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Abstract

A primary challenge in abstractive summariza-001
tion is hallucination—the phenomenon where a002
model generates plausible text that is absent in003
the source text. We hypothesize that the domain004
(or topic) of the source text triggers the model005
to generate text that is highly probable in the006
domain, neglecting the details of the source text.007
To alleviate this model bias, we introduce a de-008
coding strategy based on domain-conditional009
pointwise mutual information. This strategy ad-010
justs the generation probability of each token011
by comparing it with the token’s marginal prob-012
ability within the domain of the source text. Ac-013
cording to evaluation on the XSUM dataset, our014
method demonstrates improvement in terms of015
faithfulness and source relevance.016

1 Introduction017

Abstractive summarization is the task of generating018

a summary by interpreting and rewriting a source019

text. State-of-the-art pre-trained language models020

have achieved remarkable performance in this task021

(Lewis et al., 2019; Zhang et al., 2020). However,022

upon closer examination, a common issue emerges:023

hallucination between the source document and024

the generated text. Prior studies have made efforts025

to enhance the faithfulness of the summary to the026

source text, yet hallucination remains a persistent027

challenge (Maynez et al., 2020; Mao et al., 2021;028

Zhu et al., 2021; Zhang et al., 2023).029

To solve this issue, we introduce a decoding strat-030

egy based on domain-conditional pointwise mutual031

information (PMIDC) (Section 3). The motivation032

for PMIDC is that the domain of the source text033

provokes the model to generate text that is highly034

probable in the source domain, leading to plausible035

but factually inconsistent text. Building on this mo-036

tivation, PMIDC computes how much more likely a037

token becomes in the summary when conditioned038

on the input source text, compared to when the039

token is conditioned only on the domain of the040

Method Text

Source ...chairman of the Scottish Chambers of
Commerce economic advisory group, said:
"Our latest economic data shows that many
Scottish businesses will have a successful
2017...

CPMI The Scottish Chambers of Commerce has
issued a warning about the outlook for the
economy in 2017.

PMIDC The Scottish Chambers of Commerce has
said it expects the economy to have a "suc-
cessful" year in 2017.

Domain Economy, Businesses, GDP

Table 1: An example of hallucination in abstractive sum-
marization. Inconsistent words are highlighted in red
fonts, and consistent words are highligthed in blue fonts.

source text. This effectively penalizes the model’s 041

tendency to fall back to domain-associated words 042

when the model has high uncertainty about the gen- 043

erated token. 044

This idea was inspired by conditional pointwise 045

mutual information (CPMI) (van der Poel et al., 046

2022), which similarly penalizes a token’s marginal 047

probability. But CPMI does not capture the impor- 048

tant fact that a token’s probability depends highly 049

on the source domain in summarization. For ex- 050

ample, consider the example presented in Table 1. 051

The source text states, “Our latest economic data 052

shows that many Scottish businesses will have a 053

successful 2017”. CPMI undesirably introduces the 054

term “warning”, which frequently appears in the 055

domain of economy in the training data, generat- 056

ing information that contradicts the source text. By 057

contrast, PMIDC lowers the probability of the term 058

“warning” by capturing the high conditional likeli- 059

hood of this term given the domain and avoids the 060

hallucination. 061

We use automated metrics for evaluation on the 062

challenging XSUM dataset (Narayan et al., 2018) 063

achieving significant improvements in faithfulness 064
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and relevance to source texts according to met-065

rics like AlignScore, FactCC, BARTScore, and BS-066

Fact, with only a marginal decrease in ROUGE and067

BertScore. This highlights the effectiveness and068

robustness of PMIDC in abstractive summarization.069

2 Preliminaries070

Problem setting We adopt the problem defini-071

tion in van der Poel et al. (2022). In abstractive072

summarization, an input source text, denoted as073

x ∈ X , is condensed into an output string rep-074

resented by y = ⟨y0, . . . , yT ⟩ ∈ Y . This output075

string is a sequence of tokens from the vocabulary076

V . Each sequence begins with token y0 and ends077

with yT , and the length of the output is T + 1. The078

optimal y that belongs to a valid string set Y is079

obtained via a scoring function as follows:080

y∗ = argmax
y∈Y

score(y|x).
081

Utilizing beam search is a practical solution for082

searching possible strings. The typical beam search083

with an autoregressive generation model uses the084

following scoring function:085

score(y|x) =
T∑
t=1

score(yt|x,y<t) (1)086

where score(yt|x,y<t) = log p(yt|x,y<t) is a087

token-level log probability computed by the model.088

Pointwise Mutual Information PMI scoring uti-089

lizes mutual information between the input and090

output. This penalizes the generation of tokens that091

are marginally likely but not related to the input.092

The formula for PMI scoring can be expressed as093

follows:094

score(yt|x,y<t) = log p(yt|x,y<t)

− log p(yt|y<t)
(2)095

Conditional Pointwise Mutual Information096

(CPMI) van der Poel et al. (2022) have demon-097

strated a connection between hallucinations and098

token-wise predictive entropy, denoted as H(p) =099

−
∑

y∈V py log py. A model tends to hallucinate100

a token if the entropy is high. Hence, instead of101

penalizing the marginal probability of yt in Equa-102

tion 2 all the time, CPMI does this only when the103

entropy at the t-th decoding step is higher than a104

threshold.105

score(yt|y<t,x) = log pθ(yt|x,y<t)−
λ · ut · log p(yt|y<t)

(3)106

where ut = 1
{
H (pθ(yt|x, y<t)) > τ

}
.107

3 Domain-conditional Scoring Strategy 108

Our approach improves upon CPMI by condition- 109

ing the probability of a generated token on the 110

source domain. In our domain-conditional strategy 111

(PMIDC), we employ the following scoring func- 112

tion: 113
score(yt|y<t,x) = log pθ(yt|x,xdom,y<t)−

λ · ut · log pϕ(yt|xdom,y<t)
(4) 114

xdom is a domain prompt (Holtzman et al., 2021), 115

a subset of tokens in x that contains informa- 116

tion about the source domain (explained in detail 117

below). This seemingly simple extension is well 118

grounded in the previous observation that a sum- 119

marization model is likely to hallucinate as it “tem- 120

platizes” the summaries of source texts that share 121

the same domain or topic (e.g., the transfer of a 122

soccer player) (King et al., 2022). Accordingly, our 123

method can account for different marginal proba- 124

bilities of the same token depending on the source 125

domain and effectively outperforms CPMI, as will 126

be demonstrated later. 127

To compute the marginal probabilities p(yt|y<t), 128

we use a smaller language model, ϕ, while θ is a 129

larger summarization model. The hyperparameters 130

λ and τ can be optimized by random grid-search. 131

Domain Prompt Design To condition the gen- 132

eration probability of a token on the source do- 133

main, we incorporate domain information into the 134

prompts of both the summarization and language 135

models (i.e., xdom). We explore three types of do- 136

main information: (1) domain-specific keywords, 137

(2) the first sentence of the source text, (3) a random 138

sentence in the source text (details are discussed 139

below). 140

Figure 1: Example of Domain Prompt.

We assume that domain-specific keywords prime 141

the models, enabling them to calculate the condi- 142

tional probability of a token within the specified 143

domain. We use the open-source module KeyBERT 144

(Grootendorst, 2020) to extract three keywords 145

from each source text (see Appendix A.4). We de- 146

fine domain-specific tokens as those that are not 147

proper nouns and are frequently occurring words. 148

We expect that these selected keywords effectively 149

represent the source document with high similarity. 150
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Faithfulness Relevance Similarity

Method Model # Samples AlignScore FactCC BARTScore↑ BS-Fact Rouge-L BERTScore

Beam

BART

11333 60.02 21.43 -1.8038 88.86 35.90 91.52
PINOCCHIO 106471 57.83 16.97 -2.0958 88.81 27.98 89.91

CPMI 11333 60.09 21.53 -1.8038 88.85 35.90 91.52

PMIDC 11333 60.78∗ 21.82 -1.7988∗ 88.89∗ 35.81 91.50

Table 2: Comparison with decoding methods on BART-large. PMIDC improves faithfulness and source relevance,
with a slight decrease in target similarity. ∗ indicates statistical significance (p-value < 0.001) based on the paired
bootstrap analysis versus CPMI.

Method FT AlignScore BARTScore↑ Rouge-L

Random 97.64 -2.6629 11.09

FactPEG ✓ 68.70 -1.9201 34.36

PMIDC 60.78 -1.7988 35.81

Table 3: Comparison with fine-tuned model. Random
denotes the use of a randomly selected sentence from
the source text as a summarization. FactPEG represents
the summarization results obtained from a fine-tuned
model with the objective of faithfulness.

The first sentence of a source text often guides151

the domain for the remainder of the text, making152

it a reliable indicator of the source domain. How-153

ever, acknowledging that this assumption may not154

always be robust, we consider using a random sen-155

tence from the source text as an alternative indica-156

tor of the source domain.157

In addition to the domain information mentioned158

above, we also include a simple priming phrase159

in the prompt. We have discovered that using an160

appropriate lexical form yields better results than161

simply inputting the domain. We referred to the162

prompt design outlined by Yuan et al. (2021) to im-163

plement this prompting approach. The 18 phrases164

we explore include expressions such as "keyword,"165

"in summary," and "in other words" (Appendix D).166

4 Experimental Setup167

Dataset We use the eXtreme Summarization168

Dataset, XSUM (Narayan et al., 2018), which169

includes BBC articles as source documents and170

single-sentence summaries as gold summaries.171

Baselines We analyzed three baseline decod-172

ing methods: standard beam search, PINOCCHIO173

1For PINOCCHIO, we have only 10,647 samples due to
rejected paths. The original paper presented results for 8,345
samples after manual removal. Thus, our reported values may
differ.

Method Text

FactPEG The crypto-currency, Bitcoin.
PMIDC The price of the virtual currency Bitcoin

has fallen sharply in the wake of com-
ments made by one of its most promi-
nent developers.

Source Mike Hearn, a Zurich-based developer
... published a blog calling Bitcoin a
"failed" project ... Bitcoin’s price fell
quite sharply over the weekend ...

Table 4: An example of FactPEG summary. The model
trained with the objective of faithfulness tends to focus
only on factual consistency, leading to a reduction in the
summarization capability of pre-trained model.

(King et al., 2022), and CPMI (van der Poel et al., 174

2022). Furthermore, we analyzed FactPEG (Wan 175

and Bansal, 2022), which underwent separate fine- 176

tuning using FactCC and ROUGE with the source. 177

Models For the summarization model, we uti- 178

lized encoder-decoder structures of BART (Lewis 179

et al., 2019) and PEGASUS (Zhang et al., 2020). 180

As for the language model, a GPT-2-based model 181

(Radford et al., 2019) was employed. Each of 182

these models was pre-trained on the XSUM dataset. 183

More details can be found in Appendix B. 184

Evaluation Metrics We have categorized the 185

evaluation into three key divisions: Faithfulness, 186

Relevance (with the source), and Similarity (with 187

the target). For Faithfulness, we used AlignScore 188

(Zha et al., 2023) and FactCC (Kryscinski et al., 189

2020). To measure Relevance to the source and 190

informativeness, we employed BARTScore (Yuan 191

et al., 2021) and BS-FACT. Lastly, to assess Sim- 192

ilarity to the target, we utilized ROUGE-L and 193

BERTScore (Zhang* et al., 2020). 194

5 Results 195

We present the results from BART, which are 196

higher than those in PEGASUS. Complete result 197
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Type Domain AlignScore BARTScore Rouge-L

Word
Random 60.47 -1.7993 35.82

Keyword 60.78 -1.7988 35.81

Sentence

First 61.45 -1.7706 35.52

Random 60.57 -1.7993 35.83

Keyword 61.16 -1.7784 35.60

Table 5: Domain comparison. Results were obtained by
varying the domain under the conditions of using the
BART model and the prompt that is to say.

including PEGASUS is available in Table 11. The198

prompt used in all cases was "That is to say,"199

and the domain consisted of three keywords ex-200

tracted from the source.201

In Table 2, we compared the summarization202

performance of different decoding strategies with203

BART. Our results revealed PINOCCHIO exhib-204

ited suboptimal performance overall, and CPMI205

showed performance that was nearly on par with206

standard beam search. However, PMIDC showed207

significant improvement in terms of faithfulness208

and relevance.209

In Table 5, the term Type indicates whether this210

subset is at the word or sentence level, while Do-211

main refers to a subset of tokens within the source.212

Notably, the Keyword approach within the word-213

level domain demonstrates robust performance.214

Therefore, we selected the Keyword approach for215

our domain prompt.216

5.1 Comparison with Fine-tuned Model217

FactPEG (Wan and Bansal, 2022) reduces halluci-218

nations by incorporating factual metrics into the219

training process. It combines ROUGE with the220

source and FactCC to produce faithful summaries.221

In Table 3, FactPEG outperforms PMIDC in terms222

of faithfulness (AlignScore). On the other hand,223

PMIDC achieves a more balanced performance224

across different metrics.225

FactPEG is trained with a focus on faithfulness,226

which has led to the loss of other summarization227

abilities. For instance, using a random sentence as228

a summary (as shown in the top row) demonstrates229

high faithfulness but a notable drop in the other230

two categories. Therefore, solely targeting faith-231

fulness may risk the summarization capabilities of232

pre-trained models, as illustrated in Table 4.233

Method AlignScore BARTScore↑ Rouge-L

PMI 60.06 -1.8041 35.88

PMIDC w/o ut 60.57 -1.7992 35.76

PMIDC w/ ut 60.78 -1.7988 35.81

Table 6: Effectiveness of uncertainty aware scoring. PMI
refers to eq.2, PMIDC w/o ut denotes the removal of the
uncertainty-aware scoring term in eq.4. PMIDC w/o ut

refers to eq.4. The results show the impact of ut.

5.2 Effectiveness of Transitioning to the PMI 234

Objective 235

Recall that in PMIDC, the marginal probability of 236

a token conditional to the domain p(yt|xdom,y<t) 237

is utilized only when the model’s uncertainty of a 238

token is higher than a threshold (i.e., ut). Here, we 239

verified whether this uncertainty-aware scoring is 240

more effective than without ut. 241

The first and second rows in Table 6 demon- 242

strate the conversion of scores to PMI regardless 243

of uncertainty. We emphasized the significance of 244

improving faithfulness without sacrificing the flu- 245

ency of summarization. To ensure the generation of 246

faithful tokens while preventing a decrease in the 247

performance of existing summarization models, it 248

is more effective to replace only specific uncertain 249

tokens that are suspected of hallucination, rather 250

than adjusting all tokens using PMI. 251

5.3 Error Analysis 252

Using PMIDC, we effectively controlled halluci- 253

nated terms. However, there are some failure cases, 254

which can be classified into three cases. The first 255

case occurs when the keyword extractor fails to ex- 256

tract the appropriate domain-related keywords (Ta- 257

ble 8). In such cases, PMIDC could not adequately 258

correct the probability of domain-associated tokens. 259

The second case is that it still has difficulties in han- 260

dling proper nouns or numbers (Table 9). This is a 261

persistent challenge for general language models, 262

and our approach did not completely address this 263

issue. The third case arises from the constraint of 264

the domain. Penalizing marginally likely tokens 265

sometimes avoid direct expressions, resulting in 266

ambiguity (Table 10). 267

6 Conclusion 268

By employing PMIDC, we successfully mitigated 269

hallucination through uncertainty-aware scoring, 270

without the need for fine-tuning. Our experiments 271

clearly demonstrate the substantial advantage of 272

our approach over conventional CPMI. 273
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Limitations274

Based on our evaluation, it is risky to solely rely275

on PMI while using entropy as a measure of hal-276

lucinations mathematically. We must consider the277

optimal points that our scoring system can achieve278

in beam search. Additionally, PMI is not always the279

superior choice compared to maximum likelihood.280

We did not conduct human evaluations. Human281

annotation remains the most accurate method for282

assessing hallucinations. As mentioned earlier, au-283

tomatic metrics are not flawless in measuring hal-284

lucinations. Nevertheless, it’s worth noting that hu-285

man judgment of the faithfulness of summaries is286

also imperfect (Maynez et al., 2020).287

Ethical Concerns288

We do not anticipate any ethical concerns with this289

work beyond those already documented in abstrac-290

tive summarization systems and other text gener-291

ators (van der Poel et al., 2022; Zhou et al., 2023;292

Xiao and Wang, 2021).293

References294

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,295
Jean-Baptiste Lespiau, Laurent Sifre, and John296
Jumper. 2023. Accelerating large language model297
decoding with speculative sampling.298

Maarten Grootendorst. 2020. Keybert: Minimal key-299
word extraction with bert.300

Ari Holtzman, Peter West, Vered Shwartz, Yejin Choi,301
and Luke Zettlemoyer. 2021. Surface form competi-302
tion: Why the highest probability answer isn’t always303
right. In Proceedings of the 2021 Conference on304
Empirical Methods in Natural Language Processing,305
pages 7038–7051, Online and Punta Cana, Domini-306
can Republic. Association for Computational Lin-307
guistics.308

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan309
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea310
Madotto, and Pascale Fung. 2023. Survey of halluci-311
nation in natural language generation. ACM Comput-312
ing Surveys, 55(12):1–38.313

Daniel King, Zejiang Shen, Nishant Subramani,314
Daniel S. Weld, Iz Beltagy, and Doug Downey. 2022.315
Don’t say what you don’t know: Improving the con-316
sistency of abstractive summarization by constraining317
beam search. In Proceedings of the 2nd Workshop on318
Natural Language Generation, Evaluation, and Met-319
rics (GEM), pages 555–571, Abu Dhabi, United Arab320
Emirates (Hybrid). Association for Computational321
Linguistics.322

Wojciech Kryscinski, Bryan McCann, Caiming Xiong, 323
and Richard Socher. 2020. Evaluating the factual 324
consistency of abstractive text summarization. In 325
Proceedings of the 2020 Conference on Empirical 326
Methods in Natural Language Processing (EMNLP), 327
pages 9332–9346, Online. Association for Computa- 328
tional Linguistics. 329

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan 330
Ghazvininejad, Abdelrahman Mohamed, Omer Levy, 331
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De- 332
noising sequence-to-sequence pre-training for natural 333
language generation, translation, and comprehension. 334

Wei Li, Wenhao Wu, Moye Chen, Jiachen Liu, Xinyan 335
Xiao, and Hua Wu. 2022. Faithfulness in natural 336
language generation: A systematic survey of analysis, 337
evaluation and optimization methods. 338

Chin-Yew Lin. 2004. ROUGE: A package for auto- 339
matic evaluation of summaries. In Text Summariza- 340
tion Branches Out, pages 74–81, Barcelona, Spain. 341
Association for Computational Linguistics. 342

Yuning Mao, Xiang Ren, Heng Ji, and Jiawei Han. 2021. 343
Constrained abstractive summarization: Preserving 344
factual consistency with constrained generation. 345

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and 346
Ryan McDonald. 2020. On faithfulness and factu- 347
ality in abstractive summarization. In Proceedings 348
of the 58th Annual Meeting of the Association for 349
Computational Linguistics, pages 1906–1919, On- 350
line. Association for Computational Linguistics. 351

Shashi Narayan, Shay B. Cohen, and Mirella Lapata. 352
2018. Don’t give me the details, just the summary! 353
topic-aware convolutional neural networks for ex- 354
treme summarization. In Proceedings of the 2018 355
Conference on Empirical Methods in Natural Lan- 356
guage Processing, pages 1797–1807, Brussels, Bel- 357
gium. Association for Computational Linguistics. 358

Alec Radford, Jeff Wu, Rewon Child, D. Luan, Dario 359
Amodei, and Ilya Sutskever. 2019. Language models 360
are unsupervised multitask learners. 361

Weijia Shi, Xiaochuang Han, Mike Lewis, Yulia 362
Tsvetkov, Luke Zettlemoyer, and Scott Wen tau Yih. 363
2023. Trusting your evidence: Hallucinate less with 364
context-aware decoding. 365

Liam van der Poel, Ryan Cotterell, and Clara Meis- 366
ter. 2022. Mutual information alleviates hallucina- 367
tions in abstractive summarization. In Proceedings 368
of the 2022 Conference on Empirical Methods in Nat- 369
ural Language Processing, pages 5956–5965, Abu 370
Dhabi, United Arab Emirates. Association for Com- 371
putational Linguistics. 372

David Wan and Mohit Bansal. 2022. FactPEGASUS: 373
Factuality-aware pre-training and fine-tuning for ab- 374
stractive summarization. In Proceedings of the 2022 375
Conference of the North American Chapter of the 376
Association for Computational Linguistics: Human 377
Language Technologies, pages 1010–1028, Seattle, 378

5

http://arxiv.org/abs/2302.01318
http://arxiv.org/abs/2302.01318
http://arxiv.org/abs/2302.01318
https://doi.org/10.5281/zenodo.4461265
https://doi.org/10.5281/zenodo.4461265
https://doi.org/10.5281/zenodo.4461265
https://doi.org/10.18653/v1/2021.emnlp-main.564
https://doi.org/10.18653/v1/2021.emnlp-main.564
https://doi.org/10.18653/v1/2021.emnlp-main.564
https://doi.org/10.18653/v1/2021.emnlp-main.564
https://doi.org/10.18653/v1/2021.emnlp-main.564
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
https://doi.org/10.18653/v1/2022.gem-1.51
https://doi.org/10.18653/v1/2022.gem-1.51
https://doi.org/10.18653/v1/2022.gem-1.51
https://doi.org/10.18653/v1/2022.gem-1.51
https://doi.org/10.18653/v1/2022.gem-1.51
https://doi.org/10.18653/v1/2020.emnlp-main.750
https://doi.org/10.18653/v1/2020.emnlp-main.750
https://doi.org/10.18653/v1/2020.emnlp-main.750
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/2203.05227
http://arxiv.org/abs/2203.05227
http://arxiv.org/abs/2203.05227
http://arxiv.org/abs/2203.05227
http://arxiv.org/abs/2203.05227
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
http://arxiv.org/abs/2010.12723
http://arxiv.org/abs/2010.12723
http://arxiv.org/abs/2010.12723
https://doi.org/10.18653/v1/2020.acl-main.173
https://doi.org/10.18653/v1/2020.acl-main.173
https://doi.org/10.18653/v1/2020.acl-main.173
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://www.semanticscholar.org/paper/Language-Models-are-Unsupervised-Multitask-Learners-Radford-Wu/9405cc0d6169988371b2755e573cc28650d14dfe
https://www.semanticscholar.org/paper/Language-Models-are-Unsupervised-Multitask-Learners-Radford-Wu/9405cc0d6169988371b2755e573cc28650d14dfe
https://www.semanticscholar.org/paper/Language-Models-are-Unsupervised-Multitask-Learners-Radford-Wu/9405cc0d6169988371b2755e573cc28650d14dfe
http://arxiv.org/abs/2305.14739
http://arxiv.org/abs/2305.14739
http://arxiv.org/abs/2305.14739
https://doi.org/10.18653/v1/2022.emnlp-main.399
https://doi.org/10.18653/v1/2022.emnlp-main.399
https://doi.org/10.18653/v1/2022.emnlp-main.399
https://doi.org/10.18653/v1/2022.naacl-main.74
https://doi.org/10.18653/v1/2022.naacl-main.74
https://doi.org/10.18653/v1/2022.naacl-main.74
https://doi.org/10.18653/v1/2022.naacl-main.74
https://doi.org/10.18653/v1/2022.naacl-main.74


United States. Association for Computational Lin-379
guistics.380

Yijun Xiao and William Yang Wang. 2021. On hal-381
lucination and predictive uncertainty in conditional382
language generation. In Proceedings of the 16th Con-383
ference of the European Chapter of the Association384
for Computational Linguistics: Main Volume, pages385
2734–2744, Online. Association for Computational386
Linguistics.387

Weizhe Yuan, Graham Neubig, and Pengfei Liu. 2021.388
Bartscore: Evaluating generated text as text genera-389
tion. In Advances in Neural Information Processing390
Systems, volume 34, pages 27263–27277. Curran As-391
sociates, Inc.392

Yuheng Zha, Yichi Yang, Ruichen Li, and Zhiting Hu.393
2023. AlignScore: Evaluating factual consistency394
with a unified alignment function. In Proceedings395
of the 61st Annual Meeting of the Association for396
Computational Linguistics (Volume 1: Long Papers),397
pages 11328–11348, Toronto, Canada. Association398
for Computational Linguistics.399

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter400
Liu. 2020. PEGASUS: Pre-training with extracted401
gap-sentences for abstractive summarization. In Pro-402
ceedings of the 37th International Conference on403
Machine Learning, volume 119 of Proceedings of404
Machine Learning Research, pages 11328–11339.405
PMLR.406

Muru Zhang, Ofir Press, William Merrill, Alisa Liu,407
and Noah A. Smith. 2023. How language model408
hallucinations can snowball.409

Tianyi Zhang*, Varsha Kishore*, Felix Wu*, Kilian Q.410
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-411
uating text generation with bert. In International412
Conference on Learning Representations.413

Chunting Zhou, Graham Neubig, Jiatao Gu, Mona Diab,414
Francisco Guzmán, Luke Zettlemoyer, and Marjan415
Ghazvininejad. 2021. Detecting hallucinated content416
in conditional neural sequence generation. In Find-417
ings of the Joint Conference of the 59th Annual Meet-418
ing of the Association for Computational Linguistics419
and the 11th International Joint Conference on Nat-420
ural Language Processing (ACL-IJCNLP Findings),421
Virtual.422

Wenxuan Zhou, Sheng Zhang, Hoifung Poon, and423
Muhao Chen. 2023. Context-faithful prompting424
for large language models. In Findings of the As-425
sociation for Computational Linguistics: EMNLP426
2023, pages 14544–14556, Singapore. Association427
for Computational Linguistics.428

Chenguang Zhu, William Hinthorn, Ruochen Xu,429
Qingkai Zeng, Michael Zeng, Xuedong Huang, and430
Meng Jiang. 2021. Enhancing factual consistency431
of abstractive summarization. In Proceedings of the432
2021 Conference of the North American Chapter of433
the Association for Computational Linguistics: Hu-434
man Language Technologies, pages 718–733, Online.435
Association for Computational Linguistics.436

A Related Work 437

A.1 Understanding hallucinations 438

In abstractive summarization, hallucinations refer 439

to generating content that deviates from the source 440

material and are categorized as intrinsic and extrin- 441

sic hallucinations (Maynez et al., 2020). Intrinsic 442

hallucinations result from generating content that 443

contradicts the input source document’s informa- 444

tion, while extrinsic hallucinations occur when the 445

source material is ignored (Ji et al., 2023). Our fo- 446

cus is on summarization, where a good summary 447

encapsulates the content of the source document. 448

Therefore, reducing hallucinations entails increas- 449

ing faithfulness and factual consistency between 450

the source document and the generated summary. 451

Zhang et al. (2023) demonstrated the snowball 452

effect of hallucination, where if a pre-trained model 453

provides inaccurate responses, it tends to generate 454

subsequent incorrect explanations. The root cause 455

of this phenomenon is the initial committal, where 456

language models are trained on data in which the 457

correct answer precedes the explanation. In other 458

words, if the initially generated answer is incorrect, 459

subsequent explanations tend to justify and align 460

with this inaccuracy. Therefore, it is important to 461

correct hallucinated content in the early stages. 462

A.2 Mitigating hallucinations 463

Various approaches have been proposed to tackle 464

the challenge of hallucination in text generation (Li 465

et al., 2022). 466

Lexically constrained decoding modifies beam 467

search to control specific words in the output with- 468

out changing the model. CAS (Mao et al., 2021) 469

enhances factual consistency in summarization. It 470

uses dynamic beam search to create constrained 471

token sets focused on entities and noun phrases, 472

improving the accuracy and faithfulness of abstrac- 473

tive summarization. 474

PINOCCHIO (King et al., 2022) is a modified 475

beam search algorithm for text generation that uses 476

a set called R to avoid disallowed paths. It tack- 477

les inconsistencies by adjusting predicted scores 478

and backtracking using a heuristic function fc that 479

considers eight binary checks. High entropy and 480

multiple backtracks result in discarded generations. 481

Context-aware decoding (CAD) (Shi et al., 2023) 482

attempted to decrease hallucination in PMI by 483

adding prompts to the unconditional term. It differs 484

from our work in a way that they adjusted the score 485

of all tokens with PMI and use the same prompt for 486
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all input documents.487

CPMI (van der Poel et al., 2022) a significant488

inspiration for our work, introduced a beam-search489

technique to combat hallucination. It addresses the490

tendency of language models to generate overly491

general text by utilizing mutual information and492

internal entropy in a scoring function to detect and493

mitigate hallucination.494

Furthermore, in a similar task utilizing un-495

certainty, Xiao and Wang (2021) proposed an496

uncertainty-aware beam search that penalizes the497

use of entropy. Our approach differs in that we do498

not consistently penalize uncertain tokens; instead,499

we score them with PMI when they surpass a cer-500

tain threshold.501

FactPegasus (Wan and Bansal, 2022) enhances502

abstractive summarization by reducing hallucina-503

tions through factuality integration. It modifies sen-504

tence selection by combining ROUGE metrics with505

the FactCC, aiming to produce faithful summaries.506

FactPegasus employs fine-tuning with Corrector,507

Contrastor, and Connector modules. Although it im-508

proves factual accuracy, it lacks in informativeness.509

Our work complements more balanced abstractive510

summarization approach.511

A.3 Automatic Metrics512

We have categorized the evaluation into three513

key dimensions: Faithfulness, Relevance (with the514

source), and Similarity (with the target).515

To assess faithfulness, we employed AlignScore516

(Zha et al., 2023) and FactCC (Kryscinski et al.,517

2020). AlignScore divides the source document518

into approximately 350 segments, evaluating fac-519

tual consistency with the generated text. FactCC520

assesses whether the generated text aligns factually521

with the source document, using a binary format.522

To compare the relevance of the generated text523

with the source document, we used BARTScore524

(Yuan et al., 2021) and BS-FACT for evaluat-525

ing their informativeness. BARTScore, which is526

based on the BART model, comprehensively eval-527

uates both the informativeness and factual accu-528

racy of the generated text. BS-FACT, derived from529

BERTScore, measures the precision of alignment530

between the generated text and the source text.531

Finally, to measure Similarity with the target, we532

utilized ROUGE-L (Lin, 2004) and BERTScore533

(Zhang* et al., 2020). These metrics, traditionally534

used for evaluating generated text, differ from pre-535

vious methods as they compare the generated text536

not with the source document but with the gold537

summary (i.e., target). 538

A.4 Keyword Extractor 539

We used the open-source module, KeyBERT (Groo- 540

tendorst, 2020) to extract keywords from the source 541

document. KeyBERT provides a sentence-level cor- 542

pus containing labeled keywords and keyphrases 543

extracted from random Wikipedia articles. This cor- 544

pus utilizes a self-labeling method based on con- 545

textual word features, demonstrating a close align- 546

ment with human-labeled data. KeyBERT employs 547

a bidirectional LSTM for keyword and keyphrase 548

extraction using this self-labeled corpus. 549

B Implementation Details 550

Summarization models In our experiments, 551

we followed a setup similar to that described 552

in the work by van der Poel et al. (2022) to 553

ensure a fair comparison. We conducted our 554

experiments using computing clusters equipped 555

with NVIDIA RTX 3090 GPUs, allocating a 556

single GPU for each experiment. We use the 557

checkpoint BART-LARGE-XSUM (https:// 558

huggingface.co/facebook/bart-large-xsum) 559

and PEGASUS-XSUM (https://huggingface. 560

co/google/pegasus-xsum). 561

Language model We trained two language mod- 562

els, since the BPE step differed for BART-large and 563

PEGASUS. Both architectures are from the GPT-2 564

family architecture (Radford et al., 2019) (available 565

at https://huggingface.co/gpt2). The configu- 566

rations for the language models are as follows: both 567

have 512 embeddings, 6 layers, and 8 heads. How- 568

ever, there is a variation in the output vocabulary 569

size, with BART having 50,265 and PEGASUS 570

96,103. The maximum token length for both mod- 571

els is set to 2,048 tokens, and they operate with 572

an update frequency of 32. Both models share a 573

learning rate of 5.0× 10−4. In terms of validation 574

metrics, BART-large included a loss of 3.16744 575

and a perplexity of 24.57401, while PEGASUS 576

consisted a loss of 3.25238 and a perplexity of 577

26.68345. 578

Why do we need an additional model? We have 579

employed two types of models: a larger summa- 580

rization model (BART-large: 406M, PEGASUS: 581

223M) and a smaller language model (GPT-2-based 582

model: 45M). There are two reasons why we chose 583

to use a model with an additional decoder-only 584

structure instead of the decoder of the existing sum- 585

mary model. 586
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Firstly, an extra forward pass is required for587

the unconditional (i.e., domain-conditional) term.588

Therefore, employing a smaller language model is589

faster. This is also related to the latest research on590

speeding up additional forwarding (e.g. speculative591

sampling techniques, (Chen et al., 2023)).592

Secondly, a decoder-only structure, trained for593

the next token prediction, provides a more suit-594

able unconditional distribution than an encoder-595

decoder structure. This is because the decoder in596

the encoder-decoder structure requires the encoder597

output for cross-attention. Even if all encoder in-598

puts were padded, we did not obtain an appropriate599

unconditional distribution. The reason for this is600

that there are some samples with no source doc-601

ument in the training dataset. So, if the encoder602

input is entirely padded, the decoder only reflects603

the distribution of the corresponding outlier sample,604

not the distribution in the entire dataset.605

C Searching Hyperparameters606

We used the same hyperparameters as CPMI, as607

reported in their paper. For BART, we set τ to608

3.5987 and λ to 6.5602 × 10−2. Our method out-609

performed CPMI, demonstrating effective summa-610

rization without hallucination (see Table 2). For611

PEGASUS, we determined the hyperparameters612

by examining the AlignScore with 3,000 samples613

from the validation set, using CPMI, not PMIDC.614

The values we obtained are τ = 3.304358 and615

λ = 7.4534 × 10−2. Note that CPMI relied on616

human-annotated data at the token level (Zhou617

et al., 2021). This approach is not only extremely618

costly and challenging but also lacks precision.619

However, since we have removed such human in-620

tervention, PMIDC is more applicable.621

D Prompt Design622

To search for the best prompt, we referred to the623

prompt set proposed by Yuan et al. (2021). They624

used manually devised seed prompts and gathered625

paraphrases to construct our prompt set in order to626

find suitable prompts within a search space. The627

seed prompts, along with some examples of para-628

phrased prompts, are shown in Table 7. We have629

discovered that it is more effective to add addi-630

tional prompts to make them more lexical and nat-631

ural, rather than simply using the domain as the632

prompt. Specifically, we obtained the phrase ‘that633

is to say’. We used all entries in the prompt set634

by prefixing the language model input and append-635

(a) PEGASUS. CPMI. AlignScore

(b) PEGASUS. CPMI. ROUGE

Figure 2: Searching for hyperparameters. For PEGA-
SUS, we utilized the same hyperparameter settings for
comparison with CPMI. We considered 10x10 hyper-
parameter pairs through a random uniform grid search
on 3,000 samples in a validation set using alignscore.
Alternatively, we can also be identified using ROUGE,
suggesting that the optimal configuration may vary de-
pending on experimental results.

Seed Prompt Set

keywords
Keywords Topics Components
Concepts Features Points

in summary
In summary To be brief Last of all
When all is said and done Bringing up the rear In short

in other words
In other words That is to say To rephrase it
Take for example To put it another way Case in point

Table 7: Seed prompts and examples of final prompts.

ing the summarization model input. Furthermore, 636

we found that consistently using lexically natural 637

prompts was better than relying solely on domains 638

in terms of faithfulness and relevance. 639

E Error Analysis 640
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Method Text

Domain bia, falkirk, bi

Source However, the Bairns boss has underlined that any forward signing will need to exhibit even more
quality than two of his promising youngsters. "If I bring another striker in he’s got to be better
than young Botti Bia-Bi and Scott Shepherd," said Houston. "I would be looking for the more
experienced type, and another defender would come in handy as well." Eighteen-year-old Bia-Bi, a
London-born Scot who has progressed through Falkirk’s academy, glanced in a fine equalising
header against Cowdenbeath on Saturday to ensure Houston’s side left Central Park with a point...

PMIDC Falkirk manager Peter Houston has not ruled out bringing in a new striker in the January transfer
window.

Gold Peter Houston is still seeking to fine-tune his Falkirk squad, with a striker and defender pinpointed
as priorities.

Table 8: Case 1 error. Inconsistent words are highlighted in red fonts. Extracted keywords may not fully reflect
domains of source text. In this example, the domain should be more related to terms like transfer or football rather
than specific names of individuals or institutions. Therefore, the terms closely associated with transfer (such as
January) were not adequately penalized.

Method Text

Domain invest, richest, investment

Source The investment follows "several months of negotiations", a company statement to the Saudi stock
exchange said. The prince, who is one of the world’s richest men, owns stakes in many well-known
companies, including News Corporation. He also has investments in a number of media groups in
the Arab world. "Our investment in Twitter reaffirms our ability in identifying suitable opportunities
to invest in promising, high-growth businesses with a global impact," Prince Alwaleed said."

PMIDC Saudi Arabia’s Prince Alwaleed bin Talal has bought a 10% stake in Twitter in a deal worth $2bn
(31.8bn).

Beam Saudi Arabia’s Prince Alwaleed bin Talal has agreed to buy a 10% stake in Twitter for $3bn
(32.3bn).

Table 9: Case 2 error. Inconsistent words are highlighted in red fonts. The appropriate domain, but not properly
regulated the numbers. Hallucinations related to proper nouns, numbers and statistics, have long been significant
issues in general language models. Our approach could not completely address this issue.

Method Text

Domain claire, marathon, equestrian

Source When Claire was told she would spend the rest of her life in a wheelchair after a spinal injury, she
wanted to get back on her feet as quickly as possible and regain her independence. For the past
three months she has been training intensively for the marathon using a robotic walking suit to
prove she is just as determined as in her sporting days. ... former champion British equestrian
Lucinda Green. "There’s a lot of people who are worse off than me and haven’t got the support I’ve
got, so I want to raise as much as I can. "But, when the marathon is over, Claire thinks that for the
first time in six years, she will be delighted to return to her wheelchair.

PMIDC A paralysed equestrian rider is taking part in the London Marathon in a bid to become the first
person in the world to walk unaided.

Beam Claire Gwynne, who was paralysed from the chest down in 2006, is taking part in the London
Marathon.

Table 10: Case 3 error. Inconsistent words are highlighted in red fonts. Constraints of domain-conditional term can
prevent direct expressions, potentially resulting in ambiguity and generation of incorrect results. In this example,
penalizing the domain term Claire allowed for the removal of the hallucinated term Gwynne. However, apart from
this, the conveyed information remained somewhat incorrect.
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Faithfulness Relevance Similarity

Method Model # Samples AlignScore FactCC BARTScore↑ BS-Fact Rouge-L BERTScore

Beam

BART

11333 60.02 21.43 -1.8038 88.86 35.90 91.52
PINOCCHIO 106472 57.83 16.97 -2.0958 88.81 27.98 89.91

CPMI 11333 60.09 21.53 -1.8038 88.85 35.90 91.52

PMIDC 11333 60.78 21.82 -1.7988 88.89 35.81 91.50

Beam

PEGASUS

11333 59.28 22.02 -1.9636 88.64 38.02 91.91
CPMI 11333 59.31 21.91 -1.9617 88.64 38.01 91.91

PMIDC 11333 59.40 22.09 -1.9590 88.64 38.06 91.91

Table 11: Comparison with decoding methods on BART-large and PEGASUS. PMIDC improves faithfulness and
source relevance, with a slight decrease in target similarity.

10


	Introduction
	Preliminaries
	Domain-conditional Scoring Strategy
	Experimental Setup
	Results
	Comparison with Fine-tuned Model
	Effectiveness of Transitioning to the PMI Objective
	Error Analysis

	Conclusion
	Related Work
	Understanding hallucinations
	Mitigating hallucinations
	Automatic Metrics
	Keyword Extractor

	Implementation Details
	Searching Hyperparameters
	Prompt Design
	Error Analysis

