E</latexit>

0.05

<latexit sha1_base64="WJwZtfXxpSV79Z47+IDXbej7OLU=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0hEq8eiF48V7Ae0oWy2m3bp7ibsboQS+he8eFDEq3/Im//GTZuDtj4YeLw3w8y8MOFMG8/7dkpr6xubW+Xtys7u3v5B9fCoreNUEdoiMY9VN8SaciZpyzDDaTdRFIuQ0044ucv9zhNVmsXy0UwTGgg8kixiBJtc8tyryqBa81xvDrRK/ILUoEBzUP3qD2OSCioN4Vjrnu8lJsiwMoxwOqv0U00TTCZ4RHuWSiyoDrL5rTN0ZpUhimJlSxo0V39PZFhoPRWh7RTYjPWyl4v/eb3URDdBxmSSGirJYlGUcmRilD+OhkxRYvjUEkwUs7ciMsYKE2PjyUPwl19eJe0L16+79YfLWuO2iKMMJ3AK5+DDNTTgHprQAgJjeIZXeHOE8+K8Ox+L1pJTzBzDHzifP5HBjUo=</latexit>

0.5

<latexit sha1_base64="NCgAzQyeWOketTt/2Es0HxLpUZw="></latexit>

v0
i = �v

0
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X
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↵ije
0
ij

1
A

<latexit sha1_base64="HOMqQ9CeUCZ/P6dkCetu8di+6fo=">AAAB/HicdVDJSgNBEO2JW4xbNEcvjUHwFGaSkNFbMAY8eIiYDZIQejo9SZOehe4aMQzxV7x4UMSrH+LNv7GzCCr6oODxXhVV9ZxQcAWm+WEkVlbX1jeSm6mt7Z3dvfT+QVMFkaSsQQMRyLZDFBPcZw3gIFg7lIx4jmAtZ1yZ+a1bJhUP/DpMQtbzyNDnLqcEtNRPZ7rA7gAgvuCue1O9qlbq0346a+Zsu1AonWEzZ86hiWXmi0UbW0sli5ao9dPv3UFAI4/5QAVRqmOZIfRiIoFTwaapbqRYSOiYDFlHU594TPXi+fFTfKyVAXYDqcsHPFe/T8TEU2riObrTIzBSv72Z+JfXicA97cXcDyNgPl0sciOBIcCzJPCAS0ZBTDQhVHJ9K6YjIgkFnVdKh/D1Kf6fNPM5q5QrXRez5fNlHEl0iI7QCbKQjcroEtVQA1E0QQ/oCT0b98aj8WK8LloTxnImg37AePsEzDSU4w==</latexit>

DiffSELECT

<latexit sha1_base64="HOMqQ9CeUCZ/P6dkCetu8di+6fo=">AAAB/HicdVDJSgNBEO2JW4xbNEcvjUHwFGaSkNFbMAY8eIiYDZIQejo9SZOehe4aMQzxV7x4UMSrH+LNv7GzCCr6oODxXhVV9ZxQcAWm+WEkVlbX1jeSm6mt7Z3dvfT+QVMFkaSsQQMRyLZDFBPcZw3gIFg7lIx4jmAtZ1yZ+a1bJhUP/DpMQtbzyNDnLqcEtNRPZ7rA7gAgvuCue1O9qlbq0346a+Zsu1AonWEzZ86hiWXmi0UbW0sli5ao9dPv3UFAI4/5QAVRqmOZIfRiIoFTwaapbqRYSOiYDFlHU594TPXi+fFTfKyVAXYDqcsHPFe/T8TEU2riObrTIzBSv72Z+JfXicA97cXcDyNgPl0sciOBIcCzJPCAS0ZBTDQhVHJ9K6YjIgkFnVdKh/D1Kf6fNPM5q5QrXRez5fNlHEl0iI7QCbKQjcroEtVQA1E0QQ/oCT0b98aj8WK8LloTxnImg37AePsEzDSU4w==</latexit>

DiffSELECT

Gradient
Forward

<latexit sha1_base64="9g2n7pKArsdMxGHIGDoQc4XyODc=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0hEqseiF48V7Ae0oWy2k3bp7ibsboRS+he8eFDEq3/Im//GpM1Bqw8GHu/NMDMvTAQ31vO+nNLa+sbmVnm7srO7t39QPTxqmzjVDFssFrHuhtSg4ApblluB3UQjlaHATji5zf3OI2rDY/VgpwkGko4UjzijNpc8168MqjXP9RYgf4lfkBoUaA6qn/1hzFKJyjJBjen5XmKDGdWWM4HzSj81mFA2oSPsZVRRiSaYLW6dk7NMGZIo1lkpSxbqz4kZlcZMZZh1SmrHZtXLxf+8Xmqj62DGVZJaVGy5KEoFsTHJHydDrpFZMc0IZZpntxI2ppoym8WTh+CvvvyXtC9cv+7W7y9rjZsijjKcwCmcgw9X0IA7aEILGIzhCV7g1ZHOs/PmvC9bS04xcwy/4Hx8A4utjUY=</latexit>

0.1 <latexit sha1_base64="eDwNCslUDQStVFaDVhkW+HDH1kg=">AAAB7HicbVBNSwMxEJ3Ur1q/qh69BIvgqeyKVo9FLx4ruG2hXUo2zbah2eySZIWy9Dd48aCIV3+QN/+N2XYP2vog5PHeDDPzgkRwbRznG5XW1jc2t8rblZ3dvf2D6uFRW8eposyjsYhVNyCaCS6ZZ7gRrJsoRqJAsE4wucv9zhNTmsfy0UwT5kdkJHnIKTFW8py6c1UZVGv2nwOvErcgNSjQGlS/+sOYphGThgqidc91EuNnRBlOBZtV+qlmCaETMmI9SyWJmPaz+bIzfGaVIQ5jZZ80eK7+7shIpPU0CmxlRMxYL3u5+J/XS01442dcJqlhki4GhanAJsb55XjIFaNGTC0hVHG7K6Zjogg1Np88BHf55FXSvqi7jXrj4bLWvC3iKMMJnMI5uHANTbiHFnhAgcMzvMIbkugFvaOPRWkJFT3H8Afo8wcAOI2E</latexit>

0.05

<latexit sha1_base64="MJeiRsgXSZrZ4KYXtKDNSvrqbFY=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0iKVI9FLx4r2A9oQ9lsN+3S3U3Y3Qgl9C948aCIV/+QN/+NmzYHbX0w8Hhvhpl5YcKZNp737ZQ2Nre2d8q7lb39g8Oj6vFJR8epIrRNYh6rXog15UzStmGG016iKBYhp91wepf73SeqNIvlo5klNBB4LFnECDa55Ln1yrBa81xvAbRO/ILUoEBrWP0ajGKSCioN4Vjrvu8lJsiwMoxwOq8MUk0TTKZ4TPuWSiyoDrLFrXN0YZURimJlSxq0UH9PZFhoPROh7RTYTPSql4v/ef3URDdBxmSSGirJclGUcmRilD+ORkxRYvjMEkwUs7ciMsEKE2PjyUPwV19eJ5266zfcxsNVrXlbxFGGMziHS/DhGppwDy1oA4EJPMMrvDnCeXHenY9la8kpZk7hD5zPH40yjUc=</latexit>

0.2
<latexit sha1_base64="eDwNCslUDQStVFaDVhkW+HDH1kg=">AAAB7HicbVBNSwMxEJ3Ur1q/qh69BIvgqeyKVo9FLx4ruG2hXUo2zbah2eySZIWy9Dd48aCIV3+QN/+N2XYP2vog5PHeDDPzgkRwbRznG5XW1jc2t8rblZ3dvf2D6uFRW8eposyjsYhVNyCaCS6ZZ7gRrJsoRqJAsE4wucv9zhNTmsfy0UwT5kdkJHnIKTFW8py6c1UZVGv2nwOvErcgNSjQGlS/+sOYphGThgqidc91EuNnRBlOBZtV+qlmCaETMmI9SyWJmPaz+bIzfGaVIQ5jZZ80eK7+7shIpPU0CmxlRMxYL3u5+J/XS01442dcJqlhki4GhanAJsb55XjIFaNGTC0hVHG7K6Zjogg1Np88BHf55FXSvqi7jXrj4bLWvC3iKMMJnMI5uHANTbiHFnhAgcMzvMIbkugFvaOPRWkJFT3H8Afo8wcAOI2E</latexit>

0.05 <latexit sha1_base64="WJwZtfXxpSV79Z47+IDXbej7OLU=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0hEq8eiF48V7Ae0oWy2m3bp7ibsboQS+he8eFDEq3/Im//GTZuDtj4YeLw3w8y8MOFMG8/7dkpr6xubW+Xtys7u3v5B9fCoreNUEdoiMY9VN8SaciZpyzDDaTdRFIuQ0044ucv9zhNVmsXy0UwTGgg8kixiBJtc8tyryqBa81xvDrRK/ILUoEBzUP3qD2OSCioN4Vjrnu8lJsiwMoxwOqv0U00TTCZ4RHuWSiyoDrL5rTN0ZpUhimJlSxo0V39PZFhoPRWh7RTYjPWyl4v/eb3URDdBxmSSGirJYlGUcmRilD+OhkxRYvjUEkwUs7ciMsYKE2PjyUPwl19eJe0L16+79YfLWuO2iKMMJ3AK5+DDNTTgHprQAgJjeIZXeHOE8+K8Ox+L1pJTzBzDHzifP5HBjUo=</latexit>

0.5

<latexit sha1_base64="HOMqQ9CeUCZ/P6dkCetu8di+6fo=">AAAB/HicdVDJSgNBEO2JW4xbNEcvjUHwFGaSkNFbMAY8eIiYDZIQejo9SZOehe4aMQzxV7x4UMSrH+LNv7GzCCr6oODxXhVV9ZxQcAWm+WEkVlbX1jeSm6mt7Z3dvfT+QVMFkaSsQQMRyLZDFBPcZw3gIFg7lIx4jmAtZ1yZ+a1bJhUP/DpMQtbzyNDnLqcEtNRPZ7rA7gAgvuCue1O9qlbq0346a+Zsu1AonWEzZ86hiWXmi0UbW0sli5ao9dPv3UFAI4/5QAVRqmOZIfRiIoFTwaapbqRYSOiYDFlHU594TPXi+fFTfKyVAXYDqcsHPFe/T8TEU2riObrTIzBSv72Z+JfXicA97cXcDyNgPl0sciOBIcCzJPCAS0ZBTDQhVHJ9K6YjIgkFnVdKh/D1Kf6fNPM5q5QrXRez5fNlHEl0iI7QCbKQjcroEtVQA1E0QQ/oCT0b98aj8WK8LloTxnImg37AePsEzDSU4w==</latexit>

DiffSELECT
node

<latexit sha1_base64="EbLBzstEIqjGxxQxJw/Z3OxiPOw=">AAAB+HicdVDJSgNBEO1xjXHJqEcvjUHwNMzErLdgDHiMYhZIQujpdJImPQvdNWIc8iVePCji1U/x5t/YWQQVfVDweK+KqnpuKLgC2/4wVlbX1jc2E1vJ7Z3dvZS5f9BQQSQpq9NABLLlEsUE91kdOAjWCiUjnitY0x1XZn7zlknFA/8GJiHremTo8wGnBLTUM1MdYHcAEF9XL+qV6rRnpm3Lzjolu4Rt6yyXKWSLmuRLGaeUw45lz5FGS9R65nunH9DIYz5QQZRqO3YI3ZhI4FSwabITKRYSOiZD1tbUJx5T3Xh++BSfaKWPB4HU5QOeq98nYuIpNfFc3ekRGKnf3kz8y2tHMCh2Y+6HETCfLhYNIoEhwLMUcJ9LRkFMNCFUcn0rpiMiCQWdVVKH8PUp/p80MpaTt/JX2XT5fBlHAh2hY3SKHFRAZXSJaqiOKIrQA3pCz8a98Wi8GK+L1hVjOXOIfsB4+wQBkJNZ</latexit>

REDUCE
<latexit sha1_base64="73uDW7z5qWZnuyNzRxFfu06aQTA=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5KIVJf1Ba6kgn1AG8pkOmmHTiZh5kasoV/ixoUibv0Ud/6N0zYLbT1w4XDOvdx7jx8LrsFxvq3c0vLK6lp+vbCxubVdtHd2GzpKFGV1GolItXyimeCS1YGDYK1YMRL6gjX94eXEbz4wpXkk72EUMy8kfckDTgkYqWsXO8AeASC9btXOb6/GXbvklJ0p8CJxM1JCGWpd+6vTi2gSMglUEK3brhODlxIFnAo2LnQSzWJCh6TP2oZKEjLtpdPDx/jQKD0cRMqUBDxVf0+kJNR6FPqmMyQw0PPeRPzPaycQnHkpl3ECTNLZoiARGCI8SQH3uGIUxMgQQhU3t2I6IIpQMFkVTAju/MuLpHFcdivlyt1JqXqRxZFH++gAHSEXnaIqukE1VEcUJegZvaI368l6sd6tj1lrzspm9tAfWJ8/lJmTDQ==</latexit>

EXPAND

Anisotropic Message Passing (AMP)

Differentiable Pooling

<latexit sha1_base64="ZSdNMt+vmv3aIA3ounF1vKN5bWw=">AAAB/3icbVDLSsNAFJ3UV62vqODGTbAIQqEkItWNUNSFywr2AW0Ik+m0HTqZhJkbocQs/BU3LhRx62+482+ctFlo64HLPZxzL3Pn+BFnCmz72ygsLa+srhXXSxubW9s75u5eS4WxJLRJQh7Kjo8V5UzQJjDgtBNJigOf07Y/vs789gOVioXiHiYRdQM8FGzACAYteeYBeImoOOll1tNK74ZywB54Ztmu2lNYi8TJSRnlaHjmV68fkjigAgjHSnUdOwI3wRIY4TQt9WJFI0zGeEi7mgocUOUm0/tT61grfWsQSl0CrKn6eyPBgVKTwNeTAYaRmvcy8T+vG8Pgwk2YiGKggsweGsTcgtDKwrD6TFICfKIJJpLpWy0ywhIT0JGVdAjO/JcXSeu06tSqtbuzcv0qj6OIDtEROkEOOkd1dIsaqIkIekTP6BW9GU/Gi/FufMxGC0a+s4/+wPj8AaPKleE=</latexit>

tn+1 = tn + �t

<latexit sha1_base64="UNl7pjaN06/WA5y5JNTrt2k0TXU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB+yrfrniVt05yCrxclKBHI1++as3iFkacYVMUmO6npugn1GNgkk+LfVSwxPKxnTIu5YqGnHjZ/NTp+TMKgMSxtqWQjJXf09kNDJmEgW2M6I4MsveTPzP66YYXvuZUEmKXLHFojCVBGMy+5sMhOYM5cQSyrSwtxI2opoytOmUbAje8surpHVR9WrV2v1lpX6Tx1GEEziFc/DgCupwBw1oAoMhPMMrvDnSeXHenY9Fa8HJZ47hD5zPH2WejeQ=</latexit>

tn

<latexit sha1_base64="MJeiRsgXSZrZ4KYXtKDNSvrqbFY=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0iKVI9FLx4r2A9oQ9lsN+3S3U3Y3Qgl9C948aCIV/+QN/+NmzYHbX0w8Hhvhpl5YcKZNp737ZQ2Nre2d8q7lb39g8Oj6vFJR8epIrRNYh6rXog15UzStmGG016iKBYhp91wepf73SeqNIvlo5klNBB4LFnECDa55Ln1yrBa81xvAbRO/ILUoEBrWP0ajGKSCioN4Vjrvu8lJsiwMoxwOq8MUk0TTKZ4TPuWSiyoDrLFrXN0YZURimJlSxq0UH9PZFhoPROh7RTYTPSql4v/ef3URDdBxmSSGirJclGUcmRilD+ORkxRYvjMEkwUs7ciMsEKE2PjyUPwV19eJ5266zfcxsNVrXlbxFGGMziHS/DhGppwDy1oA4EJPMMrvDnCeXHenY9la8kpZk7hD5zPH40yjUc=</latexit>

0.2

<latexit sha1_base64="MJeiRsgXSZrZ4KYXtKDNSvrqbFY=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0iKVI9FLx4r2A9oQ9lsN+3S3U3Y3Qgl9C948aCIV/+QN/+NmzYHbX0w8Hhvhpl5YcKZNp737ZQ2Nre2d8q7lb39g8Oj6vFJR8epIrRNYh6rXog15UzStmGG016iKBYhp91wepf73SeqNIvlo5klNBB4LFnECDa55Ln1yrBa81xvAbRO/ILUoEBrWP0ajGKSCioN4Vjrvu8lJsiwMoxwOq8MUk0TTKZ4TPuWSiyoDrLFrXN0YZURimJlSxq0UH9PZFhoPROh7RTYTPSql4v/ef3URDdBxmSSGirJclGUcmRilD+ORkxRYvjMEkwUs7ciMsEKE2PjyUPwV19eJ5266zfcxsNVrXlbxFGGMziHS/DhGppwDy1oA4EJPMMrvDnCeXHenY9la8kpZk7hD5zPH40yjUc=</latexit>

0.2

<latexit sha1_base64="UHVSBHL4YSR4d59rNmekevd5JR8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48VrS20oWy2k3bpZhN2N4US+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fDoScepYthksYhVO6AaBZfYNNwIbCcKaRQIbAWj25nfGqPSPJaPZpKgH9GB5CFn1FjpYdzjvXLFrbpzkFXi5aQCORq98le3H7M0QmmYoFp3PDcxfkaV4UzgtNRNNSaUjegAO5ZKGqH2s/mpU3JmlT4JY2VLGjJXf09kNNJ6EgW2M6JmqJe9mfif10lNeO1nXCapQckWi8JUEBOT2d+kzxUyIyaWUKa4vZWwIVWUGZtOyYbgLb+8Sp4uql6tWru/rNRv8jiKcAKncA4eXEEd7qABTWAwgGd4hTdHOC/Ou/OxaC04+cwx/IHz+QNhFo3h</latexit>vi

Figure 1. The architecture of EvoMesh. Physical dynamics is modeled on multiple graph resolutions with adaptive structures,
G1,G2, . . . ,GL, and are processed using their respective AMP layers. The DiffSELECT operation performs differentiable pooling to
create coarser graphs with learnable downsampling probabilities. REDUCE and EXPAND integrate inter-level information using learned
feature aggregation weights over the neighboring nodes. EvoMesh is trained end-to-end with one-step supervision.

is the inverse of the REDUCE function and transfers informa-
tion from the coarser level back to the finer level. Most previ-
ous work generates coarser graphs either by using numerical
software or by downsampling the input mesh through heuris-
tic pooling strategies (Cao et al., 2023; Lino et al., 2022; Yu
et al., 2024; Janny et al., 2023). This process is performed
during the data preprocessing stage. The preprocessed hier-
archy with the same input mesh topology is reused across
different initial conditions and time steps.

3. Method
In this section, we introduce EvoMesh, a fully differentiable
model that adaptively generates time-evolving graph hierar-
chies over the sequence, while simultaneously simulating
the physical system over these learned hierarchical graphs.
Figure 1 demonstrates an overview of the proposed model,
which operates in an encode-process-decode pipeline. The
encoder first maps the input field to a latent feature space
V1 = {vi|vi ∈ V1} at the original mesh resolution. Subse-
quently, we model the physical dynamics across the learned
multi-scale graph hierarchies with adaptive graph structures.

In Section 3.1, we present the details of the AMP layer. In
Section 3.2, we discuss the approach for learning context-
aware graph hierarchies. In Section 3.3, we describe the
inter-level downsampling and upsampling processes that
incorporate AMP-based feature propagation. Finally, in

Section 3.4, we outline the implementation details.

3.1. Anisotropic Message Passing

We introduce the AMP layer, which facilitates information
propagation both within and between graph hierarchies,
enabling EvoMesh to effectively capture local and long-
range dependencies simultaneously.

As shown in Eq. (2), a common non-parametric aggregation
in GNN-based mesh simulation is to use the summation for
node update: v̂i = ϕv

(
vi,

∑
vj∈Nvi

êij

)
, where vj ∈ Nvi

denotes a neighboring node of vi in the graph.

To differentiate the contributions of neighboring nodes, the
AMP layer employs learnable parameters ϕw to predict
the anisotropic importance weight of edge feature êij with
respect to node vi. These weights are then normalized across
the neighborhood of vi using a softmax function:

wij = ϕw(eij ,vi,vj), αij =
exp (wij)∑

k∈Ni
exp (wik)

. (3)

The normalized coefficients are used to compute a linear
combination of the corresponding edge features. This linear
combination serves as the final input for the node update
function ϕv given node feature vi:

v̂i = ϕv
(
vi,

∑

vj∈Nvi

αij êij

)
. (4)
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The proposed AMP layer enables the implicit assignment
of varying contribution weights to the updated edge fea-
tures within the same neighborhood. Analyzing the learned
direction-specific weights in AMP further enhances inter-
pretability. We adopt an MLP implementation for ϕw, while
alternative designs, such as graph attention (Veličković et al.,
2018) or cross-attention (Vaswani et al., 2017), are also fea-
sible. A detailed comparison is provided in Appendix C.2.

3.2. Differentiable Multi-Scale Graph Construction

With the AMP layer functioning within each graph level,
local dependencies are effectively propagated throughout
the high-resolution graphs, guiding the selection of nodes to
be discarded in the next hierarchy for improved long-range
modeling. We now delve into the details of the differen-
tiable node selection method (DiffSELECT) for hierarchi-
cal graph construction.

In the DiffSELECT operation, we train the node update
module ϕv based on anisotropic aggregated edge features to
produce a 2-dimensional probability vector πl

i for each node
vi. This vector πl

i = (πl
i,0, π

l
i,1) represents the probabilities

of discarding or retaining node vi in the next-level coarser
graph Gl+1. We rewrite Eq. (4) as follows:

v̂l
i, π

l
i = ϕv


vl

i,
∑

vj∈Nvi

αl
ij ê

l
ij


 . (5)

In the next step, we apply Gumbel-Softmax sampling (Jang
et al., 2017) independently to each node, using the log-
probabilities (log πl

i,0, log π
l
i,1) as logits. This produces a

soft one-hot vector zli = (zli,0, z
l
i,1) for each node:

zli,k = Gumbel-Softmax
(
log πl

i,0, log π
l
i,1

)

=
exp

(
(log πl

i,k + gli,k)/τ
)

∑1
k′=0 exp

(
(log πl

i,k′ + gli,k′)/τ
) ,

(6)

where gli,k is Gumbel noise sampled independently for each
node, and τ is the temperature parameter controlling the
smoothness of the sampling. In this way, the node set Vl+1

is adaptively constructed based on node features from the
finer graph level. The straight-through Gumbel-Softmax
estimator provides a differentiable approximation to hard
sampling, thereby facilitating end-to-end training. We im-
plement the Gumbel-Softmax with temperature annealing
to stabilize training, initially encouraging the exploration of
hierarchies and gradually refining the selection process.

The edges El+1 in the coarser graph Gl+1 are constructed
by connecting the selected nodes using the original graph’s
edges El. However, this process may result in disconnected
partitions (see Appendix Figure 6). To address this issue,

we enhance the connectivity in El+1 by incorporating the
K-hop edges during edge selection, defined as follows:

Ẽ(K)
l = El ∪

{
eij | ∃vk1

, vk2
, . . . , vkK−1

∈ Vl
s.t. ei,k1

, ek1,k2
, . . . , ekK−1,j ∈ El

}
. (7)

In essence, eij ∈ ẼKl if there exists a sequence of interme-
diate nodes {vk1

, vk2
, . . . , vkK−1

} consecutively connected
by edges in El or eij ∈ El. The edges in El+1 are defined as:

El+1 =
{
eij | ∃vi, vj ∈ Vl+1 s.t. eij ∈ Ẽ(K)

l

}
. (8)

El+1 consists of edges from the enhanced edge set Ẽ(K)
l that

connect nodes in Vl+1. As K increases, nodes in Ẽ(K)
l can

be connected through additional intermediate nodes, thereby
improving long-range connectivity. In practice, the most
effective value of K is found to be 2. We include further
discussions in Appendix C.3.

The graph construction process is fully differentiable, al-
lowing for seamless integration into differentiable physical
simulators. By flexibly adapting graph hierarchies based on
simulation states, it paves the way for more accurate predic-
tions of the spatiotemporal patterns in complex systems.

3.3. Inter-Level Feature Propagation with AMP

During the downsampling process from Gl to the generated
coarser graph Gl+1, as illustrated in Figure 1, the REDUCE
operation aggregates information to each node in Vl+1 from
its corresponding neighbors in Vl. Conversely, the EXPAND
operation unpools the reduced graph back to a finer resolu-
tion, delivering the information of the pooled nodes to their
neighbors at the finer level.

Prior work employed non-parametric aggregation in inter-
level propagation, convolving features based on the nor-
malized node degree. It simplifies intricate relationships
between nodes and neglects the directional aspects of infor-
mation flow. To address this, EvoMesh is designed to learns
inter-level aggregation weights that are both data-specific
and time-varying. Specifically, the importance weight αl

ij

computed by the AMP layer inherently captures the rele-
vance of node vj’s features to node vi at the graph level l.
These weights can be directly reused for the REDUCE and
EXPAND operations in the downsampling and upsampling
processes. We provide details of these operations as follows:

• REDUCE: Let vi be the node at the coarser graph level.
The downsampling process aggregates the information
of the current neighbors Ni by reusing the weight αl

ij :
vl+1
i ← REDUCE({vl

j , α
l
ij}j∈Ni) :=

∑
j∈Ni

αl
ij v

l
j .

• EXPAND: We first unpool the node features from the
coarser graph Gl+1 back to the finer level Gl. To achieve
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Table 2. Quantitative comparison of the one-step and long-term prediction errors. We report the mean results over 3 random seeds,
with corresponding standard deviations detailed in Appendix C.7. Promotion denotes the improvement over the second-best model.

Model
RMSE-1 (×10−2) RMSE-All (×10−2)

Cylinder Airfoil Flag Plate Cylinder Airfoil Flag Plate

MGN (2021) 0.3046 77.38 0.3459 0.0579 59.78 2816 115.3 3.982
Lino et al. (2022) 3.9352 85.66 0.9993 0.0291 27.60 2080 118.2 2.090
BSMS-GNN (2023) 0.2263 71.69 0.5080 0.0632 16.98 2493 168.1 1.811
Eagle (2023) 0.1733 51.55 0.3805 0.0392 20.05 2344 127.7 7.797
HCMT (2024) 0.9190 48.62 0.4013 0.0295 23.59 3238 90.32 2.468
EvoMesh 0.1568 41.41 0.3049 0.0282 6.571 2002 76.16 1.296

Promotion 9.53% 14.8% 11.9% 3.10% 61.3% 3.75% 15.7% 28.5%

this, we record the nodes selected during the downsam-
pling process and use this information to place the nodes
back in their original positions in the graph. Then,
we reuse the previously computed importance weights
αl
ij to assign weighted features from Gl+1 back to Gl.

The EXPAND operation is formally defined as: ṽl
i ←

EXPAND({vl+1
j , αl

ij}j∈Ni) :=
∑

j∈Ni
vl+1
j αl

ij .

• FeatureMixing: While the EXPAND operation up-
samples coarser-level features of Gl+1 to match the res-
olution of the current level Gl, naı̈vely upsampled fea-
tures may suffer from artifacts or misalignment. To
mitigate this, we introduce FeatureMixing to re-
fine and fuse coarse-level features with intra-level in-
formation at the current resolution. Specifically, we
apply an additional anisotropic message passing step
to the upsampled features ṽl

i and then integrate these
features with the original intra-level features vl in
Gl (prior to downsampling) using a skip connection:
v̄l
i ← FeatureMixing(ṽl

i,v
l
i, {elij}j∈Ni) := vl

i +

AMP(ṽl
i, {ṽl

j}j∈Ni , {elij}j∈Ni).

3.4. Implementation Details

We train EvoMesh using the one-step supervision that mea-
sures the L2 loss between the ground truth and the next-step
predictions. We include detailed descriptions of the imple-
mentation of encoder, decoder, node update function and
edge update function in Appendix B.

4. Experiments
In this section, we present the key results of the proposed
method. Additional analyses can be found in Appendix C.

4.1. Experimental Setup

We evaluate EvoMesh on five mesh-based benchmarks from
previous work (Pfaff et al., 2021; Cao et al., 2023; Wu et al.,
2023; Narain et al., 2012). For detailed descriptions, includ-
ing the input physical quantities, please refer to Appendix A.

• CylinderFlow: Simulation of incompressible flow around
a cylinder based on 2D Eulerian meshes.

• Airfoil: Aerodynamic simulation around airfoil cross-
sections based on 2D Eulerian meshes.

• FlyingFlag: Simulation of flag dynamics in the wind
based on Lagrangian meshes with fixed topology.

• DeformingPlate: Deformation of hyper-elastic plates
based on Lagrange tetrahedral meshes.

• FoldingPaper: Deformation of paper sheets with evolving
meshes driven by varying forces at the four corners.

We mainly compare EvoMesh with the following methods:

• MGN (Pfaff et al., 2021), which performs multiple times
of message passing on the original graph.

• Lino et al. (Lino et al., 2022), which also trains MPNNs
on manually-set multi-scale mesh graphs.

• BSMS-GNN (Cao et al., 2023), which generates static
hierarchies using bi-stride pooling and performs message
passing on predefined meshes.

• Eagle (Janny et al., 2023), which constructs a two-scale
hierarchy using precomputed geometric clustering and
performs message passing at both levels.

• HCMT (Yu et al., 2024), which generates static hierar-
chies by applying Delaunay triangulation to the bi-stride
pooled nodes, and enables directed feature propagation
with the attention mechanism.

All models are trained using the Adam optimizer for 1M
steps, with an exponential learning rate decay from 10−4 to
10−6 over the first 500K steps. We provide further details
on the architecture and hyperparameters of the compared
models in Appendix D.

4.2. Main Results

Standard benchmarks. Table 2 presents the root mean
squared error (RMSE) of one-step prediction (RMSE-1) and
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Figure 2. Prediction showcases over 400 future steps on CylinderFlow. From the displayed error maps, it is evident that EvoMesh
effectively captures long-term dynamics, providing predictions that closely align with the ground truth.

<latexit sha1_base64="H7yvnrz/YEMApjHz4p29SVjEeZ0=">AAAB9XicjVDLSgNBEOyNrxhfUY9eBoPgKeyKRC9C0IvHCOYByRpmJ7PJkNnZZaZXDUv+w4sHRbz6L978GyePg4qCBQ1FVTddVJBIYdB1P5zcwuLS8kp+tbC2vrG5VdzeaZg41YzXWSxj3Qqo4VIoXkeBkrcSzWkUSN4MhhcTv3nLtRGxusZRwv2I9pUIBaNopZsO8nsMwgzPPNcdd4slr+xOQf4mJZij1i2+d3oxSyOukElqTNtzE/QzqlEwyceFTmp4QtmQ9nnbUkUjbvxsmnpMDqzSI2Gs7SgkU/XrRUYjY0ZRYDcjigPz05uIv3ntFMNTPxMqSZErNnsUppJgTCYVkJ7QnKEcWUKZFjYrYQOqKUNbVOF/JTSOyl6lXLk6LlXP53XkYQ/24RA8OIEqXEIN6sBAwwM8wbNz5zw6L87rbDXnzG924Ruct08GcJI3</latexit>

t=100
<latexit sha1_base64="wKw4NhK4yYI6Uc66QHzTNAptj/k=">AAAB9XicjVDLSgNBEJyNrxhfUY9eBoPgKeyKRC9C0IvHCOYByRpmJ73JkNnZZaZXDUv+w4sHRbz6L978GyePg4qCBQ1FVTddVJBIYdB1P5zcwuLS8kp+tbC2vrG5VdzeaZg41RzqPJaxbgXMgBQK6ihQQivRwKJAQjMYXkz85i1oI2J1jaME/Ij1lQgFZ2ilmw7CPQZhhmfHrjvuFkte2Z2C/k1KZI5at/je6cU8jUAhl8yYtucm6GdMo+ASxoVOaiBhfMj60LZUsQiMn01Tj+mBVXo0jLUdhXSqfr3IWGTMKArsZsRwYH56E/E3r51ieOpnQiUpguKzR2EqKcZ0UgHtCQ0c5cgSxrWwWSkfMM042qIK/yuhcVT2KuXK1XGpej6vI0/2yD45JB45IVVySWqkTjjR5IE8kWfnznl0XpzX2WrOmd/skm9w3j4BCwWSOg==</latexit>

t=400

Figure 3. A demonstration of how the learned hierarchies adapt to evolving physical dynamics. Top: the velocity field from the
true data. Bottom: the temporal difference of the velocity fields between adjacent time steps alongside the constructed coarser-level
mesh graph (Gl=4). The highlighted areas demonstrate a notable experimental phenomenon: the mesh dynamically evolves with the data
context and aligns with the critical areas of change in the data.

long-term rollouts for 100–600 future time steps (RMSE-
all). EvoMesh consistently outperforms the compared mod-
els across all benchmarks. This demonstrates the effective-
ness of building context-aware, time-evolving hierarchies
with learnable, directionally non-uniform feature propaga-
tion both within and across graph levels. Figure 2 presents
long-term predictions on CylinderFlow, based solely on
the system’s initial conditions at the first step. As we can
see, EvoMesh captures the complex, time-varying fluid flow
around the cylinder obstacle more successfully, with its pre-
dictions closely matching the ground truth evolution. More
results are shown in Appendix C.9.

Can the learned hierarchies adapt to evolving data dy-
namics? In Figure 3, we visualize the time-evolving hi-
erarchies constructed by EvoMesh at different time steps,
where coarser-level nodes tend to concentrate in regions

highlighted by the temporal differences in the true data.
We have two observations here: First, the constructed hi-
erarchy evolves as the data context changes. Second, the
time-evolving graph structures align with the high-intensity
regions, either in the velocity fields (top) or in their temporal
variations (bottom). These results highlight the effectiveness
of our approach in capturing significant dynamic patterns.

Paper simulation with changing meshes. We evaluate
EvoMesh in a more challenging setting with time-varying
meshes for paper folding simulation, generated using the
ARCSim solver (Narain et al., 2012; Wu et al., 2023), and
compare EvoMesh with MGN (Pfaff et al., 2021). Lino et
al., BSMS-GNN, Eagle, and HCMT rely on pre-computed
hierarchies during preprocessing, which limits their applica-
bility in scenarios with dynamically changing mesh topolo-
gies. Therefore, we do not include them in this evaluation.

6



EvoMesh: Adaptive Physical Simulation with Hierarchical Graph Evolutions

Table 3. Simulation results of 2D paper folding with time-
varying input meshes. We here compare EvoMesh with MGN, as
BSMS and HCMT require pre-computed hierarchies, which are
unsuitable for scenarios involving continuously changing meshes.

Model RMSE-1 (×10−2) RMSE-All (×10−2)

MGN (2021) 0.0618 24.08
EvoMesh 0.0544 7.412

Promotion 12.0% 69.2%

We assess the models using ground-truth remeshing nodes
provided by the ARCSim Adaptive Remeshing component,
following the setup from (Pfaff et al., 2021). As shown in
Table 3, EvoMesh achieves superior short-term and long-
term accuracy compared to MGN, indicating that the time-
evolving graph hierarchies in our approach can better fit
physical systems with significant geometric variations, as
represented by the time-varying input mesh structures.

Model stability under variable graph structures. Due
to the stochasticity of Gumbel-Softmax sampling in
DiffSELECT, we evaluate the stability of trained
EvoMesh by conducting three independent runs on the test
set. The mean and standard deviations of the prediction
errors reveal minimal discrepancies across different runs, as
shown in Table 11 in Appendix C.6. These findings demon-
strate that once trained, EvoMesh generates consistent graph
hierarchies based on the same inputs.

4.3. Ablation Studies

EvoMesh has three key components: (i) evolving graph
hierarchy, (ii) anisotropic intra-level propagation, (iii) learn-
able inter-level propagation. To evaluate the contribution
of each component, we implement several ablated vari-
ants of EvoMesh, including: Static(Bi-stride)-Anisotropic-
Unlearnable (M1), Static(Bi-stride)-Anisotropic-Learnable
(M2), Uniform-Anisotropic-Learnable (M3), and Dynamic-
Anisotropic-Unlearnable (M4), and compare them against
the BSMS-GNN baseline, which uses static hierarchies,
isotropic intra-level summation, and unlearnable inter-level
propagation. Both M1 and M2 adopt the same static bi-stride
hierarchy via preprocessing as BSMS-GNN. M3 constructs
the hierarchy via uniform node sampling in each hierarchy,
while M4 applies dynamic hierarchy construction without
learnable inter-level updates.

Figure 4 demonstrates the effectiveness of direction-aware
message propagation at both intra- and inter-levels, as well
as the benefit of learning dynamic graph hierarchies. Com-
paring M1 with BSMS-GNN shows that integrating AMP
improves performance even under a static hierarchy. Fur-
thermore, the comparison between EvoMesh and M4, as
well as between M1 with M2, highlights the importance of
learnable inter-level propagation in capturing hierarchical
signal flow. In addition, although M3 benefits from learnable

propagation, its use of uniform node sampling results in sub-
optimal performance, suggesting the necessity of adaptive
and data-aware hierarchy construction.

Furthermore, in Figure 5, we visualize the variance of pre-
dicted anisotropic edge weights and compare it with areas
where physical quantities present substantial variations over
time. The results reveal a strong correlation between the
anisotropic learning mechanism and the rapidly changing
dynamics of the physical system.

4.4. Generalization Analyses

Generalization to out-of-distribution mesh resolutions.
Nearly all existing machine learning models for mesh-based
simulations are not resolution-free and may fail when eval-
uated on unseen mesh resolutions. We assess the gener-
alization performance of EvoMesh by training it on low-
resolution meshes and testing it on high-resolution meshes.
The average number of nodes in the test data is twice that
of the training data, and the number of edges is three times
greater. Table 4 reports one-step and 50-step rollout errors
on out-of-distribution (OOD) mesh resolutions. EvoMesh
shows strong generalization on the CylinderFlow and Air-
foil datasets, highlighting its zero-shot capability to handle
refined mesh structures. This performance gain is largely
attributed to EvoMesh’s ability to construct hierarchical
graphs adaptively, allowing it to scale effectively with in-
creased resolution. On the other hand, MGN achieves lower
errors on the FlyingFlag and DeformingPlate datasets, in-
dicating that mesh-based architectures remain effective for
systems with more regular structures and smoother deforma-
tion dynamics. While our method does not yet achieve full
generalization across arbitrary resolutions, truly resolution-
free modeling remains an open challenge that calls for more
advanced architectural design. Nevertheless, this holds sig-
nificant value in practical applications and has the potential
to greatly reduce the time overhead of numerical simulation
processes for preparing the large-scale mesh data required
for model training.

Generalization to physical variations. We evaluate
EvoMesh under strong distribution shifts in the input physi-
cal quantities. Table 5 presents data statistics and the RMSE
results on the CylinderFlow and Airfoil datasets. EvoMesh
consistently outperforms the compared models in both short-
term and long-term simulations. This advantage mainly
comes from its ability to learn evolving hierarchies and
model intra-level and inter-level interactions based on phys-
ical context. When the fluid dynamics in the test set become
more complex—characterized by increased variance in the
velocity field over time—the dynamics patterns propagate
more rapidly in space. EvoMesh adaptively constructs graph
hierarchies and more effectively captures long-range node
interactions in response to evolving physical contexts.
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Figure 4. Ablation studies. We provide analyses of time-evolving hierarchies, anisotropic intra-level propagation, and learnable inter-level
feature propagation. The red dashed lines represent results from BSMS-GNN (Cao et al., 2023). Lower values indicate better performance.
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Figure 5. A demonstration of how the predicted anisotropic edge weights respond to dramatic changes in physical quantities
over time. Top: Visualizations of the variance in the generated anisotropic weights, calculated on adjacent edges. Bottom: Variance in
physical quantities over time. The strong correlation between them highlights the AMP’s ability to detect significant patterns in data.

5. Related Work
Learning-based and GNN-based physical simulation.
Recent advances have demonstrated that learning-based
approaches can efficiently tackle complex and high-
dimensional physical simulation tasks, including fluid dy-
namics (Zhu et al., 2024), structural analysis (Kavvas et al.,
2018; Thai, 2022), and climate modeling (Kurth et al., 2018;
Rasp et al., 2018; Rolnick et al., 2022; Lam et al., 2023).
These methods can be broadly categorized by their data
representations: partial differential equations (Raissi et al.,
2017; 2019; Lu et al., 2019; Li et al., 2021; Wang et al.,
2021), particle-based systems (Li et al., 2019; Sanchez-
Gonzalez et al., 2020; Ummenhofer et al., 2020; Prantl
et al., 2022), and mesh-based systems (Pfaff et al., 2021;
Lino et al., 2022; Fortunato et al., 2022; Cao et al., 2023).
The rapid inference and differentiable nature of these mod-
els have facilitated a range of downstream applications, such
as inverse design (Wang & Zhang, 2021; Goodrich et al.,
2021; Allen et al., 2022; Janny et al., 2023). In particu-
lar, Graph Neural Networks (GNNs) have emerged as a
powerful tool for modeling physical systems across various
domains, including articulated bodies (Sanchez-Gonzalez

et al., 2018), soft-body deformation and fluids (Li et al.,
2019; Mrowca et al., 2018; Sanchez-Gonzalez et al., 2020;
Rubanova et al., 2022; Wu et al., 2023), rigid body dynam-
ics (Battaglia et al., 2016; Li et al., 2019; Mrowca et al.,
2018; Bear et al., 2021; Rubanova et al., 2022), and aero-
dynamics (Belbute-Peres et al., 2020; Hines & Bekemeyer,
2023; Pfaff et al., 2021; Fortunato et al., 2022; Cao et al.,
2023). Among these, MeshGraphNets (Pfaff et al., 2021)
serves as a representative, introducing a general scheme for
representing meshes as graphs and learning mesh-based dy-
namics, inspiring subsequent works that focus on improving
modeling capacity and computational efficiency.

Hierarchical GNNs for physical simulation. Hierarchi-
cal GNNs leverage multi-scale graph structures (Lino et al.,
2022; Han et al., 2022; Fortunato et al., 2022; Allen et al.,
2023; Janny et al., 2023; Cao et al., 2023; Yu et al., 2024) to
reduce computational overhead by operating on coarser rep-
resentations and to facilitate long-range information propa-
gation. For example, GMR-Transformer-GMUS (Han et al.,
2022) employs uniform sampling for pooling, while Ea-
gle (Janny et al., 2023) adopts a two-scale message pass-
ing scheme with geometric clustering by preprocessing the
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Table 4. One-step (RMSE-1) and 50-step (RMSE-50) rollout prediction errors on out-of-distribution (OOD) mesh resolutions. The
average number of nodes in the test data is twice that of the training data, and the number of edges is three times greater.

Model
RMSE-1 (×10−2) RMSE-50 (×10−2)

Cylinder Airfoil Flag Plate Cylinder Airfoil Flag Plate

MGN (2021) 1.0596 169.6 0.4215 0.0359 7.833 1829 55.96 0.2467
Lino et al. (2022) 25.893 144.4 0.8906 0.0475 65.21 1391 93.68 3.9845
BSMS-GNN (2023) 0.9177 202.3 0.6486 0.0474 2.097 1677 59.18 0.2554
HCMT (2024) 1.3864 205.5 1.0634 0.0354 7.541 2569 86.87 0.2957
EvoMesh 0.4855 126.7 0.5536 0.0368 1.077 812.5 58.29 0.3780

Table 5. Generalization results across domains with various
scales of input velocities. The domain gap is presented by the
variance and norm of data in training/test splits. Increase denotes
the relative increase of the test data compared to the training data.

Split
Cylinder Airfoil

Var Norm Var Norm

Train 7.92 579.6 288.3 173.4
Test 13.43 826.3 827.4 180.6
Increase 64.5% 42.5% 186.9% 4.20%

Model
Cylinder Airfoil

RMSE-1 RMSE-All RMSE-1 RMSE-All

MGN 4.99×10−3 1.020 1.193 88.23
Lino et al. 5.60×10−3 1.415 3.226 410.5
BSMS-GNN 2.58×10−3 0.251 1.035 30.32
Eagle 2.49×10−3 0.273 0.931 51.83
HCMT 7.35×10−3 1.047 1.697 63.18
EvoMesh 2.14×10−3 0.091 0.665 22.57

Promotion 14.1% 63.7% 28.6% 25.6%

mesh structure. LayersNet (Shao et al., 2023) introduces
a static, patch-based hierarchy for garment animation, sim-
plifying interaction modeling via particle patches. More
recent works (Lino et al., 2022; Cao et al., 2023; Yu et al.,
2024; Garnier et al., 2024; Hy & Kondor, 2023) integrate
hierarchical GNNs with U-Net architectures (Ronneberger
et al., 2015), using static multi-level structures for message
passing. For instance, Lino et al. (2022) relies on manually
defined grid resolutions, BSMS-GNN (Cao et al., 2023)
proposes a bi-stride pooling strategy with enhanced edge
connectivity, and HCMT (Yu et al., 2024) further refines
the hierarchy using Delaunay triangulation and replaces
message passing with graph attention. However, these meth-
ods typically employ precomputed, static hierarchies and
uniform feature aggregation, limiting their adaptability to
dynamic physical environments. In contrast, our approach
constructs context-aware, temporally evolving graph hier-
archies with learnable anisotropic feature propagation, en-
abling robust adaptation to diverse initial conditions and
rapidly changing dynamics.

Differentiable graph pooling. A variety of differentiable
and learnable graph pooling methods have been proposed to
enable end-to-end training of hierarchical graph representa-

tions, such as DiffPool (Ying et al., 2018), TopKPool (Gao
& Ji, 2019), SAGPool (Lee et al., 2019), and ASAPool-
ing (Ranjan et al., 2020). These methods construct hier-
archical representations of graphs by either learning soft
cluster assignments or selecting top-ranked nodes based on
learned importance scores. However, most of these meth-
ods are primarily designed for static graphs and focus on
global graph-level tasks, where unpooling or reconstruction
of the original graph structure is not required. In contrast,
mesh-based physical simulation demands fine-grained local
information and temporally-evolving hierarchies for accu-
rate modeling of physical dynamics. Our approach differs
by constructing context-aware, time-varying graph hierar-
chies tailored for mesh-based simulation, enabling flexible
integration of global and local features and supporting dy-
namic adaptation to changing physical conditions.

6. Conclusions and Limitations
In this paper, we introduced EvoMesh, a neural network that
significantly advances the state-of-the-art in mesh-based
simulation. Our key innovation is adaptively creating the
temporally-evolving and context-aware graph structures of
hierarchical GNNs through a differentiable node selection
process. To this end, we proposed an anisotropic message
passing mechanism to enhance the propagation of long-term
dependencies between distant nodes, aligning with the di-
rected nature of significant dynamic patterns. Extensive
experiments show that EvoMesh outperforms existing mod-
els, especially those with fixed graph hierarchies, in both
short-term and long-term predictions.

A potential limitation of this work is the need to improve the
interpretability of the learned hierarchies. Additionally, we
would consider incorporating physical priors into EvoMesh
to enhance the model’s robustness and generalizability, par-
ticularly in resolution-free problem settings, which have
been less explored in existing mesh-based approaches.
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Appendix

A. Datasets
We employ four established datasets from MGN (Pfaff et al., 2021): CylinderFlow, Airfoil, Flag, and DeformingPlate.

• The CylinderFlow case examines the transient incompressible flow field around a fixed cylinder positioned at different
locations, with varying inflow velocities.

• The Airfoil case explores the transient compressible flow field at varying Mach numbers around the airfoil, with different
angles of attack.

• The Flag case involves a flag blowing in the wind on a fixed Lagrangian mesh.
• The DeformingPlate case involves hyperelastic plates being compressed by moving obstacles.

The CylinderFlow, Airfoil, and Flag datasets are each split into 1,000 training sequences, 100 validation sequences, and
100 testing sequences. The DeformingPlate dataset is split into 500 training sequences, 100 validation sequences, and 100
testing sequences.

We also consider a more challenging dataset, FoldingPaper, where varying forces at the four corners deform paper with
time-varying Lagrangian mesh graphs, generated using the ARCSim solver (Narain et al., 2012; Wu et al., 2023). This
dataset is divided into 500 training sequences, 100 validation sequences, and 100 testing sequences.

We present statistical details of all five datasets in Table 6 and the input physical quantities in Table 7.

Table 6. Statistics of the CylinderFlow, Airfoil, Flag, DeformingPlate, and FoldingPaper datasets.

Dataset Average # nodes Average # edges Mesh type # Hierarchies # Steps

CylinderFlow 1886 5424 triangle, 2D 7 600
Airfoil 5233 15449 triangle, 2D 7 100
Flag 1579 9212 triangle, 2D 7 400
DeformingPlate 1271 4611 tetrahedron, 3D 6 400
FoldingPaper 110 724 triangle, 2D 3 325

Table 7. Comparisons of the edge offsets and node inputs of different physical systems.

Dataset Type Edge offset eij Node Input vi Outputs Noise Scale

CylinderFlow Eulerian Xij , |Xij | vi, ni v̇i vi : 2e− 2
Airfoil Eulerian Xij , |Xij | ρi, vi, ni v̇i, ρ̇i, Pi vi : 2e− 2, ρi : 1e1
Flag Lagrangian Xij , |Xij |, xij , |xij | ẋi, ni ẋi xi : 3e− 3
DeformingPlate Lagrangian Xij , |Xij |, xij , |xij | ẋi, ni ẋi xi : 3e− 3
FoldingPaper Lagrangian Xij , |Xij |, xij , |xij | ẋi, ni ẋi xi : 3e− 3

B. Model Implementation
We present model configurations of different physical systems below:

• Edge offsets. X and x stand for the mesh-space and world-space position. For an Eulerian system, only mesh position is
used for eij , while for a Lagrangian system, both mesh-space and world-space positions are used. The edge offsets are
directly used as low-dimensional input to the edge update function ϕe. These features are concatenated and fed into ϕe

without any transformation through an MLP or other encoding processes to generate a higher-dimensional representation.

• Input and target of the physical term of node vi. v is the velocity, ρ is the density, P is the absolute pressure, and the
dot ȧ = at+1 − at stands for temporal change for a variable a. n stands for the node type of vi. Random Gaussian noise
is added to the node input features to enhance robustness during training (Pfaff et al., 2021; Sanchez-Gonzalez et al.,
2020; Cao et al., 2023). All the variables involved are normalized to zero-mean and unit variance via preprocessing. The
preprocessed physical term is fed to the encoder to transform it into a high-dimensional representation.

The encoder, decoder, node update function ϕv , and edge update function ϕe all utilize two-layer MLPs with ReLU activation
and a hidden size of 128. Similarly, the importance weight network ϕw in AMP is implemented using a two-layer MLP.
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Table 8. Qualitative results of model variants of EvoMesh and the baseline model.

RMSE-1 (×10−2) RMSE-All (×10−2)

Model Cylinder Flag Cylinder Flag

BSMS-GNN (Cao et al., 2023) 0.2263 0.5080 16.98 168.1
Static(Bi-stride)-Anisotropic-Unlearnable (M1) 0.1995 0.4804 9.621 121.1
Static(Bi-stride)-Anisotropic-Learnable (M2) 0.1695 0.4666 8.317 109.9
Uniform-Anisotropic-Learnable (M3) 0.2019 0.3999 9.357 145.27
Dynamic-Anisotropic-Unlearnable (M4) 0.1631 0.3538 7.793 82.65
EvoMesh 0.1568 0.3049 6.571 76.16

Figure 6. Mesh visualization on Flag Dataset. Original mesh (left), sub-level graph after differentiable node selection with K-hop
enhancement with K = 2 (middle), and sub-level graph after node selection without K-hop enhancement (right).

LayerNorm is applied to the MLP outputs, except for the decoder and the importance weight network. We set K = 2
for edge enhancement, which is aligned with the setting of BSMS-GNN (Cao et al., 2023). In the Gumbel-Softmax
for differentiable node selection, temperature annealing decreases the temperature from 5 to 0.1 using a decay factor of
γ = 0.999, encouraging exploration of hierarchies while gradually refining their selection to ensure stability. EvoMesh is
trained with Adam optimizer, using an exponential learning rate decay from 10−4 to 10−6. All experiments are conducted
using 4 Nvidia RTX 3090. We mainly build EvoMesh based on the released code of BSMS-GNN (Cao et al., 2023).

C. Additional Results
C.1. Ablation Study

In Sec. 4.3, we compare different variants of our EvoMesh model against the BSMS-GNN baseline, to evaluate the
effectiveness of (i) dynamic hierarchy construction based on the input mesh topology and physical quantities, (ii) anisotropic
intra-level feature propagation, (iii) learnable inter-level feature propagation. The variants we investigate include:

• Static(Bi-stride)-Anisotropic-Unlearnable (M1),

• Static(Bi-stride)-Anisotropic-Learnable (M2),

• Uniform-Anisotropic-Learnable (M3),

• Dynamic-Anisotropic-Unlearnable (M4).

In this ablation study, we utilize a static graph hierarchy preprocessed using bi-stride pooling as described in the BSMS-GNN
paper (Cao et al., 2023) for static hierarchy variants, along with a non-parametric intra-level aggregation function from
previous works (Pfaff et al., 2021; Cao et al., 2023). Additionally, BSMS-GNN employs unlearnable node degree metrics
to generate inter-level aggregation weights, which convolve features based on the normalized node degree for inter-level
propagation. We show the quantitative RMSE values of Figure 4 in Table 8.

C.2. Alternative Implementation of AMP

We evaluate the effectiveness of the AMP module by comparing it with alternative attention-based designs (Veličković et al.,
2018; Vaswani et al., 2017).

Unlike standard attention mechanisms such as Graph Attention Networks(GAT) (Veličković et al., 2018), AMP enables
differentiable dynamic hierarchy construction—an essential capability for modeling evolving physical systems. While
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Table 9. Results of different implementations of AMP module.
Cylinder Flag

AMP Implementation RMSE-1 (×10−2) RMSE-All (×10−2) RMSE-1(×10−2) RMSE-All (×10−2)

EvoMesh-GATConv 0.2025 10.253 0.3009 106.2
EvoMesh-CrossAttention 0.1881 8.356 0.3650 75.12
EvoMesh 0.1568 6.571 0.3049 76.16

AMP and GAT both compute importance weights, their usage differs substantially: GAT uses these weights to aggregate
node features, whereas AMP directly applies the predicted weights to edge features and reuses them for inter-level feature
propagation. This dual mechanism allows AMP to jointly support dynamic hierarchy learning and physics modeling via
end-to-end training. To assess the benefits of AMP over GAT, we replace AMP with GATConv (using a single attention
head) in EvoMesh. As shown in Table 9, the AMP-based model consistently outperforms the GAT-based variant across
datasets, highlighting the importance of dynamic hierarchy construction.

We further explore the flexibility of AMP by implementing it with a cross-attention mechanism (Vaswani et al., 2017)
in place of the default MLP. Specifically, edge features êij are refined by attending to node features vi through scaled
dot-product attention:

êaggr = CrossAttention(Q = vi, ,K = êij , , V = êij), (9)

and the resulting attention scores are reused for inter-level propagation. Experimental results in Table 9 show that while the
cross-attention implementation is competitive, the original MLP-based AMP achieves better overall accuracy. This suggests
that the edge features êij already encode relevant node information, making the explicit inclusion of vi through attention
redundant and potentially less efficient.

C.3. Edge Enhancement

When constructing the lower-level graph Gl+1 based on the selected nodes, the edges El+1 are formed by connecting these
nodes using the original edges El from the previous graph. However, this approach may lead to disconnected partitions,
as observed in previous work (Lee et al., 2019; Cao et al., 2023; Gao & Ji, 2019), and illustrated in Figure 6. To address
this issue, we enhance the connectivity of El+1 by incorporating K-hop edges during the edge construction process. We
investigate the impact of different K values, specifically K = 2, 3, 4, on the Flag dataset. The results are presented in
Table 10,along with comparisons of the computational efficiency.

Notably, K = 2 yields the lowest RMSE across all conditions (RMSE-1, RMSE-50, and RMSE-all), indicating superior
performance compared to higher K values. Despite the performance decline observed with K = 3 and K = 4, they still
outperform the baseline results, indicating the effectiveness of dynamic hierarchical modeling and anisotropy message
passing.

Table 10. Results for different values of K in edge enhancement. Here, K = 1 denotes directly using edges of selected nodes from
previous graph levels. Training time and memory usage are measured with a batch size of 32, while inference time and memory are
evaluated with a batch size of 1.

Training Infer

RMSE-1 (×10−2) RMSE-All (×10−2) Time (ms) vRAM (GBs) Time (ms) vRAM (GBs)

K = 1 0.3296 100.1 31.57 14.75 23.60 1.17
K = 2 0.3049 76.16 33.67 16.53 26.33 1.24
K = 3 0.3380 86.84 34.67 18.49 33.21 1.25
K = 4 0.3510 105.4 35.27 18.76 32.25 1.28

C.4. Hyperparameter Analyses on Number of Hierarchies

We conduct an ablation study to assess the impact of varying numbers of hierarchies on model performance. The results
from the CylinderFlow dataset, illustrated in Figure 7, demonstrate that EvoMesh consistently outperforms BSMS-GNN
across all tested numbers of graph hierarchies. Both models show improved performance with increased hierarchy depth up
to 7, indicating that deeper levels help capture more complex interactions and thus enhance accuracy. However, a slight
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(b) Ratios of challenging nodes

Figure 8. (a) Error maps, where nodes with the top 10% of errors in each model’s predictions are marked in yellow and referred to as
“challenging nodes”. (b) EvoMesh retains more challenging nodes in coarser graph hierarchies to capture multi-scale dependencies.

performance decline is observed at level 9, which may suggest the onset of overfitting. Overall, the dynamically learned
hierarchies in EvoMesh are shown to be more effective compared to the predefined static hierarchies used in BSMS-GNN.

C.5. Effectiveness of Evolving Hierarchies

From Figure 4, by comparing EvoMesh vs. M2 and M4 vs. M1, we observe the advantages of learning adaptive and
temporally evolving hierarchical graph structures. These results highlight the significance of adaptively modeling interactions
in context-dependent graphs. To better understand how EvoMesh constructs dynamic hierarchies, we visualize the distribution
of nodes with the top 10% prediction errors in Figure 8(a). Accordingly in Figure 8(b), we observe that EvoMesh retains a
higher proportion of “challenging” nodes in the coarser message passing levels, enabling our model to capture multi-scale
dependencies more effectively, especially in areas where finer message passing levels struggle. In contrast, the predefined
static hierarchies in the Bi-stride pooling baseline are data-independent and may inevitably overlook modeling long-range
relations surrounding these pivotal nodes, even though they typically present higher errors than those in EvoMesh.

C.6. Stability Analysis

Given the inherent randomness introduced by the Gumbel-Softmax sampling process in DiffSELECT, we evaluated the
stability of EvoMesh by running the trained model on the test set in three independent trials. We report the mean and
standard deviation of the prediction errors in Table 11. Despite the stochastic nature of the node selection process, the
results show a very small standard deviation, demonstrating that EvoMesh reliably constructs stable and consistent dynamic
hierarchies. This stability can be attributed to the DiffSELECT operation, where the node update module ϕv generates
probabilities for retaining nodes in the next-level graph based on anisotropic aggregated edge features. The Gumbel-Softmax
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Table 11. Evaluation of EvoMesh with three independent tests.
Cylinder Airfoil Flag Plate

RMSE-1 (×10−2) 0.1506 ±3.6E-4 36.27 ±5.7E-4 0.2741 ±2.4E-2 0.0263 ±5.6E-6

RMSE-All (×10−2) 6.317 ±0.33 2018 ±130 68.66 ±2.9 1.327 ±0.002

Table 12. Full quantitative results over three training seeds.

Cylinder Airfoil Flag Plate

RMSE-1 (×10−2)

MGN (2021) 0.3046 ±1.08E-2 77.38 ±1.34E+1 0.3459 ±6.34E-2 0.0579 ±2.64E-3
Lino et al. (2022) 3.9352 ±11.3E-2 85.66 ±0.35E+1 0.9993 ±2.44E-2 0.0291 ±0.19E-3
BSMS-GNN (2023) 0.2263 ±4.39E-2 71.69 ±1.41E+1 0.5080 ±0.48E-2 0.0632 ±14.3E-3
Eagle (2023) 0.1733 ±3.02E-2 0.385 ±1.03E+1 51.55 ±0.87E-2 0.0392 ±0.52E-3
HCMT (2024) 0.9190 ±61.2E-2 48.62 ±0.51E+1 0.4013 ±1.76E-2 0.0295 ±3.45E-3
EvoMesh 0.1568 ±0.94E-2 41.41 ±0.66E+1 0.3049 ±6.34E-2 0.0282 ±2.65E-3

RMSE-All (×10−2)

MGN (2021) 59.78 ±2.00E+1 2816 ±1.99E+2 115.3 ±1.30E+1 3.982 ±1.14E-2
Lino et al. (2022) 27.60 ±0.86E+1 2080 ±0.39E+2 118.2 ±0.58E+1 2.090 ±13.2E-2
BSMS-GNN (2023) 16.98 ±0.12E+1 2493 ±1.70E+2 168.1 ±0.65E+1 1.811 ±0.42E-2
Eagle (2023) 20.05 ±0.67E+1 2344 ±2.11E+2 127.7 ±0.88E+1 7.797 ±2.35E-2
HCMT (2024) 23.59 ±1.38E+1 3238 ±3.62E+2 90.32 ±0.50E+1 2.468 ±42.4E-2
EvoMesh 6.571 ±0.06E+1 2002 ±1.02E+2 76.16 ±1.30E+1 1.296 ±1.14E-2

technique, coupled with temperature annealing, enables differentiable and stable node selection across hierarchy levels. As a
result, the dynamic hierarchies are constructed in a manner that is not only consistent but also optimized for long-range
dependencies. Moreover, the prediction errors from EvoMesh are significantly smaller than those of the baseline models,
underscoring the robustness and reliability of the model, even with its dynamic node selection mechanism.

C.7. Full Results over Multiple Training Seeds

In Table 2 in the main manuscript, we report the mean results calculated over three random seeds. In Table 12, we provide
full comparisons between our model and the baseline models, including standard deviations.

C.8. Computation Efficiency

We evaluate computational efficiency based on four criteria: training hours, inference time per step, and the total number of
model parameters. The results are presented in Table 13.

C.9. Rollout Showcases

Figures 9 showcase rollout error maps for the Airfoil, Flag, and DeformingPlate datasets. EvoMesh exhibits much lower
rollout errors than the baseline models.

C.10. Constructed Dynamic Hierarchies

We visualize the constructed context-aware and temporally evolving hierarchies in Figure 10. We can see that the constructed
hierarchies evolve as the input context changes and the evolving graph structures align with high-intensity regions. More
visualizations of the evolution of the graph structure across the sequence are included in the supplementary material.

D. Baseline Details
We compare EvoMesh with following competitive baselines: (1) MGN (Pfaff et al., 2021) which performs multiple message
passing on the input high-resolution mesh topology; (2) Lino et al.(Lino et al., 2022), which uses manually set grid
resolutions and spatial proximity for graph pooling; (3) BSMS-GNN (Cao et al., 2023), which uses predefined bi-stride
pooling prior as preprocessing to generate static hierarchies on same mesh topology; (4) Eagle (Yu et al., 2024), which uses
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Table 13. The detailed measurements of computation efficiency for EvoMesh and baseline models.

Measurements Dataset BSMS-GNN HCMT EvoMesh

Training cost (hrs)

Cylinder 37.11 80.60 35.96
Airfoil 79.09 114.32 75.45
Flag 18.27 66.70 17.14
Plate 39.80 99.84 41.85

Infer time/step (ms)

Cylinder 16.55 79.52 21.79
Airfoil 38.04 106.34 58.84
Flag 17.18 85.87 26.33
Plate 28.44 100.78 47.45

# Parameter

Cylinder 2.05M 2.03M 2.66M
Airfoil 2.58M 2.03M 2.27M
Flag 2.06M 2.03M 2.67M
Plate 2.87M 2.03M 3.20M

a two-scale hierarchical message-passing approach, downscaling mesh resolution via geometric clustering of mesh positions;
(5) HCMT (Yu et al., 2024), which uses Delauny triangulation based on bi-stride nodes and adopt attention mechanism to
enable non-uniform feature propagation. The architecture details of the compared models are as follows:

• MGN. In MGN, we use 15 message passing steps in all datasets. The encoder, decoder, node update function, and edge
update function are configured in the same way as in our model.

• Lino et al. We use the four-scale GNN structure proposed in the work of Lino et al. (2022). The edge length of the
smallest cell for each dataset is 1/10 of the average scene size, with each lower scale doubling in size. We follow its
original paper to use 4 message passing steps at the top and bottom levels and two for the others.

• BSMS-GNN. We use the same number of graph hierarchies in EvoMesh and as in BSMS-GNN. We use the minimum
average distance as the seeding heuristic for the BFS search recommended in its original paper. The multi-level building is
processed in one pass. The inter-level propagation uses the normalized node degree to convolve features from neighbors
to central nodes. The encoder, decoder, node update function, and edge update function are set up the same way as in our
model. We perform one message passing step at each graph level.

• Eagle. We use the same-size KMeans algorithm in the preprocessing step with a cluster size of 10. The encoder
consists of 4 stacked GNN layers. The graph pooling module comprises a single-layer gated recurrent unit followed by
a single-layer MLP. The hidden dimension is set to 128 across all datasets. The attention module includes 4 sequential
attention blocks, each with a single attention head. A final layer normalization is applied after the last attention block. The
decoder shares the same architecture as that used in EvoMesh.

• HCMT. The hidden dimension and the number of attention heads in the HCMT block are set to 128 and 4, respectively.
We use the same number of hierarchies as in EvoMesh. For the Cylinder and Airfoil datasets, due to the presence of
hollow sections in the mesh, we do not apply Delaunay triangulation for remeshing. Instead, we use edge connections
generated through bi-stride pooling.Like in EvoMesh, we use a single message passing step at each graph level.

Notably, the node encoder, decoder, node update function, and edge update function of MGN, Lino et al., BSMS-GNN,
HCMT and Eagle have the same network architecture as those in EvoMesh. To reduce the number of network parameters,
we avoid separately encoding the edge offset eij . Instead, we concatenate it with the node latents and use this combined
input for the edge update function to compute êij.

All models are trained using the Adam optimizer for 1M steps, with an exponential learning rate decay from 10−4 to 10−6

and a decay rate of γ = 0.79 from the first 500K steps. The batch size is set to 32.
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Figure 9. Showcases of rollout prediction error maps on Airfoil, Flag and DeformingPlate dataset.
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Figure 10. Row 1: The velocity field from the true data on the CylinderFlow dataset. Row 2-6: The temporal difference of the velocity
fields between adjacent time steps alongside the constructed coarser-level graphs.
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