
Reincarnating Reinforcement Learning Workshop at ICLR 2023

DO EMBODIED AGENTS DREAM OF PIXELATED SHEEP?:

EMBODIED DECISION MAKING USING
LANGUAGE GUIDED WORLD MODELLING

Kolby Nottingham ∗ † Prithviraj Ammanabrolu ‡ Alane Suhr‡

Yejin Choi‡ § Hannaneh Hajishirzi‡ § Sameer Singh† ‡ Roy Fox†

ABSTRACT

Reinforcement learning (RL) agents typically learn tabula rasa, without prior
knowledge of the world, which makes learning complex tasks with sparse rewards
difficult. If initialized with knowledge of high-level subgoals and transitions
between subgoals, RL agents could utilize this Abstract World Model (AWM)
for planning and exploration. We propose using few-shot large language models
(LLMs) to hypothesize an AWM, that is tested and verified during exploration,
to improve sample efficiency in embodied RL agents. Our DECKARD agent1

applies LLM-guided exploration to item crafting in Minecraft in two phases: (1)
the Dream phase where the agent uses an LLM to decompose a task into a sequence
of subgoals, the hypothesized AWM; and (2) the Wake phase where the agent learns
a modular policy for each subgoal and verifies or corrects the hypothesized AWM
on the basis of its experiences. Our method of hypothesizing an AWM with LLMs
and then verifying the AWM based on agent experience not only increases sample
efficiency over contemporary methods by an order of magnitude but is also robust
to and corrects errors in the LLM—successfully blending noisy internet-scale
information from LLMs with knowledge grounded in environment dynamics.

1 INTRODUCTION

Despite evidence that practical sequential decision making systems require efficient exploitation of
prior knowledge regarding a task, the current prevailing paradigm in reinforcement learning (RL)
is to train tabula rasa, without any pretraining or external knowledge (Agarwal et al., 2022). In an
effort to shift away from this paradigm, we focus on the task of creating embodied RL agents that can
effectively exploit large-scale external knowledge sources presented in the form of pretrained large
language models (LLMs).

LLMs contain potentially useful knowledge for completing tasks and compiling knowledge sources
Petroni et al. (2019). Previous work attempted to apply knowledge from LLMs to decision-making by
generating action plans for embodied environments Ichter et al. (2022); Huang et al. (2022b); Song
et al. (2022b); Singh et al. (2022); Liang et al. (2022b); Huang et al. (2022a). However, LLMs still
often fail when generating plans due to a lack of grounding Valmeekam et al. (2022). Additionally,
many of these agents that rely on LLM knowledge at execution time are limited in performance by the
accuracy of LLM output. We hypothesize that if LLMs are instead applied to improving exploration
during training, resulting policies will not be constrained by the accuracy of an LLM.

Exploration in environments with sparse rewards becomes increasingly difficult as the size of the
explorable state space increases. For example, the popular 3D embodied environment Minecraft has
a large technology tree of craftable items with complex dependencies and a high branching factor.

∗Correspondence to knotting@uci.edu
†Department of Computer Science, University of California Irvine, Irvine, CA, United States
‡Allen Institute for Artificial Intelligence, Seattle, WA, United States
§Paul G. Allen School of Computer Science, Seattle, WA, United States
1https://deckardagent.github.io/

1

mailto:knotting@uci.edu
https://deckardagent.github.io/

Reincarnating Reinforcement Learning Workshop at ICLR 2023

Stone

Log Plank Stick

Stone
Pickaxe

Log Stick

Stone

Log Plank Stick

Stone
Pickaxe

Task: Craft A Stone Pickaxe

Collect logs, craft plank from log,
craft stick from plank, add to world model

Dream phase
Sample subgoal

from LLM

Collect stone, craft stone pickaxe
from sticks and stone, add to world model

Sample Subgoal: Craft stick

Wake phase
Execute subgoals,

update world model
Log Stick

Plank

Plank

LLM:
stone pickaxe: 2 sticks, 3 stone

 stick: 2 planks

door: 6 planks

Door

Door
Stone
Pickaxe

Stone
Pickaxe

LLM:
stone pickaxe:

2 sticks, 3 stone Sample Subgoal: Craft stone pickaxe

Figure 1: During the Dream phase, DECKARD uses the LLM-predicted DAG of subgoals, the
hypothesized Abstract World Model (AWM), to sample a node on the path to the current task. Then,
during the Wake phase, the agent executes subgoals and explores until reaching the sampled node.
The AWM is corrected and discovered nodes marked as verified.

Before crafting a stone pickaxe in Minecraft an agent must: collect logs, craft logs into planks and
then sticks, craft a crafting table from planks, use the crafting table to craft a wooden pickaxe from
sticks and planks, use the wooden pickaxe to collect cobblestone, and finally use the crafting table to
craft a stone pickaxe from sticks and cobblestone. Reaching a goal item is difficult without expert
knowledge of the Minecraft crafting tree from dense rewards Baker et al. (2022); Hafner et al. (2023)
or expert demonstrations Skrynnik et al. (2021); Patil et al. (2020), making item crafting in Minecraft
a long-standing AI challenge Guss et al. (2019); Fan et al. (2022).

We propose DECKARD (DECision-making for Knowledgable Autonomous Reinforcement-learning
Dreamers), an agent that hypothesizes an Abstract World Model (AWM) over subgoals by few-shot
prompting an LLM, then exploits the AWM for exploration and verifies the AWM with grounded
experience. As seen in Figure 1, DECKARD operates in two phases: (1) the Dream phase where
it uses the hypothesized AWM to suggest the next node to explore from the directed acyclic graph
(DAG) of subgoals; and (2) the Wake phase where it learns a modular policy of subgoals, each trained
on RL objectives, and verifies the hypothesized AWM with grounded environment dynamics. Figure
1 shows two iterations of the DECKARD agent learning the “craft a stone pickaxe” task in Minecraft.
During the first Dream phase, the agent has already verified the nodes log and plank, and DECKARD
suggests exploring towards the stick subgoal, ignoring nodes such as door that are not predicted to
complete the task. Then, during the following Wake phase, DECKARD executes each subgoal in the
branch ending in the stick node and then explores until it successfully crafts a stick. If successful, the
agent marks the newly discovered node as verified and proceeds to the next iteration.

We evaluate DECKARD on learning to craft items in the Minecraft technology tree. We show
that LLM-guidance is essential to exploration in DECKARD, with a version of our agent without
LLM-guidance taking over twice as long to craft most items during open-ended exploration. Whereas,
when exploring towards a specific task, DECKARD improves sample-efficiency by an order of
magnitude versus comparable agents, (12x the ablated DECKARD without LLM-guidance). Our
method is also robust to task decomposition errors in the LLM, consistently outperforming baselines
as we introduce errors in the LLM output. DECKARD demonstrates the potential for robustly
applying LLMs to RL, thus enabling RL agents to effectively use large-scale, noisy prior knowledge
sources for exploration.

2 RELATED WORK

2.1 LANGUAGE-ASSISTED DECISION MAKING

Textual knowledge can be used to improve generalization in reinforcement learning through envi-
ronment descriptions Branavan et al. (2011); Zhong et al. (2020); Hanjie et al. (2021) or language

2

Reincarnating Reinforcement Learning Workshop at ICLR 2023

instructions Chevalier-Boisvert et al. (2019); Anderson et al. (2018); Ku et al. (2020); Shridhar et al.
(2020). However, task specific textual knowledge is expensive to obtain, prompting the use of web
queries Nottingham et al. (2022) or using models pretrained on general world knowledge Dambekodi
et al. (2020); Suglia et al. (2021); Ichter et al. (2022); Huang et al. (2022b); Song et al. (2022b).

LLMs can also be used as an external knowledge source by prompting or finetuning them to generate
action plans. However, by default, the generated plans are not grounded in environment dynamics
and constraining output can harm model performance, both of which lead to subpar performance of
out-of-the-box LLMs on decision-making tasks Valmeekam et al. (2022). Existing work that uses
LLMs for generating action plans focuses on methods for grounding language in environment states
Ichter et al. (2022); Huang et al. (2022b); Song et al. (2022b), or improving LLM plans through more
structured output Singh et al. (2022); Liang et al. (2022b). In this work, we focus on using LLMs for
exploration rather than directly generating action plans.

Tam et al. (2022) and Mu et al. (2022) recently demonstrated that language is a meaningful state
abstraction when used for exploration. Additionally, Tam et al. (2022) experiment with using
LLM latent representations of state descriptions for novelty exploration, relying on pretrained LLM
encodings to detect novel textual states. To the best of our knowledge, we are the first to apply
language-assisted decision-making to exploration by using LLMs to predict and verify environment
dynamics through experience.

2.2 LANGUAGE GROUNDED IN INTERACTION

Without grounding, LLMs often fail to reason about real world dynamics Bisk et al. (2020). Instruction
following tasks have been a popular testbed for language grounding Chevalier-Boisvert et al. (2019);
Anderson et al. (2018); Ku et al. (2020); Shridhar et al. (2020) prompting many improvements to
decision making conditioned on language instructions Yu et al. (2018); Lynch & Sermanet (2020);
Nottingham et al. (2021); Suglia et al. (2021); Kuo et al. (2021); Zellers et al. (2021); Song et al.
(2022a); Blukis et al. (2022). Other prior work used environment interactions to ground responses
from question answering models in environment state Gordon et al. (2018); Das et al. (2018) or
physics Liu et al. (2022). Finally, Ammanabrolu & Riedl (2021) learn a grounded textual world
model from environment interactions to assist an RL agent in planning and action selection. In this
work, our DECKARD agent also uses a type of textual world model but it is obtained few-shot from
an LLM and then grounded in environment dynamics by verifying hypotheses through interaction.

2.3 MODULARITY IN RL

Modular RL proposes to learn several independent policies in a composable way to facilitate training
and generalization Simpkins & Isbell (2019). Ammanabrolu et al. (2020) and Patil et al. (2020)
demonstrate how modular policies can improve exploration by reducing policy horizons, the for-
mer using the text-based game Zork and the latter using Minecraft. We implement modularity
for Minecraft by finetuning a pretrained transformer policy with adapters, a technique recently
implemented for RL by Liang et al. (2022a) for multi-task robotic policies.

2.4 MINECRAFT

Minecraft is a vast open-ended world with complex dynamics and sparse rewards. Crafting items in
the Minecraft technology tree has long been considered a challenging task for reinforcement learning,
requiring agents to overcome extremely delayed rewards and difficult exploration Skrynnik et al.
(2021); Patil et al. (2020); Hafner et al. (2023). This is partially due to the scarcity of items in the
environment, but also due to the depth of some items in the game’s technology tree. The purpose
of our work is to overcome the latter of these two difficulties by better learning and navigating
Minecraft’s technology tree.

Several existing agents overcome the problem of item scarcity in Minecraft by simplifying environ-
ment parameters such as action duration Patil et al. (2020) or block break time Hafner et al. (2023),
making comparison between methods difficult. For this reason we compare minimally to other
Minecraft agents (see Table 2), focusing our evaluation on the benefits of LLM-guided exploration
with DECKARD. We use the video pretrained (VPT) Minecraft agent Baker et al. (2022) as a starting

3

Reincarnating Reinforcement Learning Workshop at ICLR 2023

point for exploration and finetuning, and we use the Minedojo implementation of the Minecraft
Environment Fan et al. (2022).

3 BACKGROUND

3.1 MODULAR REINFORCEMENT LEARNING

Rather than train a single policy with sparse rewards, modular RL advocates learning composi-
tional policy modules Simpkins & Isbell (2019). DECKARD automatically discovers subgoals in
Minecraft—each of which maps to an independently trained policy module—and learns a DAG of
dependencies (the AWM) to transition between subgoals. Policy modules are trained in an environ-
ment modeled by a POMDP with states s ∈ S , obseravtions o ∈ O, actions a ∈ A, and environment
dynamics T : S,A → S ′. These elements are common between modules, but each subgoal defines
different initial states S0 and observations O0, terminal states St, and reward functionsR : S,A → R,
according to the particular subgoal. S0 and O0 are defined by the current subgoal’s parents in the
DAG, and St and R are defined by the current subgoal. For example, the craft wooden pickaxe
subgoal has parents craft planks and craft stick, so S0 includes these items in the agent’s starting
inventory. This subgoal recieves a reward and terminates when a wooden pickaxe is added to the
agent’s inventory. Section 5 and Appendix B provide more details.

Due to the compositionality of modular RL, individual modules can be chained together to achieve
complex tasks. In our case, given a goal state sg, we use the subgoal DAG to create a path from
our current state to sg, [s0, s1, ..., sg], where each s represents the terminal state for a subgoal. By
chaining together sequences of subgoal modules, we can successfully navigate to connected portions
of the currently discovered DAG and reach arbitrary goal states.

3.2 LARGE LANGUAGE MODELS

Large language models (LLM) are trained with a language modeling objective to maximize the
likelihood of training data from large text corpora. As LLMs have grown in size and representational
power, they have seen success on various downstream tasks by simply modifying their input, referred
to as prompt engineering Brown et al. (2020). Recent applications of LLMs to decision-making
have relied partially or entirely on prompt engineering for their action planning Ichter et al. (2022);
Song et al. (2022b); Huang et al. (2022b); Singh et al. (2022); Liang et al. (2022b). We follow this
pattern to extract knowledge from LLMs and construct our AWM. We prompt OpenAI’s Codex
model OpenAI (2022) to generate DECKARD’s hypothesized AWM. Codex is trained to generate
code samples from natural language. As with previous work Singh et al. (2022); Liang et al. (2022b),
we find that structured code output works well for extracting knowledge from LLMs. We structure
LLM output by prompting Codex for a python dictionary of Minecraft item dependencies, which we
then map to a DAG with nodes and edges that represent items and dependencies between those items
(see Section 5.1 and Appendix A).

4 DECKARD

4.1 ABSTRACT WORLD MODEL

Our method, DECision-making for Knowledgable Autonomous Reinforcement-learning Dreamers
(DECKARD), builds an Abstract World Model (AWM) of subgoal dependencies from state ab-
stractions. We begin by assuming a textual state representation function ϕ : O → X . Textual state
representations x ∈ X make up the nodes for our AWM G : X,E with directed edges E defining
the dependencies between X . We further constrain G to a directed acyclic graph (DAG) so that the
nodes of the DAG represent subgoals useful in navigating towards a target goal. In our experiments,
we use the agent’s current inventory as X , a common component of the Minecraft observation space
Fan et al. (2022); Hafner et al. (2023).

We update G from agent experience through environment exploration. When the agent experiences
node xt for the first time, G is updated by adding edges between the previous node xt−1 and the new
node xt. When trying to reach a previously experienced node, DECKARD recovers the path from

4

Reincarnating Reinforcement Learning Workshop at ICLR 2023

Algorithm 1 DECKARD

G← LLM() // hypothesize AWM with LLM
C ← X : 0 // dict of visit counts
V ← ∅ // set of verified nodes
while training do

// Dream Phase
F ← Frontier(G,V)
if any(C(F) ≤ c0) then

x̄← SampleBranch(F | C(F) ≤ c0)
else
x̄← SampleBranch(F ∪ V)

end if
// Wake Phase
x← x0

for t = 1...|x̄| do
x′ ← ExecuteSubgoal(x̄t)
C(x′)← C(x′) + 1
if x′ /∈ V then
G← AddEdge(G, x, x′)
V ← V ∪ {x′}

end if
x← x′

end for
end while

current node x0 to the target node xt from the AWM. DECKARD then executes policies for each
recovered node until it reaches the target goal.

4.2 LLM GUIDANCE

The setup so far (referred to in our experiments as “DECKARD (No LLM)”) allows the construction
of a modular RL policy for navigating subgoals. However, the agent is still learning the AWM
tabula-rasa. The key insight of DECKARD is that we can hypothesize the AWM with knowledge
from an LLM. We use in-context learning, as described in Section 5.1, to predict G from an LLM
with predicted edges, Ê. While acting in the environment, we verify or correct edges of G and track
the set of nodes that have been verified V thus grounding the AWM hypothesized by the LLM in
environment dynamics.

4.2.1 DREAM PHASE

Equipped with a hypothesized AWM, we iterate between Dream and Wake phases for guided
exploration toward a goal (see Algorithm 1). During the Dream phase, we compute the verified
frontier F of G, composed of verified nodes V , with predicted edges to unverified nodes G− V . In
addition, if a path between V and the current task’s goal exists, F is pruned to only include nodes
along the predicted path to the goal. For example, after learning to craft planks, subgoals door and
stick are potential frontier nodes. However, if the target item is wooden pickaxe, DECKARD will
eliminate door as a candidate node for exploration since stick is part of the LLM-predicted recipe for
the target item and door is not. Finally, we sample a branch x̄ terminating with an element from F to
explore during the Wake phase. If all nodes in F have been sampled at least c0 times (where c0 is an
exploration hyperparameter) without success, we the sample from all V rather than F only.

4.2.2 WAKE PHASE

Next, during the Wake phase, the agent executes the sequence of subgoals x̄ updating G with learned
experience and adding verified nodes to V . If sampled from F , the final node in x̄ will be unlearned,
allowing the agent to explore in an attempt to reach the unverified node. If successful, the AWM
is updated and the new node is also added to V . When adding a newly verified node x we begin

5

Reincarnating Reinforcement Learning Workshop at ICLR 2023

finetuning a new subgoal policy for x (see Section 5). Beyond reducing the number of iterations it
takes to construct G, one benefit of initializing G with an LLM is that we do not finetune subgoals for
nodes outside of the predicted path to our target goal. If the predicted recipes fail, then DECKARD
begins training additional subgoal policies to assist in exploration. This drastically reduces the
number of environment steps required to train DECKARD.

5 EXPERIMENT SETUP

We apply DECKARD to crafting items in Minecraft, an embodied learning environment that requires
agents to perform sequences of subgoals with sparse rewards. Our agent maps inventory items to
AWM subgoals and learns a modular policy that can be composed to achieve complex tasks. By
learning modular policies, our agent is able to collect and craft arbitrary items in the Minecraft
technology tree.

5.1 PREDICTING THE ABSTRACT WORLD MODEL

In our experiments, we predict the AWM using OpenAI’s Codex model OpenAI (2022) by prompting
the LLM to generate recipes for Minecraft items. We prompt Codex to “Create a nested python
dictionary containing crafting recipes and requirements for minecraft items” along with additional
instructions about the dictionary contents and two examples: diamond pickaxe and diamond (see
Appendix A). We iterate over 391 Minecraft items, generating recipes as well as tool requirements
(mining stone requires a pickaxe) and workbench requirements (crafting a pickaxe requires a crafting
table). The hypothesized AWM is generated at the start of training, so no forward passes of the
LLM are necessary during training or inference. Table 1 shows the accuracy of the hypothesized
un-grounded AWM.

Metric All Items Tools Only

Collectable vs. Craftable 57 100
Crafting Table / Furnace 84 96
Recipe Correct Items 66 81
Recipe Exact Match 55 69

Table 1: LLM accuracy when predicting various node features: whether an item is collectable
(no parents) or craftable (has a recipe), whether it requires a crafting table or furnace to craft,
whether recipe ingredients are correct, and whether the recipe is an exact match (including ingredient
quantities). The first results column includes all 391 Minecraft items, whereas the second column
only includes the 37 items in the tool technology tree.

5.2 SUBGOAL FINETUNING

Rather than train each module from scratch, we finetune transformer adapters for each module
with an RL objective following the adapter architecture from Houlsby et al. (2019). We use the
Video-Pretrained (VPT) Minecraft model as our starting policy Baker et al. (2022). We chose to
finetune VPT as it proved to be more sample efficient and more stable than training policies from
scratch. Moreover, since VPT is pretrained on a variety of Minecraft skills, the non-finetuned VPT
model explores the environment more thoroughly than a random agent. Our implementation of VPT
finetuned with adapters is referred to as VPT-a.

Adapters are especially well suited for modular finetuning due to their lightweight architecture Liang
et al. (2022a). In our agent, each subgoal module corresponds to one set of adapters and only contains
9.5 million trainable parameters, approximately 2% of the 0.5 billion parameter VPT model. This
allows us to train a separate set of adapters for each subgoal and still keep all parameters in memory
concurrently, a practical benefit of using adapters for modular, compositional RL policies.

5.3 ENVIRONMENT DETAILS

We use Minedojo’s Minecraft implementation for our experiments Fan et al. (2022). As with VPT
Baker et al. (2022), our subgoal policies use a pixel only observation space and a large multi-discrete

6

Reincarnating Reinforcement Learning Workshop at ICLR 2023

0 100 200 300 400
Iteration

0

10

20

30

40

Ve
rif

ie
d

AW
M

 S
ize

AWM Growth Rate

Agent
VPT
DECKARD (No LLM)
DECKARD

(a) Rate of exploration for during open-ended explo-
ration, measured by the size of the verified AWM per
iteration. Each iteration includes one Dream and one
Wake phase. VPT measures the number of items dis-
covered by a non-finetuned VPT policy and No LLM
ablates LLM guidance. LLM guidance more than
halves the time it takes to discover difficult items such
as stone tools and glass.

0 100 200 300 400
Iteration

0

10

20

30

40

of

 N
od

es

LLM Effect on Pruning the AWM

Verified AWM
Frontier

(b) DECKARD prunes the AWM by only sampling
from the frontier of verified and hypothesized AWM
nodes. Without LLM guidance, our agent would sam-
ple from the entire AWM during exploration. How-
ever, the AWM grows in size throughout training and
many nodes become dead ends, slowing exploration.

Figure 2: Open-ended exploration results.

action space, while our overall policy transitions between subgoals based on the agent’s current
inventory. Unlike VPT, we use standard high-level crafting actions that instantly crafts target items
from inventory items. At the time of this writing, Minedojo does not support the VPT style of
human-like crafting in a GUI, so we instead remove the VPT action for opening the crafting GUI and
replace it with 254 crafting actions (one for each item). This brings our multi-discrete action space
to 121 camera actions and 8714 keyboard/crafting actions, and our observation space to 128x128x3
pixels plus 391 inventory item quantities (only used to transition between subgoals).

Because our subgoals map to individual items, there is an intrinsic separation between items that
are collected from the environment versus those that require crafting. While we must finetune a set
of adapters for subgoals that require navigating or collecting items from the environment, crafting
subgoal policies map to a single craft action—making them much more space and sample efficient
compared to collectable item subgoals.

5.4 EXPERIMENTS

We evaluate DECKARD on both crafting tasks—in which the agent learns to collect ingredients and
craft a target item—and open-ended exploration. In open-ended exploration, although there is no
extrinsic learning signal, DECKARD is intrinsically motivated to explore new AWM nodes. We
compare the growth of the agent’s verified AWM during open-ended exploration for DECKARD with
and without LLM guidance along with a VPT baseline. Next, we compare LLM-guided DECKARD
to RL baselines and DECKARD without LLM guidance on goal-driven tasks for collecting/crafting:
logs, wooden pickaxes, cobblestone, stone pickaxes, furnaces, sand, and glass. We also compare
to several popular Mincraft agents on the “craft a stone pickaxe task” (see Table 2). Finally, we
evaluate the effect of artificial errors in the hypothesized AWM to simulate errors in LLM output and
demonstrate DECKARD’s robustness to LLM accuracy.

6 EXPERIMENT RESULTS

6.1 OPEN-ENDED EXPLORATION

DECKARDis intrinsically motivated to explore new nodes, always sampling and attempting to craft
new items, and thus does not require a target task to improve exploration. We can measure the effect
of DECKARD on exploration by tracking the growth of the agent’s verified AWM nodes. Figure
2a shows the speed of exploration when using DECKARD with and without LLM guidance. We

7

Reincarnating Reinforcement Learning Workshop at ICLR 2023

0

20

40

60

80

Su
cc

es
s R

at
e

%
23

72 72

log
(1 subgoal)

18

40

70

wooden pickaxe
(5 subgoals)

0
10

60

cobblestone
(6 subgoals)

0 7

62

stone pickaxe
(7 subgoals)

0 6

54

furnace
(7 subgoals)

2

38 38

sand
(1 subgoal)

0 0
8

glass
(8 subgoals)

VPT VPT-a DECKARD

Figure 3: Success rates for item tasks on random world seeds. The VPT agent shows success rates of
the pretrained VPT policy without any additional finetuning. VPT-a finetunes VPT using the same
training setup as DECKARD without modularity or LLM guidance. As indicated by the results
for log and sand (item tasks composed of a single subgoal), VPT-a is equivalent to a single subgoal
policy. DECKARD without LLM-guidance has the same success rate as the full DECKARD agent.

also compare DECKARD to a VPT baseline that explores the environment without an AWM with a
non-finetuned VPT policy. Although VPT does not construct an AWM, it gathers Minecraft items
and randomly attempts to craft new items from the gathered ingredients. We track how many items it
has discovered and plot that quantity in Figure 2a. DECKARD without LLM guidance constructs
an AWM from scratch, but only the LLM-guided DECKARD agent uses LLM guidance to decide
which items to collect and which recipes to attempt next. Note that DECKARD subgoal policies are
initialized with VPT, so VPT starts out exploring at a similar rate to DECKARD.

The DECKARD and VPT agents quickly learn to mine logs and craft wooden items. However, one
exploration hurdle is discovering that wooden pickaxes are a prerequisite for mining cobblestone.
As seen in Figure 2a, it takes DECKARD without LLM guidance and the VPT baseline 2x and 3x
longer respectively to learn to use a wooden pickaxe to mine cobblestone. Once the agents learn how
to mine cobblestone, they can begin adding stone items to their AWM. However, only DECKARD
avoids oversampling dead ends in the crafting tree allowing it to quickly explore new states. Also,
the LLM incorrectly predicts that glass can be collected without crafting or tools of any kind, but
DECKARD overcomes and corrects this error, successfully crafting glass and adding the correct
recipe to the AWM.

In general, the frontier F of the verified AWM nodes V is much smaller than G. This difference
increases as the agent continues to explore and add verified nodes to G. Figure 2b shows the sizes
of G and F throughout open-ended exploration for DECKARD. The smaller size of F means that
each iteration DECKARD is more likely to sample items that are useful for crafting something new.
Eventually, difficult to reach or erroneous nodes in F could limit exploration. This is the reason we
stop prioritizing sampling from the frontier after c0 failed attempts to reach nodes from F . However,
through continued exploration, DECKARD can discover and correct erronously predicted nodes.

6.2 CRAFTING TASKS

We also evaluate DECKARD on tasks that require collecting or crafting a specific item. Rather than
sample from the entire frontier F as with open-ended exploration, we only sample nodes from F
predicted to lead to the target item.

Figure 3 compares DECKARD success rates to baselines across item tasks: logs, wooden and stone
pickaxes, cobblestone, furnace, sand, and glass. The VPT baseline is the non-finetuned VPT policy
acting in the environment, and VPT-a follows the same training setup as our subgoal policies (see
Section 5.2). Agents are allowed a maximum of 1,000 environment steps to obtain collectable items
(log and sand), and 5,000 steps for all other craftable items. Training for each agent is limited to 6
million steps, although DECKARD only takes that many for the “craft glass” task. DECKARD
outperforms directly training on item tasks with a traditional reinforcement learning signal and learns
to craft items further up the technology tree where the baseline completely fails.

Note that we use random world seeds for all evaluation making scarce items more difficult to reliably
collect. For example, the fact that sand is more rare than logs is reflected in their respective success

8

Reincarnating Reinforcement Learning Workshop at ICLR 2023

Method Demos Dense Rewards Observations Actions Steps

Align-RUDDER Patil et al. (2020) Expert ✗ Pixels & Meta 61 2M
VPT+RL Baker et al. (2022) Videos ✓ Pixels Only 121, 8461 2.4B
DreamerV3 Hafner et al. (2023) None ✓ Pixels & Meta 25 6M
DECKARD (No LLM) Videos ✗ Pixels & Inventory 121, 8714 32M
DECKARD Videos ✗ Pixels & Inventory 121, 8714 2.6M

Table 2: Direct comparison between minecraft agents is difficult because of the various shortcuts used
to solve the difficult exploration task. Align-RUDDER, relies on expert demonstrations. DreamerV3
and Align-RUDDER, simplify the vast combinatorial action space. VPT+RL and DreamerV3 provide
intermediate rewards that require knowledge of Minecraft’s crafting tree. The final column above
compares how long each method takes to learn the “craft stone pickaxe” task. Despite its challenging
learning setup, DECKARD achieves sample efficiency equal to or better than existing agents.

0

2

4

En
v

Ti
m

es
te

ps

1e7
log wooden

pickaxe cobblestone
stone

pickaxe

DECKARD (No LLM) DECKARD

(a) Environment steps until the discovery of target
items. LLM guidance improves sample efficiency
by an order of magnitude by only learning subgoal
policies for the path to the target item predicted by the
LLM.

0.0 0.2 0.4 0.6 0.8 1.0
Error Rate

50

100

150

200

250

Ite
ra

tio
ns

 to
 S

to
ne

 P
ick

ax
e

Effect of LLM Quality on DECKARD

Delete Edges Insert Edges No LLM

(b) Effect of errors in the LLM predicted AWM, mea-
sured by the number of iterations until DECKARD
learns to craft a stone pickaxe. Starting from a ground
truth graph, node edges are deleted/inserted to simulate
LLM quality.

Figure 4

rates in Figure 3. Also, items that depend on logs (pickaxes, cobblestone, furnace) and sand (glass)
will have success rates bounded by that of their parent nodes in the technology tree.

The sample efficiency of DECKARD is especially notable when applied to task-conditioned LLM
guidance. With LLM guidance, DECKARD can avoid learning subgoal policies for items it predicts
are unnecessary for the current goal (see Section 4.2.2). Figure 4a demonstrates the difference that
only training policies for predicted subgoals can make on sample efficiency. Without LLM guidance,
DECKARD finetunes subgoal policies for an average of fifteen different collectable items. With
guidance, DECKARD only finetunes subgoal policies for collecting needed items (such as logs and
cobblestone when crafting a stone pickaxe)—resulting in an order of magnitude improvement in
sample efficiency.

Although not the primary goal of this work, we compare DECKARD to several agents trained to craft
items along the Minecraft technology tree. Table 2 includes a high level overview of these agents and
provides the number of environment samples for each to learn the “craft stone pickaxe” task. Note
that each of these agents uses vastly different action and observation spaces as well as pretraining
data. For example, DECKARD does not require any reward shaping from domain expertise, expert
demonstrations, or simplifications of the observation and action spaces. Despite this, Table 2 shows
that DECKARD’s sample efficiency is equal to or better than that of previous work, improving by
an order of magnitude or more for agents with comparable action spaces.

6.3 ROBUSTNESS

Finally, we evaluate our claim that DECKARD is robust to errors in LLM output. While LLMs
are becoming surprisingly accurate when answering specific questions about niche domains such as

9

Reincarnating Reinforcement Learning Workshop at ICLR 2023

Minecraft, they are not grounded in environment knowledge and sometimes output erroneous facts
Valmeekam et al. (2022). Figure 4b shows training time for DECKARD on the target task “craft
stone pickaxe” for various error types and rates in the hypothesized AWM. For each run, we start with
a ground truth AWM and programatically introduce the indicated errors over at least three different
random seeds for each error type and rate.

While the most common error that our LLM-predicted AWM had was in the quantity of each
ingredient (see Table 1), we found that DECKARD was robust to this error and often ended up with
a surplus of ingredients regardless. Figure 4b shows the effect of inserting and deleting edges in
the AWM. Inserted edges always add sand as an ingredient for the current item, and deleted edges
may remove recipe ingredients or a required tool/crafting table. The wide error bands in Figure 4b
indicate that certain edges in the AWM have a bigger influence on exploration when inserted/deleted.
Despite this, DECKARD with LLM guidance successfully outperforms DECKARD without LLM
guidance even when faced with large errors in LLM output, demonstrating DECKARD’s robustness
to LLM output as an exploration method.

7 DISCUSSION & CONCLUSION

In line with proposals to utilize pretrained models in RL Agarwal et al. (2022), we extract knowledge
from LLMs in the form of an Abstract World Model (AWM) that defines transitions between
subgoals in a directed acyclic graph. Our agent, DECKARD (DECision-making for Knowledgable
Autonomous Reinforcement-learning Dreamers), successfully uses the AWM to intelligently explore
Minecraft, learning to craft arbitrary items through a modular RL policy. Initializing DECKARD
with an LLM-predicted AWM improves sample efficiency by an order of magnitude. Additionally,
we use environment dynamics to ground the hypothesized AWM by verifying and correcting it
with agent experience, robustly applying large-scale, noisy knowledge sources to aid in sequential
decision-making.

We, along with many others, hope to utilize the potential of LLMs for unlocking internet-scale
knowledge for decision-making. Throughout this effort, we encourage the pursuit of robust and
generalizable methods, like DECKARD. One drawback of DECKARD, along with many other
LLM-assisted RL methods, is that it requires an environment already be grounded in language. Some
preliminary methods for generating state descriptions from images are used by Tam et al. (2022),
but this remains an open area of research. Additionally, we assume an abstraction over environment
states to make predicting dependencies scalable. We leave the problem of of automatically identifying
state abstractions to future work. Finally, DECKARD considers only deterministic transitions in
the AWM. While a similar approach to ours could be applied to stochastic AWMs, that is out of the
scope of this work.

DECKARD introduces a powerful approach for exploration using LLMs for guidance. By alternating
between sampling predicted states on the frontier of what has been discovered (The Dream phase)
and executing subgoals to arrive there (The Wake phase), we successfully apply noisy LLM world
knowledge to an Abstact World Model over subgoals.

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G Bellemare.
Reincarnating reinforcement learning: Reusing prior computation to accelerate progress. In
Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural
Information Processing Systems, 2022. URL https://openreview.net/forum?id=
t3X5yMI_4G2.

Prithviraj Ammanabrolu and Mark Riedl. Learning knowledge graph-based world models of textual
environments. Advances in Neural Information Processing Systems, 34:3720–3731, 2021.

Prithviraj Ammanabrolu, Ethan Tien, Matthew Hausknecht, and Mark O Riedl. How to avoid
being eaten by a grue: Structured exploration strategies for textual worlds. arXiv preprint
arXiv:2006.07409, 2020.

Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Sünderhauf, Ian Reid,
Stephen Gould, and Anton van den Hengel. Vision-and-language navigation: Interpreting visually-

10

https://openreview.net/forum?id=t3X5yMI_4G2
https://openreview.net/forum?id=t3X5yMI_4G2

Reincarnating Reinforcement Learning Workshop at ICLR 2023

grounded navigation instructions in real environments. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2018.

Bowen Baker, Ilge Akkaya, Peter Zhokov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon
Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (vpt): Learning to act by watching
unlabeled online videos. In Advances in Neural Information Processing Systems, 2022.

Yonatan Bisk, Ari Holtzman, Jesse Thomason, Jacob Andreas, Yoshua Bengio, Joyce Chai, Mirella
Lapata, Angeliki Lazaridou, Jonathan May, Aleksandr Nisnevich, et al. Experience grounds
language. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 8718–8735, 2020.

Valts Blukis, Chris Paxton, Dieter Fox, Animesh Garg, and Yoav Artzi. A persistent spatial semantic
representation for high-level natural language instruction execution. In Aleksandra Faust, David
Hsu, and Gerhard Neumann (eds.), Proceedings of the 5th Conference on Robot Learning, volume
164 of Proceedings of Machine Learning Research, pp. 706–717. PMLR, 08–11 Nov 2022. URL
https://proceedings.mlr.press/v164/blukis22a.html.

SRK Branavan, David Silver, and Regina Barzilay. Learning to win by reading manuals in a monte-
carlo framework. In Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pp. 268–277, 2011.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. BabyAI: First steps towards grounded language learning
with a human in the loop. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=rJeXCo0cYX.

Sahith Dambekodi, Spencer Frazier, Prithviraj Ammanabrolu, and Mark Riedl. Playing text-based
games with common sense. In Proceedings of the NeurIPS Workshop on Wordplay: When
Language Meets Games, 2020.

Abhishek Das, Samyak Datta, Georgia Gkioxari, Stefan Lee, Devi Parikh, and Dhruv Batra. Embodied
question answering. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2018.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended embodied
agents with internet-scale knowledge. In Thirty-sixth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2022.

Daniel Gordon, Aniruddha Kembhavi, Mohammad Rastegari, Joseph Redmon, Dieter Fox, and Ali
Farhadi. Iqa: Visual question answering in interactive environments. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 4089–4098, 2018.

William H. Guss, Brandon Houghton, Nicholay Topin, Phillip Wang, Cayden Codel, Manuela
Veloso, and Ruslan Salakhutdinov. Minerl: A large-scale dataset of minecraft demonstrations. In
Proceedings of the 28th International Joint Conference on Artificial Intelligence, IJCAI’19, pp.
2442–2448. AAAI Press, 2019. ISBN 9780999241141.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models, 2023. URL https://arxiv.org/abs/2301.04104.

Austin W Hanjie, Victor Y Zhong, and Karthik Narasimhan. Grounding language to entities and
dynamics for generalization in reinforcement learning. In International Conference on Machine
Learning, pp. 4051–4062. PMLR, 2021.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
nlp. In International Conference on Machine Learning, pp. 2790–2799. PMLR, 2019.

11

https://proceedings.mlr.press/v164/blukis22a.html
https://openreview.net/forum?id=rJeXCo0cYX
https://arxiv.org/abs/2301.04104

Reincarnating Reinforcement Learning Workshop at ICLR 2023

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents. In International Conference on
Machine Learning, pp. 9118–9147. PMLR, 2022a.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, et al. Inner monologue: Embodied reasoning through
planning with language models. In 6th Annual Conference on Robot Learning, 2022b.

Brian Ichter, Anthony Brohan, Yevgen Chebotar, Chelsea Finn, Karol Hausman, Alexander Herzog,
Daniel Ho, Julian Ibarz, Alex Irpan, Eric Jang, Ryan Julian, Dmitry Kalashnikov, Sergey Levine,
Yao Lu, Carolina Parada, Kanishka Rao, Pierre Sermanet, Alexander T Toshev, Vincent Vanhoucke,
Fei Xia, Ted Xiao, Peng Xu, Mengyuan Yan, Noah Brown, Michael Ahn, Omar Cortes, Nicolas
Sievers, Clayton Tan, Sichun Xu, Diego Reyes, Jarek Rettinghouse, Jornell Quiambao, Peter Pastor,
Linda Luu, Kuang-Huei Lee, Yuheng Kuang, Sally Jesmonth, Kyle Jeffrey, Rosario Jauregui
Ruano, Jasmine Hsu, Keerthana Gopalakrishnan, Byron David, Andy Zeng, and Chuyuan Kelly Fu.
Do as i can, not as i say: Grounding language in robotic affordances. In 6th Annual Conference on
Robot Learning, 2022. URL https://openreview.net/forum?id=bdHkMjBJG_w.

Alexander Ku, Peter Anderson, Roma Patel, Eugene Ie, and Jason Baldridge. Room-across-room:
Multilingual vision-and-language navigation with dense spatiotemporal grounding. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp.
4392–4412, 2020.

Yen-Ling Kuo, Boris Katz, and Andrei Barbu. Compositional networks enable systematic general-
ization for grounded language understanding. In Findings of the Association for Computational
Linguistics: EMNLP 2021, pp. 216–226, 2021.

Anthony Liang, Ishika Singh, Karl Pertsch, and Jesse Thomason. Transformer adapters for robot
learning. In CoRL 2022 Workshop on Pre-training Robot Learning, 2022a. URL https:
//openreview.net/forum?id=H--wvRYBmF.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Pete Florence, Andy Zeng, et al.
Code as policies: Language model programs for embodied control. In Workshop on Language and
Robotics at CoRL 2022, 2022b.

Ruibo Liu, Jason Wei, Shixiang Shane Gu, Te-Yen Wu, Soroush Vosoughi, Claire Cui, Denny Zhou,
and Andrew M Dai. Mind’s eye: Grounded language model reasoning through simulation. arXiv
preprint arXiv:2210.05359, 2022.

Corey Lynch and Pierre Sermanet. Language conditioned imitation learning over unstructured data.
Robotics: Science and Systems XVII, 2020.

Jesse Mu, Victor Zhong, Roberta Raileanu, Minqi Jiang, Noah Goodman, Tim Rocktäschel, and
Edward Grefenstette. Improving intrinsic exploration with language abstractions. In Alice H. Oh,
Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information
Processing Systems, 2022. URL https://openreview.net/forum?id=ALIYCycCsTy.

Kolby Nottingham, Litian Liang, Daeyun Shin, Charless C Fowlkes, Roy Fox, and Sameer Singh.
Modular framework for visuomotor language grounding. In Embodied AI Workshop @ CVPR,
2021.

Kolby Nottingham, Alekhya Pyla, Sameer Singh, and Roy Fox. Learning to query internet text
for informing reinforcement learning agents. In Reinforcement Learning and Decision Making
Conference, 2022.

OpenAI. Powering next generation applications with openai codex, 2022. URL https://openai.
com/blog/codex-apps/.

Vihang Patil, Markus Hofmarcher, Marius-Constantin Dinu, Matthias Dorfer, Patrick M. Blies,
Johannes Brandstetter, Jose A. Arjona-Medina, and Sepp Hochreiter. Align-rudder: Learning from
few demonstrations by reward redistribution. In International Conference on Machine Learning,
2020.

12

https://openreview.net/forum?id=bdHkMjBJG_w
https://openreview.net/forum?id=H--wvRYBmF
https://openreview.net/forum?id=H--wvRYBmF
https://openreview.net/forum?id=ALIYCycCsTy
https://openai.com/blog/codex-apps/
https://openai.com/blog/codex-apps/

Reincarnating Reinforcement Learning Workshop at ICLR 2023

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. Language models as knowledge bases? In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), pp. 2463–2473, 2019.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi,
Luke Zettlemoyer, and Dieter Fox. Alfred: A benchmark for interpreting grounded instructions
for everyday tasks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020.

Christopher Simpkins and Charles Isbell. Composable modular reinforcement learning. Proceedings
of the AAAI Conference on Artificial Intelligence, 33(01):4975–4982, Jul. 2019. doi: 10.1609/
aaai.v33i01.33014975. URL https://ojs.aaai.org/index.php/AAAI/article/
view/4428.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter
Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot task plans using
large language models. In Second Workshop on Language and Reinforcement Learning, 2022.

Alexey Skrynnik, Aleksey Staroverov, Ermek Aitygulov, Kirill Aksenov, Vasilii Davydov, and
Aleksandr I. Panov. Forgetful experience replay in hierarchical reinforcement learning from expert
demonstrations. Know.-Based Syst., 218(C), apr 2021. ISSN 0950-7051. doi: 10.1016/j.knosys.
2021.106844. URL https://doi.org/10.1016/j.knosys.2021.106844.

Chan Hee Song, Jihyung Kil, Tai-Yu Pan, Brian M. Sadler, Wei-Lun Chao, and Yu Su. One step
at a time: Long-horizon vision-and-language navigation with milestones. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15482–15491,
June 2022a.

Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M Sadler, Wei-Lun Chao, and Yu Su.
Llm-planner: Few-shot grounded planning for embodied agents with large language models. arXiv
preprint arXiv:2212.04088, 2022b.

Alessandro Suglia, Qiaozi Gao, Jesse Thomason, Govind Thattai, and Gaurav Sukhatme. Embod-
ied bert: A transformer model for embodied, language-guided visual task completion. CoRR,
abs/2108.04927, 2021. URL https://arxiv.org/abs/2108.04927.

Allison C Tam, Neil C Rabinowitz, Andrew K Lampinen, Nicholas A Roy, Stephanie CY Chan,
DJ Strouse, Jane X Wang, Andrea Banino, and Felix Hill. Semantic exploration from language
abstractions and pretrained representations. arXiv preprint arXiv:2204.05080, 2022.

Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambhampati. Large language
models still can’t plan (a benchmark for llms on planning and reasoning about change). In NeurIPS
2022 Foundation Models for Decision Making Workshop, 2022.

Haonan Yu, Haichao Zhang, and Wei Xu. Interactive grounded language acquisition and generaliza-
tion in a 2d world. In International Conference on Learning Representations, 2018.

Rowan Zellers, Ari Holtzman, Matthew E Peters, Roozbeh Mottaghi, Aniruddha Kembhavi, Ali
Farhadi, and Yejin Choi. Piglet: Language grounding through neuro-symbolic interaction in a 3d
world. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), pp. 2040–2050, 2021.

Victor Zhong, Tim Rocktäschel, and Edward Grefenstette. Rtfm: Generalising to new environment
dynamics via reading. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=SJgob6NKvH.

13

https://ojs.aaai.org/index.php/AAAI/article/view/4428
https://ojs.aaai.org/index.php/AAAI/article/view/4428
https://doi.org/10.1016/j.knosys.2021.106844
https://arxiv.org/abs/2108.04927
https://openreview.net/forum?id=SJgob6NKvH

Reincarnating Reinforcement Learning Workshop at ICLR 2023

A CODEX IN-CONTEXT LEARNING

A.1 PROMPTING DETAILS

We use OpenAI’s Codex model (code-davinci-002) OpenAI (2022) to predict an Abstract World
Model (AWM) for DECKARD. We prompt the model with instructions in code comments that
instruct the model to generate a python dictionary with information for Minecraft item requirements.
We also provide example entries for “diamond pickaxe” and “diamond”. We then iterate over all
391 Minecraft items to generate the next entry in the python dictionary. We organize the data in the
dictionary entries into the following item attributes:

• requires crafting table: whether an item requires the agent to have a crafting table prior to
crafting

• requires furnace: whether the item is smelted with a furnace

• required tool: what tool is required to collect the item from the environment

• recipe: list of ingredients and ingredient quantities to craft the item

The full prompt we use can be found below:

Create a nested python dictionary containing crafting recipes and
requirements for minecraft items.
Each crafting item should have a recipe and booleans indicating
whether a furnace or crafting table is required.
Non craftable blocks should have their recipe set to an empty list
and indicate which tool is required to mine.

minecraft_info = {
"diamond_pickaxe": {

"requires_crafting_table": True,
"requires_furnace": False,
"required_tool": None,
"recipe": [

{
"item": "stick",
"quantity": "2"

},
{

"item": "diamond",
"quantity": "3"

}
]

},
"diamond": {

"requires_crafting_table": False,
"requires_furnace": False,
"required_tool": "iron_pickaxe",
"recipe": []

},
"[insert item name]": {

A.2 PARSING DETAILS

When parsing output, we consider any item with a recipe of length zero to be a collectable item (it
will have no parents in the AWM). In our experiments, Codex generated parsable entries for all but
one Minecraft item (brown mushroom block).

In general, Codex predicts the same item identifier that Minedojo Fan et al. (2022) uses. One major
exception is that of planks, a common item essential for many recipes. We parse plank and wood as

14

Reincarnating Reinforcement Learning Workshop at ICLR 2023

well as any variant of these two (oak plank) as planks. We also parse cane as reeds. Note that in all
these cases the predicted names are also common identifiers for these items in minecraft, but they do
not match the Minedojo identifiers.

Finally, we remove circular dependencies from the predicted AWM. First we remove edges from
crafting table, furnace, and tool nodes to items that are found in the recipes for those nodes. Then we
remove edges both to and from items found in eachother’s recipes. There were four cases of circular
dependencies in our hypothesized AWM, between planks and crafting table, log and wooden axe,
fermented spider eye and spider eye, and purpur block and purpur pillar.

A.3 ADDITIONAL RESULTS

“Tool Only” Items
coal furnace crafting table log

planks stick cobblestone iron ore
iron ingot gold ore gold ingot diamond

wooden hoe wooden sword wooden axe wooden pickaxe
wooden shovel stone hoe stone sword stone axe
stone pickaxe stone shovel iron hoe iron sword

iron axe iron pickaxe iron shovel golden hoe
golden sword golden axe golden pickaxe golden shovel
diamond hoe diamond sword diamond axe diamond pickaxe

diamond shovel

Table 3: The 37 Minecraft items from the tool technology tree.

Metric All Items Tools Only

Accuracy: Collectable vs. Craftable Label 57 100
Accuracy: Workbench (Crafting Table/Furnace) 84 96
Accuracy: Recipe Ingredients 66 81
Accuracy: Recipe Ingredients & Quantities 55 69
% Items w/ Incorrectly Inserted Dependencies 42 8
% Items w/ Missing Dependencies 35 26
Standard Deviation In Predicted Ingredient Quantity 0.98 0.34
Absolute Error In Predicted Ingredient Quantity 2.77 1.50
Average Error In Predicted Ingredient Quantity -1.07 0.50

Table 4: Additional Codex metrics for predicting the Minecraft AWM.

Our experiments with few-shot prompting Codex to generate the AWM for Minecraft show that LLMs
can generate structured knowledge for decision making. However, predictions are not perfect, so we
treat them as hypotheses that are verified by environment interactions. Codex does perform better on
the tool technology tree, items that are both more common and more relevant for crafting agents. A
large percentage of errors also appears to be from incorrectly predicted ingredient quantities.

15

Reincarnating Reinforcement Learning Workshop at ICLR 2023

B SUBGOAL FINETUNING

0.0 0.5 1.0 1.5 2.0
Timesteps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Collect Logs

Train
Eval

0.0 0.5 1.0 1.5 2.0
Timesteps 1e6

0.0

0.2

0.4

0.6

0.8

1.0 Collect Cobblestone

0.0 0.5 1.0 1.5 2.0
Timesteps 1e6

0.0

0.2

0.4

0.6

0.8

1.0 Collect Sand

Figure 5: Results for finetuning subgoal policies. DECKARD’s VPT-based subgoal policies are
trained on seeds where the target item is nearby and evaluated on random world seeds. Of these
results, cobblestone is the most ubiquitous and sand the least, as indicated by how well the policy
generalizes to random Minecraft world seeds.

Hyperparameter Value

VPT Checkpoint bc-house-3x
Environment Steps per Actor per Iteration 500
Number of Actors 4
Batch Size 40
Iteration Epochs 5
Learning Rate 0.0001
γ 0.999
Value Loss Coefficient 1
Initial KL Loss Coefficient .1
KL Coefficient Decay per Iteration .999
Adapter Downsize Factor 16

Table 5: DECKARD subgoal finetuning hyperparameters.

B.1 VPT FINETUNING

We finetune VPT (3x w/ behavior cloning on house contractor data) Baker et al. (2022) with
reinforcement learning (RL) using transformer adapters as described by Houlsby et al. (2019).
That is, we insert two adapter modules with residual connections in each transformer layer, with a 16x
reduction in hidden state size. We updated the adapters and agent value head using proximal policy
optimization (PPO) Schulman et al. (2017), but we leave the rest of the agent unchanged (including
the policy head).

Following Baker et al. (2022), we replace the traditional entropy loss in the PPO algorithm with a
KL loss between the current policy and the non-finetuned VPT policy. The purpose of this loss is to
prevent catastrophic forgetting early in training. Our experiments reaffirmed the importance of this
term, even when leaving the majority of the VPT weights unchanged. The KL loss coefficient decays
throughout training to allow the agent to reach an optimal policy.

B.2 MINECLIP REWARD

Along with their Minedojo Minecraft implementation, Fan et al. (2022) introduced a text and
video alignment model for Minecraft called MineClip and showed how the model could be used
for automatic reward shaping given a text goal. We use MineClip to provide reward shaping for
finetuning DECKARD subgoal and VPT-a policies. Unlike Fan et al. (2022), we implement
MineClip reward shaping by subtracting cliplow = 21 from the MineClip alignment score and scaling
by clipα = 0.005, smoothed over smooth = 50 steps:

rewardclip = clipα ×max(0,mean(score buffer−smooth:)− cliplow)

16

Reincarnating Reinforcement Learning Workshop at ICLR 2023

Additionally, we only provide the agent with non-zero reward when the MineClip alignment score
reaches a new maximum for the episode. Finally we provide a reward of +1 when the agent
successfully adds the target item to its inventory.

B.3 MINECRAFT SETTINGS

Use use the Minedojo simulator Fan et al. (2022) with the “creative” metatask for our experiments.
We found Minedojo preferable to MineRL Guss et al. (2019), due to a reduced tendency to crash
when running many parallel environment instances. We followed the VPT Baker et al. (2022)
observation and action spaces—128x128x3 pixel observation space and 121x8461 multi-discrete
action space—with the modification of replacing the “open inventory” action with 254 discrete
crafting actions.

When training subgoal policies, we initialize the agent with items from the current node’s parents.
For example, when training the collect cobblestone subgoal, we initialize the agent with a wooden
pickaxe, the required tool for cobblestone in the AWM. We terminate each episode after 1,000
environment steps, generating a new world.

We also found that finetuning was sensitive to world seed when training. For example, many world
seeds spawned the agent far from target items, stranded on islands, or underwater. To mitigate the
effect of poor world initialization on training, we use a single world seed for training each subgoal
policy and then evaluate on random world seeds. We find that VPT is able to generalize to random
seeds after training on a training seed.

C ABSTRACT WORLD MODEL

In many environments, multiple possible transitions between subgoals may exist. For example, in
Minecraft, an agent can obtain coal through mining or by burning wood in a furnace. Ideally, edges
of the AWM would provide paths with high success rate to each node. In our implementation we
keep the first experienced edge between nodes, assuming it to be the simplest path.

0

10

20

30

40

Ve
rif

ie
d

AW
M

 S
ize

Agent = VPT Agent = DECKARD (No LLM)

0 200 400
Iteration

0

10

20

30

40

Ve
rif

ie
d

AW
M

 S
ize

Agent = DECKARD

0 200 400
Iteration

Agent = Ground Truth AWM

Figure 6: AWM growth during open-ended exploration. The first three quadrants are identical to
Figure 2a. The last quadrant adds results for a ground truth AWM. The agent learns to craft glass
much sooner and also learns to craft glass bottles, and item none of the other methods reached.

17

	Introduction
	Related Work
	Language-Assisted Decision Making
	Language Grounded in Interaction
	Modularity in RL
	Minecraft

	Background
	Modular Reinforcement Learning
	Large Language Models

	DECKARD
	Abstract World Model
	LLM Guidance
	Dream Phase
	Wake Phase

	Experiment Setup
	Predicting the Abstract World Model
	Subgoal Finetuning
	Environment Details
	Experiments

	Experiment Results
	Open-Ended Exploration
	Crafting Tasks
	Robustness

	Discussion & Conclusion
	Codex In-Context Learning
	Prompting Details
	Parsing Details
	Additional Results

	Subgoal Finetuning
	VPT Finetuning
	MineClip Reward
	Minecraft Settings

	Abstract World Model

