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ABSTRACT

The soaring demand for electronic devices calls for novel and more efficient ana-
log circuits design. Deep generative models have shown promise in assisting
topology, parameter sizing, and layout design process, but existing approaches
treat these tasks separately and lack generalizability across diverse problem set-
tings. In this work we introduce a flow matching model for automatic analog
circuit design, which achieves high-quality sampling across a variety of topolo-
gies and representations. Our model showcases state-of-the-art performance on
end-to-end topology design and sizing on the Open Circuit Benchmark (OCB)
dataset, and on transistor-level topology generation on the AnalogGenie dataset.
Code and models are provided as external supplementary files to this submission.

1 INTRODUCTION

The automation of analog circuit design stands as an active area of research, driven both by the
demand for increasingly efficient architectures to sustain the growth of the electronics industry and
by the intrinsic complexity of the task, which is notoriously more challenging than digital circuit
design due to its greater diversity of components. Accordingly, the literature presents a wide range of
data-driven approaches aimed at automating one or more steps of the analog design workflow, which
traditionally includes topology discovery (Lu et al., 2022; 2023; Poddar et al., 2024), parameter
sizing (Wang et al., 2018; 2020; Krylov et al., 2023), and layout prediction (Kunal et al., 2019; Xu
et al., 2019; Liu et al., 2025a).

Despite significant progress, several hurdles remain. Many methods exhibit limited generalizability,
restricting their applicability to a small set of circuit topologies. Others rely on multiple models
trained for different subtasks or require substantial computational resources. The absence of widely
adopted benchmarks and open models has also often been cited as a limiting factor for faster ad-
vancement in the field. This issue has been partly addressed by the recent release of benchmarks
and models targeting topology generation and device sizing (Dong et al., 2023; Gao et al., 2025),
enabling more systematic comparisons. In terms of model architectures, the long-standing paradigm
of representing circuits as graphs (Ren et al., 2020; Wang et al., 2020; Hakhamaneshi et al., 2022;
Shahane et al., 2023) now coexists with the recent adoption of Large Language Models (LLM)-
based methodologies (Yin et al., 2024; Liu et al., 2024a;b), which harness the exceptional ability
of LLMs for sequence modeling to generate circuit design as textual outputs (Chang et al., 2024;
Lai et al., 2025). There is however still room for improvement, while the generalizability of these
methods beyond pre-defined settings remains an open question.

We argue that graph-based representations of circuits hold untapped potential to address these limita-
tions. In particular, recent progress in generative modeling of graphs using denoising diffusion (Vi-
gnac et al., 2023) and flow matching (Eijkelboom et al., 2024; Qin et al., 2025) lets us foresee
promising applications for analog circuit design. These models are notorious for their high sample
quality (Esser et al., 2024), and can accommodate the conditional generation of multimodal data,
opening the door to applications such as circuit completion or parameter sizing within a single ar-
chitecture. Diffusion models have already proved successful for device sizing (de Azevedo et al.,
2025; Eid et al., 2025) and topology discovery (Liu et al., 2025b), but for a limited scope of circuits.
So far, only one study has attempted to tackle these tasks jointly (Hou et al., 2024)

In this work, we introduce a multimodal flow matching model, CircuitFlow, for end-to-end gen-
eration of analog circuit topology and device sizing. Built on a graph transformer backbone, it
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shows remarkable sampling quality and allows a very fine control on the denoising process through
a modality-dependent time sampling scheme. We evaluate our approach on established benchmarks:
first at the behavioral level on the OCB dataset (Dong et al., 2023), and then at the transistor level on
the AnalogGenie dataset (Gao et al., 2025) with a separate model for the prediction of port connec-
tivity, achieving in both cases state-of-the-art improvement in the quality of generated circuits. The
main contribution of this work is the extension of multimodal flow matching to analog circuit design,
yielding a unified framework that jointly addresses discrete topology generation and continuous de-
vice sizing across multiple representation levels and circuit complexities. This is notably enabled by
sampling the denoising time index separately for each dimension, granting unprecedented flexibility
for diverse inference-time applications without the need for additional training. The remainder of
this paper is structured as follows. Related work is discussed in Section 2. Section 3 introduces the
theoretical foundations of this work. The proposed approach is detailed in Section 4, and experi-
mental results are presented in Section 5.

2 RELATED WORK

2.1 DATA-DRIVEN TOPOLOGY DESIGN AND SIZING OF ANALOG CIRCUITS

Topology generation. Data-driven approaches for topology design include Reinforcement Learning
(RL) (Fan et al., 2021; Zhao & Zhang, 2022), Bayesian Optimization (BO) in the continuous latent
space of a Variational Auto-Encoder (VAE) (Lu et al., 2022; 2023; Dong et al., 2023; Shen et al.,
2024), and retrieval from predefined building blocks (Fayazi et al., 2023; Poddar et al., 2024). RL
and BO methods often suffer from slow convergence, while retrieval-based strategies depend heavily
on the completeness of predefined architectures and typically lack flexibility. Recent works leverage
pre-trained LLMs to generate topologies as text output (Chang et al., 2024; Lai et al., 2025), but have
not yet scaled beyond a limited set of circuit types and complexity. AnalogGenie (Gao et al., 2025)
demonstrates strong scalability to diverse, transistor-level topologies, but its GPT-based backbone
requires extensive data augmentation to enforce permutation invariance over input graph nodes.

Device Sizing. Parameter sizing, whether at the behavior or transistor level, has been widely ex-
plored using RL (Wang et al., 2018; Settaluri et al., 2020; Wang et al., 2020; Cao et al., 2022; Gao
et al., 2023; Cao et al., 2024), BO (Lyu et al., 2018), supervised learning (Hakhamaneshi et al., 2022;
Krylov et al., 2023) or LLMs (Yin et al., 2024; Liu et al., 2024a;b). Some works aim to address both
topology design and sizing (Fayazi et al., 2023; Lu et al., 2023; Liu et al., 2025b), but do so in
several stages with separate, dedicated models. An exception is CktGen (Hou et al., 2024), which
addresses these tasks jointly using a VAE model. Their approach is however limited to operational
amplifiers, and the absence of released models precludes formal comparison.

2.2 FLOW MATCHING FOR GRAPH GENERATION

Flow matching models (Lipman et al., 2023; Esser et al., 2024; Tong et al., 2024) have emerged
as a sample-efficient alternative to diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020).
They have been extended to discrete state-space (Campbell et al., 2024; Gat et al., 2025) and proved
successful on diverse graph generation tasks (Eijkelboom et al., 2024; Qin et al., 2025). To date,
flow matching has not been applied to analog circuit design. A handful of methods have explored
the use of denoising diffusion for sizing and topology discovery (de Azevedo et al., 2025; Eid et al.,
2025; Liu et al., 2025b), but remain restricted to a narrow range of circuit topologies.

3 PRELIMINARIES

3.1 CONTINUOUS FLOW MATCHING

The objective of continuous flow matching is to learn an approximation function uθ
t of a quantity ut

called a vector or velocity field, which, given an arbitrary dimension d, is a function of Rd in itself
that describes the instantaneous change of a flow xt with respect to a time dimension:

ut(xt) =
dxt

dt
, with xt ∈ Rd. (1)
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Given time-varying probability distribution pt, ut is said to generate the probability path pt if xt is
a random variable that follows pt, where the prior p0 is typically a standard Gaussian or uniform
distribution, and p1 is the unknown data distribution. This is expressed by the continuity equation
which links ut to pt:

dpt(xt)

dt
= −div(pt(xt)ut(xt)), (2)

where div(f(x)) =
∑

i
∂f(x)i
∂xi

is the divergence operator. Ideally, for a given pt that satisfies the
continuity equation and a trained approximation function uθ

t , sampling from the data distribution
can be achieved by drawing x0 from the prior and solving Equation (1) up to t = 1. In practice, one
cannot express pt and ut directly, but may instead define them as the expectations of a conditional
path and velocity field over the data distribution p1 (Lipman et al., 2023):

pt(xt) =

∫
pt(xt|x1)p1(x1)dx1, (3)

ut(xt) =

∫
ut(xt|x1)

pt(xt|x1)p1(x1)

pt(xt)
dx1. (4)

This definition allows two important results. The first corollary is that if ut(xt|x1) generates
pt(xt|x1), then ut generates pt. Hence it is enough to define a conditional velocity field and prob-
ability path that satisfy the continuity equation, which is a much easier task. Second, the same
parameter set θ minimizes the following objectives:

LFM = Et,xt∼pt

[
∥uθ

t (xt)− ut(xt)∥22
]
, and LCFM = Et,x1,xt∼pt(xt|x1)

[
∥uθ

t (xt)− ut(xt|x1)∥22
]
.

(5)
As LCFM offers a tractable objective, it is therefore enough to reason in terms of conditional quan-
tities. In summary, if pt(xt|x1) and ut(xt|x1) are chosen adequately such that ut(xt|x1) generates
pt(xt|x1), then minimizing Equation (5) (right) amounts to fitting a neural network uθ

t which gen-
erates pt, i.e., which may then be used to sample from p1. Lipman et al. (2023) propose to write the
conditional probability path as a Gaussian:

pt(xt|x1) = N (xt;µt(x1), σ
2
t (x1)I), (6)

with µ0(x1) = 0, µ1(x1) = x1, σ0(x1) = 1, and to write the flow xt as xt = σt(x1)x0 + µt(x1)
where x0 ∼ p0. When σt → 0, and µt(x1) = tx1 + (1− t)x0, one obtains the well-known rectified
flow (Liu, 2022):

xt = tx1 + (1− t)x0, (7)

ut(xt|x1) = x1 − x0 =
x1 − xt

1− t
, (8)

which can be used in Equation (5) to compute LCFM. Once trained, the model can be used to draw
from p1 starting from a noise sample x0 ∼ p0 and following denoising Euler steps ∆t:

xt+∆t = xt +∆t uθ
t (xt). (9)

3.2 DISCRETE FLOW MATCHING

One approach (Campbell et al., 2024) to modeling discrete data x1 ∈ [1, . . . , S]D, where each
dimension of x1 can take S different states, is to consider the whole flow xt as discrete, and allow
state transitions to occur one dimension at a time. This translates in the following factorization of
pt+∆t(xt+∆t|xt):

pt+∆t(xt+∆t|xt) =
∏
d

pt+∆t(x
d
t+∆t|xt). (10)

This allows to define the generative process using a rate matrix Rt ∈ RS×S which characterizes
state transition over single dimensions and replaces the velocity field ut from the continuous setting,
as can be seen from the denoising process:

xd
t+∆t ∼ Cat(δ{xd

t , x
d
t+∆t}+∆t Rt(x

d
t , x

d
t+∆t)). (11)

The rate matrix satisfies Rt(i, j) ≥ 0 if i ̸= j and Rt(i, i) = −
∑

j ̸=i Rt(i, j). As in the continuous
case, Rt must satisfy the continuity equation (known as the Kolmogorov equation in the discrete
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case, see Gat et al. (2025)) to ensure that it generates pt, and that solving Equation (11) amounts
to sampling from the data distribution p1. Again, it is more convenient to define a conditional rate
matrix Rt(xt, xt+∆t|x1) that generates the conditional distribution pt|1, and that can be used to
recover the marginal rate matrix Rt through the following expectation:

Rt(xt, j) = Ep1|t(x1|xt)Rt(xt, j|x1). (12)

This time however the conditional rate matrix can be computed in closed form, and one instead aims
to learn the posterior probabilities p1|t(x1|xt). In the multivariate case, each dimension is learned
separately, such that the training objective writes:

LDFM = −Et,x1,xt

∑
d

log(pθ1|t(x
d
1|xt)), (13)

with pθ1|t the approximation function. Noised vector xt is sampled per dimension by interpolating
between xd

1 and a prior, that we take here equal to the product of marginal probability mass functions
over all states, simply written Cat(m), with m ∈ [0, 1]S (see Appendix A for the computation of
m):

xd
t ∼ Cat(tδ{xd

1, x
d
t }+ (1− t)×m)). (14)

Inference is done independently from training, which does not require access to the conditional rate
matrix. For the latter, Campbell et al. (2024) introduce the following expression:

Rt(x
d
t , x

d
t+∆t = j|xd

1) =
ReLU(∂tpt|1(x

d
t+∆t = j|xd

1)− ∂tpt|1(x
d
t |xd

1))

S.pt|1(x
d
t |xd

1)
+RDB(xd

t+∆t = j|xd
1),

(15)
where the detailed balance term RDB allows an adjustable level of stochasticity (see Appendix A
for the derivation of both terms for our choice of prior distribution). The expectation over xd

1 can be
derived in closed form to give the final expression of the marginal rate matrix Rt (see Appendix B):

Rt(x
d
t , j) =

(
1−mj +mxd

t

)
S(1− t)mxd

t

pθ1|t(x
d
1 = j|xt)

+
ReLU

(
mxd

t
−mj

)
S(1− t)mxd

t

(1− pθ1|t(x
d
1 = j|xt)− pθ1|t(x

d
1 = xd

t |xt))

+ η pθ1|t(x
d
1 = xd

t |xt) + η
t+ (1− t)mxd

t

(1− t)mj
pθ1|t(x

d
1 = j|xt), (16)

where η ∈ R+ is the tunable noise level.

Multimodal Flows. In the case of a multimodal flow (xt, yt), Campbell et al. (2024) showed that
if the noising process pt|1(xt, yt|x1, y1) factorizes over its variables such that:

pt|1(xt, yt|x1, y1) =

Dx∏
d

pt|1(x
d
t |xd

1)

Dy∏
d

pt|1(y
d
t |yd1), (17)

then the process composed separately of Rx
t (respectively ux

t if xt is continuous) and Ry
t (resp.

uy
t ), as defined above, generates the marginal multimodal flow pt(xt, yt). This allows to sample t

independently for each variable, which enables a remarkable flexibility of the denoising process.

4 GRAPH FLOW MATCHING FOR ANALOG TOPOLOGY DESIGN AND SIZING

For the remainder of this work, we represent circuits as undirected graphs G composed of a set of
Dv nodes V , a set of edges E ⊆ V × V that connect the nodes, and when applicable, a node feature
vectorF that provides component sizes. Individual node elements and node features are respectively
noted vd and fd, ∀d ≤ Dv , and take values in {1, . . . , S} and R, respectively, where S is the total
number of node types. Individual edges are noted ed, ∀d ≤ De = Dv × Dv , and take values in
{0, 1}. The objective of this work is to train a multimodal flow matching model to sample from
the data distribution p1(G). This section first defines this flow along with its training process. We
then describe the architecture of the employed graph transformer model, and give details about the
chosen data representation.
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4.1 MULTIMODAL FLOW FOR FLEXIBLE CIRCUIT MODELING

The flow we consider here is composed of two discrete variables, node types Vt and edges Et, along
with the continuous device sizes Ft. As before, the noising process will factorize over variables, and
as suggested by Campbell et al. (2024) the noising time index will be sampled independently for each
variable, yielding respectively tv , te and tf for node types, edges and features. Here however we
go one step further and sample time independently for each dimension, such that tv, tf ∈ [0, 1]Dv

and te ∈ [0, 1]De/2 (graphs are undirected and only half of the edges are modeled). As we shall see
shortly, this makes the sampling process particularly flexible, allowing a whole range of key applica-
tions. The noising process thus writes, using the notations t = (tv, te, tf ) and Gt = (Vtv , Ete ,Ftf ):

pt|1(Gt|G1) =
Dv∏
d

ptv|1(v
d
tv |v

d
1)ptf |1(f

d
tf
|fd

1 )

De/2∏
d

pte|1(e
d
te |e

d
1), (18)

where we omitted the dimension dependency on time for the sake of clarity. Each dimension is
noised independently according to Equations (14) and (7) for discrete and continuous variables,
respectively, and this can be seen as an extension of the previous multimodal flow where every
dimension is a variable on its own. From Proposition 4.2 of Campbell et al. (2024), we know that
the following process generates pt(Gt) = Ep1(G1)[pt|1(Gt|G1)]:

Rt(v
d
tv , j) = Epθ

1|t(v
d
1 |Gt)[Rt(v

d
tv , j|v

d
1)], (19)

Rt(e
d
te , j) = Epθ

1|t(e
d
1 |Gt)[Rt(e

d
te , j|e

d
1)], (20)

ut(f
d
tf
) = Epθ

1|t(f
d
1 |Gt)[ut(f

d
tf
|fd

1 )], (21)

where we abused notations and simply referred to all marginal and conditional rate matrices as Rt

and Rt(.|G1) to keep notations uncluttered. The denoising process for vdtv and edte is done according
to Equation (11), where the two rate matrices Rt(v

d
tv , j) and Rt(e

d
te , j) are computed in closed form

using Equation (16) and their respective marginal prior distributions. The denoising process for
features fd

tf
follows Equation (9), using the vector field uθ

t (f
d
t ) learned by the model.

Loss function. Our generative model is trained by minimizing LCFM on continuous variables and
LDFM on discrete variables. The overall loss function writes:

L = Et,G1,Gt

[
−

Dv∑
d

log(pθ1|t(v
d
1 |Gt))−

De/2∑
d

log(pθ1|t(e
d
1|Gt)) +

Dv∑
d

∥uθ,d
t (Gt)− ut(f

d
tf
|fd

1 )∥22
]
.

(22)

Algorithm 1 Training

Input: Graph dataset D = {G1, . . . ,GM}
for e = 1 to Max training epoch E do

Sample G1 ∼ D, t ∼ U [0, 1]2Dv+De

Sample Gt ∼ pt|1(Gt|G1) ▷ Noising
pθ1|t(v1, e1|Gt), u

θ
t (Gt)← fθ(Gt, t) ▷

Forward pass
Lv ← log pθ1|t(v1|Gt) ▷ Node loss
Le ← log pθ1|t(e1|Gt) ▷ Edge loss

Lf ← ∥uθ
t (Gt)−

f1−ft
1−t ∥

2 ▷ Features loss
Update fθ weights

end for

Algorithm 2 Inference

Input: Number of nodes Dv

Sample G0 ∼ p0(G0) ▷ Sample from prior
for denoising step t = 0 to 1 with step ∆t do

pθ1|t(G1|Gt)← fθ(Gt, t) ▷ Denoising
Rt(vt, .), Rt(et, .)← 19, 20 ▷

Marginalize rate matrices
vt+∆t ∼ Cat(δ{vt, j}+∆tRt(vt, j))
et+∆t ∼ Cat(δ{et, j}+∆tRt(et, j))
ft+∆t ← ft +∆t.uθ

t (ft) ▷ Update Gt
end for
Return: G1

Flexible denoising. The main advantage of the proposed framework is that it allows all dimen-
sions, i.e., components or groups of components, to be denoised independently. Very diverse appli-
cations are therefore possible with the same model depending on the chosen time sampling scheme:

5
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Figure 1: Multiple applications enabled by our framework, here on the AnalogGenie dataset.

(a) End-to-end topology design and sizing – tv, te, tf : 0→ 1;
(b) Circuit completion / conditional inpainting – G = [(V, E ,F), (V ′, E ′,F ′)] such that

tv, te, tf = 1, and tv′ , te′ , tf ′ : 0→ 1;
(c) Topology-conditional sizing – tv, te = 1, and tf : 0→ 1;
(d) Link prediction – tv = 1, and te : 0→ 1.

Figure 2: The condi-
tional graph transformer
layer of CircuitFlow.

Another noteworthy application is continued denoising, where an output
graph G undergoes additional denoising steps if it fails to meet prede-
fined criteria. By fixing t between 0 and 1 independently for each device
and edge, one can control the extent to which one part of the circuit
must be denoised further or preserved, allowing a very fine-grained su-
pervision. Illustrations of several applications can be found in Figure 1
and Appendix F, while the overall training and sampling procedures are
summarized in Algorithm 1 and 2, respectively.

4.2 NETWORK ARCHITECTURE

We base our denoising network on the graph transformer architecture
of Ma et al. (2023) which combines a global receptive field with an ex-
pressive random walk structural encoding, achieving strong performance
across diverse graph learning tasks. To adapt it to our framework, we in-
troduce two key modifications. First, we incorporate a time-conditioning
mechanism, inspired by Diffusion Transformers (Peebles & Xie, 2023),
mapping tv (and respectively te and tf ) into multiplicative and additive
biases αv , α′

v , βv , β′
v , γv , and γ′

v , applied at different stages of each
transformer layer. Second, we add a dedicated processing path for node
features f , mirroring the sequence of operations used for node types v.
The graph transformer layer of CircuitFlow is illustrated in Figure 2.
Overall, our model is a light architecture of 2.05M parameters.

4.3 CONDITIONAL GENERATION

In practice, analog circuit design typically supposes to adhere to prede-
fined performance objectives. We present here how such control can be
achieved, through two different guidance approaches (Nisonoff et al.,
2025). Classifier guidance (CG) requires training a classifier model
pϕ(c|Gt, t) to predict the class of the conditioning signal c, given a noised

6
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Figure 3: Limitations of the OCB/CktGNN representation. Without explicit nets, graphs are more
complex (left), and ambiguous (right): the output of the second single-stage op-amp (++), on the
left side of the right panel, is not linked to the input of the third op-amp (+−), which belongs to a
feedback path: arrows direction should be reversed. The DAG representation wrongly portrays the
circuit as valid: it is open and therefore invalid, as shown when the feedback path edges are reversed.

sample Gt. It is then used during the denoising process to bias the rate matrix of an unconditional
generative model, yielding a guided rate matrix R

(γ)
t (.|c), where γ controls the guidance strength:

(CG) : R
(γ)
t (xt, j|c) =

[ log pϕ(c|j, t)
log pϕ(c|xt, t)

]γ
Rt(xt, j). (23)

This necessitates evaluating pϕ over all state transitions, which can become costly. An alternative
is to use classifier-free guidance (CFG), which only requires two passes through the model at a
denoising step t, one with the conditioning signal c yielding the conditional rate matrix Rt(.|c), and
one where c is replaced by a mask token ∅, yielding the unconditional Rt. The mask token is learned
during training by randomly masking c with a chosen probability. In CFG, R(γ)

t (.|c) writes:

(CFG) : R
(γ)
t (xt, j|c) = Rt(xt, j|c)γRt(xt, j)

1−γ . (24)

The previous procedure is applied to node types and edges. For the continuous case of node fea-
tures, the unconditional velocity field uθ

t (ft|f1) is updated at each step t using one of the following
expressions (see Dhariwal & Nichol (2021) and Ho & Salimans (2022)):

(CG) : u(γ)
t (ft|f1, c) = uθ

t (ft|f1) + γ∇ft log p
ϕ(c|Gt, t), or

(CFG) : u(γ)
t (ft|f1, c) = uθ

t (ft|f1, ∅) + γ.(uθ
t (ft|f1, c)− uθ

t (ft|f1, ∅)).

4.4 UNIFIED CIRCUIT GRAPH REPRESENTATION

Topology design and device sizing can be performed at different levels of the circuit representation
hierarchy, including the behavior and the transistor level. In the former case, transistors do not
appear explicitly, but are included in larger substructures, such as single-stage operational amplifiers
(op-amps). Following prior work (Ren et al., 2020; Hakhamaneshi et al., 2022) we represent circuit
and voltage nodes (i.e., nets and ports) as graph nodes, along with circuit devices. This results in a
unified circuit representation that accommodates both representation levels, while conforming to the
writing conventions of the SPICE simulation software. At the transistor level, we do not represent
transistor pins explicitly, but proceed in a hierarchical approach to predict their connectivity. As
noted by Gao et al. (2025), this is necessary to disambiguate topologies which do not specify pin
assignments. To achieve this, we train a dedicated model to regress edge probabilities between
transistors and their neighboring nodes, based on the output of a topology generation model. This
approach ensures a one-to-one mapping between generated graphs and SPICE netlists across all
representation levels. Further details on the hierarchical model are provided in Appendix C.

5 EXPERIMENTS

We evaluate the performance of CircuitFlow on two standard benchmarks for circuit topology gen-
eration: OCB (Dong et al., 2023) and AnalogGenie (Gao et al., 2025), which represent circuits at
distinct abstraction levels. Since OCB also provides device sizes, we additionally assess the model’s
effectiveness on the sizing task on this dataset. Both datasets however require preprocessing to map
circuits into our unified representation, which we describe in the following section. All code, model
weights and processed datasets are made publicly available.
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Model V.U.N.↑ Val. sim.↑ Val. graphs↑ Val. circuits↑ Uniqueness ↑ Novelty ↑
DAGNN – – 83.1 74.2 – 97.2
PACE – – 83.1 75.1 – 97.1
D-VAE 44.5 58.1 67.7 59.5 84.3 94.5
CktGNN 47.9 74.2 85.1 81.4 72.6 93.0

CircuitFlow (Ours) 74.3 92.9 99.4 98.4 85.8 91.1

Table 1: Evaluation of output topology quality across various architectures on OCB. Results that
could not be reproduced are reported from Dong et al. (2023). All metrics are expressed in percent-
age, and uniqueness is computed over 10, 000 samples.

Figure 4: Novel op-amp circuit topologies produced by CircuitFlow. Certain samples possess com-
ponents (parallel capacitors or resistors) that make them equivalent to a circuit with fewer nodes.

5.1 DATASETS AND PREPROCESSING

OCB. The OCB dataset consists of 10,000 DAGs describing up to 3-stage op-amps at the behav-
ioral level, split into 9,000 training samples (composed of 3,957, or 44%, unique topologies) and
1,000 test samples. Each graph comes in two versions, one where components are grouped using a
predefined set of subgraphs, and one decomposed into individual components, the latter including
device sizes. To keep the approach general we work at the component level, though several prepro-
cessing steps are more conveniently done at the subgraph level, which requires to map the circuit
back to its component and recover the sizes.

The first of these steps is to identify and revert feedback path edges: as illustrated in Figure 3
(right), using DAGs leads to ambiguous topologies, preventing the identification of feedback path
components and misrepresenting their input/output pin assignment. We therefore revert all input
and output edges to subgraphs containing feedback op-amps (gm- in OCB terminology). Following
common practice, we then add circuit nets as graph nodes, fully disambiguating device connections.
This also simplifies the graphs (Figure 3, left). Finally DAGs are converted into undirected graphs,
and we validate the robustness of the whole process by ensuring that all circuits remain simulatable.

AnalogGenie. The AnalogGenie dataset contains 3,350 samples spanning 11 analog circuit types
(op-amps, SC-samplers, bandgap references, power converters, etc.). Circuits are represented at the
transistor level and are substantially larger than OCB samples (see Table 7 in Appendix D for an
exhaustive comparison). Gao et al. (2025) highlight the need to represent transistor pins to disam-
biguate otherwise similar topologies, but omit net nodes. This has two detrimental consequences:
(i) as discussed in the previous section, it creates unnecessary complexity: adding net nodes reduces
mean graph density from 0.09 to 0.04; (ii) it breaks the invariance between the pins of symmetric
devices (resistors, capacitors, inductors), which must therefore be learned. We therefore preprocess
AnalogGenie circuits by adding net nodes, and removing pin nodes for symmetric devices.

5.2 BEHAVIOR-LEVEL TOPOLOGY GENERATION AND SIZING ON THE OCB DATASET

Topology Generation. We first evaluate the quality of circuit topologies generated by Circuit-
Flow, using several graph learning baselines: D-VAE (Zhang et al., 2019), DAGNN (Thost & Chen,
2021), PACE (Dong et al., 2022), and CktGNN (Dong et al., 2023). D-VAE and CktGNN were re-
trained using the code provided by Dong et al. (2023). We apply the same processing to CktGNN’s
outputs as described above for OCB subgraphs to reflect actual circuit topologies. Metrics from
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Accuracy (%) ↑ Gain UG-f PM Joint
CFG

Topology 50.3 24.3∗ 32.2 6.83
Topo. + sizing 62.3 28.0∗ 33.2 7.28

CG
Topo. + sizing 65.7 61.0 73.3 28.9

Table 2: Conditional generation accuracies
on gain, unit-gain frequency (UG-f ) and
phase margin (PM), along with joint accu-
racy for two conditioning methods, classifier-
free guidance (CFG) and classifier guidance
(CG). Results marked with ∗ are undistin-
guishable from random sampling under a two-
sided binomial test (p-value > 0.05).
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Figure 5: Distribution of output circuit features for
the four conditioning categories and all three spec-
ifications, using CG. This shows the model has
learned to conform to the required spec values.

this work are used here, including Valid graphs (percentage of connected graphs with input and
output nodes) and Valid circuits (circuit with a main path composed only of single-stage op-amps).
However, these do not capture graphs with nodes of degree one, which indicates open circuits, and
ignore feedback paths. This means that some circuits that appear valid are not simulatable. We
therefore add a Valid sim metric, similarly to Gao et al. (2025), that gives the proportion of circuits
simulatable with SPICE with default parameters. Finally we also report the V.U.N (Vignac et al.,
2023), which gives the fraction of outputs that are simultaneously simulatable, unique, and novel.
Results from Table 1 show the exceptional ability of CircuitFlow to produce novel and valid outputs
using as few as 100 denoising Euler steps, improving on CktGNN by 18 points in Valid sim and 26
points in V.U.N, hence establishing a new state-of-the-art on the OCB dataset. Examples of novel
generated topologies can be found in Figure 4.

Conditional Circuit Design. We now examine how guidance can be used to control both topology
design and device sizing based on predefined performance specifications. The conditioning signal c
is a triplet (cg, cpm, cugf ) corresponding to conditioning gain, phase margin and unit-gain frequency,
following the features from OCB. Each quantity is discretized into quartiles so that the resulting four
bins are equally likely. Marginal and joint accuracies between output and conditioning quantities
are reported in Table 2, for both topology generation alone and full circuit design. Statistical signif-
icance is evaluated with two-sided binomial tests. For CFG we set γ = 2 for all modalities, and use
γ = 15 for nodes and 30 for features for CG, and omit conditioning on edges. Results on topology
generation provide an important insight: circuit topology is correlated with circuit-level specifica-
tions, even with randomized features. Thus topology discovery must be performed conditionally on
circuit specifications, in contrast to previous approaches (Dong et al., 2023; Gao et al., 2025). Accu-
racy is further improved when jointly learning topology and sizes, and full conditional design with
CG achieves 28.9% joint accuracy over all 64 test categories. We represent in Figure 5 the marginal
distributions of output classes for all four conditioning categories of each specification, showing the
effectiveness of our conditioning method. Conditional generation examples can be found in Figure 8
in appendix.

5.3 TRANSISTOR-LEVEL TOPOLOGY GENERATION ON THE ANALOGGENIE DATASET

This section explores the scalability of CircuitFlow to the more complex and diverse graphs of the
AnalogGenie benchmark. Following Gao et al. (2025), we compare with Lamagic Chang et al.
(2024) and AnalogCoder (Lai et al., 2025) which, while both trained on distinct datasets and being
limited in terms of circuit complexity, represent important milestone works. We train CircuitFlow
with our hierarchical approach, using a dedicated model for the regression of pin assignment prob-
abilities. The number of denoising Euler steps is kept to 100. This time we explore using continued
denoising as a post-processing strategy. To this end we select invalid circuits based on predefined
but simple rules: disconnected graphs, absence of a VSS node, or node degree inconsistent with
device pin number. Those circuits then undergo 5 additional denoising steps starting from t = 0.9,
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ensuring that most of the topology is preserved (examples of this process can be found in Figure 11
in appendix). The whole process, which can be seen as an adaptive denoising stop condition, is
repeated up to 5 times, obtaining significant improvements at a negligible cost. Results can be found
in Table 3. Overall, we achieve a new state-of-the-art on the AnalogGenie dataset over all considered
metrics, improving V.U.N over AnalogGenie by 13 to 26 points. Notably, this is done with minimal
inductive bias, and a very light preprocessing pipeline. Finally, we report the Jensen-Shannon di-
vergence between output and data distributions of node types (JSdata), showing that our method has
learned to match the node type distribution much more closely, hinting at a more faithful coverage
of the diversity of the training dataset. Examples of output circuits can be found in Figures 9 and 10.

Model (all metrics ↑) V.U.N. (%) Val. sim (%) Uniqueness (%) Novelty (%) Max Node Nb JSdata (×10−3) ↓
LaMAGIC – 68.2 – 12.7 4 -
AnalogCoder – 57.3 – 8.9 10 -

AnalogGenie 62.2 73.1 88.5 100 63 14.5
CircuitFlow (Ours) 75.6 75.7 98.9 100 71 2.6
CircuitFlow + post-pro. 88.0 88.1 98.7 100 71 1.8

Table 3: Output topology quality on the AnalogGenie dataset. The Jensen-Shannon divergence
between data and output node type distributions measures the diversity of generated architectures.

5.4 ABLATION STUDIES

We evaluate the effect of time sampling granularity by applying graph-, modality- and dimension-
wise time sampling both at training and inference (Table 4). Our findings indicate that sampling
time per modality or dimension during training leads to higher validity. The latter also improves the
validity on the circuit completion task, where sampling time per dimension at inference is necessary:
here, the denoising time index of conditioning nodes and edges needs to remain fixed to one, while
only the time index of new nodes can vary. Next, we study how the number of denoising Euler
steps affects topology quality on the AnalogGenie dataset (Table 5). Using as few as 50 denoising
steps yields results that surpass previous state-of-the art, while 100 steps increase the V.U.N. by 3
additional points. Adding more denoising steps beyond that point does not improve results further.

t granularity Inference
Topology Gen. Completion

Train Graph Mod. Dim.

Graph 80.5 81.0 56.5
Modality 92.6 92.7 65.7
Dimension 92.9 92.7 68.7

Table 4: Valid sim (%) per t sampling granu-
larity (graph, modality or dimension level) on
unconditional topology generation and circuit
completion on the OCB dataset. Circuit com-
pletion requires dimension-wise time sampling.

Euler steps V.U.N. (%) Latency (s)

20 58.1 0.20
50 72.8 0.47
100 75.6 0.96
200 74.9 1.95

AnalogGenie 62.2 13.1

Table 5: Influence of the number of Euler
steps on V.U.N. and latency (per sample) on
the AnalogGenie dataset.

6 CONCLUSION

This work introduces CircuitFlow, a flow matching framework for joint analog circuit topology gen-
eration and device sizing. By leveraging independent time sampling across dimensions and modal-
ities, the model achieves remarkable inference-time flexibility, enabling applications such as circuit
completion, error correction or link prediction. Experiments show that CircuitFlow consistently pro-
duces valid, novel, and simulatable circuits, outperforming prior state-of-the-art models across both
considered benchmarks. These results demonstrate its scalability from behavioral-level op-amps to
diverse transistor-level circuits, while requiring only minimal preprocessing and inductive bias. Im-
portantly, we also show that joint conditional topology generation and sizing is necessary to achieve
a fine-grained control over the performances of the output circuits. This work therefore opens new
research directions in generative circuit design, achieving together tasks that were previously treated
in isolation.
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REPRODUCIBILITY STATEMENT

All results reported here are fully reproducible using the provided code and weights, and the precise
pipeline will be described on the project’s github page. Likewise, we also realease the preprocessing
code for both dataset and for the outputs from the CktGNN model, together with the exact dataset
versions used to train our models.
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A DERIVATION OF THE CONDITIONAL RATE MATRIX EXPRESSION

In this paper, we consider the prior distribution over node types and edges as the joint marginal
distribution over all S states, where S is the number of node types for nodes and 2 for edges. In the
following, we write indiscriminately the variable of interest as xt ∈ [1, . . . , S]D.

We have then:

x0 ∼ Cat(m1,m2, . . . ,mS), (25)

where:

∀i, mi ∈ [0, 1] and mi =
1

ND

∑
x∈Xdata

∑
d

δ{xd, i} (26)

Now the noised vector xd
t is sampled from the distribution obtained by interpolating between the

one-hot distribution in xd
1 and the prior p0.

xd
t ∼ Cat(tδ{xd

1, x
d
t }+ (1− t)×m)) (27)

The derivation of the conditional rate matrix is inspired from the uniform case of Campbell
et al. (2024), substituting the uniform distribution with the marginal one. We first need to derive
∂tpt|1(x

d
t |xd

1) in order to compute the first term of the conditional rate matrix in Equation (15).

∂tpt|1(x
d
t |xd

1) = ∂t

(
tδ{xd

t , x
d
1}+ (1− t)mxd

t

)
(28)

= δ{xd
t , x

d
1} −mxd

t
(29)

Thus, for xd
t ̸= j (diagonal entries will be computed later):

R∗
t (x

d
t , j | xd

1) =
ReLU

(
∂tpt|1(j | xd

1)− ∂tpt|1(x
d
t | xd

1)
)

Spt|1(x
d
t | xd

1)
(30)

=
ReLU

(
δ{j, xd

1} −mj − δ{xd
t , x

d
1}+mxd

t

)
S
(
t δ

{
xd
t , x

d
1

}
+ (1− t)mxd

t

) . (31)

This simplifies as:

R∗
t (x

d
t , j | xd

1) =

(
1−mj +mxd

t

)
S(1− t)mxd

t

δ{jd, xd
1}(1− δ{xd

t , x
d
1})

+
ReLU(mxd

t
−mj)

S(1− t)mxd
t

(1− δ{j, xd
1})(1− δ{xd

t , x
d
1}). (32)

We turn now to the derivation of the detailed balance term of the conditional rate matrix, which
allows to inject stochasticity in the denoising process. As per Campbell et al. (2024), to ensure that
the rate matrix still obeys the continuity equation, RDB

t must satisfy the following detailed balance
condition:

pt|1(i|xd
1)R

DB
t (i, j|xd

1) = pt|1(j|xd
1)R

DB
t (j, i|xd

1) (33)

Following their general recipe for DB rate matrix expression and again considering i ̸= j, we
assume:

RDB
t (i, j|xd

1) = atδ{i, xd
1}+ btδ{j, xd

1} (34)

Substituting this into Equation (33) yields:
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(
tδ{i, xd

1}+ (1− t)mi

) (
atδ{i, xd

1}+ btδ{j, xd
1}
)

(35)

=
(
tδ{j, xd

1}+ (1− t)mj

) (
atδ{j, xd

1}+ btδ{i, xd
1}
)
. (36)

As this must be true for all i and j as long as i ̸= j, one may fix i = xd
1 to force a simpler relation

between at and bt:

bt = at
t+ (1− t)mi

(1− t)mj
(37)

In the following at is set to a noise level η which can be seen as a re-noising rate of clean data.
Finally, the detailed balance conditional rate matrix writes:

RDB
t (i, j|xd

1) = ηδ{i, xd
1}+ η

t+ (1− t)mi

(1− t)mj
δ{j, xd

1}. (38)

B MARGINALIZATION OF THE CONDITIONAL RATE MATRIX

The unconditional rate matrix Rt(x
d
t , j) can be computed in closed form by marginalizing the overall

conditional rate matrix Rt(x
d
t , j | xd

1) = R∗
t (x

d
t , j | xd

1) + RDB
t (xd

t , j | xd
1) over xd

1, where the
probabilities pθ1|t(x

d
1 | xt) are output by the learned flow matching model θ:

Rt(x
d
t , j) = Epθ

1|t(x
d
1 |xt)

[
R∗

t (x
d
t , j | xd

1) +RDB
t (xd

t , j | xd
1)
]

(39)

= Epθ
1|t(x

d
1 |xt)

[(
1−mj +mxd

t

)
S(1− t)mxd

t

δ{j, xd
1}(1− δ{xd

t , x
d
1})

+
ReLU(mxd

t
−mj)

S(1− t)mxd
t

(1− δ{j, xd
1})(1− δ{xd

t , x
d
1})

+ ηδ{xd
t , x

d
1}+ η

t+ (1− t)mxd
t

(1− t)mj
δ{j, xd

1}

]
. (40)

Integrating over xd
1 yields the final expression for the marginal rate matrix, wherein each term can

be easily computed:

Rt(x
d
t , j) =

(
1−mj +mxd

t

)
S(1− t)mxd

t

pθ1|t(x
d
1 = j|xt)

+
ReLU

(
mxd

t
−mj

)
S(1− t)mxd

t

(1− pθ1|t(x
d
1 = j|xt)− pθ1|t(x

d
1 = xd

t |xt))

+ η pθ1|t(x
d
1 = xd

t |xt) + η
t+ (1− t)mxd

t

(1− t)mj
pθ1|t(x

d
1 = j|xt) (41)

Diagonal entries of Rt are then obtained following Rt(i, i) = −
∑

j ̸=i Rt(i, j).

We can finally compute the transition probabilities

pt+∆t|t(x
d
t+∆t = j | xt) = δ{j, xd

t }+Rt(x
d
t , j)∆t, (42)

which, when done on all dimensions d and all time steps t, finally allows to sample new data points
from p1.
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Figure 6: (Left) Device-level circuit, where the NMOS is treated as a single node connected to
three nets (NET, VOUT, and VSS). (Right) The corresponding pin-level graph, with explicit pin
connections.

C PIN-LEVEL PREDICTION

Our two-stage approach for pin-level topology generation involves a first model which generates a
circuit topology with device interconnections. Based on the output of the first stage, a second model
determines how pins connect to the neighboring components. The process is represented in Figure 6.

The pin assignment model shares the same architecture as the topology generation model, but is
trained to regress edge probabilities between a node’s pins and the neighboring net nodes. This is
done using a classical binary cross entropy objective:

LPIN = − 1

|EL|
∑
e∈EL

ye log(ŷe) + (1− ye) log(1− ŷe), (43)

where ye = 1 if edge e exists, and 0 otherwise. At inference, assigning transistor pins to their
neighbors requires to solve an assignment problem, using the (opposite of the) predicted edge prob-
abilities as the cost function, and fulfilling the constraint that all neighboring node is connected to at
least one pin.

The accuracy of the pin assignment model is reported in Table 6, after 150 training epochs.

Metric Value (%)

Precision 97.54
Recall 98.87
F1-score 98.2
Accuracy 98.2

Table 6: Test set performance metrics of the pin assignment model.

D DATASETS STATISTICS

Table 7 presents the main features of the datasets used in this paper. AnalogGenie (no pins) corre-
sponds to the dataset version that is used to train the topology generation model, which is completed
by a pin assigment model.

E TIME SAMPLING DISTORTION

Following Qin et al. (2025), we apply a time distortion function f to the time index t sampled
uniformly between 0 and 1. Here we use f : t 7→ 1 − (1 − t)n, and use the parameter n to
control the distortion strength. This procedure allows to control the denoising process by putting
an emphasis on critical time steps, e.g. when t approaches 1, where an output circuit can become
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Dataset OCB AnalogGenie AnalogGenie (no pins)

# of graphs 10,000 3,350 3,350
% uniqueness 44.0 99.4 99.4
Number of node types 9 81 28
Avg. # of nodes per sample 12 107 38
Avg. # of edges per sample 15 145 60
Avg. density 0.25 0.042 0.11

Table 7: Main dataset statistics.

invalid due to a single edge misplacement. The distortion function is represented in Figure 7 for
typical values of n for both training and inference on the AnalogGenie dataset, where a distinct n is
used for nodes (nv) and edges (ne).

Figure 7: Node (tv) and edge time (te) sampling schemes on the AnalogGenie dataset.

F ILLUSTRATIONS OF DENOISING APPLICATIONS

Figure 8: Conditional analog circuit design on OCB.

In this section we illustrate several use cases of CircuitFlow applications, on both OCB and
AnalogGenie datasets. Figure 8 pictures two output circuits for two different sets of conditioning
specifications on OCB. Examples of transistor-level output topologies can be found in Figures 9 and
10. Then Figures 11, 12 and 13 illustrate the applications of continued denoising, circuit completion,
and link prediction, respectively.
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Figure 9: Output topologies generated on the AnalogGenie dataset, showcasing a possible Differen-
tial Amplifier (a) and NMOS Logic Gate (b).
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Figure 10: Additional topologies generated on the AnalogGenie dataset.
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Figure 11: Continued denoising can be used to fix topology inconsistencies, as illustrated here on
the AnalogGenie dataset.
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Figure 12: Circuit completion examples on the AnalogGenie dataset.
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Figure 13: Link prediction examples from the same initial empty graph, on the AnalogGenie
dataset. Generated topologies can include invalid component connections (see bottom right cir-
cuit), that could be fixed by additional denoising.
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