CABS: Conflict-Aware and Balanced
Sparsification for Enhancing Model Merging

Zongzhen Yang ' > Binhang Qi'?? Hailong Sun'

Abstract

Model merging based on task vectors, i.e., the
parameter differences between fine-tuned models
and a shared base model, provides an efficient way
to integrate multiple task-specific models into a
multitask model without retraining. Recent works
have endeavored to address the conflicts between
task vectors, one of the significant challenges
faced by model merging, through sparsification;
however, two issues significantly limit their per-
formance: high parameter overlap and unbal-
anced weight distribution. To address these is-
sues, we propose a simple yet effective framework
called CABS (Conflict-Aware and Balanced Spar-
sification), consisting of Conflict-Aware Sparsi-
fication (CA) and Balanced Sparsification (BS).
CA can reduce parameter overlap by applying
masks during sequential pruning, ensuring that
each task vector retains distinct, non-overlapping
parameters. BS leverages n:m pruning to pre-
serve critical weights while maintaining an even
distribution across layers. Our comprehensive ex-
periments demonstrate that CABS outperforms
state-of-the-art methods across diverse tasks and
model sizes.

1. Introduction

Model merging has gained increasing attention in the deep
learning community, particularly in the context of using
task vectors for model merging in large language models
(LLMs) (Ilharco et al., 2022; Li et al., 2023; Wortsman et al.,
2022; Jin et al., 2022; Matena & Raffel, 2022; Singh &
Jaggi, 2020; Akiba et al., 2024). This technique has become

!State Key Laboratory of Complex & Critical Software Envi-
ronment (CCSE), Beihang University, Beijing, China *Hangzhou
Innovation Institute of Beihang University, Hangzhou, China
3National University of Singapore, Singapore, Singapore . Corre-
spondence to: Hailong Sun <sunhl@buaa.edu.cn>.

Proceedings of the 42" International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

2%

Wenrui Long ' > Ruobing Zhao ' > Xiang Gao !>

especially popular for merging homologous models, those
derived by fine-tuning the same base model on different
tasks, to create a better-performing model. Many of the best-
performing models on the LLM leaderboard (Beeching et al.,
2023) are built by fine-tuning the base models and subse-
quently merging them to optimize task-specific performance.
Additionally, major enterprises have employed model merg-
ing techniques in the development of pre-training models,
such as Llama3 (Dubey et al., 2024) and Qwen?2 (Yang et al.,
2024a; Lu et al., 2024), to enhance generalization capabili-
ties and improve performance across a range of tasks.

Recent studies have further shown that sparsifying task vec-
tors before merging can mitigate parameter conflicts be-
tween different task vectors, leading to measurable improve-
ments in merging performance (Yu et al., 2024; Yadav et al.,
2024; Davari & Belilovsky, 2023; He et al., 2024). These
conflicts can be categorized into two types: (a) conflicts due
to redundant parameters, where parameters that contribute
little to performance are unnecessarily retained, and (b) con-
flicts due to overlapping parameters, where task vectors
retain parameters that overlap, potentially with significantly
different magnitudes or signs. Such overlaps hinder the
effectiveness of the merging process.

Sparsifying task vectors, whether selectively or randomly,
aims to reduce conflicts in model merging. However, it
shares methodological similarities with one-shot pruning,
which primarily focuses on model compression. Magnitude-
based pruning (Liang et al., 2021) is one of the mainstream
pruning techniques, which can estimate the importance of
weights and selectively preserve the essential weights, thus
being rightfully superior to random pruning. Inspired by
pruning techniques, recent model merging studies (Yadav
et al., 2024) applied magnitude-based pruning to sparsify
task vectors with the important weights retained. However,
as pointed out by DARE (Yu et al., 2024), the results are
counterintuitive: magnitude-based pruning underperforms
compared to random pruning methods in the context of
model merging.

Our research explores the reasons behind this discrepancy,
especially in a setting where magnitude-based pruning is
expected to perform well. Addressing these issues is key to
developing high-performance merged models. Specifically,

CABS: Conflict-Aware and Balanced Sparsification for Enhancing Model Merging

Task vector A(Tp)

Task vector B(Tg) Remaining Tg Tg with CABS

©)

lement-wise |+
product

CABS
Merged Task
vector with CABS

(a) Pruning task vectors with CABS

Merged Task
vector with MP

+ | Magnitude |+
I
Pruning |+

‘overlap

:sign confilict | .

(b) Merging task vectors with and without CABS

Figure 1. Illustration of the CABS framework, which enhances model merging by addressing parameter overlap and weight imbalance.
By integrating Conflict-Aware Sparsification (CA) and Balanced Sparsification (BS), CABS delivers more effective merging compared to
standard merging with magnitude-based pruning (MP), leading to improved model performance.

by analyzing the weight distribution and overlap in task
vectors produced by DARE and magnitude-based pruning,
we identified two key factors contributing to the underper-
formance of magnitude-based pruning:

High Parameter Overlap: After magnitude-based pruning,
the retained weights of different task vectors often exhibit
significant overlap, particularly compared to random meth-
ods like DARE. The overlap increases conflicts between
task vectors during model merging, ultimately degrading
the performance of the merged model.

Unbalanced Weight Distribution: Magnitude-based prun-
ing tends to distribute retained weights unevenly across the
model’s weight matrices, with some regions retaining signif-
icantly more weights than others. After pruning, the model
merging process applies a uniform scaling coefficient glob-
ally across the model to restore performance. However, this
process amplifies the existing imbalance, ultimately leading
to suboptimal performance.

To address the issues above, we propose a novel framework:
Conflict-Aware and Balanced Sparsification (CABS). As
illustrated in Figure 1, CABS distinguishes itself from exist-
ing methods by introducing two key strategies:

Conflict-Aware (CA) Sparsification: CA addresses con-
flicts between task vectors by employing a sequential prun-
ing approach, ensuring no overlap between the retained
weights of different task vectors. As shown in Figure 1 (a),
CA first applies pruning to task vector A (blue, 74), and then
masks the overlapping weights when pruning task vector B

(yellow, 7p), resulting in remaining 7. This masking tech-
nique minimizes conflicts during the merging process by
removing shared weights, allowing for more effective task
vector merging and improving the final model performance.

Balanced Sparsification (BS): BS addresses the issue of
unbalanced weight distribution by applying n:m pruning,
which selectively retains n weights out of every m consec-
utive weights based on magnitude (Zhou et al., 2021). As
demonstrated in Figure 1 (a), BS is first applied to 74, fol-
lowed by another application to remaining 75 (derived by
CA). This ensures a more uniform distribution of weights
across layers, reducing the adverse effects of weight con-
centration in certain regions.

These strategies are effective and easy to implement. We
conducted extensive experiments on decoder-based Mistral-
7B (Jiang et al., 2023) and encoder-based RoBERTa-
Base (Liu, 2019), using tasks from the LLM leaderboard
and the GLUE (Wang et al., 2018) dataset. These exper-
iments demonstrate that CABS effectively mitigates the
issues caused by magnitude-based pruning. On Mistral-7B,
CABS achieved an average performance score of 76.50,
surpassing the “ideal” virtual model (76.30), which hypo-
thetically selects the best performance score for each task.
CABS also exceeds the state-of-the-art (76.02) and fine-
tuned models (75.86). Similarly, on ROBERTa-Base, CABS
achieved a score of 81.70, outperforming the SOTA (79.88)
by 1.82 points and the vanilla baseline (79.55) by 2.15 points.
These results strongly confirm CABS’s superiority across
diverse neural network architectures and various tasks.

CABS: Conflict-Aware and Balanced Sparsification for Enhancing Model Merging

Our contributions are as follows:

* We identify two key issues encountered by magnitude-
based pruning in the context of task vector sparsifi-
cation, i.e., high parameter overlap and unbalanced
weight distribution.

* We propose the CABS framework, consisting of
conflict-aware sparsification and balanced sparsifica-
tion strategies, which can effectively address the two
identified issues.

* We conduct comprehensive experiments across a va-
riety of tasks and model sizes, showing that CABS
outperforms state-of-the-art methods.

* We are the first to introduce an “ideal” yet rigorous
baseline for evaluation, where CABS outperforms this
virtual baseline while all existing methods fall short.

Our code is available at https://github.com/
zongzhenyang/CABS.

2. Related Work

Model merging has become a vital strategy for combining
multiple fine-tuned models into a single multitask model
without requiring additional training. The simplest merg-
ing method is directly averaging the model parameters (Iz-
mailov et al., 2018; Wortsman et al., 2022). However,
this naive approach often fails to account for task-specific
variations, leading to suboptimal performance. A more
refined approach, Task Arithmetic (Ilharco et al., 2022),
combines task vectors—differences between fine-tuned and
pre-trained parameters—using weighted sums controlled by
scaling coefficients A. These scaling coefficients allow pre-
cise control over the contribution of each task vector during
merging, playing a critical role in balancing the influence
of different tasks. However, it still struggles with parameter
redundancy and sign conflicts.

To address these issues, TIES-Merging (Yadav et al., 2024)
prunes low-magnitude parameters and resolves sign con-
flicts, reducing interference and preserving critical parame-
ters during merging. DARE (Yu et al., 2024), a technique
inspired by Dropout (Srivastava et al., 2014), reveals the
high redundancy in task vectors by randomly dropping 90%
of the parameters and rescaling the remaining ones. Us-
ing random pruning, DARE has been shown to outperform
magnitude-based pruning methods in model merging. How-
ever, DARE does not fully explain the reasons for this im-
provement. Our analysis suggests that DARE helps mitigate
some of the overlap and imbalance. However, the random
nature of the approach can potentially sacrifice precision.

Model pruning, particularly magnitude pruning (Zhu &
Gupta, 2018), have been extensively studied for their role in
optimizing model performance and reducing computational

costs (Liu et al., 2019; Frankle & Carbin, 2018; Gale et al.,
2019; Zhu & Gupta, 2018). Magnitude pruning retains pa-
rameters based on their magnitude, assuming that larger
magnitudes correspond to more critical information (Ko-
valeva et al., 2021; Puccetti et al., 2022; Yin et al., 2023).
However, when applied in the context of model merging, this
approach can lead to an unbalanced distribution of retained
weights, which exacerbates conflicts during the merging
process and results in suboptimal performance.

To address this issue, while n:m pruning (Zhou et al., 2021;
Xia et al., 2022) was originally designed for pruning and in-
ference acceleration, we discovered that it can be repurposed
to control the balance of sparsified task vectors in model
merging. Although n:m pruning may not perform as well as
unstructured pruning in traditional scenarios, our findings
demonstrate that it effectively mitigates weight imbalance,
leading to improved performance in merged models.

Our proposed CABS method builds upon prior works by
introducing CA, a novel approach designed to eliminate
parameter overlap during model merging. Additionally, it
repurposes the existing n:m pruning technique to mitigate
unbalanced weight distribution. Together, CABS effectively
enhances the stability and performance of model merging.

3. Issues in Task Vector Sparsification for
Model Merging

In model merging, particularly when using sparse task vec-
tors to combine models fine-tuned for different tasks, an
unexpected phenomenon has emerged: magnitude-based
pruning, which typically retains weights with larger ab-
solute values, often underperforms compared to random
pruning methods. This result contradicts the intuition that
preserving critical knowledge, rather than randomly retain-
ing information, within the task vectors should enhance the
performance of the merged model. Our investigation into
this phenomenon reveals two key issues: the overlap be-
tween retained weights and their unbalanced distribution
within each task vector. High Parameter Overlap. By
comparing the overlap rate between magnitude-based and
random pruning methods, our analysis demonstrates that
magnitude-based pruning results in a significantly higher
parameter overlap between task vectors compared to ran-
dom pruning methods. As shown in Figure 2, although the
overlap rate of magnitude-pruned task vectors decreases
gradually with increasing sparsity, it remains significantly
higher than that of randomly pruned vectors, especially at
higher sparsity levels. This disparity highlights the key issue
with magnitude-based pruning, where high overlap persists
even as the model becomes sparser.

This elevated overlap in magnitude-pruned vectors intro-
duces conflicts during model merging, as overlapping pa-

https://github.com/zongzhenyang/CABS
https://github.com/zongzhenyang/CABS

CABS: Conflict-Aware and Balanced Sparsification for Enhancing Model Merging

1.0

—e— Magnitude Pruning Overlap Rate
0.9 S~ . | Random Pruning Overlap Rate
0.8 -

Lo

©

* 0.6

Q

© 0.5

Qo4 =%
Cos
0.2 e
0.1
0.0 -

00 01 02 03 04 05 06 07 08 09 10

Sparsity Ratio

Figure 2. The trend of overlap rate along the sparsity ratio shows
that the overlap rate achieved by magnitude-based pruning de-
creases more slowly than that of random pruning, with the gap
widening progressively.

Magnitude Pruning Random Pruning

g

H
s
2
~
°
o

g

~
S
o
=
o
o
i
&
™
@
a
8
=
S
]
. 3
°
@
8
<
S
0z

Nc;pzer:) wewshts Ser 35x32 F)Iockn

0 50 200 250 0 50 100 150 200 250

w1
Block Columns. Block Columns

Figure 3. Magnitude pruning results in a more concentrated and
unbalanced distribution of weights compared to random pruning.

rameters may have significantly different magnitudes or
signs between task vectors. For example, if a parameter
in task vector 74 has a positive value indicating its impor-
tance to task A, but the same parameter in 75 has a negative
value, this sign conflict leads to opposing contributions when
merging the two vectors. These conflicts are particularly
challenging because they are primarily controlled through
scaling coefficients A, which serve as key parameters for
determining the relative contributions of task vectors dur-
ing merging. Adjusting A4 for 74 can inadvertently affect
the contribution of 75, reducing the model’s ability to per-
form optimally on individual tasks and ultimately leading
to suboptimal task-specific performance. The performance
implications of these overlapping parameters are explored
in detail in 5.4. For details on how the overlap rate is calcu-
lated, please refer to Appendix B.1.

Unbalanced Weight Distribution. By visualizing the
weight distribution shown in Figure 3, we identified an-
other critical issue: the unbalanced distribution of retained
weights caused by magnitude-based pruning. Magnitude
pruning often leads to weight concentration in specific re-
gions of the model’s weights. This imbalance is further
exacerbated by the rescaling process, where certain weights
gain disproportionate influence over the model’s output,
often resulting in suboptimal performance. This uneven dis-

tribution is particularly detrimental after sparsification, as it
hampers the merged model’s ability to generalize effectively.
The performance implications of these unbalanced weights
are discussed in detail in 5.4.

To comprehensively analyze this issue, we further examined
the weight distributions across different layers of the model,
including the query-key-value (QKV) projection and MLP
layers, at various sparsity levels (e.g., 50%, 75%, and 90%).
These experimental results are provided in Appendix B.2,
demonstrating the pervasive nature of the imbalance across
different layers and sparsity levels.

4. Methodology

To address the aforementioned issues, we propose the CABS
(Conflict-Aware and Balanced Sparsification) framework.
As illustrated in Figure 1, CABS resolves parameter con-
flicts and ensures balanced weight distribution, thus enhanc-
ing the performance of the merged model. The framework
integrates two core strategies: Conflict-Aware Sparsifica-
tion (CA) and Balanced Sparsification (BS), which will be
detailed in the following sections. The detailed implementa-
tion of CABS is provided in Appendix B.3.

4.1. Conflict-Aware Sparsification (CA)

Sequential Pruning and Mask Application. CA aims
to eliminate parameter overlap during model merging by
employing a sequential pruning strategy. The process begins
with the first vector 74 being pruned, producing a mask
mask 4 that marks the positions of the retained weights.
This mask is then used to guide the pruning of the second
task vector 75, ensuring that there is no overlap between the
parameters of 74 and 7.

For the second task vector 7, the prior mask mask 4 is ap-
plied in an inverted form to determine the remaining weights
that do not overlap with the first pruned task vector. Specifi-
cally, the remaining weights of 75 are calculated as:

B remaining — B ©® (1 — maskA). (1)

This ensures that only the non-overlapping weights in 75
are retained in the subsequent pruning process. Afterward, a
second round of pruning is performed on 7g remaining, ENET-
ating a new sparse mask maskp, which can then be merged
with the prior pruned task vector without overlap.

Minimizing Overlap When Sparsity Limits are Ex-
ceeded. When the sum of the sparsity levels across all
task vectors exceeds 1 (e.g., when each vector retains 75%
of its parameters), it becomes impossible to achieve zero
overlap. In such cases, the objective shifts from eliminating
overlap to minimizing it as much as possible. Additional
pruning steps are applied selectively to reduce the extent of
overlap between task vectors. The detailed implementation

CABS: Conflict-Aware and Balanced Sparsification for Enhancing Model Merging

is provided in Appendix B.3.

4.2. Balanced Sparsification (BS)

Block-Based Pruning Strategy. In BS, the weight matrix
is divided into disjoint blocks of m consecutive weights, and
within each block, the n weights with the largest absolute
magnitude are retained, while the rest are pruned. This
strategy is applied uniformly across all layers to ensure
a more even weight distribution within each task vector.
Minimizing imbalances prevents performance degradation
of the merged models. A more detailed discussion about the
differences between Balanced Sparsification (BS) and n:m
pruning is presented in Appendix B.4.

CABS can be integrated with other model merging tech-
niques, where CA and BS can be applied independently or
combined with other approaches to further enhance model
merging. Additionally, Our analysis shows that CABS intro-
duces minimal computational and memory overhead com-
pared to standard merging methods, ensuring efficiency and
scalability in various model merging scenarios. Detailed
analyses are provided in Appendix B.5 and Appendix B.6.

4.3. Theoretical Analysis

This section provides a theoretical analysis of how Conflict-
Aware Sparsification (CA) reduces parameter overlap, en-
sures orthogonality of task vectors in parameter space, and
mitigates interference during model merging.

Sparse and Non-Overlapping Task Vectors. CA employs
a sequential pruning strategy to produce sparse task vectors
TA, T3 € R"*¥ with non-overlapping parameters. Their
binary masks M4, Mp € {0,1}** satisfy:

(Ma)ij(Mp)i; =0, Vi, j.)

The task vectors are defined as:

TA=AW4 O My, 73=AWpo M. (3)

where AW 4, AW g are parameter updates from a base
model, and ® denotes elementwise multiplication. This
ensures that 74 and 75 have disjoint non-zero entries. Prior
studies (Yu et al., 2024; Yadav et al., 2024) and our ex-
perimental results in A.8 confirm that these sparse updates
are nearly lossless in retaining task-specific information, as
simple rescaling compensates for pruning-induced changes.

Non-Overlap Implies Orthogonality. The Frobenius inner

product of the task vectors 74 and 75 is:

(TA, TB)F = ZZ(TA)ij(TB)ij

= i:Z(AWA)ij(AWB)ij(MA)ij(MB)ij'
- @

Under the non-overlapping condition (M4);;(Mp)i; = 0,
each term in the summation equals zero:

(AW4)ii (AW B)ij(Ma)ij(Mp)ij = 0, Vi,j. (5
Thus, the inner product reduces to:
(Ta,7B)F = 0. (6)

This guarantees that 74 and 75 are orthogonal.

Orthogonality Reduces Interference. Consider the com-
bined weight update:

AW = A\s74 + ABTB, 7)

where A4, Ap € R are the scaling coefficients for the task
vectors. The squared Frobenius norm of the update is:

IAW |5 = [XaTallE + A58]E +23aA5(Ta, T5)F. (8)

When 74 and 75 are orthogonal (i.e., (T4, 75)r = 0), the
cross-term vanishes, and the norm simplifies to:

AW |2 = [|AaTall% + IABTB]/%.)

This decoupling ensures that adjusting A 4 affects only the
contribution of 74, with minimal direct interference to 73.
As aresult, task vector contributions can be independently
scaled, avoiding interference during model merging.

On Overlap and Possible Synergy. While overlap often
leads to conflicts, there may be cases where overlapping co-
ordinates have aligned updates, providing synergistic effects.
However, identifying exactly which overlap is “helpful” can
be challenging, as it requires deep insights into each task’s
loss surface. Figure 5 shows that excessive overlap typically
impairs performance, whereas minimized overlap yields
stable and predictable gains. Hence, CA adopts a simpler
strategy of systematically limiting overlap, ensuring robust
improvements across various tasks.

Conclusion. CA eliminates parameter overlap by projecting
task vectors onto nearly lossless orthogonal subspaces. Al-
though perfect functional separation cannot be guaranteed in
a non-linear neural network, the resulting parameter-space
orthogonality ensures that cross-terms vanish during model
merging, allowing independent control of each task’s contri-
bution through the scaling coefficients (). By minimizing

CABS: Conflict-Aware and Balanced Sparsification for Enhancing Model Merging

interference and enabling precise scaling, CA improves both
the stability of optimization and the overall efficiency and
performance of the merged model. Thus, CA successfully
tackles the central challenges of task-vector sparsification,
forming a robust foundation for effective model merging.

5. Experiments

We conducted extensive experiments to demonstrate the ef-
fectiveness of CABS in enhancing performance and stability
in model merging across diverse tasks and model scales.

5.1. Experimental Setup

Datasets and Models for Large Language Model Ex-
periments. For large-scale model evaluation, we utilized
the LLM Leaderboard benchmark, encompassing six key
tasks: AI2 Reasoning Challenge (Clark et al., 2018), Hel-
laSwag (Zellers et al., 2019), MMLU (Hendrycks et al.,
2020), TruthfulQA (Lin et al., 2022), Winogrande (Sak-
aguchi et al., 2021), and GSM8K (Cobbe et al., 2021).
These tasks were assessed using the Eleuther AI Language
Model Evaluation Harness (Gao et al., 2024), a standard-
ized framework designed to test generative language models
across various tasks. The models used in our experiments
were based on the Mistral-7b-v0.1 backbone and included
fine-tuned variants such as WildMarcoroni-Variant1-7B and
WestSeverus-7B-DPO-v2.

In addition, we conducted a new set of experiments using
the Open LLM Leaderboard 2 (Fourrier et al., 2024), which
includes six tasks: IFEval (Zhou et al., 2023), BBH (Suzgun
et al., 2022), MATH (Hendrycks et al., 2021), GPQA (Rein
et al., 2023), MUSR (Sprague et al., 2024), and MMLU-
PRO (Wang et al., 2024). For these experiments, we em-
ployed the qwen-2.5-7b-instruct (Yang et al., 2024b) model
as the backbone and evaluated fine-tuned fq2.5-7b-it and
Tsunami-0.5-7B-Instruct to assess performance across these
additional benchmarks. More details about the datasets and
models are provided in Appendix B.7.

Datasets and Models for Small Language Model Experi-
ments. For evaluating small-scale models, we utilized the
GLUE benchmark, which includes four binary classification
tasks: CoLA (Warstadt et al., 2019), SST-2 (Socher et al.,
2013), MRPC (Dolan & Brockett, 2005), and RTE (Da-
gan et al., 2005; Bar-Haim et al., 2006; Giampiccolo et al.,
2007; Bentivogli et al., 2009). To increase task difficulty
and diversity, we also included the multiple-choice read-
ing comprehension task RACE (Lai et al., 2017) and the
question-answering task SQuUAD (Rajpurkar, 2016). We
utilized RoBERTa (Liu, 2019) and GPT-2 (Radford et al.,
2019) as pre-trained backbones, with fine-tuned models
sourced from HuggingFace. Due to the unavailability of test
labels, the original validation sets were repurposed as test

sets. Additional details are provided in Appendix B.8.

Evaluation Metrics. Performance was evaluated primarily
using accuracy for GLUE tasks. For tasks from the LLM
Leaderboard, we used task-specific metrics, such as success
rates and accuracy, depending on the default evaluation
metric for each task. Detailed explanations of the evaluation
metrics and the rationale behind these choices can be found
in Appendix B.9.

Baselines. We compared CABS against several baseline
methods in two main categories: conflict handling and
sparsification strategies. For conflict handling, we eval-
uated Task Arithmetic (Ilharco et al., 2022) and TIES-
Merging (Yadav et al., 2024). For sparsification, we com-
pared CABS with DARE (Yu et al., 2024), Magnitude Prun-
ing (Zhu & Gupta, 2018), SparseGPT (Frantar & Alistarh,
2023), and Wanda (Sun et al., 2023).

It is worth mentioning that, to assess how far current model
merging methods are from the ideal performance expected in
this research field, we introduce an ““ideal model” as a strict
and meaningful baseline. The ideal model represents a hypo-
thetical scenario where the merged model achieves optimal
performance for each task. This baseline is constructed by
selecting the best-performing individual task-specific model
for each task, providing an upper bound for comparison.

Other Implementation Details. Details on the grid search
strategy and exact values of \ are provided in Appendices
B.10 and B.11, respectively. Hardware setups, evaluation
strategies, and hyperparameter configurations are detailed
in Appendix B.12.

5.2. Performance of CABS on Small LMs

We conducted experiments on three task sets to evaluate
the effectiveness of CABS in merging small-scale models
(e.g., RoBERTa): 1) 2-task set comprising RTE and MRPC,
2) 4-task set comprising RTE, CoLA, MRPC, and SST-2,
and 3) 6-task set comprising RTE, CoLA, MRPC, SST-2,
RACE, and SQuAD.

Overall Performance. Table 1 presents the performance
for merging four task vectors. Among the baselines, ‘“Task
Arithmetic” represents a vanilla approach without pruning,
while other methods incorporate pruning techniques. For
our proposed CABS, the last four rows display results with
different orders of sequential pruning (e.g., “MRSC” in-
dicates pruning task vectors of MRPC, RTE, SST-2, and
CoLA sequentially). The last column displays the overall
performance of the merged model (i.e., the average result
across four tasks), with the results in brackets indicating the
improvement over Task Arithmetic.

As we can see, random-based pruning methods offer limited
performance improvements (e.g., “TIES-Merging + DARE”

CABS: Conflict-Aware and Balanced Sparsification for Enhancing Model Merging

Table 1. Performance of merging four task vectors (sparsity=0.90).

Method |CoLA SST-2 RTE MRPC Avg
Ideal Model |85.04 94.04 79.42 91.18 87.42
Task Arithmetic 76.32 90.83 69.68 81.37 79.55
+ Magnitude 82.07 87.04 6534 79.66 78.53(-1.02)
+DARE 76.99 90.14 70.76 81.13 79.76 (+0.21)
TIES-Merging 82.36 86.93 61.01 79.41 77.43(-2.12)
+DARE 77.66 90.94 69.31 81.62 79.88 (+0.33)

CABS (CSRM) (Ours)| 78.24 92.32 74.37 81.62 81.64 (+2.09)
CABS (SCMR) (Ours)| 78.52 91.97 73.65 82.60 81.69 (+2.14)
CABS (RCMS) (Ours)| 77.76 92.09 75.09 81.62 81.64 (+2.09)
CABS (MRSC) (Ours)| 76.89 92.09 74.73 83.09 81.70 (+2.15)

Table 2. Impact of task number on model merging performance.

Method | 2 tasks 4 tasks 6 tasks
Ideal Model ‘ 85.30 87.42 83.54
Task Arithmetic 80.15 79.55 66.56
+ Magnitude 80.38 (+0.23) 78.53 (-1.02) 68.28 (+1.72)
+ DARE 80.58 (+0.43) 79.76 (+0.21) 67.23 (+0.67)
TIES-Merging 80.20 (+0.05) 77.43 (-2.12) 65.46 (-1.10)
+DARE 80.65 (+0.50) 79.88 (+0.33) 66.95 (+0.39)
CABS (Ours) ‘ 81.49 (+1.34) 81.70 (+2.15) 69.62 (+3.06)

improves by only 0.33). Magnitude-based pruning even
degrades performance, consistent with previous findings.
CABS achieves the highest average accuracy of 81.70, sur-
passing Task Arithmetic by 2.15 and delivering substantial
improvements over all other methods. Additionally, the
pruning order can affect the performance of the merged
model on specific tasks. For instance, the best results for
CoLA (78.52) and SST-2 (92.32) are achieved when these
tasks are pruned first. However, the variation has minimal
impact on overall performance. On average, all pruning
orders achieve comparable results (81.64 to 81.70), high-
lighting the robustness of CABS in handling variations in
pruning order despite task-specific differences.

Performance Impact of Number of Tasks. Table 2 high-
lights the performance impact of task number on model
merging. As the number of tasks increases, overall merging
performance declines due to the increasing heterogeneity of
tasks. This effect is particularly evident when transitioning
from 4 to 6 tasks, as including QA and multiple-choice tasks
(RACE and SQuAD) introduces additional complexity.

Despite these challenges, CABS consistently outperforms
baseline methods across all scenarios. Compared to Task
Arithmetic, CABS achieves improvements of 1.34,2.15, and
3.06 for 2-task, 4-task, and 6-task sets, respectively. These
results highlight the robustness and scalability of CABS in
handling diverse and complex task sets, maintaining signifi-
cant gains even as task heterogeneity increases.

Table 3. Performance comparison on LLM Leaderboard using dif-
ferent methods (sparsity=0.75).

Method ‘ARC Hella. MMLU TQA Wino. GSM8K AVG

WestSeverus |71.30 88.26 63.92 72.72 83.69 74.27 75.69
WildMarcoroni (73.63 88.67 63.96 70.07 84.34 74.48 75.86
Ideal Model 73.63 88.67 63.96 72.72 84.34 74.48 76.30

Task Arithmetic|72.52 89.25 63.39 74.00 83.46 73.38 76.02(-0.28)
+ Magnitude |71.93 89.32 63.18 73.85 84.12 72.22 75.77(-0.53)
+ DARE 72.64 88.86 63.54 72.82 84.03 73.44 75.89(-0.41)

TIES-Merging |71.42 89.17 63.16 73.82 84.74 73.01 75.89(-0.41)
+ DARE 71.87 88.95 63.56 72.87 84.61 73.21 75.85(-0.46)

CABS (Ours) ‘72.92 88.80 63.50 74.41 84.63 74.65 76.50(+0.20)

The detailed results for each configuration are presented
in Table 1, Table 9, and Table 10. Additional results for
the CoL A and SST-2 tasks can be found in Table 11 (Ap-
pendix A.3), and the results for the GPT-2 model are pro-
vided in Table 12 (Appendix A.4).

5.3. Performance of CABS on Large LMs

Overall Performance. Table 3 shows the results on large
LMs. The last column, “AVG”, represents the average
performance of merged models across six tasks, with the
numbers in parentheses indicating the gap from the “ideal
model”. Existing methods, whether based on magnitude
pruning or random pruning, show similar performance and
fail to outperform Task Arithmetic. These baselines remain
notably below the “ideal model”, highlighting the challenge
of surpassing this strict baseline. In contrast, CABS achieves
an average score of 76.50, surpassing all baselines and even
exceeding the “ideal model”.

The result highlights the advantage of model merging in
enhancing generalization. While the merged model may
not surpass the “ideal model” on every individual task, it
often achieves superior performance on specific tasks. For
example, in the TruthfulQA task (see column “TQA” in
Table 3), the fine-tuned models scored 72.72 and 70.07,
while the vanilla baseline reached 74.00, and CABS further
increases the score to 74.41. Overall, CABS achieved an
average performance of 76.50, exceeding the “ideal model”
and significantly outperforming the best baseline score of
76.02. The result underscores the effectiveness of CABS in
model merging for large-scale models.

Notable Achievement on Open LLM Leaderboard 2. As
of February 24, 2025, our CABS framework enabled the cre-
ation of four merged models (qwen2.5-7b-cabs v0.1 through
v0.4), which dominated the top four positions among mod-
els with 8B parameters or fewer on the Open LLM Leader-
board, As shown in Table 4. this achievement underscores
CABS’ effectiveness in improving model performance.

Performance Impact of Sparsity Rate. Figure 4 illus-

CABS: Conflict-Aware and Balanced Sparsification for Enhancing Model Merging

Table 4. Results of 7B LLMs on the Open LLM Leaderboard
2(sparsity=0.75).

Models ‘IFEval BBH MATH GPQA MUSR MMLU AVG
Tsunami-0.5-7b| 74.00 36.14 50.45 7.83 1221 37.92 36.43
fq2.5-7b 73.99 36.36 4622 6.94 17.54 37.92 36.50
cabs-v0.1(Ours)| 75.06 35.84 47.96 8.50 14.17 37.84 36.56
cabs-v0.2(Ours)| 74.18 36.28 49.02 7.61 14.86 37.75 36.61
cabs-v0.3(Ours)| 75.70 3596 49.32 7.61 15.24 37.80 36.94
cabs-v0.4(Ours)| 75.83 36.36 48.49 7.72 15.17 37.73 36.88

763 \

-
o
o

N
u
]

Methods

= = WestSeverus-7B-DPO-v2
WildMarcoroni-Variant1-78
Ideal Model

= = Task Arithmetic

—#— TA + Magnitude
TA + DARE

—=— TIES-Merging

== TIES + DARE

=4 CABS (Ours)

~ NN
» > v
o U o

Average Performance (AVG) (%)
3
w

25 75 90
Sparse Ratio (%)

Figure 4. Performance comparison across sparsity.

trates the performance of different model merging methods
across varying sparsity levels. The dashed lines represent
the performance of the two pre-trained models, the merged
model obtained via Task Arithmetic, and the ideal model.
The solid lines indicate the performance of merged models
obtained using different methods at varying sparsity levels,
highlighting their trends as sparsity increases.

As sparsity increases, all methods experience a performance
decline, with the limitations of existing methods becoming
particularly pronounced at 90% sparsity. Random pruning-
based methods (e.g., “TA + DARE”) suffer the most signif-
icant degradation due to the loss of critical weights, while
magnitude-based pruning approaches (e.g., “TA + Magni-
tude”) also underperform due to imbalanced weight distri-
bution. In contrast, CABS consistently achieves superior
performance across all sparsity levels, demonstrating its ro-
bustness and ability to preserve essential information even
under high sparsity constraints. More detailed results and
discussions for each sparsity level are presented in Table 3,
Table 13, and Table 14.

5.4. Ablation Studies and Discussion

Within the CABS framework, we first analyze the indepen-
dent contributions of CA and BS by examining the impact
of parameter overlap and unbalanced weight distribution
on model merging. Next, we perform ablation studies to
isolate the contributions of CA and BS, demonstrating the

88.0

—e— COLA-SST2 AVG ACC
RTE-MRPC AVG ACC

®
<
©

®

N

Y
o
>

DARE

COLA-SST2 AVG ACC (%)
© ©
3 3
o g

\\.

Full Overlap

®
N
o

®
N
»

40 60 80 100
Overlap Rate (%)

Figure 5. Merged model performance decreases as overlap rate
increases, underscoring the importance of CA in reducing conflicts.

importance of both strategies for achieving optimal results.

Performance Impact of Overlap Rate (CA’s Contribu-
tion). We examined the impact of varying overlap rates
on merged model performance to validate the importance
of CA. The experiment was conducted on two task pairs
(RTE-MRPC and CoLA-SST?2) at a fixed sparsity level of
0.50, using random pruning for fair comparison. To achieve
the target overlap rate ranging from 0% (no overlap, i.e.,
CA) to 100% (full overlap), we first pruned one task vector,
then adjusted the pruning of the second vector by control-
ling the ratio of retained weights in the overlapping and
non-overlapping regions.

As shown in Figure 5, a lower overlap rate generally leads
to better performance. Notably, the 50% overlap rate, which
corresponds to the expected overlap rate of DARE, performs
worse than the non-overlapping condition achieved by CA.
This result highlights the importance of minimizing parame-
ter overlap, as achieved by CA.

Comparisons with Magnitude-Based and Advanced
Pruning Methods (BS’s Contribution). Table 5 com-
pares BS to magnitude-based pruning approaches (including
layer-wise and row-wise) and advanced pruning methods
(i.e., SparseGPT and WANDA). The results show a clear
progression in performance as balance improves: layer-
wise pruning achieves 80.38, row-wise pruning improves to
80.61, and BS further increases to 81.30. This demonstrates
that enhancing weight distribution balance can contribute to
better model merging performance.

Advanced pruning methods, while effective in traditional
pruning tasks, perform similarly to the worst-performing
layer-wise magnitude pruning (e.g., 80.34 for SparseGPT).
This indicates that such methods are less suitable for task
vector sparsification in model merging scenarios. By effec-
tively addressing weight distribution imbalances, BS demon-
strates its robustness and effectiveness in improving model
merging performance.

CABS: Conflict-Aware and Balanced Sparsification for Enhancing Model Merging

Table 5. Comparison of sparsity strategies (sparsity=0.9).

Method ‘ RTE MRPC AVG
Fine-tuned on RTE 79.42 2598 52.70
Fine-tuned on MRPC 4729 91.18 69.24
Task Arithmetic 73.29 87.01 80.15
+ DARE 72.92 88.24 80.58(+0.43)
+ Magnitude (layer-wise) | 74.73 86.03 80.38 (+0.23)
+ Magnitude (row-wise) |74.06 87.05 80.61 (+0.46)
+ SparseGPT 72,92 87.75 80.34 (+0.19)
+ WANDA 73.29 87.50 80.40 (+0.25)
BS (Ours) ‘ 74.37 88.23 81.30 (+1.08)

Table 6. Ablation study of CABS across different sparsity levels.

Sparsity Level| Method | Overlap Rate | Avg Accuracy
0% ‘ Task Arithmetic ‘ 100.00 ‘ 76.02
TA+magnitude 80.69 76.03
25% CA Only 66.67 76.29
BS Only 80.97 76.33
CABS 66.67 76.48
TA+magnitude 71.42 75.77
75% CA Only 0.00 76.21
BS Only 58.63 76.24
CABS 0.00 76.50

Combined Effect of CA and BS. To validate the effec-
tiveness of CA and BS, we conducted an ablation study
comparing configurations with only CA, only BS, and the
full CABS framework. As shown in Table 6, CABS not
only benefits from CA and BS independently improving
performance, but their combination also minimizes overlap
across all sparsity levels and achieves the highest accuracy.

In conclusion, our ablation studies confirm the necessity
of reducing overlap rates and maintaining balanced weight
distribution for optimal model merging. They validate the
crucial roles of CA and BS, showing that combining both
strategies achieves the best performance across various tasks
and sparsity settings. Furthermore, we performed a series
of analyses on varying n : m ratios and provided addi-
tional results on the impact of different pruning orders in
Appendix A.6 and A.7. These results further demonstrate
the robustness of the CABS framework. Additionally, we
conducted rescaling experiments and found that applying
rescaling to magnitude-pruned task vectors can restore per-
formance to levels comparable to the original models, simi-
lar to what has been observed with DARE’s random pruning
method. Detailed results of these rescale experiments are
included in Appendix A.8.

5.5. Limitations and Future Work

General Limitations. Like other task vector-based meth-
ods, our approach is limited to models with identical archi-
tectures due to the element-wise operations used in merging
model weights. This constraint restricts the generalization of
the framework to models with homogeneous structures. Fur-
thermore, reliance on manual adjustment of the parameter A
remains a common challenge, especially for large-language
models, which requires trial and error to optimize model
performance.

Limitations Specific to CABS. CABS introduces two
new hyperparameters—the sparse sequence and the n:m
ratios—unique to its design, as discussed in Appendix A.7
and A.6. While these hyperparameters were not particu-
larly sensitive in our experiments, they add complexity and
increase computational cost.

Future Work. Several directions could help overcome
these limitations. Expanding model merging techniques to
include heterogeneous architectures represents a key area for
future research. Additionally, improving the performance
of merged models in multi-task settings—where current
approaches do not yet match the performance of original
single-task models—remains a priority.

6. Conclusion

In this work, we revealed two issues in model merging: high
parameter overlap and unbalanced weight distribution in
task vector sparsification. To address these issues, we pro-
posed Conflict-Aware and Balanced Sparsification (CABS).
CABS effectively reduces overlap and ensures a balanced
distribution of retained weights, thus enhancing model merg-
ing across various tasks and model sizes. Extensive experi-
ments on both small- and large-scale models demonstrated
CABS’s effectiveness in improving merged models’ perfor-
mance and generalization.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledge

This work was supported by National Key Research
and Development Program of China under Grant No.
2024YFB3309602, National Natural Science Foundation of
China under Grant No.62472017, and Guangxi Collabora-
tive Innovation Center of Multi-source Information Integra-
tion and Intelligent Processing.

CABS: Conflict-Aware and Balanced Sparsification for Enhancing Model Merging

References

Akiba, T., Shing, M., Tang, Y., Sun, Q., and Ha, D. Evo-
lutionary optimization of model merging recipes. arXiv
preprint arXiv:2403.13187, 2024.

Bar-Haim, R., Dagan, 1., Dolan, B., Ferro, L., Giampiccolo,
D., Magnini, B., and Szpektor, I. The second pascal recog-
nising textual entailment challenge. In Proceedings of
the second PASCAL challenges workshop on recognising
textual entailment, volume 1. Citeseer, 2006.

Beeching, E., Fourrier, C., Habib, N., Han, S., Lambert,
N., Rajani, N., Sanseviero, O., Tunstall, L., and Wolf, T.
Open llm leaderboard, 2023.

Bentivogli, L., Clark, P., Dagan, 1., and Giampiccolo, D.
The fifth pascal recognizing textual entailment challenge.
TAC, 7(8):1, 2009.

Clark, P., Cowhey, L., Etzioni, O., Khot, T., Sabharwal, A.,
Schoenick, C., and Tafjord, O. Think you have solved
question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021.

Dagan, L., Glickman, O., and Magnini, B. The pascal recog-
nising textual entailment challenge. In Machine learning
challenges workshop, pp. 177-190. Springer, 2005.

Davari, M. and Belilovsky, E. Model breadcrumbs: Scal-
ing multi-task model merging with sparse masks. arXiv
preprint arXiv:2312.06795, 2023.

Dolan, B. and Brockett, C. Automatically constructing a
corpus of sentential paraphrases. In Third international
workshop on paraphrasing (IWP2005), 2005.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Fourrier, C., Habib, N., Lozovskaya, A., Szafer,
K., and Wolf, T. Open 1llm leaderboard
v2. https://huggingface.co/spaces/

open—-1llm-leaderboard/open_1llm_
leaderboard, 2024.

Frankle, J. and Carbin, M. The lottery ticket hypothesis:
Finding sparse, trainable neural networks. In Interna-
tional Conference on Learning Representations, 2018.

10

Frantar, E. and Alistarh, D. Sparsegpt: Massive language
models can be accurately pruned in one-shot. In Infer-
national Conference on Machine Learning, pp. 10323—
10337. PMLR, 2023.

Gale, T., Elsen, E., and Hooker, S. The state of sparsity in
deep neural networks. arXiv preprint arXiv:1902.09574,
2019.

Gao, L., Tow, J., Abbasi, B., Biderman, S., Black, S., DiPofi,
A., Foster, C., Golding, L., Hsu, J., Le Noac’h, A., Li, H,,
McDonell, K., Muennighoff, N., Ociepa, C., Phang, J.,
Reynolds, L., Schoelkopf, H., Skowron, A., Sutawika, L.,
Tang, E., Thite, A., Wang, B., Wang, K., and Zou, A. A
framework for few-shot language model evaluation, 07
2024.

Giampiccolo, D., Magnini, B., Dagan, 1., and Dolan, W. B.
The third pascal recognizing textual entailment challenge.
In Proceedings of the ACL-PASCAL workshop on textual
entailment and paraphrasing, pp. 1-9, 2007.

He, Y., Hu, Y., Lin, Y., Zhang, T., and Zhao, H. Localize-
and-stitch: Efficient model merging via sparse task arith-
metic. arXiv preprint arXiv:2408.13656, 2024.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M.,
Song, D., and Steinhardt, J. Measuring massive multitask
language understanding. In International Conference on
Learning Representations, 2020.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring math-
ematical problem solving with the math dataset, 2021.
URL https://arxiv.org/abs/2103.03874.

Ilharco, G., Ribeiro, M. T., Wortsman, M., Schmidt, L.,
Hajishirzi, H., and Farhadi, A. Editing models with task
arithmetic. In The Eleventh International Conference on
Learning Representations, 2022.

Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D., and
Wilson, A. G. Averaging weights leads to wider optima
and better generalization. In 34th Conference on Un-
certainty in Artificial Intelligence 2018, UAI 2018, pp.
876-885. Association For Uncertainty in Artificial Intel-
ligence (AUAI), 2018.

Jang, M., Kim, D., Kwon, D. S., and Davis, E. Kobest:
Korean balanced evaluation of significant tasks. In Pro-

ceedings of the 29th International Conference on Compu-
tational Linguistics, pp. 3697-3708, 2022.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., Casas, D. d. L., Bressand, F., Lengyel, G.,
Lample, G., Saulnier, L., et al. Mistral 7b. arXiv preprint
arXiv:2310.06825, 2023.

https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://arxiv.org/abs/2103.03874

CABS: Conflict-Aware and Balanced Sparsification for Enhancing Model Merging

Jin, X., Ren, X., Preotiuc-Pietro, D., and Cheng, P. Data-
less knowledge fusion by merging weights of language
models. In The Eleventh International Conference on
Learning Representations, 2022.

Kovaleva, O., Kulshreshtha, S., Rogers, A., and Rumshisky,
A. Bert busters: Outlier dimensions that disrupt trans-
formers. In Findings of the Association for Computational
Linguistics: ACL-IJCNLP 2021, pp. 3392-3405, 2021.

Lai, G., Xie, Q., Liu, H., Yang, Y., and Hovy, E. Race:
Large-scale reading comprehension dataset from exami-
nations. In Proceedings of the 2017 Conference on Em-
pirical Methods in Natural Language Processing, pp.
785-794, 2017.

Li, W., Peng, Y., Zhang, M., Ding, L., Hu, H., and Shen,
L. Deep model fusion: A survey. arXiv preprint
arXiv:2309.15698, 2023.

Liang, T., Glossner, J., Wang, L., Shi, S., and Zhang, X.
Pruning and quantization for deep neural network accel-
eration: A survey. Neurocomputing, 461:370-403, 2021.

Lin, S., Hilton, J., and Evans, O. Truthfulqa: Measuring
how models mimic human falsehoods. In Proceedings of
the 60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pp. 3214—
3252, 2022.

Liu, Y. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Liu, Z., Sun, M., Zhou, T., Huang, G., and Darrell, T. Re-
thinking the value of network pruning. In International
Conference on Learning Representations, 2019.

Lu, K., Yu, B., Huang, F.,, Fan, Y., Lin, R., and Zhou, C.
Online merging optimizers for boosting rewards and miti-
gating tax in alignment. arXiv preprint arXiv:2405.17931,
2024.

Matena, M. S. and Raffel, C. A. Merging models with fisher-
weighted averaging. Advances in Neural Information
Processing Systems, 35:17703-17716, 2022.

Puccetti, G., Rogers, A., Drozd, A., and Dell’Orletta, F.
Outliers dimensions that disrupt transformers are driven
by frequency. In Findings of EMNLP 2022. Association
for Computational Linguistics, 2022.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, 1., et al. Language models are unsupervised
multitask learners. OpenAl blog, 1(8):9, 2019.

Rajpurkar, P. Squad: 100,000+ questions for machine com-
prehension of text. arXiv preprint arXiv:1606.05250,
2016.

11

Rein, D., Hou, B. L., Stickland, A. C., Petty, J., Pang, R. Y.,
Dirani, J., Michael, J., and Bowman, S. R. Gpqa: A
graduate-level google-proof qa benchmark, 2023. URL
https://arxiv.org/abs/2311.12022.

Sakaguchi, K., Bras, R. L., Bhagavatula, C., and Choi, Y.
Winogrande: An adversarial winograd schema challenge
at scale. Communications of the ACM, 64(9):99-106,
2021.

Singh, S. P. and Jaggi, M. Model fusion via optimal trans-
port. Advances in Neural Information Processing Systems,
33:22045-22055, 2020.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning,
C.D.,Ng, A. Y., and Potts, C. Recursive deep models for
semantic compositionality over a sentiment treebank. In
Proceedings of the 2013 conference on empirical methods
in natural language processing, pp. 1631-1642, 2013.

Sprague, Z., Ye, X., Bostrom, K., Chaudhuri, S., and Durrett,
G. Musr: Testing the limits of chain-of-thought with
multistep soft reasoning, 2024. URL https://arxiv.
org/abs/2310.160409.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, 1.,
and Salakhutdinov, R. Dropout: a simple way to prevent

neural networks from overfitting. The journal of machine
learning research, 15(1):1929-1958, 2014.

Sun, M., Liu, Z., Bair, A., and Kolter, J. Z. A simple and
effective pruning approach for large language models.
arXiv preprint arXiv:2306.11695, 2023.

Suzgun, M., Scales, N., Schirli, N., Gehrmann, S., Tay,
Y., Chung, H. W., Chowdhery, A., Le, Q. V., Chi, E. H.,
Zhou, D., and Wei, J. Challenging big-bench tasks and
whether chain-of-thought can solve them, 2022. URL
https://arxiv.org/abs/2210.09261.

Tang, A., Shen, L., Luo, Y., Hu, H., Du, B., and Tao, D. Fu-
sionbench: A comprehensive benchmark of deep model
fusion. arXiv preprint arXiv:2406.03280, 2024.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and
Bowman, S. Glue: A multi-task benchmark and analysis
platform for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP, pp.
353-355, 2018.

Wang, Y., Ma, X., Zhang, G., Ni, Y., Chandra, A., Guo,
S., Ren, W., Arulraj, A., He, X, Jiang, Z., Li, T., Ku,
M., Wang, K., Zhuang, A., Fan, R., Yue, X., and Chen,
W. Mmlu-pro: A more robust and challenging multi-
task language understanding benchmark, 2024. URL
https://arxiv.org/abs/2406.01574.

https://arxiv.org/abs/2311.12022
https://arxiv.org/abs/2310.16049
https://arxiv.org/abs/2310.16049
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2406.01574

CABS: Conflict-Aware and Balanced Sparsification for Enhancing Model Merging

Warstadt, A., Singh, A., and Bowman, S. R. Neural network
acceptability judgments. Transactions of the Association
for Computational Linguistics, 7:625-641, 2019. doi:
10.1162/tacl_a_00290.

Wortsman, M., Ilharco, G., Gadre, S. Y., Roelofs, R.,
Gontijo-Lopes, R., Morcos, A. S., Namkoong, H.,
Farhadi, A., Carmon, Y., Kornblith, S., et al. Model
soups: averaging weights of multiple fine-tuned models
improves accuracy without increasing inference time. In
International conference on machine learning, pp. 23965—

23998. PMLR, 2022.

Xia, M., Zhong, Z., and Chen, D. Structured pruning learns
compact and accurate models. In 60th Annual Meeting
of the Association for Computational Linguistics, ACL
2022, pp. 1513-1528. Association for Computational
Linguistics (ACL), 2022.

Yadav, P., Tam, D., Choshen, L., Raffel, C. A., and Bansal,
M. Ties-merging: Resolving interference when merging
models. Advances in Neural Information Processing
Systems, 36, 2024.

Yang, A., Yang, B., Hui, B., Zheng, B., Yu, B., Zhou, C.,
Li, C., Li, C,, Liu, D., Huang, F., et al. Qwen2 techncal
report. arXiv preprint arXiv:2407.10671, 2024a.

Yang, A., Yang, B., Zhang, B., Hui, B., Zheng, B., Yu, B., Li,
C., Liu, D., Huang, F., Wei, H., et al. Qwen2. 5 technical
report. arXiv preprint arXiv:2412.15115, 2024b.

Yin, L., Wu, Y., Zhang, Z., Hsieh, C.-Y., Wang, Y., Jia, Y.,
Li, G., JAISWAL, A. K., Pechenizkiy, M., Liang, Y., et al.
Outlier weighed layerwise sparsity (owl): A missing se-
cret sauce for pruning llms to high sparsity. In Forty-first
International Conference on Machine Learning, 2023.

Yu, L., Yu, B., Yu, H., Huang, F., and Li, Y. Language
models are super mario: Absorbing abilities from homol-
ogous models as a free lunch. In Forty-first International
Conference on Machine Learning, 2024.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi,
Y. Hellaswag: Can a machine really finish your sentence?
In Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pp. 4791-4800,
2019.

Zhou, A., Ma, Y., Zhu, J., Liu, J., Zhang, Z., Yuan, K.,
Sun, W., and Li, H. Learning n:m fine-grained structured
sparse neural networks from scratch. In International
Conference on Learning Representations, 2021.

Zhou, J., Lu, T., Mishra, S., Brahma, S., Basu, S., Luan,
Y., Zhou, D., and Hou, L. Instruction-following evalu-
ation for large language models, 2023. URL https:
//arxiv.org/abs/2311.07911.

12

Zhu, M. and Gupta, S. To prune, or not to prune: Exploring
the efficacy of pruning for model compression. In 6th
International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May
3, 2018, Workshop Track Proceedings. OpenReview.net,
2018.

https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2311.07911

CABS: Conflict-Aware and Balanced Sparsification for Enhancing Model Merging

A. Additional Experiments Results
A.1. Impact of Lambda Search Grid on Performance

In this section, we analyze the impact of different lambda search grids on the performance of various model merging
methods. Our experiments demonstrate the importance of using fine-grained grid intervals to fairly compare the effectiveness
of these methods. Table 7 provides results across different grid intervals (0.01, 0.05, and 0.1) for several methods.

For most methods, performance declines as the grid interval increases, underscoring the importance of finer grids to
accurately capture optimal lambda values. Coarser grids often miss these values, leading to noticeable drops in performance.

Interestingly, the DARE method maintains stable performance even with coarser grids (0.05 and 0.1). This is because the
optimal lambda for DARE happens to coincide with a multiple of 0.1, resulting in no significant performance loss with
coarser grids. However, when we exclude such coincidental “sweet spot” lambdas, as shown in Table 8, DARE also exhibits
a significant performance drop. This observation reinforces the idea that fine grid intervals are crucial for a fair and thorough
evaluation of all methods. A finer grid ensures that all methods have an equal opportunity to find the best-performing
lambda, though this must be balanced with computational cost

On the other hand, the CABS method demonstrates robust performance across all grid intervals. It consistently outperforms
other methods, and its relative insensitivity to grid coarseness suggests that CABS is more robust and reliable under varying
hyperparameter settings. This robustness, combined with its superior performance, makes CABS a strong choice for model
merging.

Table 7. Performance comparison across different lambda grid intervals.“TA” means “Task Arithmetic”

Grid Task DARE TA- TIES- TIES- CABS
Interval Arithmetic Magnitude DARE Merging
0.01 80.15 80.58(+0.43) 80.38(+0.23) 80.65(+0.40) 80.20(+0.05) 81.49(+0.91)

0.05 79.85 80.58(+0.73) 79.90(+0.05) 79.91(+0.06) 79.84(-0.01) 81.19(+1.34)
0.10 79.43 80.58(+1.15) 79.66(+0.23) 79.14(-0.29) 79.83(+0.40) 80.82(+1.39)

Table 8. Performance comparison across different lambda grid intervals excluding one pair sweet spot lambdas in DARE.

Grid Task DARE TA- TIES- TIES- CABS
Interval Arithmetic Magnitude DARE Merging

0.01 80.15 80.58(+0.43) 80.38(+0.23) 80.65(+0.40) 80.20(+0.05) 81.49(+0.91)
0.05 79.85 79.44(-0.41) 79.90(+0.05) 79.91(+0.06) 79.84(-0.01) 81.19(+1.34)
0.10 79.43 78.55(-0.88) 79.66(+0.23) 79.14(-0.29) 79.83(+0.40) 80.82(+1.39)

A.2. Detailed results of CABS on Small LMs Merging

This section provides Detailed results for the experiments on small LMs merging in Table 2. Table 9 compares the
performance on the RTE-MRPC task pair at 90% sparsity, showing that CABS outperforms all baselines, achieving the
highest average score of 81.49 (+1.34). Similarly, Table 10 presents the results of merging six task vectors at the same sparsity
level, where CABS also demonstrates superior performance with an average score of 69.62 (+3.06), significantly surpassing
other methods. These results highlight the effectiveness of CABS in achieving robust and consistent improvements across
multiple tasks, even under high sparsity constraints.

A.3. Additional Experiments on other Task Pairs for Small-Scale Experiments

In this section, we present additional results for the CoLA-SST?2 task pair to complement the main text’s findings on RTE
and MRPC. These tasks were selected to further validate the robustness and effectiveness of the proposed CABS method
across different types of natural language processing tasks, particularly focusing on tasks involving linguistic acceptability
and sentiment analysis.

Table 11 provides a detailed comparison of various model merging methods on the CoLA and SST2 tasks. The CABS

13

CABS: Conflict-Aware and Balanced Sparsification for Enhancing Model Merging

Table 9. Performance comparison on RTE-MRPC task pair using different methods (sparsity=0.9).
Method RTE MRPC AVG
Fine-tuned on RTE |79.42 25.98 52.70
Fine-tuned on MRPC|47.29 91.18 69.24
Task Arithmetic 73.29 87.01 80.15

+ Magnitude 74.73 86.03 80.38(+0.23)
+ DARE 72.92 88.24 80.58(+0.43)
TIES-Merging 74.37 86.03 80.20(+0.05)
+ DARE 72.56 88.73 80.65(+0.50)
CABS (Ours) 74.01 88.97 81.49(+1.34)

Table 10. Performance comparison of merging six task vectors(sparsity=0.9).
METHOD RTE MRPC CoLA SST2 RACE SQuAD AVG
Ideal Model 79.42 91.18 85.04 94.04 71.71 79.82 83.54

Task Arithmetic 67.15 79.41 72.00 85.78 56.21 38.82 66.56
+ Magnitude 72.56 81.13 75.26 87.50 56.99 36.23 68.28 (+1.72)

+ DARE 71.12 6544 7248 8337 59.57 51.39 67.23 (+0.67)
TIES-Merging 68.94 86.01 66.43 83.33 40.11 47.94 65.46(-1.10)
+ DARE 74.40 83.83 7292 56.37 60.38 53.80 66.95 (+0.39)

CABS(Ours) 68.95 82.11 73.92 90.83 58.97 4296 69.62 (+3.06)

method demonstrates superior performance, achieving the highest average scores across both tasks. The normalized accuracy
scores (COLA-N and SST2-N) further emphasize the effectiveness of the CABS method, showing consistent improvements
over the baseline methods.

The modest gains observed in the CoLA-SST2 experiments, similar to those in the RTE-MRPC pair, can be attributed to the
fine-grained lambda grid search. This search process, which fine-tunes the sparsification parameters, improves the overall
performance across all methods, thereby reducing the performance gaps. However, CABS still outperforms other methods,
indicating its robustness in handling task-specific nuances during model merging.

Table 11. Performance comparison on COLA-SST? task pair using different methods.(sparsity=0.9)
METHOD COLA SST2 AVG COLA-N SST2-N AVG-N
Fine-tuned model on COLA 85.04 50.92 67.98 100.00 54.15 77.08

Fine-tuned model on SST2 68.74 94.04 81.39 80.83 100.00 90.32
Task Arithmetic 81.59 92.89 87.24 95.94 98.78 97.36

Task Arithmetic + Magnitude 81.69 93.46 87.58(+0.34) 96.06 99.38 97.72(+0.36)
Task Arithmetic + DARE 81.78 93.46 87.62(+0.38) 96.17 99.38 97.78(+0.42)

TIES-Merging 81.21 93.58 87.40(+0.16) 95.5 99.51 97.51(+0.19)
TIES-Merging + DARE 81.78 93.69 87.74(+0.50) 96.17 99.63 97.90(+0.54)
CABS (Ours) 82.55 93.35 87.95(+0.71) 97.07 99.27 98.17(+0.81)

The results from these additional experiments support the conclusions drawn in the main paper, highlighting CABS as a
robust and effective model merging technique across various tasks and evaluation metrics.

A 4. Additional Experiments on GPT-2-Based Models

we have also extended our experiments to include other architectures, specifically GPT-2-based models (Radford et al.,
2019). The results, summarized in Table 12, highlight the performance of CABS and other methods on tasks derived from
FusionBench (Tang et al., 2024).

The results demonstrate that CABS outperforms all other methods and is the only method to surpass the Ideal Model.

14

CABS: Conflict-Aware and Balanced Sparsification for Enhancing Model Merging

Table 12. Performance comparison on GPT-2-based models.

Method CoLA MRPC AVG

Fine-tuned on CoLLA 76.80 68.40 72.60
Fine-tuned on MRPC 30.80 80.39 55.60

Ideal Model 76.80 80.39 78.60

Task Arithmetic (Dense) 75.55 77.45 76.50 (-2.10)
TA + DARE 76.70 77.21 76.95 (-1.65)
TA + Magnitude 76.61 79.66 78.13 (-0.47)
TIES + DARE 77.09 76.72 76.91 (-1.69)
TIES-Merging 76.89 77.94 77.42(-1.18)
CABS (Ours) 76.41 80.88 78.65 (+0.05)

Table 13. Performance comparison on LLM Leaderboard using different methods. (sparsity=0.25)

Method ARC Hella. MMLU TQA Wino. GSMSK AVG
WestSeverus-7B-DPO-v2 |71.30 88.26 63.92 72.72 83.69 74.27 75.69
WildMarcoroni-Variant1-7B|73.63 88.67 63.96 70.07 84.34 74.48 75.86
ideal model 73.63 88.67 63.96 72.72 84.34 74.48 76.30
Task Arithmetic 72.52 89.25 63.39 74.00 83.46 73.38 76.02(-0.28)
+ Magnitude 71.67 89.15 63.42 74.05 84.37 73.53 76.03(-0.27)
+ DARE 72.30 88.77 63.84 72.08 84.40 74.40 75.96(-0.34)
TIES-Merging 72.41 89.34 63.40 74.03 83.64 73.69 76.09(-0.21)
+ DARE 72.30 88.63 63.76 72.16 85.06 74.37 76.05(-0.25)
TIES-Merging + CABS 72.97 89.20 63.46 74.00 85.16 74.50 76.44(+0.14)
CABS (Ours) 72.75 89.17 63.48 74.08 84.66 74.73 76.48(+0.18)

Although the improvement margin is relatively smaller due to the upper-bound constraint imposed by the Ideal Model,
CABS consistently proves its effectiveness across tasks.

Interestingly, magnitude pruning shows unexpectedly strong results on GPT-2-based models, surpassing DARE by a
significant margin. This contrasts with previous experiments on other architectures, suggesting a potential architecture-
specific behavior in existing pruning methods. Nevertheless, CABS maintains its advantages across different architectures,
showcasing its robustness and adaptability. These findings underscore the versatility of CABS and its potential for diverse
architectures.

A.S. Detailed results of CABS on Large LMs Merging

This section provides detailed results for the experiments on large LMs merging under different sparsity levels. Table 13
presents the results at 25% sparsity. CABS achieves the highest average score of 76.48 (+0.18), outperforming all baselines
and closely approaching the ideal model’s performance. The results demonstrate the robustness of CABS in preserving
task-relevant information and mitigating performance degradation, even under moderate sparsity constraints.

Table 14 shows the results at a much higher sparsity level of 90%. Despite the challenging conditions, CABS maintains
competitive performance with an average score of 76.10 (-0.20), surpassing other methods, including Task Arithmetic,
TA-dare, and Ties-magnitude. These results highlight the effectiveness of CABS in achieving stable and high-quality model
merging, even at extreme sparsity levels.

A.6. Effect of Different n:m Ratios at Fixed Sparsity Levels

This section examines how different n:m ratios impact the performance of the merged model while keeping the overall
sparsity fixed at 75%. The results in Table 15 indicate that while higher n:m ratios (e.g., 64:256) tend to show slight
improvements, the overall impact of varying n:m ratios remains relatively subtle, suggesting that model performance is not
highly sensitive to these values.

15

CABS: Conflict-Aware and Balanced Sparsification for Enhancing Model Merging

Table 14. Performance comparison on LLM Leaderboard using different methods. (sparsity=0.90)
METHOD ARC Hella. MMLU TQA Wino. GSMSK AVG
Mistral-7B-v0.1 59.98 8331 64.16 42.15 7837 37.83 60.97

WestSeverus-7B-DPO-v2 7130 88.26 63.92 7272 83.69 74.27 75.69
WildMarcoroni-Variant1-7B 73.63 88.67 63.96 70.07 84.34 74.48 75.86

Ideal Model 73.63 88.67 63.96 7272 84.34 7448 76.30

Task Arithmetic (Dense) 72.52 89.25 6339 74.00 83.46 73.38 76.02

TA-dare 70.73 87.18 60.15 70.69 82.64 67.93 73.22(-3.08)
TA-magnitude 7147 89.01 62774 73.49 8348 7243 75.44 (-0.86)
Ties-dare 70.31 87.12 60.38 70.40 83.66 67.93 73.30 (-3.00)
Ties-magnitude 71.57 88.93 62771 73.49 84.08 73.26 75.67 (-0.63)
CABS (Ours) 71.87 89.01 6295 74.04 84.65 74.06 76.10 (-0.20)

Table 15. Impact of different n:m ratios on CABS.(sparsity=0.75)
METHOD ARC Hella. MMLU TQA Wino. GSMS8K AVG

WestSeverus-7B-DPO-v2 71.30 88.26 63.92 72.72 83.69 74.27 75.69
WildMarcoroni-Variantl-7B 73.63 88.67 63.96 70.07 84.34 74.48 75.86

Ideal Model 73.63 88.67 63.96 7272 84.34 7448 76.30

Task Arithmetic(Dense) 72.52 89.25 6339 74.00 83.46 73.38 76.02(-0.28)
CABS(16:64) 7244 89.08 63.11 73.38 84.79 7511 76.32(+0.02)
CABS(32:128) 72.92 88.89 63.50 74.41 84.63 74.65 76.50(+0.20)
CABS(64:256) 72.38 89.29 63.15 7347 8540 74.65 76.39(+0.09)

A.7. Additional Experiments on Performance Impact of Sparsification Sequence

We analyze how different sparse sequences, referring to the order in which source models (e.g., “wild” and “west”) undergo
sparsification during the merging process, affect the merged model’s performance. In this context, “wild-first” and “west-first”
indicate which model is sparsified first. Our findings, summarized in Table 16, suggest that while the order of sparsification
has some impact, the effect remains relatively small.

A.8. Rescale Experiments

In previous research, TIES utilized magnitude pruning to reduce conflicts during task vector merging but did not include a
rescale step. Subsequent work on DARE introduced a two-step process: random pruning followed by rescaling with a factor
of ﬁ, where p is the sparsity rate. DARE demonstrated that random pruning, when combined with rescaling, could restore
performance to levels comparable to the original fine-tuned models. However, DARE did not explore the effect of rescaling

on magnitude-pruned task vectors.

In our experiments, we evaluated the impact of rescaling on both magnitude-based and random pruning methods across
different sparsity levels. As shown in Figure 6, rescaling allows magnitude-pruned task vectors to recover performance
similar to that achieved by DARE, suggesting that rescaling is a crucial step for maintaining model performance post-pruning.

These findings confirm that, with appropriate rescaling, both magnitude-based and random pruning methods can achieve
near-original performance. This insight complements the primary contributions of our work by showing that magnitude
pruning, which traditionally underperformed compared to random pruning in TIES, can be equally effective when combined
with rescaling. Although this experiment supports the robustness of magnitude pruning under rescale conditions, it is not the
main focus of our study and is therefore detailed here in the appendix.

16

CABS: Conflict-Aware and Balanced Sparsification for Enhancing Model Merging

Table 16. Performance comparison across different sparse sequences on LLM Leaderboard tasks.(sparsity=0.75)

METHOD ARC Hella. MMLU TQA Wino. GSMSK AVG

WestSeverus-7B-DPO-v2 71.30 88.26 63.92 72.72 83.69 74.27 75.69
WildMarcoroni-Variant1-7B 73.63 88.67 63.96 70.07 84.34 74.48 75.86
Ideal Model 73.63 88.67 6396 7272 8434 7448 76.30

Task Arithmetic(Dense) 72.52 89.25 6339 74.00 83.46 73.38 76.02(-0.28)
CABS(16:64)-wild-first 72.30 88.87 63.47 7427 84.77 74.12 76.3(+0.0)
CABS(16:64)-west-first 7244 89.08 63.11 7338 84.79 7511 76.32(+0.02)
CABS(32:128)-wild-first ~ 72.92 88.89 63.50 74.41 84.63 74.65 76.50(+0.20)
CABS(32:128)-west-first ~ 72.58 89.19 63.19 7422 85.16 74.15 76.42(+0.12)
CABS(64:256)-wild-first ~ 72.87 89.02 63.43 74.61 84.37 73.92 76.37(+0.07)
CABS(64:256)-west-first ~ 72.38 89.29 63.15 7347 85.40 74.65 76.39(+0.09)

0.70 4

—k— dare
7 —m— mpre
n:mre
| -m- mp
-k~ drop
n:m
| — Base Performance 0.79422

Performance on rte
° o
@ @
3 &

Performance on mrpc

o
0
a

0701 -m- mp S S

-&- drop SAe Z2agy
nim

—a dare

—#— mpre 0.454
nimre

0504 TTEee—al

—— Base Performance 0.91176

0.60 0.40
0.50 0.75 0.90 0.99 0.50 0.75 0.90 0.99
Sparse Ratio Sparse Ratio

Figure 6. Impact of rescaling on different pruning methods across various sparsity levels. Performance is evaluated on RTE and MRPC
tasks using RoBERTa. The horizontal axis represents the sparsity ratio, while the vertical axis indicates the performance of the task
vectors after rescaling.

A.9. Impact of Lambda on Performance

Figure 7 provides the average performance as a function of . It can be observed that within a certain range, the performance
is relatively insensitive to variations in A. This result corresponds to the performance of the CABS framework on the
RTE-MRPC task. For visualization purposes, the same \ values were used across the tasks rather than the task-specific A
values reported in the paper. The A values range from 1 to 3, with a step size of 0.01, resulting in a total of 200 samples.

A.10. Multilingual Applicability of CABS

While our primary experiments focused on English tasks to maintain comparability with prior work, we extended our
evaluation to include two Korean language tasks, kobest_copa and kobest_boolq (Jang et al., 2022), to investigate the
multilingual applicability of our method. These additional experiments provide insight into the performance of CABS across
diverse linguistic contexts. The results are summarized in Table 17.

For these experiments, we reused the merging configuration from our previous 7B experiments to ensure consistency across
evaluations and to reduce computational overhead during this phase. CABS achieves an average score of 75.41, closely
matching the ideal model’s performance of 75.59 (a difference of -0.18). In comparison, the best alternative, Task Arithmetic
+ DARE, achieves 74.63 (-0.96), with other methods falling even further behind. These results confirm that CABS delivers
competitive performance across both English and non-English tasks.

Additionally, these findings underscore the robustness of CABS in maintaining performance across multilingual benchmarks,
highlighting its potential applicability to a wide range of languages and tasks. While the absolute improvement margins may
vary due to upper-bound constraints imposed by the ideal model, CABS consistently demonstrates its effectiveness and
adaptability across diverse settings.

17

CABS: Conflict-Aware and Balanced Sparsification for Enhancing Model Merging

0.75

0.70

Average performance

0.60

1.00 125 150 175 2.00 225 250 275 3.00
A values

Figure 7. Average performance vs.lambda

Table 17. Performance comparison on multilingual tasks, including Korean language benchmarks.

Model ARC Hella. MMLU TQA Wino. GSM8K Kcopa Kboolq Avg

Mistral-7B-v0.1 59.98 83.31 64.16 42.15 78.37 37.83 59.00 62.61 60.93
WestSeverus 71.30 88.26 63.92 7272 83.69 7427 6330 8191 74.92
WildMarcoroni 73.63 88.67 63.96 70.07 84.34 7448 64.80 82.08 75.25
Ideal Model 73.63 88.67 63.96 72772 8434 7448 64.80 82.08 75.59

TA (Dense) 72.52 89.25 63.39 74.00 83.46 73.38 65.60 72.58 74.27(-1.32)
TA + Magnitude 71.93 89.32 63.18 73.85 84.12 7222 64.70 72.86 74.02(-1.57)
TA + DARE 72.64 88.86 64.53 72.82 84.03 7344 6140 79.34 74.63(-0.96)
TIES-Merging 71.42 89.17 63.16 73.82 84.74 73.01 64.80 73.08 74.15(-1.44)
TIES + DARE 71.87 88.95 63.56 72.87 84.61 7321 6140 79.63 74.51(-1.08)
CABS (Ours) 72.92 88.89 63.50 74.41 84.63 74.65 65.10 79.20 75.41(-0.18)

A.11. Model soups experimental results

Merging Checkpoints of the Same Task for Better Robustness. As shown in Table 18, merging checkpoints fine-tuned on
the same task improves performance, with CABS achieving the highest SST-2 accuracy of 0.9472, surpassing other methods
by a notable margin (+1.49). These two checkpoints were fine-tuned for one epoch using Adam and AdamW optimizers,
respectively, with a learning rate of 3 x 10~°. The original training set was split 9:1 into a new training set and a validation
set, with the validation set used as the test set. This result demonstrates the effectiveness of CABS in maintaining robustness
and resolving conflicts during checkpoint merging.

A.12. Effect of Learning Rate on Overlap Degree

We conducted additional experiments to study the effect of learning rate on the parameter overlap degree under
magnitude pruning with 90% sparsity. Specifically, we fine-tuned the model using learning rates from the set

Table 18. Model soups experimental setup. CABS improves performance when merging checkpoints on the same tasks.

Method SST-2 Accuracy
Fine-tuned modell 0.9323
Fine-tuned model2 0.9289
Task Arithmetic 0.9381 (+0.58)
+Magnitude 0.9381 (+0.58)
+DARE 0.9346 (+0.23)
TIES-Merging 0.9404 (+0.81)
+DARE 0.9358 (+0.35)
CABS(Ours) 0.9472 (+1.49)

18

CABS: Conflict-Aware and Balanced Sparsification for Enhancing Model Merging

Overlap Rate vs Learning Rate

—— Overlap Rate

0.45

0.40 4

Overlap Rate
° °
w w
s &

o
N
@

0.20 1

0.151

0.10 T T T T T T
le-06 3e-06 5e-06 le-05 3e-05 5e-05
Learning Rate

Figure 8. The relationship between learning rate and parameter overlap degree under magnitude pruning with 90% sparsity. Lower
learning rates result in higher overlap.

{1e-6, 3e-6, 5e-6, le-5, 3e-5, 5e-5} with both Adam and AdamW optimizers. After pruning, the parameter overlap de-
gree was calculated to analyze the relationship between learning rate and parameter overlap.

Our observations, illustrated in Figure 8, show that lower learning rates lead to a higher overlap degree among parameters.
This indicates that fine-tuning at lower learning rates tends to preserve shared information across tasks, even under extreme
sparsity conditions. Conversely, higher learning rates result in less overlap, likely due to more significant parameter updates
during optimization.

B. Detailed Experimental Settings
B.1. Overlap Rate Calculation

The overlap rate between two task vectors is a metric used to quantify the extent to which the same parameters are retained
after pruning. This metric is particularly useful in understanding how pruning strategies impact the sharing of model
parameters across different tasks, which can lead to conflicts during model merging.

The overlap rate is calculated as follows: Given two task vectors 74 and 7, the overlap rate is defined as the ratio of the
number of shared non-zero parameters to the total number of non-zero parameters in the first task vector 74. Mathematically,
this can be expressed as:

|74 N 7|

Overlap Rate =
|7al

where |74 N 7| represents the count of non-zero parameters that are common to both vectors 74 and 75, and |74 | denotes
the total count of non-zero parameters in vector 74. This calculation shows the extent of overlap between two task vectors.
A higher overlap rate means more shared parameters, increasing the potential for conflicts during model merging.

B.2. Weight Distribution Analysis Across Layers and Sparsity Ratios

This section provides a comprehensive analysis of the heatmaps illustrating weight distributions across different lay-
ers of the model and various sparsity ratios. Figures 9-11 show the weight distribution for four representative layers:
self_attn.k_proj.weight (layer 6), self_attn.g.proj.weight (layer 12), self_attn.v_proj.weight
(layer 24), and m1p.up_proj.weight (layer 18) at sparsity ratios of 25%, 50%, 75%, and 90%.

These heatmaps demonstrate how increasing sparsity causes magnitude-based pruning to concentrate weights in localized
regions of the parameter space. As the sparsity level increases, this clustering becomes more pronounced, especially at 75%
and 90% sparsity levels, leading to potential imbalances that can degrade model performance.

The recurring pattern across all layers further highlights the significance of strategies like Balanced Sparsification (BS),

19

CABS: Conflict-Aware and Balanced Sparsification for Enhancing Model Merging

which aim to distribute weights more evenly across the model. By ensuring a more uniform distribution of the retained
weights, BS helps to maintain model stability and performance after sparsification.

Sparsity Ratio: 25%

0
5
10
20
25
30

0 20 40 60 80 100 120

Sparsity Ratio: 50% Sparsity Ratio: 75%

0

5
10
15
20
25
30

0 20 40 60 80 100 120 0 20 40 60 80 100 120

Sparsity Ratio: 90%

w
8
s

5

3

g
Number of Non-Zero Weights

10

~
N
ol

Number of Non-Zero Weights

Block F;ows
Block Rows
Block Rows
Block Rows
5

g
8
Number of Non-Zero Weights

N
5
3

100

Number of Non-Zero Weights

&
]
ol
N
N
bl

©
g

30

0 20 40 60 80 100 120
Block Columns Block Columns Block Columns Block Columns

Figure 9. Heatmaps of weight distribution in model.layers.6.self_attn.k_proj.weight across different sparsity ratios (25%, 50%, 75%, and
90%).

B.3. Algorithm of CABS

In this section, we present the detailed steps for both the CABS sparsity algorithm and the Low-Overlap Sparsity approach.
Algorithm ?? outlines the process behind CABS, Algorithm 2 provide the detailed algorithm for Low-Overlap Sparsity
designed to minimize direct conflicts during the model merging process. The algorithm sequentially applies sparsification to
task vectors, ensuring that the non-overlapping portions of the task vectors are prioritized, thereby reducing overlap and
conflict between different task vectors in the final merged model.

Algorithm 1 CABS
Input: Task vectors 74, 75, base model Wy, sparsity level n , m, scaling coefficients A4 , Ap
Qutput: Parameters of the merged model Wiy

1: Apply n:m pruning to 74 and compute mask 4

include BS
2! TB remaining = 7B © (1 — mask4) to eliminate overlap with 74 # core step of CA
3: Apply n:m pruning to 7g remaining t0 cOmpute mask g

include BS

A~

: Merge the pruned vectors with the base model:
Whinat = Whase + A4 X maskg © 74 + Ap X maskp © 7p
5: Return Wepa

B.4. Comparison of n:m pruning and BS

Although both n:m pruning and BS employ the same operation—selecting the top n values out of m consecutive weights
based on magnitude—their goals and use cases differ:

- Goal: The primary goal of n:m pruning is to achieve model compression and acceleration by reducing computational and

20

CABS: Conflict-Aware and Balanced Sparsification for Enhancing Model Merging

Block Rows

Sparsity Ratio: 25%

50
Block Columns

Number of Non-Zero Weights

Block Rows

Sparsity Ratio: 50%
i

40

oyt b

i

50 75 100 125

Block Columns

=
8
3

Number of Non-Zero Weights

300

Block Rows

Number of Non-Zero Weights

100

120

50 75 100 125

Block Columns

Block Rows

Sparsity Ratio: 90%

0
20
40
60
80

100
120

0 25 50 75 100 125
Block Columns

o
IS
&

5
8
Number of Non-Zero Weights

Figure 10. Heatmaps of weight distribution in model.layers.12.self_attn.q_proj.weight across different sparsity ratios (25%, 50%, 75%,
and 90%).

Block Rows

0

Sparsity Ratio: 25%

20

40 60 80
Block Columns

100 120

Number of Non-Zero Weights

Block Rows

Sparsity Ratio: 50%

&

0 20 40 60 80 100 120
Block Columns

Number of Non-Zero Weights
Block Rows

Sparsity Ratio: 75%

0 20 40 60 80 100 120

e =
G 5

Number of Non-Zero Weights

Block Columns

Block Rows

Sparsity Ratio: 90%

0 20 40 60 80 100 120

& S

3
Number of Non-Zero Weights

Block Columns

Figure 11. Heatmaps of weight distribution in model.layers.18.mlp.up_proj.weight across different sparsity ratios (25%, 50%, 75%, and

90%).

21

CABS: Conflict-Aware and Balanced Sparsification for Enhancing Model Merging

Sparsity Ratio: 25% Sparsiy Ratio: 75%] Sparsity Ratio: 90%

Sparsit Ratio: 50%

580

4
S
N
2
8

g
Number of Non-Zero Weights

N
3
8
N
3
3

Block Rows
Block Rows
g
Number of Non-Zero Weights
Block Rows
Block Rows

&
N
&
&
N
&
&

IS
3
3

Number of Non-Zero Weights

Number of Non-Zero Weights

IS
3
3

75 100 125

75 100 125 25
Block Columns

25
Block Columns

75 100

25 125
Block Columns

25 75 100 125
Block Columns

Figure 12. Heatmaps of weight distribution in model.layers.24.self_attn.v_proj.weight across different sparsity ratios (25%, 50%, 75%,
and 90%).

Algorithm 2 CABS Implementation:minimize overlap rate
Input: Task vectors 74, 75, base model Wy, sparsity level n , m, scaling coefficients A4 , Ap
Output: Merged model parameters Wiy
1: Apply n:m pruning to 74 and compute mask 4 /I include BS
2: Compute initial_ maskp = 1 — mask 4, retaining non-overlapping regions of 7
3: If initial_maskp retains less than n <+ m of weights, update mask by including additional weights from the overlapping
region mask 4 © 7p until the target sparsity n <+ m is reached
4: Merge the pruned vectors with the base model:

Wenal = Whase + Aa X masky © 74 + Ap X maskp ® 75

5: Return Wypa

memory costs. In contrast, BS is designed to maintain a balanced distribution of task vectors while minimizing conflicts
between them during merging, not to merely discard unimportant weights.

- Result: n:m pruning is typically used for structured pruning in models, aiming to reduce inference time and memory usage.
On the other hand, BS is applied specifically to task vectors. After the task vectors are merged with a base model, the
resulting model remains dense, meaning that the practical computation and memory savings are not realized, but the model
gains improved capacity.

- Sparsity Ratios: n:m pruning often uses configurations like 2:4 or 4:8, where the sparsity level is generally around 50%. In
contrast, the sparsification of task vectors under BS can involve much higher sparsity levels, as can be seen in Table 15
(Appendix A.6), with configurations such as 64:256 at 75% sparsity.

- Effectiveness: Typically, n:m pruning yields lower performance compared to magnitude pruning in compression tasks, as
the more strict uniform distribution of sparsity across blocks (e.g., every 4 weights) tends to hurt performance. However, in
model merging, n:m sparsity can outperform row-wise or layer-wise magnitude pruning due to its more balanced distribution.

22

CABS: Conflict-Aware and Balanced Sparsification for Enhancing Model Merging

B.5. Computational Overhead Analysis

This section provides a detailed analysis of the computational complexity of the CABS framework, focusing on its core
components: Balanced Sparsification (BS) and Conflict-Aware (CA) pruning strategies, as well as the scalability and
parallelization potential.

Balanced Sparsification (BS) operates efficiently by dividing each layer’s parameters into small, fixed-size blocks of m
parameters. Within each block, the top n weights are selected based on magnitude, requiring a localized sorting operation
with complexity O(m logm) per block. For a layer with N/m blocks, the total complexity per task vector is O(N log m),
significantly more efficient than global magnitude pruning with a complexity of O(N log N). When merging k task vectors,
the total complexity becomes O (kN log m), making BS highly scalable for large-scale model merging.

Conflict-Aware Sparsification (CA) introduces minimal computational overhead by sequentially applying a mask inversion
and element-wise product to ensure non-overlapping pruned regions across task vectors. These operations align with standard
sparsification frameworks and maintain the same order of complexity, adding negligible cost compared to traditional methods.
Combined with BS, the CA strategy ensures robust conflict resolution while maintaining computational efficiency.

Scalability and Parallelization. The complexity of CABS scales linearly with the number of task vectors (k), ensuring
O(kN log m) efficiency for BS. Additionally, the block-based pruning operations in BS and the sequential processing in
CA are inherently parallelizable, allowing task vector processing to occur independently across layers or blocks. This
parallelization potential leverages modern hardware architectures, enabling efficient execution even for large-scale models.
Without full parallelization, CABS still remains computationally efficient for real-world applications.

Comparison and Conclusion. Compared to traditional global magnitude pruning (O(N log N)), the block-based sorting in
BS (O(N log m)) provides substantial computational savings. CA introduces negligible overhead, ensuring efficient and
robust merging across multiple task vectors. Overall, with efficient scaling and inherent parallelization, CABS maintains a
low computational overhead while effectively resolving task conflicts and ensuring balanced weight distribution, making it
suitable for both small- and large-scale models.

B.6. Memory Overhead Analysis

This section analyzes the memory overhead of CABS during the merging process and compares it to existing methods such
as DARE and TIES-Merging.

Memory Overhead of CABS. During the merging process, CABS requires memory for storing the model parameters and
two additional boolean-like masks: one to track weight usage and another to record pruning results. For a model with NV
parameters, the memory overhead of these masks is O(2 - N - 0.125 bytes), which is negligible compared to the memory
required for storing the model parameters themselves (O(N - 2 bytes)). As a result, the peak memory usage of CABS during
the merging phase is comparable to other methods and remains efficient for large-scale models.

Comparison with Other Methods. DARE requires loading both source models into memory during the merging process.
With lazy loading, the peak memory usage is O(2 - N - 2 bytes), where N is the number of parameters in a model.
TIES-Merging, on the other hand, requires memory for all task vectors simultaneously during its election phase, resulting
in O(k - N - 2 bytes), where k is the number of task vectors. However, with lazy loading, TIES-Merging can reduce its
memory usage to O(2 - N - 2 bytes), matching that of DARE. CABS achieves a similar peak memory usage as DARE and
TIES-Merging with lazy loading, as the additional memory required for the two boolean masks is negligible compared to
the memory needed for model parameters. This makes CABS as memory-efficient as other existing methods while offering
additional robustness and performance benefits.

Conclusion. CABS introduces minimal additional memory overhead, as the boolean masks required for Balanced Sparsi-
fication are lightweight compared to the model parameters. Furthermore, the merging process is typically performed on
CPUs, where memory constraints are less critical than on GPUs. In practice, no memory bottlenecks have been observed
during experiments, confirming that CABS is memory-efficient and scalable for merging large-scale models.

B.7. Details of Datasets and Models for LLMs

Datasets: Our evaluation framework comprises two benchmark suites that collectively assess a broad spectrum of language
understanding, reasoning, and problem-solving capabilities.

23

CABS: Conflict-Aware and Balanced Sparsification for Enhancing Model Merging

(1) Open LLM Leaderboard Benchmark:

* AI2 Reasoning Challenge: A set of grade-school science questions designed to test fundamental reasoning skills.

* HellaSwag: A commonsense inference task that poses challenges for state-of-the-art models while remaining straight-
forward for humans (with human accuracy around 95%).

MMLU: A multitask evaluation covering 57 subjects—including elementary mathematics, US history, computer

science, and law—to gauge broad-domain knowledge.

TruthfulQA: A benchmark that measures a model’s tendency to avoid reproducing widely circulated falsehoods.

¢ Winogrande: An adversarial task based on Winograd schemas, which tests nuanced commonsense reasoning.

GSMBSK: A collection of grade-school math word problems that require multi-step mathematical reasoning.

(2) Open LLM Leaderboard 2 Benchmark:

IFEval: Designed to evaluate inference capabilities across complex, varied scenarios.

BBH: A subset of BIG-Bench hard tasks that challenges models with problems requiring deep reasoning.

* MATH: A dataset comprising challenging mathematical problems that demand multi-step, non-trivial problem solving.

GPQA: A general-purpose question-answering benchmark that spans a diverse range of topics.
MUSR: Focused on assessing multi-step reasoning in intricate contexts.

MMLU-PRO: An advanced variant of MMLU that emphasizes professional and specialized domain knowledge.

Models: We evaluated two families of models corresponding to the two benchmark suites.

(1) Open LLM Leaderboard Models: These models are built on the Mistral-7b-v0.1! backbone and include the
following fine-tuned variants:

e WildMarcoroni-Variantl-7B2

e WestSeverus—7B-DPO-v23

(2) Open Leaderboard 2 Models: For the new benchmark suite, we use Qwen/Qwen2.5-7B-Instruct® as the base
model, and include the following fine-tuned variants:

e ehristoforu/fqg2. 5-7b-it-normalize_false’

e Tsunami-th/Tsunami-0.5-7B-Instruct®

These models were selected for their robust performance across the diverse tasks and their proven utility in prior research.

1https:
https:
3https:
4https:
5https:
6https:

//huggingface.
//huggingface.
//huggingface.
//huggingface.
//huggingface.
//huggingface.

co/mistral-7b-v0.1
co/WildMarcoroni-Variantl-7B
co/WestSeverus—7B-DPO-v2
co/Qwen/Qwen2.5-7B-Instruct
co/ehristoforu/fg2.5-7b-it-normalize_false
co/Tsunami-th/Tsunami-0.5-7B-Instruct

24

https://huggingface.co/mistral-7b-v0.1
https://huggingface.co/WildMarcoroni-Variant1-7B
https://huggingface.co/WestSeverus-7B-DPO-v2
https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
https://huggingface.co/ehristoforu/fq2.5-7b-it-normalize_false
https://huggingface.co/Tsunami-th/Tsunami-0.5-7B-Instruct

CABS: Conflict-Aware and Balanced Sparsification for Enhancing Model Merging

B.8. Details of Datasets and Models for Small LMs

Tasks The GLUE benchmark includes a variety of tasks designed to evaluate different aspects of natural language under-
standing. For our experiments, we selected the following four tasks:

* CoLA (Corpus of Linguistic Acceptability), which evaluates the grammatical acceptability of sentences with perfor-
mance measured using the Matthews Correlation Coefficient (MCC);

e SST-2 (Stanford Sentiment Treebank), a binary sentiment classification task assessing whether a sentence expresses a
positive or negative sentiment, evaluated using accuracy;

* MRPC (Microsoft Research Paraphrase Corpus), a paraphrase identification task where models predict whether two
sentences have the same meaning, evaluated using both accuracy and F1 score;

* RTE (Recognizing Textual Entailment), a natural language inference task where models determine whether a hypothesis
is true based on a given premise, evaluated using accuracy.

* SQuAD (Stanford Question Answering Dataset): A question-answering task that evaluates models on their ability to
extract precise spans of text that answer questions from a given context, measured using F1 and exact match (EM)
scores.

* RACE (ReAding Comprehension from Examinations): A dataset for evaluating reading comprehension by requiring
models to answer multiple-choice questions based on given passages. The dataset includes diverse linguistic phenomena,
with performance measured using accuracy.

Models For each task, we utilized pre-trained and fine-tuned versions of ROBERTa, obtained from Hugging Face. Specifi-
cally, we used FacebookAl/roberta-base’ as base model. textattack/roberta-base-CoLAS3, textattack/roberta-base-SST-2°,
textattack/roberta-base-MRPC!?, textattack/roberta-base-RTE!!, Riiid/kda-roberta-base-race!? and deepset/roberta-base-
squad2'3. we also use pre-trained and fine-tuned versions of GPT-2, obtained from Hugging Face for additional experiments.
Specifically, we used openai-community/gpt2'# as the base model, tanganke/gpt2-cola'> and tanganke/gpt2-mrpc'.

B.9. Evaluation Metrics

For GLUE tasks, accuracy was chosen as the uniform metric to facilitate fair comparison across tasks. While MCC is
recommended for CoLA, we used accuracy to maintain consistency with other tasks. MCC typically reaches around 0.64
after fine-tuning for CoLA, whereas accuracy for other tasks often exceeds 0.9. This discrepancy makes it difficult to include
MCC in an overall performance average.

For LLM Leaderboard tasks, the following metrics were used:

ARC: Success rate (25-shot)

¢ HellaSwag: Accuracy (10-shot)

MMLU and Winogrande: Accuracy (5-shot)

TruthfulQA: Factual accuracy (0-shot)
¢ GSMBS8K: Success rate (5-shot)

"nttps://huggingface.co/FacebookAI/roberta-base
$https://huggingface.co/textattack/roberta-base-CoLA
*https://huggingface.co/textattack/roberta-base-SST-2
Ohttps://huggingface.co/textattack/roberta-base—MRPC
Uhttps://huggingface.co/textattack/roberta-base-RTE
“https://huggingface.co/Riiid/kda-roberta-base-race
Bhttps://huggingface.co/deepset/roberta-base-squad?2
Yhttps://huggingface.co/openai-community/gpt2
Bhttps://huggingface.co/tanganke/gpt2_cola
16https://huggingface.co/tanganke/gptZ_mrpc

25

https://huggingface.co/FacebookAI/roberta-base
https://huggingface.co/textattack/roberta-base-CoLA
https://huggingface.co/textattack/roberta-base-SST-2
https://huggingface.co/textattack/roberta-base-MRPC
https://huggingface.co/textattack/roberta-base-RTE
https://huggingface.co/Riiid/kda-roberta-base-race
https://huggingface.co/deepset/roberta-base-squad2
https://huggingface.co/openai-community/gpt2
https://huggingface.co/tanganke/gpt2_cola
https://huggingface.co/tanganke/gpt2_mrpc

CABS: Conflict-Aware and Balanced Sparsification for Enhancing Model Merging

These metrics provide a consistent and comparable basis for evaluating model performance across various benchmarks.

B.10. Grid Search Details

For small-scale tasks, we performed a fine-grained)\ parameter search with an interval of 0.01 (compared to 0.1 used
in previous works) to ensure fair comparisons between methods. In contrast, because of the high computational cost of
large-scale experiments (e.g., with 7B models), we followed prior work by adopting a coarser grid interval of 0.1, with equal
A values for all vectors. The impact of lambda grid intervals is discussed in Appendix A.1, showing how coarser intervals
may lead to unfair comparisons by missing optimal values.

In our small-scale experiments, we employed a two-step grid search strategy to determine the optimal scaling coefficients A
that maximizes average performance across multiple tasks.

Grid Search Strategy As the sparsity level increases, the range of potential optimal)\ values broadens, and performance
typically follows a pattern of increasing and then decreasing with respect to A. To address this, we adopted a two-step
adaptive search strategy. First, a manual search with a 0.1 interval was performed to identify the broader region where the
optimal A is likely to reside. Based on the results of this initial search, a more fine-grained search using a 0.01 interval was
conducted, focusing on the identified region.

To further evaluate the method’s ability to merge multiple task vectors (k > 3), additional experiments were conducted
by merging four models at 90% sparsity. In these experiments, a unified A\ value was used across all task vectors, with a
search interval of 0.01. This unified approach simplifies the process and mitigates the computational burden of searching for
optimal \ combinations, which would otherwise grow exponentially with the number of models k.

Unlike a fixed-range search, this adaptive strategy allowed us to efficiently identify the most effective scaling coefficients
for each sparsity level, ensuring precise performance optimization. The performance values presented in the main text
correspond to the optimal A values found through this two-step process.

B.11. Guidelines and Experimental)\ Values

This section describes the guidelines for setting A values and presents experimental results using a unified A across various
sparsity levels for large-scale models and across different numbers of tasks for small-scale models.

Guidelines for Setting \:

* Small-Scale Models: A fine-grained grid search with an interval of 0.01 was used to ensure fair comparisons and avoid
missing optimal values.

¢ Large-Scale Models (e.g., 7B Models): A coarser grid search with an interval of 0.1 was adopted to reduce computa-
tional costs, consistent with prior work.

Table 19. Unified A values for large-scale models at different sparsity levels.

. Task- TA- TA- TIES- TIES-
Sparsity Level |\ hmetic Magnitude DARE Merging DARE CABS
0 0.6 - - - - -
0.25 - 0.6 08% 06 08% 06
0.75 - 0.8 22% 08 22% 12
0.90 - 12 55% 12 55% 18

Table 20. Unified X\ values for small-scale models at different task numbers.

Task- TA- TA- TIES- TIES-
Task Number Arithmetic Magnitude DARE Merging DARE CABS
4 0.48 4.61* 1.07 1.88 5.72% 1.74
6 0.49 5.61* 1.04 1.88 5.41* 1.64

26

CABS: Conflict-Aware and Balanced Sparsification for Enhancing Model Merging

Notes: For DARE-relate method, the reported A values (e.g., A = 2.2 for 0.75 sparsity and A = 5.61 for 0.90 sparsity)
correspond to task vectors that have already been rescaled by a sparsity-adjusted factor (e.g., (1/(1 — sparsity))). However,
directly using these rescaled task vectors for model merging without adjusting A effectively increases the step size of the A
grid search. This results in a coarser optimization for DARE, making the comparison less fair. To address this, we ensured
that the DARE method underwent a finer-grained A search to account for this implicit difference in grid interval and to
enable a more equitable comparison with other methods.

B.12. Hardware and Hyperparameter Configurations for Model Evaluation.

The model evaluations were performed on A100-40GB GPUs. For small-scale and discriminative tasks in GLUE, we
conducted a single evaluation per model, as minimal variance was observed across repeated runs. In contrast, for generative
tasks involving large models, where results can be more variable, inference was implemented via the Im-evaluation-harness
v0.4.0. To ensure consistency and robustness, we performed three evaluations and reported the average outcome. As for the
hyperparameters of generative LMs, we set the maximum generation token limit to 256, the temperature to 1.0 for sampling,
and the maximum context length to 2048 tokens.

B.13. Limitations and Future Work

General Limitations. Like other task vector-based methods, our approach is limited to models with identical architectures
due to the element-wise operations used in merging model weights. This constraint restricts the generalization of the
framework to models with homogeneous structures. Furthermore, reliance on manual adjustment of the parameter A remains
a common challenge, especially for large-language models, which requires trial and error to optimize model performance.

Limitations Specific to CABS. CABS introduces two new hyperparameters—the sparse sequence and the n:m ra-
tios—unique to its design, as discussed in Appendix A.7 and A.6. While these hyperparameters were not particularly
sensitive in our experiments, they add complexity and increase computational cost.

Future Work. Several directions could help overcome these limitations. Expanding model merging techniques to include
heterogeneous architectures or models trained from scratch represents a key area for future research. Additionally, improving
the performance of merged models in multi-task settings—where current approaches do not yet match the performance of
original single-task models—remains a priority. Automating the search for optimal hyperparameters, particularly A, would
reduce complexity and improve usability, especially in large-scale applications.

27

