MEPG: A Minimalist Ensemble Policy Gradient Framework for Deep
Reinforcement Learning

Abstract

During the training of a reinforcement learning
(RL) agent, the distribution of training data is non-
stationary as the agent’s behavior changes over
time. Therefore, there is a risk that the agent is
overspecialized to a particular distribution and its
performance suffers in the larger picture. Ensemble
RL can mitigate this issue by learning a robust pol-
icy. However, it suffers from heavy computational
resource consumption due to the newly introduced
value and policy functions. In this paper, to avoid
the notorious resources consumption issue, we de-
sign a novel and simple ensemble deep RL frame-
work that integrates multiple models into a single
model. Specifically, we propose the Minimalist
Ensemble Policy Gradient framework (MEPG),
which introduces minimalist ensemble consistent
Bellman update by utilizing a modified dropout
operator. MEPG holds ensemble property by keep-
ing the dropout consistency of both sides of the
Bellman equation. Additionally, the dropout op-
erator also increases MEPG’s generalization ca-
pability. Moreover, we theoretically show that the
policy evaluation phase in the MEPG maintains
two synchronized deep Gaussian Processes. To
verify the MEPG framework’s ability to general-
ize, we perform experiments on the gym simulator,
which presents that the MEPG framework outper-
forms or achieves a similar level of performance as
the current state-of-the-art ensemble methods and
model-free methods without increasing additional
computational resource costs.

1 INTRODUCTION

One of the main driving factors for the success of the deep
learning research is that intelligent systems can obtain open-

world perceptions from large amounts of data [Brown et al.,
2020, He et al.l [2016] through high-capacity function ap-
proximators. Deep reinforcement learning (DRL) follows
this paradigm, using neural networks for function approxi-
mation to solve sequential decision-making problems, and
has achieved great success in a wide range of domains such
as board games [Silver et al., 2018, video games [Mnih
et al., 2015bl |Vinyals et al. [2019a]], robot manipulation
[Haarnoja et al.} 2018]], etc.

DRL algorithms are often criticised for their drastic decrease
of performance when tested in unfamiliar environments
or domains[Kirk et al., [2021]]. Even in the same environ-
ment, the agent can fail to adapt to different initiations of
the environment. This is because the sequence of value
approximation problems faced by the RL agent is not sta-
tionary[[Dabney et al.l 2020]. As its policy improves, the
distribution of the states and their values is also changing.
Thus, a single agent can be overfitted to certain distributions.
Ensemble methods can mitigate this problem by aggregat-
ing all the encountered scenarios collected from multiple
models[Mesbah et al., 2021} Wiering and Van Hasselt, 2008],
Osband et al., 2016, |Chua et al., 2018} |[Kurutach et al., 2018|
Saphal et al., 2021} [Lee et al., 2021]]. However, they intro-
duce additional networks and loss functions which translate
to a huge computational burden. Therefore, it is a challenge
to create a DRL agent which maintains both generalizabil-
ity and low computation consumption [Henderson et al.,
2018} |/Andrychowicz et al.,[2021]]. Ensemble RL methods,
however, bring about heavy computational resource con-
sumption issues due to multiple networks used. The en-
semble methods in DRL work well when the models are
sufficiently rich in diversity. Furthermore, additional net-
works also introduce more hyper-parameters, and requires
more non-algorithmic level tricks and subtle fine-tuning
for hyper-parameters. Due to these requirements, there are
still many issues to be addressed when applying ensemble
methods to DRL algorithms in practice.

Therefore, we ask the following question: can we find a
simple approach to ensemble DRL algorithms to tackle
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the heavy computational resource consumption issue? Our
answer is that one network is enough. In this paper, we
propose the Minimalist Ensemble Policy Gradient frame-
work (MEPG) to deal with the aforementioned issues of
ensemble methods in DRL. Our insight origins from the
fact that ensemble methods can be achieved by integrating
multiple models into a single model. In this way, the is-
sue of heavy resource consumption of ensemble learning
methods can be well addressed, as one single model does
not consume more computational resources than model-free
deep RL algorithms. In addition, this framework introduces
only one additional hyper-parameter on modern model-free
DRL algorithms. We implement our insight by minimalist
ensemble consistent Bellman update that utilizes modified
dropout operator|Srivastava et al., |2014]. The ensemble
property holds as follows. The complete neural network
being acted on by sampled dropout operator is equivalent
to a new sub-model (or sub-network) in the training phase.
In the inference phase, the complete model is used. And the
complete model without the dropout operator is equivalent
to all the sub-networks acting together. However, applying
the dropout operator directly to the value functions creates
the problem of source-target mismatch, i.e., the left and
right sides of the Bellman equation do not correspond to the
same value function. And a bad value function is learned,
thus leading to limited policy improvement (check section
for more details). Therefore, we introduce a minimal-
ist ensemble consistent Bellman update where the same
dropout operator acts on both sides of the Bellman equation
at the same time. Furthermore, we show theoretically that
the policy evaluation process in the MEPG framework main-
tains two synchronized deep Gaussian Processes [Dami{
anou and Lawrence} |2013]]. The consistency introduced by
MEPG naturally improves the stability of Bellman equation
compared to random mask situations. We apply MEPG to
DRL algorithms DDPG |[Lillicrap et al. 2016] and SAC
[Haarnoja et al., |2018]]. Our experimental results show that
our modified algorithms outperform state-of-the-art ensem-
ble DRL and model-free DRL algorithms. We highlight that
our framework does not introduce any auxiliary loss func-
tion or additional computational consumption compared
to the conventional model-free algorithms DDPGJLillicrap
et al., 2016] and SAC[Haarnoja et al., 2018]]. Moreover, the
parameters of MEPG are much less than those of the modern
model-free DRL algorithms.

Our contributions are summarized as follows. First, we
propose a general ensemble RL framework, called MEPG,
which is simple and easy to implement. Unlike conventional
ensemble Deep RL methods, this framework does not need
to introduce any additional loss functions and computational
costs. This framework can be combined with any DRL algo-
rithm. Second, we provide theoretical analysis that shows
the policy evaluation process in the MEPG framework main-
tains two synchronized deep GPs. Third, we experimentally
demonstrate the effectiveness of the MEPG framework by

combining our algorithm with the DDPG and SAC algo-
rithms. The results show that MEPG achieves or exceeds
state-of-the-art ensemble method DRL with 14% to 27% of
parameters and 10% to 20% of training time compared to
ensemble RL methods ACE [Zhang and Yao,[2019], SUN-
RISE [Lee et al.,2021]], and REDQ[Chen et al., [2020].

2 RELATED WORK

We briefly discuss off-policy DRL algorithms and ensemble
DRL methods, and the dropout operator in DRL algorithms.
Then we compare previous works with MEPG.

2.1 OFF-POLICY DRL ALGORITHMS

Deep Q-networks (DQN) [Mnih et al.l 2015a] is the first
successful applied off-policy deep RL algorithm. It has long
been recognized that the overestimation in Q-learning could
severely impair the performance [Thrun, [1993]]. Double Q-
learning [Hasselt,|2010,|Van Hasselt et al.,|2016] is proposed
to solve overestimation issue for discrete action space. The
overestimation issue still exists in continuous control algo-
rithms such as Deterministic Policy Gradient (DPG) [Silver
et al.,[2014] and its variant Deep Deterministic Policy Gradi-
ent (DDPG) [Lillicrap et al., 2016 [Fujimoto et al.,|2018]]
introduced clipped double Q-learning (CDQ), which de-
creases the overestimation issue in DDPG. [Haarnoja et al.,
2018]| proposed Soft Actor Critic (SAC) algorithm which is
based on maximum entropy RL framework [Ziebart, 2010]
and combined with CDQ, resulting in a stronger algorithm.
Maximum entropy RL framework encourages exploration
capacity by adding policy entropy to optimization objectives.
The CDQ approach introduces a slight underestimation is-
sue [Lan et al.,|2019, [He and Hou} |2020alb]. We apply the
MEPG framework to DDPG and SAC algorithm, which
achieves or surpasses the performance of compared meth-
ods even without introducing a technique to get a precise
value function.

2.2 ENSEMBLE DRL ALGORITHMS

Ensemble methods use multiple learning algorithms to ob-
tain better performance. They are also used in DRL [Zhang
and Yao, 2019, [Wiering and Van Hasselt, 2008 |(Osband
et al.,|2016,|Chua et al., [2018]] for different purposes. [Ku{
rutach et al., 2018|] showed that modeling error can be re-
duced by ensemble methods in model-based DRL. [Lan
et al.,|2019, |Chen et al.,[2020] tackled the estimation issue
and gave unbiased estimation methods of the value func-
tion from the perspective of ensemble functions. [[Agarwal
et al., [2020]] proposed Random Ensemble Mixture, which
introduces a convex combination of multiple Q-networks to
approximate the optimal Q-function. [Saphal et al.,[2021]]
proposed a method for model training and selection in a sin-
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Figure 1: Neural network architectures for different critic. (a) is vanilla critic architectures. (b) is conventional ensemble
critic architectures, which truly utilize multiple heterogeneous action value functions. (c) is our MEPG critic architecture. In
the left part of (c), we train critic with minimalist ensemble consistent Bellman. In the right part of (c), the critic utilize a

complete ensemble model.

gle run. [Lee et al.; 2021]] proposed SUNRISE framework
that uses an ensemble-based weighted Bellman backups and
UCB exploration [Auer et al.|[2002]. Unlike these methods,
we only use a single model instead of multiple models to
achieve our ensemble purpose.

2.3 DROPOUT IN DRL ALGORITHMS

It was recognized earlier that dropout [Srivastava et al.|
2014] can improve the performance of DRL algorithms in
video games [Lample and Chaplot, 2017, |Vinyals et al.,
2019b]. Because the dropout operator prevents complex
co-adaptations of units in neural networks where a feature
detector is only helpful in the context of several other fea-
ture detectors. Therefore, the effectiveness of the dropout in
pixel-level input DRL is similar to the supervised learning
tasks for image input. Our work extends the dropout method
in high dimensional inputs settings to low dimension input
scenarios, where the effect of preventing pixel-level features
co-adaptations may not exist. [Kamienny et al.||2020] pro-
posed a privileged information dropout method to improve
sample efficiency and performance, but requires prior knowl-
edge, i.e., an optimal representation for inputs. Our work
does not require any auxiliary information. [Liitjens et al.|
2019, |Wu et al.| 2021] obtain the neural networks model un-
certainty with dropout through multiple forwards given the
same inputs. The closest work to ours is DQN+dropout
[Gal and Ghahramani, 2016] in a discrete environment,
which also utilizes the uncertainty of Q-function induced
by dropout. MEPG is different from [Gal and Ghahramanil,
2016] for the following reasons. First, MEPG maintains con-
sistency of the two sides of Bellman equation where [|Gal
and Ghahramanil [2016] does not. Failure to maintain consis-
tency leads to a mismatch in the Bellman equation and then
harms performance (see Table[2)). Second, we use dropout

for ensemble to improve performance and efficiency. [Gal
and Ghahramani, 2016] uses dropout to obtain uncertainty
thus using Thompson sampling to speed up convergence,
without performance gain. Another approach to measuring
uncertainty is to determine it using the variance generated
by multiple Q-functions [Lee et al., |2021]]. Our approach
differs from previous works in that we neither use multiple
Q-functions to estimate model uncertainty nor prevent pixel-
level feature co-adaptation. We use the model ensemble
property introduced by the dropout operator.

3 BACKGROUND

We consider standard RL paradigm as a Markov Deci-
sion Process (MDP), which is characterized by a 6-tuple
(S, A,R,P,po,7Y), i.e., a state space S, an action space
A, areward function r : § X A — R, a transition prob-
ability P(s;+1 | s¢,ay) - specifying the probability of tran-
sitioning from state s, to s;4; given action a,, an initial
state distribution pg, and a discount factor y € [0, 1) [Sut{
ton and Barto| |2018]]. The agent learns a policy, stochastic
or deterministic by interacting with environment. At each
time step, the agent generates action a w.r.t. policy m based
on current state s and send a to environment. Then the
agent receives a reward signal r and a new state s’ from
environment. Through multiple interactions, a trajectory
T = {s0,a9,r0,S1,41,71," - } is generated. The optimiza-
tion goal of RL is to maximize the expected cumulative dis-
counted reward J = E.[Ro], where R, = X7 y'~"r(s;, a;).
Two functions play important roles in RL, the state value
function V™ (s) = E[Rp|so = s] and action value func-
tion (Q-function), Q7 (s, a) = E-[Ro|so = s, a9 = a], ak.a.
critic, which is able to judge how good a state is and how
good a specific action is respectively. According to Bellman



Equation [Bellmanl [1954], action value function satisfies

Qn(s’ a)=r(s,a)+ 'yEs/~P(~|s,a),a’~7r(-|s’) [Qﬂ (S” a,)] .
&)
The value function can be learned with Equation (T)) [Sut]
ton and Barto, |2018]]. For a large state space S, we can
utilize function approximation tools (e.g. neural networks)
to represent the corresponding policy and Q-function. It is
necessary to introduce the Policy Gradient Theorem [Sutton
et al.| 2000] to learn a policy w.r.t. its return or value func-
tions. In an actor-critic style algorithm, the critic is usually
used to evaluate the quality of learning policy 7. In RL lit-
erature, how to learn a critic is called policy evaluation and

how to make a policy better is called policy improvement.

4 MINIMALIST ENSEMBLE POLICY
GRADIENT

We first introduce minimalist ensemble consistent Bellman
update and propose the minimalist ensemble policy gradient
(MEPG) framework. Second, we apply MEPG to model-free
off-policy DRL algorithms DDPG and SAC, resulting in
ME-DDPG and ME-SAC. In principle, our framework can
be applied to any modern DRL algorithm. Third, we show
that the policy evaluation process in the MEPG framework
theoretically maintains two synchronized deep GPs.

4.1 MINIMALIST ENSEMBLE CONSISTENT
BELLMAN UPDATE

Computational resource consumption is a great challenge
for the application of ensemble RL. Dropout operator has
ensemble nature[Hara et al., 2016] and reduces computa-
tional resource consumption. Therefore, we consider the
dropout operator to be applied to ensemble RL. Specifically,
we consider integrating 2" sub-models into a single model.
We deploy the dropout operator [Srivastava et al., [2014]]
in our framework. The nature of the integration is guaran-
teed as follows. In the training phase, the neural network
is equated to a sub-network after being acted upon by the
sampled dropout operator. In the inference phase, the com-
plete network that is not acted upon by the dropout operator
is used, and the complete network is then equivalent to an
ensemble network. Specifically, in the MEPG framework,
the value network is trained under the above ensemble mech-
anism. When training the policy network, a complete value
network (i.e., the ensemble value network) is used to induce
the policy improvement phase. A feed-forward operation of
a standard neural network for layer / and hidden unit i can
be described as

Zi"” — Wﬁ+lxl +b£+1’ x£+] — f(Zﬁ-H)s (2)

where f is an activation function, and w and b represent
the weights and biases respectively. We adopt the following

dropout feed-forward style operation

mi ~ Bemoulli(1 — p), & =m'ox,

= g S B, (3)
where p is the probability of an element to be set to zero
and © represents Hadamard product. The scale factor 1+p
is added to ensure that the expected output from each unit
would keep the same as the one without the dropout oper-
ator D}.. However, if the dropout operator directly acts on
Bellman equation in this form, the algorithm cannot learn
a precise Q-function due to the mismatch between the left
and the right sides of Bellman equation (). As a result, the
algorithm fails to learn the value function, i.e., fail to esti-
mate the policy «, failing the whole process. To tackle this
issue, we introduce minimalist ensemble consistent Bellman
update. Let DL be a dropout operator acting on layer / with
parameter m ~ Bernoulli(1 — p). We define the form of
minimalist ensemble consistent Bellman update as

1
DhI2(0) =Eis.a-3| 5 (DmO(s.a:0)-

2

((5.0) + YBurn(yia) [DQ( s 001) ||,

“)

which means we apply the same mask matrix m to both

sides of Bellman equation. Thus minimalist ensemble con-

sistent Bellman update can eliminate the mismatch without

destroying the diversity of value functions so that good value

functions are learned and then a good policy can be derived.

The diversity and ensemble properties of value functions
hold due to the dropout operator.

4.2 MEPG FRAMEWORK

The MEPG framework is formulated by using the minimalist
ensemble consistent Bellman update (equation (@) in the
policy evaluation phase and the conventional policy gradient
methods in the policy improvement phase. At each learning
step in MEPG framework, a D/, operator is sampled, then
policy evaluation phase proceeds with being acted upon
by DL,. For policy improvement phase, the complete (i.e.,
ensemble) value function is used to train policy network.
MEPG framework is summarized in Algorithm [T} We apply
the MEPG framework to the DDPG algorithm and SAC
algorithm, and call the resulting algorithms ME-DDPG and
ME-SAC respectively.

In deterministic policy gradient style DRL algorithms, the
policy can be updated by its value function [Silver et al.,
2014, Lillicrap et al., 2016]

V¢J]7)TDPG(¢) =Es-p, [VaQ” (s,a;0) |u=7r(s;¢)v¢7T(S; 1,

)
where the actor 7 and critic Q are parameterized by ¢ and 6
respectively. The target network is updated by 6’ « n6 +
(1 —n)6" at each time step, where 7 is a small constant.



Algorithm 1 MEPG framework
Initialize: actor network 7, critic network Q with param-
eters ¢, 0, target networks ¢’ «— ¢, 6/ «— 6, and replay
buffer 8
Parameters: num of samples 7, probability of dropping p, 1,
andr =0
1: Reset the environment and receive initial state s
2: whilet < T do
3:  Select action a w.r.t. its policy network 7 and receive
reward r, new state s’
4:  Store transition tuple (s,a,r,s’) to B
Sample mini-batch of N transitions (s, a, r, s”) from
replay buffer 8
6:  Sample action a’ ~ n(s"; ¢’)
7:  Sample m ~ Bernoulli(1 — p)
8:  Compute target for the Q-function:
9:  ye—r+yDLO(s,a’;0")
10:  Update 6 by one step gradient descent using:

11: VeJ(6) =N ZVQ%(y—DIan(S,a;H))z

12:  Update ¢ by one step of gradient ascent using Policy
Gradient with learning rate €:

13: ¢ — ¢+eVyJ(9)

14:  Update target networks:

15 0 —n0+(1-n)0,¢ —ndp+(1-n)¢

16: t«—t+1

17 se s

18: end while

For the policy improvement phase in ME-DDPG, we utilize
the original Deterministic Policy Gradient method (Equation
) without being acted by D/, operator. And for the policy
evaluation phase, the ME-DDPG algorithm utilizes equa-
tion (). Besides, we take two tricks from TD3 algorithm
[Fujimoto et al., [2018]]: target policy smoothing regulariza-
tion and delayed policy updates. ME-DDPG algorithm is
summarized in Appendix 3]

The policy optimization objective of SAC [Haarnoja et al.,
2018] is

J$ac(®) = Es-s[Bar(|s,¢) [ log(n(a | 5:4))-0Q(s,a:0)]].

(6)
ME-SAC keeps the original policy update style in SAC. The
soft Q-function of ME-SAC can be obtained by minimizing
the soft Bellman residual following equation [4]

1
JSQAC(G) =E(s,a)~8 [5 (Dran(S, a;0)

— (r(s,a) +yEy-p[DLV(s; 0’)]))2], with
@)
DLV (5:0") = Buon(15:0) [ DLO(s, a3 6" )—a log n(als; ¢)].

The temperature parameter @ can be given as a hyper-
parameter or learned by minimizing

J$ac(@) = Bqon[—alogn®(als;a, ¢) —aH], (8)

where H is a pre-given target entropy.

And for ME-SAC, we only use one critic with delayed policy
updates. ME-SAC is summarized in Appendix [2] Note that
any exploration technique can be coupled with MEPG (e.g.
noise exploration in DDPG, entropy exploration in SAC).

4.3 THEORETICAL ANALYSIS

We show that dropout operator acting on value networks
can be seen as a deep GP. Therefore, MEPG keeps consis-
tency of the dropout mask acting on both sides of Bellman
equation, then the two deep GPs induced by the Dropout
operator acting on both sides of Bellman equation are kept
synchronized. This consistency improves the stability of
Bellman equation compared to random mask situations.

Let O™ be the output of action value function (a neural
network), and a loss function F (- - - ). Let W; be the weight
matrix of M; X M;_; dimensions and the bias b; of layer i
of dimension M; fori € {1,2,---, L}. We define Bellman
backup operator as

TQ” (5.a:0)  r(5,)+yEy-p(fs.a).aren() [Q7 (5" a3 6)]
©)
which is different from Bellman backup defined in tabular
setting [Sutton and Barto, 2018]] due to importing auxil-
iary target network. Let QT . be the fixed point of Bellman
equation (I) w.r.t. policy z. In the DRL setting, the critic
network, which characterizes action value, is used to find
the fixed point of Bellman equation w.r.t. current policy &
through multiple Bellman update. This optimization method
is a different paradigm from supervised learning. For con-
venient, we denote the input and output sets for critic as X
and Q where X C S x A. For input x;, the output of the ac-
tion value function is Q;. We only discuss policy evaluation
problems, i.e., how to approximate the true Q-function given
policy m, thus we omit the 7 in the following statement. For
a more detailed analysis on the dropout operator behind
deep learning, we would recommend the readers check [Gal
and Ghahramanil |2016]] for more analysis on this topic. We
often utilize modern optimization techniques like Adam
[Kingma and Ba, 2015]], which utilizes the L, regularization
term in the learning process. Thus the objective for policy
evaluation in conventional DRL can be formulated as

L

Laiic =Bo[F(T0,0)] +4 Y (IWill3 + IIbs113)

i=1

~

N
S 0000+ 4 (Wl + i)
=l i=1

(10)
By minimizing Equation (I0), we find the fixed point of Bell-
man equation, and then solve the policy evaluation problem.
With the application of the dropout operator, the units of
the neural network, are set to zero with probability p. Next
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Figure 2: Performance curves on gym PyBullet suite. The shaded area represents half a standard derivation of the average
evaluation over 10 trials. For visual clarity, we use slight exponential smoothing. Results show that the performance of the
MEPG framework (ME-DDPG and ME-SAC) can match or outperform that of the tested algorithms.

we consider a deep Gaussian Process (GP) [Damianou and
Lawrence, [2013]]. Now we are given a covariance function

Clxy) = [ dwdb p(w)p(0)f(wx+ D)f(WTy + )
w,b

a1
where f is element-wise non-linear function. Equation
is a valid covariance function. Assume layer i have a param-
eter matrix W; with dimension M; X M;_; and we include all
parameters in a set w = {W}{; - Let p(w) in Equation
is the distribution of each row of W;. We assume that the
dimension of the vector m; for each GP layer is M;. Given
some precision parameter € > 0, the predictive probability
of the Deep GP model is

P(Q]%.X.Q) = / dw p(Q | x.w)p(w | X.Q)

w

P(Q % w) = N(Q; 0(x;w), &lp)

O(x;w) = ‘/MLLWLJC(M‘,MLZWZJC(WIX-’-HII)m)'

12)

We utilize ¢(w) to approximate the intractable posterior
p(w; X, Q). Note that g(w) is a distribution over matrices
whose columns are randomly set to zero. We define ¢(w) as

Gi =G; 0 diag([zi,j]y:il), Zi,j ~ Bernoulli(1 — p;),

(13)
fori e {l,---,L}, je{l,--- ,M;_1}

where G; is a matrix as variational parameters. The variable
zi,; = 0 means unit j in layer i — 1 being zero as an input
to layer i, which recovers the dropout operator in neural
networks. To learn the distribution ¢ (w), we minimize the
KL divergence between g(w) and p(w) of the full Deep GP

Jop = —/ dw q(w)log p(Q | X, w) + DkL(q(w)llp(w)).
w

(14)

The first term in Equation (I4) can be approximated by

Monte Carlo method. We can approximate the second term

Table 1: The average of five maximum average returns
over five trials of one million time steps for various al-
gorithms. The maximum value for each task is bolded.
+ corresponds to a single standard deviation over trials.
"HCheetah", "Walker" are shorthands for "HalfCheetah",
and "Walker2D" respectively.

Algorithm Ant HCheetah Hopper Walker
ME-SAC 2907+284 3113+256 2533+106 1871+46
ME-DDPG 28414262 2582+128 2547+102 1770+136
REDQ(Ours) 2239+291 1757+420 2239+233 1093+167
REDQ  2214+175 1327+294 2068+530 1009+3
SUNRISE 1235+411 2018+194 2386+218 1270+324
ACE 993+135 1635+192 2201+111 1730+111
SAC 2009+854 2568+90 2318+132 1776+143
TD3 2758+227 2360+233 2190+181 1869+136
DDPG  2533+103 2537+293 1969+221 1192+249

in Equation (14), and obtain T5 | (22 (IGyII2 + & lmyl12)
with prior length scale [ (see section 4.2 in [|Gal and Ghahrat
mani), [2015]]). Given the precision parameter £ > 0, the
objective of deep GP can be formulated as

N
! ;
Lop oy 21 ~log p(Q; | %1:0)

. (15)

o Zl =5 IGHll3 + 5 i3 .

We can recover Equation by setting F(70,0) =
—log p(Q; | x;;®). Note that the sampled & leads to the
realization of the Bernoulli distribution z; ;, which is equiv-

alent to the binary variable z; ; in the dropout operator.

The above analysis shows that the policy evaluation process
in the MEPG framework maintains two synchronized deep
GPs, because both sides of Bellman equation are acted by
the same dropout mask D/,. The uncertainty introduced by



the dropout operator arises from the inherent property if the
model and explicitly exists in the model. Thus the diversity
and ensemble properties of value functions hold. Besides,
this consistency naturally improves the stability of Bellman
equation compared to random mask situations.

S EXPERIMENTAL RESULTS

In this section, we answer the following questions: How
good MEPG framework is superior to SOTA model-free and
ensemble DRL algorithms? What is the contribution of each
component to the algorithm? How do the training time cost
and the number of parameters of our algorithm compared to
other evaluated algorithms? How sensitive is MEPG to the
fluctuations of hyper-parameters?

To evaluate our framework MEPG, we conduct experiments
on open source PyBullet suite [Coumans and Bail [2016-}
2021], interfaced through Gym simulator [[Brockman et al.}
2016]. We highlight the fact that the PyBullet suite is gen-
erally considered to be more challenging than the MuJoCo
suite presented for continuous control tasks [Raffin and
Stulp, [2020]. Given the recent reproducibility discussions in
DRL [Henderson et al.,[2018| |Andrychowicz et al., [2021],
we strictly control all random seeds, and our results are re-
ported over 5 trials unless otherwise stated, with the same
setting and fair evaluation metrics. The experimental results
are performed over multiple devices. More experimental
results and more details can be found in the Supplementary
Material.

5.1 EVALUATION

To evaluate the MEPG framework, we measure ME-DDPG
and ME-SAC performance on PyBullet tasks compared with
the state-of-the-art model-free algorithm and recently pro-
posed ensemble DRL algorithms such as ACE [Zhang and
Yao, 2019], SUNRISE |[Lee et al.| [2021]] and REDQ [Chen
et al., 2020]. For TD3] ACE’] SUNRISH?| and REDQY}
we use the authors’ implementation with default hyper-
parameters and keep the same hyper-parameters for DDPG
and SAC. For a fair comparison, we replace one-time pol-
icy update every twenty times of critic optimization with
one-time policy update every two-time of critic optimization
in REDQ, namely REDQ(Ours). The empirical evaluation
results show REDQ(Ours) is better than its original version.
We run each task for one million time steps and perform
one gradient step after each interaction step. Every 5, 000
time step, we execute an evaluation step over 10 episodes

ttps://github.com/sfujim/TD3

thtps ://github.com/Shangtongzhang/
DeepRL/tree/ACE

Jhttps://github.com/pokaxpoka/sunrise

4https://github.com/watchernyu/REDQ

without any exploration operation in every algorithm. Our
performance comparison results are presented in Table[T]and
the learning curves are in Figure[2] The results show that
most of the time our proposed algorithm ME-DDPG and
ME-SAC are better than state-of-the-art methods without
any auxiliary tasks. For the Pendulum family of environ-
ments, all algorithms are equally good. Our framework is
best in terms of learning speed and final performance for the
Ant, Walker2D, and Hopper environments while consuming
fewer computational resources. More experimental results
and details are in the Supplementary Material.

Table 2: The average of the five maximum average returns
over five trials of one million time steps for ablation studies.
+ means adding or removing the corresponding compo-
nent. The maximum value for each task is bolded. "MED",
"MES", "MED-R" and "MES-R" are shorthands for "ME-
DDPG", "ME-SAC", "ME-DDPG-R" and "ME-SAC-R"
respectively.

Algorithm Ant HCheetah Hopper Walker

MED 2841.04 2582.32 2546.56 1770.11
MED-DO  2001.56 252297 2326.2 1774.61
MED-DU  2610.23 2575.64 2330.16 1784.34
MED-TPS  2623.13 2605.99 2328.32 1675.31
MED-R 2625.05 2246.73 2233.52 1671.6
DDPG 2446.75 2501.24 1918.42 1142.71

MES 2906.98 3113.21 2532.98 1870.53
MES-DU  2605.52 2718.17 2211.27 1631.99

MES+FIXENT 818.03  733.59 1632.85 843.01

MES-R 1530.76  1905.75 2112.46 1651.07

SAC 2009.36  2567.7 2317.64 1776.34

5.2 ABLATION STUDIES

We conduct ablation studies to demonstrate the contribu-
tion of each individual component. We show the ablation
results for ME-DDPG and ME-SAC in Table [2} where we
compare the performance of removing or adding specific
components from ME-DDPG or ME-SAC. Firstly, the ef-
fectiveness of the minimalist ensemble consistent Bellman
update is investigated. We take the conventional Dropout
operator acting on both sides of the Bellman equation, re-
sulting in ME-DDPG-R and ME-SAC-R methods respec-
tively. The empirical evaluations show that the proposed
minimalist ensemble consistent Bellman update helps a lot
and brings performance improvements. Secondly, we in-
vestigate three key components, i.e., dropout (DO), Target
Policy Smoothing (TPS), and Delay Update (DU) in ME-
DDPG. DO, DU and TPS help a lot. Thirdly, we perform a
similar ablation analysis for the ME-SAC algorithm, where
"FIX-ENT" means we adopt a fixed entropy coefficient a.
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https://github.com/ShangtongZhang/DeepRL/tree/ACE
https://github.com/ShangtongZhang/DeepRL/tree/ACE
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https://github.com/watchernyu/REDQ

The ablation results of the ME-DDPG algorithm for DU,
and DO are also applicable to the ME-SAC method. Here
we find that automatic adjustment of entropy is extremely
helpful. Additional experimental results and learning curves
can be found in the Supplementary Material.

5.3 RUN TIME AND NUMBER OF PARAMETERS

We evaluate the run time of one million time steps of training
for each tested RL algorithm. In addition, we also quantify
the number of parameters of neural networks correspond-
ing to the evaluated algorithms in different environments.
For a fair comparison, we keep the same update steps in
REDQ(M). Note that REDQ(M) is fairly faster than the
original REDQ (see section [5.1). And we cancel the eval-
uation process in this process. We show the run time test
results in Table |3| and parameters quantification in Table
The MEPG framework consumes the shortest time with
the same skeleton algorithms. Unsurprisingly, We find our
algorithm ME-DDPG and ME-SAC act favorably compared
to other algorithms we tested in terms of wall-clock training
time. Our MEPG framework not only runs in one-third to
one-seventh of the time of ensemble learning methods, but
even less than the training time of model-free DRL algo-
rithms. All run time experiments are conducted on a single
GeForce GTX 1070 GPU and an Intel Core i7-8700K CPU
at 2.4GHZ. The number of parameters of the MEPG frame-
work is between 14% and 27% of the number of parameters
of the tested ensemble algorithms, but our algorithms per-
form better than any tested one.

Table 3: Run time comparison of training each RL algo-
rithm.

Algorithm Ant HCheetah Hopper Walker

ME-DDPG 47m 44m 42m 45m

TD3 57m 55m 52m 55m

DDPG 1hlm 58m 56m 58m
ME-SAC 1h14m 1h13m 1h10m 1h12m
SAC 1h17m  1h15m 1h12m 1hl15m
REDQM) 3h43m 3h4lm  3h29m 3h35m
SUNRISE 7h24m 7h15m  7h10m 7hl16m

54 HYPER-PARAMETER SENSITIVITY

The MEPG framework only introduces one hyper-parameter
p, which represents the probability of setting a neuron of
the neural network to zero. We take eleven p values in
interval [0, 1]. For visual simplicity, we normalize the data
by Ret}" = Ret;" /max, {Ret};" }, where Ret}}" means the
average of top five maximum average returns in a run over

Table 4: The number of parameters is given in millions. For
all tested environments, we utilize the same network archi-
tectures and the same hyper-parameters. The number of
parameters differs because different environments have var-
ious state and action dimensions, which results in different
input and output dimensions of the neural network.

Algorithm Ant HCheetah Hopper Walker
ME-SAC 0.226M 0.223M 0.212M 0.220M
ME-DDPG 0.302M 0.297M  0.283M 0.293M
TD3 0.453M  0.446M 0.425M 0.440M
SAC 0.377M  0.372M  0.354M 0.367"M
REDQ 1.586M 1.564M 1.489M 1.543M
SUNRISE 1.132M 1.117M 1.063M 1.101M
ACE 1.614M 1.597M 1.532M 1.577TM
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Figure 3: Performance of ME-SAC and ME-DDPG algo-
rithms given different p-values in different environments.
Each cell represents the average of the top five maximum
average returns in a run over five trials of one million time
steps for various p-value. For most environments and p-
values, both algorithms are able to learn successfully. Be-
sides, the difference in performance between the different
p-values is not very significant. Relatively speaking, smaller
p-values give better performance. The performance of both
algorithms performs best when p = 0.1.

five trials of one million time steps for various p-value on
env environment. We show the results in Figure 3] Each
cell represents the result of a different p-value in various
environments. The experimental results show that even large
p-values, i.e., implicitly integrating enough models, do not
cause the learning process to fail. Overall, the difference
in performance between the different p-values is not very
significant. For the Pendulum family of environments, the
performance of the MEPG framework induced by various
p values is equally good. Relatively speaking, a smaller
p-value gives better performance. Our MEPG framework
is not extremely hyper-parameter sensitive. Therefore, we
set p = 0.1 as the default hyper-parameter setting for the
ME-DDPG and ME-SAC algorithms.



6 CONCLUSION

Ensemble RL is an important class of methods for general-
izable RL. However, it raises computational resource con-
sumption and introduces more hyper-parameters. To apply
ensemble deep RL algorithms to the real world, we need to
solve the tricky problems mentioned in section [I] Thus, we
propose a novel ensemble RL framework, called Minimalist
Ensemble Policy Gradient (MEPG). The ensemble property
of MEPG is induced by a minimalist ensemble consistent
Bellman update that utilizes a modified dropout operator.
We show that the policy evaluation in the MEPG framework
theoretically maintains two synchronized deep GPs, result-
ing in the stability of the Bellman equation. Next, we verify
the effectiveness of MEPG in the PyBullet control suite.
The experimental evaluations show that the performance of
ensemble DRL algorithms can be easily outperformed by
MEPG. Besides superior performance, MEPG has tremen-
dous advantages in terms of run time and the number of
parameters compared to the tested model-free and ensem-
ble DRL algorithms. The core technique we adopt is the
minimalist ensemble consistent Bellman update, wherein
the dropout operator is a popular method in deep learn-
ing. MEPG can be used in real-world applications such as
autonomous driving[Filos et al., |2020]], where the computa-
tional burden is huge, and the task is time-critical. For the
bigger picture of the RL community, we highlight that the
potential of neural networks and relevant techniques may
not have been fully exploited, as exemplified by our MEPG
framework. For future work, we can explore the connec-
tions between techniques often used in deep learning and
the problem structure of RL itself, such as the regulariza-
tion of neural networks (e.g., layer normalization), and the
properties that the features learned by the policy and value
networks should have.
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SUPPLEMENTARY MATERIAL

7 MISSING ALGORITHMS

We give a detailed description about ME-SAC in Algorithm
[2]and ME-DDPG in Algorithm [3|respectively.

Algorithm 2 ME-SAC
Initialize: actor network 7 and critic network Q with pa-
rameters ¢, 6, target networks 8’ «— 6
Initialize: Replay buffer 8 Parameters: total steps 7,
p, t 0, target entropy 9 and dropout probability
p.

1: Reset the environment and receive initial state s

2: whiler < T do

3:  Select action a ~ n(- | s;¢), and receive reward r,
new state s’
4:  Store transition tuple (s,a,r,s’) to B
5:  Sample mini-batch of N transitions (s, a, r, s”) from
B
6:  Sample m ~ Bernoulli(1 — p)
7:  Compute target for the Q-function:
8: y—r+yDLO(s,a;0)—alogn(d |s';¢), @ ~
n(-| s ¢)
9:  Update 6 by one step of gradient descent using:
0: Vol(6) = VoN X (v - Do (5.0))
11:  if r mod d then
12: Update ¢ by one step of gradient ascent using:
135 Vel(9) = N'EV,(0(5.3:6) - alogn(a |
s;¢)), a~n(-|se)
14: Update a by one step gradient descent using:
15: Vol(@) = N7! ZVC,( —alogn(a | s;a,¢) —
cﬂ{)
16: Update target network:
17: 0 —no+(1-no
18:  end if
190 te«t+1
20: s« s

21: end while

8 MORE EXPERIMENTAL RESULTS
AND DETAILS

We mostly report experimental results on four environments
in the body due to space limitations. In this section, we pro-
vide more experimental results and details on eight environ-
ments. Note that all the experimental results are conducted
on the PyBullet suite. We highlight the fact that the PyBul-
let suite is usually considered harder to train than MuJoCo
suite [Raffin and Stulp} 2020]] as we discussed. Besides, we
strictly control all random seeds, and our results are reported

12

Algorithm 3 ME-DDPG

Initialize: actor network =, critic network Q with parame-
ters ¢, 0, target networks ¢’ «— ¢, 8" « 6, and replay buffer
B

Parameters: 7, p,n,d,andt = 0

1: Reset the environment and receive initial state s
2: whilez < T do

3:  Select action with noise a = 7n(s;¢) + €, ~
N (0, 0?), and receive reward r, new state s’
4:  Store transition tuple (s,a,r,s’) to B
5:  Sample mini-batch of N transitions (s, a,r, s”) from
B

6: d« n(s';¢") +¢€, €~ clip(N(0,5?%),-c,c)

7:  Sample m ~ Bernoulli(1 — p)

8:  Compute target for the Q-function:

9y r+yDLO(s,a:0")
10:  Update 0 by one step gradient descent using:

2
1: V() =N_1ZV9%(y—Z)IIan(s,a))
12:  if t mod d then
13: Update ¢ by one step of gradient ascent using the
Deterministic Policy Gradient:

14; Vol (8) = N"' EVu0(s,a:0)|a=r(s:¢) Vo7 (s: $)
15: Update target networks:

16: 0 —no+(1-n)0,¢ —np+(1-n)¢’

17:  endif

18: t«t+1

19: s

20: end while

over 5 trials unless otherwise stated, with the same setting
and fair evaluation metrics.

Evaluation. We provide empirical evaluation results on
eight environments in Table [6]

Ablation. We provide the learning curves for ablation anal-
ysis for ME-DDPG and ME-SAC in Figure ] and Figure[5]
respectively. And We also compute the top five maximum
average returns of one million time steps for ablation analy-
sis, which are shown in Table [§]and Table 9]

Run time. We show the run time statistics in Table[7]

Number of parameters. We show the number of parameters
statistics in Table

Hyper-paramter sensitivity. We provide the learning
curves for different p in different environments in Figure [6]
and Figure [/l And we also provide the average of top five
maximum average returns of one million time steps in Table
[[Tand Table



8.1 IMPLEMENTATION DETAILS AND
HYPER-PARAMETER SETTING

We utilize the authors’ implementation of ACE, TD3, SUN-
RISE ,and REDQ without any modification as we discussed.
For the implementation of SAC, we refer to [Yarats and
Kostrikov, [2020]. And we do not change the default hyper-
parameters for TD3, SAC, ACE, SUNRISE, and REDQ
algorithms. For a fair comparison, we keep the same hyper-
parameters to TD3 and SAC implementations respectively.
But we only utilize one critic with its target. If the hyper-
parameters of ME-SAC and ME-DDPG correspond to the
SAC and DDPG, we use the same hyper-parameters. To im-
plement minimalist ensemble consistent Bellman update, we
take a 1 matrix, then let the 1 matrix pass through a dropout
layer. The output of the dropout produces a consistent mask.
We apply the same mask to the critic and its target. We give
a detailed description of our hyper-parameters in Table 3]
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Table 5: Hyper-parameters settings for our implementation.

Hyper-parameter Value
Shared hyper-parameters

discount (y) 0.99
Replay buffer size 109
Optimizer Adam [Kingma and Ba,[2015]
Learning rate for actor 3x107*
Learning rate for critic 3x107*
Number of hidden layer for all networks 2
Number of hidden units per layer 256
Activation function ReLU
Mini-batch size 256
Random starting exploration time steps 2.5 x 10*
Target smoothing coefficient (77) 0.005
Gradient Clipping False
Target update interval (d) 2
TD3

Variance of exploration noise 0.2
Variance of target policy smoothing 0.2
Noise clip range [-0.5,0.5]
Delayed policy update frequency 2
ME-DDPG

Variance of exploration noise 0.2
Variance of target policy smoothing 0.2
Noise clip range [-0.5,0.5]
Delayed policy update frequency 2
Dropout probability (p) 0.1
SAC

Target Entropy - dim of A
Learning rate for a 1x107*
ME-SAC

Target Entropy - dim of A
Learning rate for a 1x1074
Dropout probability (p) 0.1
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Table 6: The average of top five maximum average returns over five trials of one million time steps for various algorithms.
The maximum value for each task is bolded. "InvPen", "InvDou" and "InvPenSwingup" are shorthand for "InvertedPendlum”,
"InvertedDoublePendlum" and "InvertedPendulumSwingup" respectively.

Algorithm Ant HalfCheetah Hopper Walker2D InvPen InvDouPen InvPenSwingup Reacher

ME-SAC  2906.98  3113.21 253298 1870.53 1000.0 9359.96 893.71 24.51
ME-DDPG 2841.04  2582.32  2546.56 1770.11 1000.0 9359.98 893.02 24.34
SUNRISE 1234.89  2017.94  2386.46 1269.78 1000.0  9359.93 893.2 27.44

REDQ(Ours) 2238.62  1757.02  2238.84 1092.58 1000.0 9359.16 891.37 26.02
TD3 2758.38 2360.2 2190.12 1868.65 1000.0  9359.66 890.97 24.99
SAC 2009.36 2567.7 2317.64 177634 1000.0 9358.78 892.36 24.13

DDPG 2446.75  2501.24 191842 1142771 1000.0 9358.94 546.65 24.78

Table 7: Run time comparison of training each RL algorithm for eight PyBullet environments. "InvPen", "InvDou" and
"InvPenSwingup" are shorthand for "InvertedPendlum", "InvertedDoublePendlum" and "InvertedPendulumSwingup"
respectively.

Algorithm  Ant HalfCheetah Hopper Walker2D Reacher InvPen InvDouPen InvPenSwingup

ME-DDPG 47m 44m 42m 45m 37m 36m 36m 36m

TD3 57m 55m 52m 55m 48m 47m 47m 47m

DDPG 1h Im 58m 56m 58m 51m 49m 50m 49m
ME-SAC 1h 14m 1h 13m 1h10m 1h 12m 1h5m 1h3m 1h 4m 1h 4m
SAC 1h 17m 1h 15m 1h12m  1h 15m lh8m 1h6m 1h 6m 1h 6m
REDQ(Ours) 3h 43m 3h41m 3h29m  3h35m 2h57m 3h10m 3h 12m 3h 12m
SUNRISE 7h 24m 7h 15m 7h10m  7h 16m 7hlm 6h56m  7h 6m 6h 57m

Table 8: The average of the top five maximum average returns over five trials of one million time steps for ablation studies. +
means adding or removing the corresponding component. The maximum value for each task is bolded. "InvPen", "InvDou"
and "InvPenSwingup" are shorthand for "InvertedPendlum", "InvertedDoublePendlum" and "InvertedPendulumSwingup"
respectively.

Algorithm Ant HalfCheetah Hopper Walker2D InvPen InvDouPen InvPenSwingup Reacher
ME-DDPG 2841.04 258232  2546.56 1770.11 1000.0  9359.98 893.02 24.34
ME-DDPG+CDQ 2892.9 2003.77 2584.1  2094.6  1000.0 9358.76 890.76 15.05
ME-DDPG-DO 2001.56 252297 2326.2 1774.61 1000.0  9358.73 892.04 21.82
ME-DDPG-DU 2610.23  2575.64  2330.16 1784.34 1000.0  9359.18 890.84 24.08
ME-DDPG-TPS 2623.13  2605.99 232832 167531 1000.0 7522.81 891.4 23.93
DDPG 2446.75  2501.24 191842 114271 1000.0 9358.94 546.65 24.78
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Figure 4: Performance curves on gym PyBullet suite. The shaded area shows a half standard derivation.

Table 9: The average of the top five maximum average returns over five trials of one million time steps for ablation studies. +
means adding or removing the corresponding component. The maximum value for each task is bolded. "InvPen", "InvDou"
and "InvPenSwingup" are shorthand for "InvertedPendlum", "InvertedDoublePendlum" and "InvertedPendulumSwingup"
respectively.

Algorithm Ant HalfCheetah Hopper Walker2D InvPen InvDouPen InvPenSwingup Reacher
ME-SAC 290698  3113.21 253298 1870.53 1000.0  9359.96 893.71 24.51
ME-SAC+CQD  3039.11 2209.46  2408.86 2060.8 1000.0 9356.73 890.18 21.68
ME-SAC-DU  2605.52  2718.17  2211.27 1631.99 1000.0 9357.95 892.2 24.7
ME-SAC+FIXENT 818.03 733.59 1632.85 843.01 1000.0 9358.94 835.59 26.32
SAC 2009.36 2567.7 2317.64 177634 1000.0  9358.78 892.36 24.13
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Figure 5: Performance curves on gym PyBullet suite. The shaded area shows a half standard derivation.

Table 10: The number of parameters is given in millions. For all tested environments, we utilize the same network architecture
and the same hyper-parameters. The number of parameters differs because different environments have various state and
action dimensions, which results in different input and output dimensions of the neural network.

Algorithm Ant HalfCheetah Hopper Walker2D InvPen InvDouPen InvPenSwingup Reacher

ME 0.302M  0.297M 0.283M 0.293M 0.271M  0.275M 0.271M 0.276M
ME-SAC 0.226M  0.223M 0.212M  0.220M  0.203M  0.206M 0.203M 0.207M
TD3 0.453M  0.446M 0.425M 0.440M 0407M 0.413M 0.407M 0.414M
SAC 0377M  0.372M 0.354M  0.367M 0.339M  0.344M 0.339M 0.345M
REDQ 1.586M 1.564M 1.489M  1.543M 1.424M  1.446M 1.424M 1.451M
SUNRISE 1.132M 1.117M 1.063M 1.10IM 1.017M 1.032M 1.017M 1.036M
ACE 1.614M 1.59"M 1.532M  1.577M  1477TM  1.496M 1.47TM 1.500M
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Figure 6: Performance curves for sensitivity analysis on gym PyBullet suite. The shaded area shows a standard derivation.

Table 11: The average of the top five maximum average returns of ME-DDPG algorithm in a run over five trials of one
million time steps for various p-value. The maximum value for each task is bolded. Overall, the difference in performance
between the different p-values is not very significant. Relatively speaking, smaller p-values give better performance.

p Ant HalfCheetah Hopper Walker2D InvPen InvDouPen InvPenSwingup Reacher

0.0 2001.56 252297 2326.2 1774.61 1000.0  9358.73 892.04 21.82
0.05 2641.03  2668.75  2311.99 1846.5 1000.0 9359.11 891.21 23.16
0.1 2841.04 258232  2546.56 1770.11 1000.0 9359.98 893.02 24.34
0.2 261636 264525  2326.77 1747.17 1000.0  9359.44 891.41 23.14
0.3 2791.95 2481.9 2443.04 1807.43 1000.0  9359.35 890.52 23.36
04 2746.82 2457772 224452 1548.22 1000.0  9359.14 890.61 23.12
0.5 2603.27  2376.87 22833 1687.19 1000.0  9359.21 890.7 23.38
0.6 2512.87 217487  2169.95 1631.38 1000.0 9359.34 890.77 23.01
0.7 2790.01 214634  2226.71 1360.51 1000.0 9359.31 890.22 22.84
0.8 25524 2360.52  2216.69 1335.82 1000.0  9359.15 890.97 23.09
0.9 2427.33  2119.58 2029.8  1266.88 1000.0  9359.37 890.76 23.1
0.95 2461.24 2209.9 1939.54 1154.81 1000.0 9359.24 890.54 20.73
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Figure 7: Performance curves for sensitivity analysis on gym PyBullet suite. The shaded area shows a standard derivation.

Table 12: The average of the top five maximum average returns of ME-SAC algorithm in a run over five trials of one million
time steps for various p-value. The maximum value for each task is bolded. Overall, the difference in performance between
the different p-values is not very significant. Relatively speaking, smaller p-values give better performance.

p Ant HalfCheetah Hopper Walker2D InvPen InvDouPen InvPenSwingup Reacher

0.0 3036.48 2569.0 22847 1973.73 1000.0  9359.1 893.35 24.32
0.05 2772.88  2800.64  2385.61 1864.32 1000.0 935891 892.12 24.53
0.1 2906.98  3113.21 253298 1870.53 1000.0 9359.96 893.71 24.51
0.2 283534  2683.07  2392.05 184991 1000.0 9358.78 892.13 24.82
0.3 3018.22  2875.04  2308.31 1796.81 1000.0 9358.82 892.16 25.04
04 2673.15  2623.41 2386.58 1778.47 1000.0 9358.21 892.18 25.15
0.5 2721.36 2726.1 2386.39 1815.28 1000.0  9358.95 892.27 25.02
0.6 2919.25  2554.68  2332.94 1744.59 1000.0  9358.85 892.15 23.79
0.7 2937.18  2804.65  2287.79 1810.17 1000.0  9358.9 892.18 24.47
0.8 297449 2717776 223329 17567 1000.0  9358.5 892.01 24.5
09 292792 273794  2358.26 1811.99 1000.0 9358.88 892.41 24.54
0.95 2883.05  2690.42  2391.78 1834.05 1000.0 9358.59 892.38 24.99
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