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Abstract

We present GeoGrid-Bench, a benchmark de-
signed to evaluate the ability of foundation models
to understand geo-spatial data in the grid struc-
ture. Geo-spatial datasets pose distinct challenges
due to their dense numerical values, strong spa-
tial and temporal dependencies, and unique mul-
timodal representations including tabular data,
heatmaps, and geographic visualizations. To as-
sess how foundation models can support scientific
research in this domain, GeoGrid-Bench features
large-scale, real-world data covering 16 climate
variables across 150 locations and extended time
frames. The benchmark includes approximately
3,200 question-answer pairs, systematically gen-
erated from 8 domain expert-curated templates
to reflect practical tasks encountered by human
scientists. These range from basic queries at a sin-
gle location and time to complex spatiotemporal
comparisons across regions and periods. Our eval-
uation reveals that vision-language models per-
form best overall, and we provide a fine-grained
analysis of the strengths and limitations of dif-
ferent foundation models in different geo-spatial
tasks. This benchmark offers clearer insights into
how foundation models can be effectively applied
to geo-spatial data analysis and used to support
scientific research.’

1. Introduction

Geo-spatial data pose distinct challenges for foundation
models due to their inherent spatio-temporal dependencies
and exceptionally high data density. Unlike typical tabu-
lar records for knowledge retrieval (Zhang et al., 2023a;
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Figure 1. Overview of GeoGrid-Bench. The benchmark features
questions generated from templates that vary by location, time
period, and climate variable, then rewritten with natural language
context. Each question is paired with multimodal input—either
heatmaps as images or tabular grids of numerical values. We
evaluate models on their ability to solve the queries through differ-
ent modalities—natural language, code, or vision. Ground-truth
answers capture find-grained aspects like s

(from top-left to lower-right),
(row and column indices), and
the maps), whenever available.

(textual marks on

Pasupat & Liang, 2015; Zhang et al., 2025) or natural im-
ages, climate data exists in structured, gridded formats with
complex, interconnected numerical values often represented
through modalities such as tables, heatmaps, or geographic
images spanning across space and time. These data are typ-
ically organized in highly structured, gridded formats that
encode interconnected numerical values across spatial and
temporal dimensions. Each data point is not an isolated unit
but part of a dense, multi-dimensional array that reflects
physical processes, environmental interactions, or geograph-
ical phenomena evolving over time. Meanwhile, models
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can also easily get lost in the context (Liu et al., 2023) with
overwhelming volumes of values per sample.

Informed decision-making in fields such as disaster re-
sponse, climate science, and urban development depends
on the ability to detect and interpret patterns across regions
and over time. However, there remains a lack of bench-
marks that directly address the unique challenges posed by
geo-spatial gridded data. Most existing efforts docus on
object detection, semantic segmentation, object counting,
captioning, or scene understanding of Earth observation im-
ages (Lacoste et al., 2023; Danish et al., 2024; Zhang &
Wang, 2024; Zheng et al., 2023; Wang et al., 2024; Muhtar
et al., 2024; Bazi et al., 2024; Kuckreja et al., 2024), func-
tion calls to the Geographic Information System (GIS) or
SQL queries for data retrieval (Krechetova & Kochedykov,
2025; Jiang & Yang, 2024; Ning et al., 2025; Mooney et al.,
2023; Zhang et al., 2023b), or simplified query setups that
overlook the spatial-temporal complexities in practical geo-
spatial analysis (Bhandari et al., 2023).

To understand how foundation models can assist geo-spatial
data analysis, we introduce GeoGrid-Bench, a benchmark
explicitly designed to evaluate model performance on mul-
timodal, real-world geo-spatial data. We adopt domain
expert-curated query templates to reflect realistic ques-
tions that practitioners would encounter in geo-spatial anal-
ysis—providing data in both tabular and image formats.
These tasks range from simple queries about a fixed loca-
tion and time to more complex analyses involving multiple
locations and temporal comparisons. For each template, we
develop oracle code that is applied uniformly to all query
instances, enabling scalable and consistent generation of
question-answer pairs. Our contributions can be summa-
rized as follows:

e Large-scale, real-world data: A domain-centric
benchmark built on large-scale, real-world climate pro-
jection data, presented in multimodal formats com-
monly used by actual practitioners, including struc-
tured numerical tables and geographic visualizations.

* Scalable query generation: A systematic user query
generation pipeline based on domain expert-designed
templates, reflecting diverse and realistic scientific
challenges.

¢ Comprehensive evaluation: Evaluation of foundation
models with language, coding, multimodal, and rea-
soning capabilities across find-grained answer aspects
and data modalities to diagnose their strengths and
weaknesses in geo-spatial analysis tasks.

Through comprehensive evaluations, we find that visualiz-
ing dense, gridded geo-spatial data as heatmaps is the most
accessible format for existing foundation models to interpret.

In contrast, models struggle to generate flawless code for
completing these tasks. Across all model types, identifying
broad trends proves easier than making fine-grained regional
distinctions, and models exhibit varying strengths and weak-
nesses depending on the task. With GeoGrid-Bench, we
aim to shed light on the strengths and limitations of current
foundation models when applied to multimodal geo-spatial
data, a core yet underexplored format in climate science.
Our goal is to support and advance the development of prac-
tical Al-assisted tools that can aid scientific research and
decision-making.

2. @8 GeoGrid-Bench: Overview of Data
Features and Tasks

GeoGrid-Bench aims to reflect the real-world challenges
that scientists face when analyzing geo-spatial data at scale.
To achieve this, it features large-scale, real-world geo-
spatial data sourced and sampled from ClimRR (Argonne
National Laboratory, 2023), capturing the complexity of en-
vironmental conditions across North America. An overview
of user-model interaction is shown in Figure 1.

GeoGrid-Bench is built to capture the unique grid struc-
ture. Climate projection data are typically organized across
spatial grids and time sequences, resulting in dense, high-
dimensional arrays. The data is inherently interconnected,
with each point influenced by its geographic neighbors and
historical context. This structure poses unique challenges:
models must capture spatio-temporal dependencies and han-
dle variability across scales to derive meaningful insights.

Geo-spatial data is also inherently multimodal, presented as
tabular data, heatmaps, or geographic visualizations, with
each format sharing alignment across a spatial grid struc-
ture. Each grid cell encodes a rich array of numerical data
that captures localized atmospheric behavior and climate
dynamics over time. This multimodal grid structure makes
our GeoGrid-Bench an ideal testbed for foundation models
designed to reason across space, time, and modality. To per-
form well, foundation models must integrate spatial context
from neighboring cells, understand temporal trends across
multi-year projections, and interpret information presented
in diverse formats and patterns.

To capture the wide range of questions concerning practi-
tioners at the forefront of geo-spatial analysis, we surveyed
13 domain experts in natural hazard risk domains, resulting
in 8 template questions based on their input and around 3200
query instances in GeoGrid-Bench. Each template includes
placeholders based at one or two geographic locations, time
frames, and climate variables, requiring one to eight data
frames. This design allows us to generate a scalable set of
scientifically concrete queries that reflect analytical goals.
Specifically, GeoGrid-Bench evaluates the following capa-
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bilities of foundation models: 1. Identifying regions with
the most significant patterns. 2. Comparing data across
different locations and times. 3. Analyzing temporal trends
and seasonal variations. 4. Interpreting data in multimodal
formats.

3. Constructing @ GeoGrid-Bench At Scale

GeoGrid-Bench features diverse real-world geo-spatial
data. Now we discuss our sample curation process, and a
visual illustration is included in Figure 4 in the appendix.
Each data sample is formed by extracting a specific climate-
location-time slice from the ClimRR (Argonne National
Laboratory, 2023) dataset. We sample from the 16 climate
variables listed in the appendix. For each climate variable,
we select around 50 locations where this climate variable
is the most prominent, resulting in a total of 150 distinct
locations across all climate variables, a subset of ClimRR.
For example, the benchmark includes more regions in South-
ern California for wildfire risk, while precipitation-related
examples are more concentrated in the Pacific Northwest to
reflect region-specific climate concerns.

We render each data sample in either a tabular or image
format, both structured over a spatial grid. For a given lo-
cation and its longitude and latitude, we retrieve all grid
cells within a square region with edge size 84 to 144 km
around it, resulting in approximately 50 to 150 entries in
the 12-by-12 km grid. In the tabular modality, we prepare
each table with numerical values, a caption, and row and
column indices as textual strings. In the image modality, we
prepare three types of visualization with increasing infor-
mation densities: (1) A standalone heatmap, (2) A heatmap
with overlaid numerical annotations at each grid cell, and
(3) A heatmap overlaid on an actual geographic base map.
Specifically, we render the tabular data as a heatmap with
color gradients. This heatmap is optionally added with nu-
merical annotation of the value on each cell, or overlaid
on a geographic base map (OpenStreetMap contributors,
2024) using Folium (Folium, 2023). To maintain consis-
tency with the tabular format, we also render row and col-
umn indices around the heatmap. This visualization offers
a richer representation to mirror common practices in real-
world analysis. To isolate the challenge of data retrieval,
GeoGrid-Bench provides the foundation model during eval-
uation with all necessary data frames in either tabular or
image formats, focusing solely on whether the model can
solve the problem given the relevant information.

GeoGrid-Bench builds on expert-curated templates for
scalable query generation. Based on in-depth discussions
about the analytical tasks our domain experts perform, we
develop eight representative question templates, which are
included in Table 1 in the appendix. Each template takes
as input one or two climate variables, locations, and time

frames and outputs a filled-in user query in our benchmark,
and may require between one and eight data frames to an-
swer. This structured approach enables the automatic gen-
eration of a wide variety of concrete, data-driven queries
tailored to real-world analytical needs.

For every template, we manually craft oracle code that deter-
ministically solves the question and prepares ground-truth
answers in desired formats. Crucially, the same oracle
applies uniformly to every query generated from a given
template, enabling the scalability of the benchmark. As
a result, once a template and its oracle are validated, we
ensure the quality of every generated instance.

Each question is a multiple-choice with four options, all
generated by the oracle code rather than a language model.
Recognizing that a foundation model may excel at different
aspects in answering a geo-spatial query, each query probes
a different aspect in giving the answer, as shown in Figure 1.
Specifically, answer options target the following aspects: (1)
Overall patterns (e.g., the wildfire risk overall increases).
(2) Spatial references (e.g., the highest wildfire risk occurs
around the top-left region). (3) Coordinate references (e.g.,
the highest wildfire risk occurs around Column 204 Row
106). (4) Label references (e.g., the highest wildfire risk
occurs near the textual label ”Santa Clara” on the map),
which is only available for the image type “heatmap overlaid
on an actual geographic base map”. In addition, to explore
which data modalities most effectively support geo-spatial
analysis, we evaluate models across three input settings:
language-only, language and code, and language and
vision. Detailed prompting and result parsing strategies for
each setting are provided in Appendix C.

4. Experiment

Experimental Setup. We benchmark a range of state-of-
the-art closed-source and open-source models on GeoGrid-
Bench. Our evaluation covers 5 models from OpenAl, in-
cluding o4-mini, GPT-4.1, GPT-4.1-mini, GPT-40, and GPT-
4o0-mini (OpenAl, 2024; 2025; Hurst et al., 2024), and 6
open-source models including Llama-4-Maverick, Llama-
4-Scout, Llama-3.2-11B-Vision, Llama-3.2-3B, Llama-3.1-
8B (Grattafiori et al., 2024; Al, 2024), and Qwen-2.5-VL-
7B (Bai et al., 2025). OpenAl models are accessed via API
calls, and Llama-4 models are accessed through the Lambda
Inference API. Inferences for other open-source models run
locally on four NVIDIA A100-SXM4 GPUs with 40GB of
VRAM. For all models, we set max_new_tokens as 1024
with default temperature and sampling strategies.

4.1. Evaluation Results and Findings

Vision-language models achieve the strongest perfor-
mance in geo-spatial tasks. Among the models we evalu-
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model_name data_modality overall_accuracy trend
04-mini  language and vision 0.644
GPT-4.1 language and vision 0.578
GPT-4.1-mini  language and vision 0.568
o4-mini language-only 0.534 0.474
GPT-40 language and vision 0.518 0.599
GPT-4.1 language-only 0.512 0.505
model_name data_modality overall_accuracy trend
Llama-4-Maverick  language and vision 0.580
Llama-4-Scout  language and vision 0.508 0.607
Llama-4-Maverick language-only 0.488 0.517
Llama-4-Scout language-only 0.457 0.478
Qwen2.5-VL-7B  language and vision 0.413 0.445
Llama-4-Maverick  language and code 0.337 0.282
l

0.2 0.3 0.4 05 0.6
Accuracy

Figure 2. Selected evaluation results for OpenAl and open-source
models across different data modalities (columns correspond to
the fine-grained answer aspects defined in Section 3). This table
shows only a subset of the full results; the complete evaluation
tables can be found in the Appendix.

ate, o4-mini achieves overall the highest performance, while
Llama-4-Maverick leads among open-source models, as
shown in Figure 5 in the Appendix. Overall, models that
receive input in the vision modality consistently outper-
form those using language-only input. This suggests that
converting geo-spatial gridded data into heatmap visualiza-
tions—rather than presenting models directly with large
volumes of raw numerical values in tabular forms—enables
foundation models to more effectively interpret such data
with complex spatial-temporal patterns.

Inferior performance in code highlights the need for
more agentic models in geo-spatial tasks. Contrary to our
expectations, foundation models leveraging programming
code do not outperform their language-only counterparts on
our task. Upon closer inspection, much of the generated
code is not directly executable in a single pass. For instance,
models produce incomplete scripts or bugs, omit expected
outputs, fail to parse data, or struggle with planning over
geo-spatial data—ultimately requiring human intervention
across multiple iterations. This limitation aligns with how
we construct the oracle code in the benchmark. This issue is
more severe in open-source models like Llama, which tend
to produce fewer executable code. We, therefore, emphasize
the need for stronger agentic behaviors (Plaat et al., 2025;
Kapoor et al., 2024; Ng, 2024) in foundation models, where
we define “agentic” as the ability to autonomously generate
fully executable code for human end-users in a single inter-
action, particularly when the end-users are domain scientists

rather than programmers.

Fine-grained geo-spatial tasks reveals different strength-
weakness tradeoffs. Commercial and open-source models
exhibit different strengths and weaknesses in fine-grained
geo-spatial tasks, as shown in Figure 5 in the Appendix.
Specifically, open-source models generally struggle more
than commercial ones in identifying regions with the most
significant patterns. However, both types of models per-
form well when comparing trends between two locations
or analyzing seasonal variations at a single location. In
contrast, they show weaker performance when comparing
seasonal variations across multiple locations or comparing
data across different locations and times.

Models perform better at identifying overall trends than
fine-grained region detections. As mentioned in Figure 1,
target answers captures fine-grained aspects in answering
these geo-spatial queries. Evaluation results in Figure 6
(a) and (b) in the Appendix show that models perform best
on the “trend” column, while accuracy drops for spatial,
coordinate, or label references—highlighting a need for
improvement in fine-grained regional understanding.

Heatmaps with numerical annotations enhance perfor-
mance, whereas map-overlaid heatmaps pose greater
challenges for vision-language models. Figure 6 (c) in the
Appendix compares model performance across three input
image formats. Adding numerical annotations to heatmaps
improves model accuracy compared to using color gradi-
ents alone. In contrast, the most realistic format, where
heatmaps are overlaid on geographic base maps, poses the
challenge for all models, as the added visual complexity
hinders spatial pattern recognition.

5. Conclusion

We introduced @9 GeoGrid-Bench, a comprehensive bench-
mark designed to evaluate the capability of foundation
models to understand multimodal gridded geo-spatial data.
GeoGrid-Bench features structured, dense numerical data
using real-world gridded datasets and expert-curated tem-
plates to evaluate scientifically relevant geo-spatial tasks.
This integrated design enables robust and scalable assess-
ment of foundation models across vision, language, and
code modalities. Our evaluation reveals that while vision-
language models excel at interpreting spatial patterns from
heatmaps, they still struggle with fine-grained regional un-
derstanding and label-based reasoning. Meanwhile, lan-
guage and code models show limited success in generat-
ing executable analysis scripts without human intervention,
highlighting the need for stronger agentic behavior. These
findings point to several critical areas where model capabili-
ties must improve to meet the practical needs of geo-spatial
scientific analysis.
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Impact Statement

Overall, this work can inform the development of more
capable models to process and understand the dense nu-
merical data, spatiotemporal dependencies, and multimodal
representations of geo-spatial data, supporting the advance-
ment of foundation models for informed decision-making
and resilience building across a wide range of real-world
challenges.

We acknowledge that this dataset is limited to the United
States due to data availability. Additionally, our benchmark
focuses on geo-spatial data in gridded formats, intentionally
excluding other common data types such as Earth observa-
tion and remote sensing imagery, which have already been
extensively studied in prior work. However, the underlying
framework are designed to be generalizable and can be read-
ily applied to similar gridded geo-spatial datasets from other
regions. Building on this foundation, future work will focus
on expanding GeoGrid-Bench beyond the United States and
incorporating richer data modalities such as satellite im-
agery, elevation maps, and land use data to enable broader
and more diverse analytical capabilities.
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A. Data Curation

We illustrate our sample curation process in Figure 4. Our template questions are included in Table 1. The full list of Climate
Variables in GeoGrid-Benchis included below.

Full List of Climate Variables in GeoGrid-Bench

Maximum Annual Temperature, Minimum Annual Temperature, Consecutive Days with No Precipitation, Cooling Degree Days,
Fire Weather Index, Maximum Daily Heat Index, Maximum Seasonal Heat Index, Number of Days with Daily Heat Index
95°F/105°F/115°F/125°F, Heating Degree, Annual Total Precipitation, Maximum Seasonal Temperature, Minimum Seasonal
Temperature, Wind Speed.

Templates that require one data frame

1. Which region in the {location1} experienced the largest increase in {variablel} during {time_framel}?

Templates that require two data frames

2. How has {variablel} changed between {time_framel} and {time_frame2} in the {locationl}?

3. What is the correlation between {variablel} and {variable2} in the {locationl} during {time_framel}?

4. How does {variablel} compare between {location1} and {location2} during {time_framel}?

Templates that require four data frames

5. What is the seasonal variation of {climate_variable1} in {locationl} during {time_framel}?

6. Which season in {time_framel} saw the highest levels of {variablel} in {location1}?

7. Which of {location1} or {location2} experienced a greater change in {variablel} throughout {time_framel} and {time_frame2}?

Templates that require eight data frames

8. How does the seasonal variation of {variablel} in {locationl} compare to that in {location2} for {time_framel}?

Table 1. Template questions in GeoGrid-Bench. We develop those questions with domain experts. Each question includes placeholders
for one or two locations, time frames, and geo-spatial variables. This design enables scalable question construction while capturing
varying levels of complexity based on the number of data frames involved.

B. Evaluation Results

The evalution result tables are shown in Figure 5 and 6.

C. Inference Prompts and Result Parsing

To evaluate models across different modalities, we design prompts for three settings: language-only, language and code, and
language and vision. Each prompt is designed to be simple yet encourage model response with desired style and consistent
answer formatting.

* Language-only: models receive data in tabular format with instructions ”Think step by step before making a decision.
Then, explicitly state your final choice after the special phrase ~####Final Answer” followed by (a), (b), (c), or (d).
Please don’t use programming code.” .

» Language and programming code: models receive data in tabular format with instructions ”Please write Python code
to answer the question and show the complete script. You must include a print statement at the end of the code that
outputs the final answer using the special phrase "####Final Answer’ followed by (a), (b), (c), or (d).”

» Language and vision: models receive climate data in one of the three image formats with instructions “Analyze this
image and answer the question. Think step by step before making a decision. Then, explicitly state your final choice
after the special phrase "####Final Answer” followed by (a), (b), (c), or (d).”.

In each mode, we provide the model with the user query, the relevant data (in either tabular or image format), all four
multiple-choice options, and system instructions as inputs. We extract the model’s final answer following the special tokens

7
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& Which region in Philadelphia, PA experienced the largest increase in maximum annual

temperature during historical period?
User Query

maximum annual temperature maximum annual temperature maximum annual temperature maximum annual temperature

€500 C501 C502 C503 C504 C505 C506 C507 C508 C509

R197 NaN 56.42 56.63 5716 5759 57.96 58.46 58.63 5856 NaN

R196 5613 56,54 56.01 57.35 58.02 5853 59.92 59.00 58.83 NaN

R195 5675 5735 5761 57.81 5932 60.12 59.85 59.38 5921 5919
R194 5754 5789 58.18 59.33 5090 60.61 59.87 59.61 59.57 5939
R193 57.33 5790 58.20 5959 60.45 61.00 60.90 59.92 59.89 5977
R192 5711 56778 58.17 59.95 60.86 61.09 59.92 59.92 60.12 60.156
R191 57.37 5799 58.56 50.81 60.05 60.02 59.93 60.02 60.25 60.34
R190 NaN 58.38 50.16 60.89 6016 60.06 60.05 60.15 60.29 60.47

R189 NaN 5891 59.63 60.00 60.01 60.03 60.22 60.36 60.51 NaN

R188 NaN 5971 60.02 60.20 5921 6019 NaN NaN NaN NaN

(a) (b) (© (@

Figure 3. We prepare every data sample in one of the four formats: (a) 2D table as a textual string. (b) standalone heatmap; (c) heatmap
with overlaid numerical annotations at each grid cell; (d) heatmap overlaid on an actual geographic base map. These formats reflect
real-world climate data practices and differ markedly from typical natural images seen by foundation models. More in Appendix D.

@ Real-World Data Dodge City, KA, & Expert Designed
Boston, MA,

Max Annual Temp, Chicago, I,

Wind Speed Philadelphia, PA, ... Which region in the -
Fire Weather Index, Location {locationl} e*perlencejd the
Annual Precipitation, largestiincreaselin

Heat Index, ... Historical Period, {climate_variablel}|during Oracle Code
Mid-Century Period, {time_framel}?

End-Century Period, ......

imat: iab
Climate Variable Question Template

Time Frame
Filled Questions Target Answers
Templates enable large-scale A single oracle code handles all filled-
question generation in questions within a given template

Figure 4. Overview of the example curation process. Each example in GeoGrid-Bench is constructed by combining a query template
with sampled climate variables, locations, and time frames from real-world climate data. Each template is paired with a corresponding
oracle code that deterministically generates target answers for all filled-in question instances under that template.

UH####Final Answer” to facilitate answer parsing. If the model fails to provide an explicit option (a), (b), (c), or (d), we use a
sentence embedding model (Reimers & Gurevych, 2019) to identify the most similar option based on the model’s response.
When the model outputs Python code, we execute the code in a shell environment to extract the final answers.

D. Examples of Data Visualizations for All Query Templates
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Which of
{locationl} or What is the How does the
{location2} correlation seasonal
experienced a What is the Which region in How does between How has variation of
greater change seasonal the {locationl} Which season in {climate_variabl {climate_variabl {climate_variabl {climate_variabl
in variation of experienced the {time_framel} el} compare el} and el} changed el} in
{climate_variabl {climate_variabl largest increase saw the highest between {climate_variabl between {location1}
el} throughout el} in in levels of {locationl} and e2} in the {time_framel} compare to that
{time_framel} {locationl} {climate_variabl {climate_variabl {location2} {locationl} and  in {location2}
and during el} during el} in during during {time_frame2} in for
model_name data_modality overall_accuracy {time_frame2}? {time_framel}? {time_framel}? {locationl}? {time_framel}? {time_framel}? the {locationl}? {time_framel}?
o4-mini  language and vision 0.644 0.667 0.673 0.743 0.623 0.453 0.453 0.724
GPT-4.1 language and vision 0.578 0.640 0.593 0.660 0.523 0.313 0.400 0.673
GPT-4.1-mini  language and vision 0.568 0.633 0517 0.600 0.487 0.373 0.453 0.680
04-mini language-only 0.534 0.470 0.210 0.590 0.570 0.510 0.333
GPT-40 language and vision 0.518 0.613 0.407 0.630 0.773 0.447 0.370 0.380 0.525
GPT-4.1 language-only 0.512 0.690 0.670 0.450 0.530 0.540 0.470 0.450 0.293
GPT-4.1-mini language-only 0.511 0.640 0.670 0.450 0.500 0.580 0.440 0.470 0.333
GPT-40-mini  language and vision 0.462 0.573 0.657 0.363 0.700 0.400 0.437 0.373 0.192
o4-mini  language and code 0.453 0.650 0.660 0.420 0.150 0.500 0.470 0.530 0.242
GPT-40-mini language-only 0.437 0.630 0.550 0.410 0.400 0.270 0.570 0.380 0.283
GPT-4.1-mini  language and code 0.427 0.470 0.570 0.560 0.200 0.410 0.440 0.420 0.343
GPT-40 language-only 0.423 0.630 0.420 0.430 0.400 0.370 0.420 0.430 0.283
GPT-4.1  language and code 0.412 0.500 0.580 0.350 0.290 0.430 0.420 0.440 0.283
GPT-40-mini  language and code 0.369 0.440 0.530 0.270 0.260 0.330 0.400 0.390 0.333
GPT-40  language and code 0.367 0.470 0.520 0.340 0.250 0.330 0.350 0.310 0.364
Overall language and vision 0.554 0.625 0.569 0.599 0.496 0.389 0.412 0.559
Overall language-only 0.483 0.676 0.622 0.442 0.408 0.470 0.494 0.448 0.305
Overall  language and code 0.406 0.506 0.572 0.388 0.230 0.400 0.416 0.418 0.313
Overall all 0.481 0.602 0.588 0.476 0.474 0.455 0.433 0.426 0.392
Which of

{locationl} or What is the How does the

{location2} correlation seasonal
What is the experienced a between How does variation of How has Which region in
seasonal greater change Which season in {climate_variabl {climate_variabl {climate_variabl {climate_variabl the {locationl}
variation of in {time_framel} el} and el} compare el} in el} changed experienced the
{climate_variabl {climate_variabl saw the highest {climate_variabl between {locationl} between largest increase
el} in  el} throughout levels of €2} in the {locationl} and compare to that {time_framel} in
{locationl} {time_framel} {climate_variabl {locationl} {location2} in {location2} and {climate_variabl
durin, and el} in durin during for {time_frame2} in el} during
model_name data_modality overall_accuracy {time_framel}? {time_frame2}? {locationl}? {time_framel}? {time_framel}? {time_framel}? the {locationl}? {time_framel}?
Llama-4-Maverick language and vision 0.580 0.627 0.667 0.373 0.467 0.721 0.443 0.537
Llama-4-Scout language and vision 0.508 0.463 0.607 0.727 0.517 0.393 0.556 0.378 0.423
Llama-4-Maverick language-only 0.486 0.570 0.620 0.460 0.370 0.540 0.424 0.470 0.430
Llama-4-Scout language-only 0.457 0.490 0.480 0.530 0.510 0.410 0.364 0.402 0.470
Qwen2.5-VL-7B language and vision 0.413 0.440 0.420 0.507 0.523 0.330 0.380 0.337 0.367
Llama-4-Maverick language and code 0.337 0.630 0.350 0.100 0.320 0.410 0.192 0.400 0.290
Llama-3.2-3B language-only 0312 0.290 0.360 0.410 0.280 0.270 0.293 0.280 0.240
Llama-4-Scout  language and code 0.311 0.470 0.370 0.200 0.310 0.270 0.182 0.347 0.340
Qwen2.5-VL-7B language-only 0.298 0.370 0.350 0.190 0.420 0.310 0.300 0.260 0.180
Qwen2.5-VL-7B  language and code 0.286 0.310 0.550 0.320 0.180 0.290 0.140 0.300 0.200
Llama-3.2-3B  language and code 0.265 0.620 0.070 0.020 0.240 0.310 0.343 0.230 0.290
Llama-3.1-8B  language and code 0.264 0.670 0.060 0.030 0.260 0.270 0.313 0.240 0270
Llama-3.2-11B-Vision language and code 0.261 0.690 0.119 0.034 0.281 0.220 0.306 0.230 0.250
Llama-3.2-11B-Vision language and vision 0.233 0.258 0.319 0.403 0.281 0.231 0.173 0.277 0.273
Llama-3.2-11B-Vision language-only 0.204 0.270 0.250 0.310 0.110 0.100 0.160 0.170 0.160
Llama-3.1-8B language-only 0.173 0.250 0.290 0.330 0.240 0.210 0.172 0.240 0.210
Overall language and vision 0.433 0.447 0503 0.611 0.424 0.355 0.457 0.359 0.400
Overall language-only 0.322 0.373 0.392 0.372 0.322 0.307 0.285 0.304 0.282
Overall  language and code 0.287 0565 0.253 0.117 0.265 0.295 0.246 0.291 0.273
Overall all 0.337 0.464 0.368 0.336 0.326 0.314 0.314 0.313 0.308

f . : . . , . : ]

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Accuracy

Figure 5. Evaluation results. The top table shows OpenAl models and the bottom table shows open-source models. Each row corresponds
to one model with one data modality—language-only, language and code, or language and vision, while each column represents a query
template in Table 1.
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model_name data_modality overall_accuracy trend spatial_ref coordinate_ref 1label_ref model_name data_modality overall_accuracy trend spatial_ref coordinate_ref label_ref
o4-mini  language and vision 0.644 0565 0515 Llama-4-Maverick  language and vision 0.580 0426 0375 0.483
GPT-4.1 language and vision 0578 0.451 0.451 Llama-4-Scout  language and vision 0508 0607 0361 0.308 0414
GPT-4.1-mini language and vision 0.568 0.475 0.426 0.529 e aaveric language-only 0486 0517 0287 0472 nan
odmini Lenguage-only | 0.7 Vie s nan Llama-4-Scout language-only 0457 0478 0.269 0.463 nan
Qwen2.5-VL-78 Y Y : : :

GPT-40 language and vision 0518 0599 0.457 0.412 0517 language and vision R 0:380 0342 0345
Llama-4-Maverick  language and code 0337 0282 0231 0407 nan

GPT-4.1 language-only 0512 0505 0361 0597 nan
Llama-3.2-38 language-only 0312 0346 0.250 0.296 nan

GPT-4.1-mini language-only 0511 0.482 0333 0.639 nan
Llama-4-Scout  language and code 0311 0276 0333 0343 nan

GPT-40-mini  language and vision 0462 0508 0306 0.300 0.425
Qwen2.5-VL-78 language-only 0298 0309 0.148 0250 nan

-mir . . . X nan
Coiit bl o L 0% ek Uil Qwen25-VL-7B  language and code 0286 0317 0222 0250 nan
GPT-do-mini language-only 0437 | 0.448 0278 0.437 nan Llama-3.23B  language and code 0265 0202 0361 0343 nan
GPT-4.1-mini  language and code 0.426 0340 0.417 0.588 nan Llama-3.1-88  language and code 0264 0183 0.361 0.352 nan
GPT-40 language-only 0423 0436 0.185 0555 nan  Llama-3.2-11B-Vision  language and code 0261 0.191 0330 0.330 nan
GPT-4.1  language and code 0412 0371 0324 0513 nan  Llama-3.2-11B-Vision language and vision 0233 0297 0274 0267 0.176
GPT-4o-mini  language and code 0369 0366 0343 0328 nan  Llama-3.2-11B-Vision language-only 0204 0232 0.167 0.130 nan
GPT40 language and code 0367 0356 0343 0.462 nan Llama-3.1-88 language-only 0173 0256 0.250 0176 nan

(a) ' ! (b)
02 03 04 05 06
Accuracy

model  data_modality overall accuracy heatmap heatmap_with_annotations heatmap_overlayed_on_map

04-mini  language and vision 0.644 0.653 0.578
Llama-4-Maverick language and vision 0.580 0.578 0.641 0.521
GPT-4.1 language and vision 0578 0.573 0.625 0.537
GPT-4.1-mini  language and vision 0.568 0.568 0.620 0.517
GPT-40 language and vision 0.518 0.524 0.573 0.457
Llama-4-Scout language and vision 0.507 0.506 0.552 0.464
GPT-40-mini  language and vision 0.462 0.464 0.501 0.422
Qwen2.5-VL-7B language and vision 0.413 0.416 0.458 0.365
Llama-3.2-11B-Vision language and vision 0.277 0.289 0.273 0.268

(c) [ ]
030 035 040 045 050 055 060 065
Accuracy

Figure 6. More evaluation results. (a) OpenAl models and (b) open-source models evaluated under different data modalities. Columns
represent fine-grained answer aspects defined in Section 3, including trend, spatial references, coordinate references, and label references.
There exist NaN values since the label reference is only available for the vision modality. (c) vision-language models, which are evaluated
on three visualization types, as mentioned in Section 3 and Figure 3.

Which region in Philadelphia, PA experienced the largest increase in maximum annual
temperature during historical period?

User Query

maximum annual temperature maximum annual temperature maximum annual temperature maximum annual temperature
€500 C501 C502 C503 €504 C505 C506 C507 C508 C509

R197 NaN 56.42 56.63 5716 5759 57.96 58.46 58.63 58.56 NaN

R196 5613 56,54 56.91 57.35 58.02 5853 59.92 59.00 58.83 NaN

R195 5675 57.35 57.61 57.81 5032 60.12 59.85 59.38 5921 59.19
R194 5754 57.89 58.18 59.33 50.90 60.61 59.87 59.61 59.57 5939
R193 57.33 5790 58.20 5959 60.45 61.00 60.90 59.92 59.89 5977
R192 5711 5778 58.17 59.95 60.86 61.09 59.92 59.92 6012 6015
R191 57.37 5799 58.56 59.81 60.05 60.02 59.93 60.02 60.25 60.34
R190 NaN 58.38 50.16 60.89 6016 60.06 60.05 60.15 60.29 60.47

R189 NaN 5891 50.63 60.00 60.01 60.03 60.22 60.36 60.51 NaN

R188 NaN 5971 60.02 60.20 5921 6019 NaN NaN NaN NaN

(a) (b) (© @
Figure 7. We prepare every data sample in one of the four formats: (a) 2D table as a textual string. (b) standalone heatmap; (c) heatmap

with overlaid numerical annotations at each grid cell; (d) heatmap overlaid on an actual geographic base map. These formats reflect
real-world climate data practices and differ markedly from typical natural images seen by foundation models.
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maximum annual temperature maximum annual temperature

si0 7 S04 + 540 s53 s67 580 S04
——— e e—
Values.

= tLeatiet =Leanet

Figure 8. Template 1: Which region in {locationl} experienced the largest increase in {climate_variable1} during {time_framel}? This
example takes locationl = New York city, NY, climate_variable] = maximum annual temperate, and time_framel = historical period.
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60; historical period mid-century period (RCP4.5)
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Figure 9. Template 2: How has {climate_variablel} changed between {time_framel} and {time_frame2} in the {locationl}? This
example takes location]l = New York city, NY, climate_variable]l = maximum annual temperate, time_framel = historical period, and
time_frame2 = mid-century period (RCP-4.5).
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Figure 10. Template 3: What is the correlation between {climate_variablel} and {climate_variable2} in the {locationl} during
{time_frame1}? This example takes location] = New York city, NY, climate_variable]l = maximum annual temperate, climate_variable2 =
minimum annual temperate, and time_framel = historical period.
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715

716

717 New York, New York, United States Los Angeles, California, United States
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/64 Figure 11. Template 4: How does {climate_variable1} compare between {location1} and {location2} during {time_frame1}? This
765 example takes locationl = New York city, N'Y, location2 = Los Angeles, CA, climate_variablel = maximum annual temperate, and
766 time_framel = historical period.
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New York, New York, United States Los Angeles, California, United States
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= Leafet | © Openstreetiap contributors
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Spring in New York, New York, United States Summer in New York, New York, United States Autumn in New York, New York, United States. Winter in New York, New York, United States

Winter in New York, New York, United States

Figure 12. Template 5: What is the seasonal variation of {climate_variable1} in {locationl} during {time_framel}? Same data is used in
Template 6: Which season in {time_framel} saw the highest levels of {climate_variable1} in {location1}? This example takes location]
= New York city, NY, climate_variablel = maximum annual temperate, and time_frame1 = historical period.
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Figure 13. Template 7. Which of {locationl} or {location2} experienced a greater change in {climate_variablel} throughout
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Figure 14. Template 8. How does the seasonal variation of {climate_variablel} in {locationl} compare to that in {location2} for
{time_frame1}? This example takes location]l = New York city, NY, climate_variablel = maximum annual temperate, and time_framel =
historical period.
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