

ANALOG CIRCUIT TOPOLOGY DESIGN AND SIZING WITH FLOW MATCHING GRAPH LEARNING

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 The soaring demand for electronic devices calls for novel and more efficient ana-
012 log circuits design. Deep generative models have shown promise in assisting
013 topology, parameter sizing, and layout design process, but existing approaches
014 treat these tasks separately and lack generalizability across diverse problem set-
015 tings. In this work we introduce a flow matching model for automatic analog
016 circuit design, which achieves high-quality sampling across a variety of topolo-
017 gies and representations. Our model showcases state-of-the-art performance on
018 end-to-end topology design and sizing on the Open Circuit Benchmark (OCB)
019 dataset, and on transistor-level topology generation on the AnalogGenie dataset.
020 Code and models are provided as external supplementary files to this submission.
021
022

1 INTRODUCTION

023 The automation of analog circuit design stands as an active area of research, driven both by the
024 demand for increasingly efficient architectures to sustain the growth of the electronics industry and
025 by the intrinsic complexity of the task, which is notoriously more challenging than digital circuit
026 design due to its greater diversity of components. Accordingly, the literature presents a wide range of
027 data-driven approaches aimed at automating one or more steps of the analog design workflow, which
028 traditionally includes topology discovery (Lu et al., 2022; 2023; Poddar et al., 2024), parameter
029 sizing (Wang et al., 2018; 2020; Krylov et al., 2023), and layout prediction (Kunal et al., 2019; Xu
030 et al., 2019; Liu et al., 2025a).
031

032 Despite significant progress, several hurdles remain. Many methods exhibit limited generalizability,
033 restricting their applicability to a small set of circuit topologies. Others rely on multiple models
034 trained for different subtasks or require substantial computational resources. The absence of widely
035 adopted benchmarks and open models has also often been cited as a limiting factor for faster ad-
036 vancement in the field. This issue has been partly addressed by the recent release of benchmarks
037 and models targeting topology generation and device sizing (Dong et al., 2023; Gao et al., 2025),
038 enabling more systematic comparisons. In terms of model architectures, the long-standing paradigm
039 of representing circuits as graphs (Ren et al., 2020; Wang et al., 2020; Hakhamaneshi et al., 2022;
040 Shahane et al., 2023) now coexists with the recent adoption of Large Language Models (LLM)-
041 based methodologies (Yin et al., 2024; Liu et al., 2024a;b), which harness the exceptional ability
042 of LLMs for sequence modeling to generate circuit design as textual outputs (Chang et al., 2024;
043 Lai et al., 2025). There is however still room for improvement, while the generalizability of these
044 methods beyond pre-defined settings remains an open question.

045 We argue that graph-based representations of circuits hold untapped potential to address these limita-
046 tions. In particular, recent progress in generative modeling of graphs using denoising diffusion (Vi-
047 gnac et al., 2023) and flow matching (Eijkelboom et al., 2024; Qin et al., 2025) lets us foresee
048 promising applications for analog circuit design. These models are notorious for their high sample
049 quality (Esser et al., 2024), and can accommodate the conditional generation of multimodal data,
050 opening the door to applications such as circuit completion or parameter sizing within a single ar-
051 chitecture. Diffusion models have already proved successful for device sizing (de Azevedo et al.,
052 2025; Eid et al., 2025) and topology discovery (Liu et al., 2025b), but for a limited scope of circuits.
053 So far, only one study has attempted to tackle these tasks jointly (Hou et al., 2024)

In this work, we introduce a multimodal flow matching model, **CircuitFlow**, for end-to-end gen-
eration of analog circuit topology and device sizing. Built on a graph transformer backbone, it

054 shows remarkable sampling quality and allows a very fine control on the denoising process through
 055 a modality-dependent time sampling scheme. We evaluate our approach on established benchmarks:
 056 first at the behavioral level on the OCB dataset (Dong et al., 2023), and then at the transistor level on
 057 the AnalogGenie dataset (Gao et al., 2025) with a separate model for the prediction of port connec-
 058 tivity, achieving in both cases state-of-the-art improvement in the quality of generated circuits. The
 059 main contribution of this work is the extension of multimodal flow matching to analog circuit design,
 060 yielding a unified framework that jointly addresses discrete topology generation and continuous de-
 061 vice sizing across multiple representation levels and circuit complexities. This is notably enabled by
 062 sampling the denoising time index *separately for each dimension*, granting unprecedented flexibility
 063 for diverse inference-time applications without the need for additional training. The remainder of
 064 this paper is structured as follows. Related work is discussed in Section 2. Section 3 introduces the
 065 theoretical foundations of this work. The proposed approach is detailed in Section 4, and experi-
 066 mental results are presented in Section 5.

067 2 RELATED WORK

070 2.1 DATA-DRIVEN TOPOLOGY DESIGN AND SIZING OF ANALOG CIRCUITS

072 **Topology generation.** Data-driven approaches for topology design include Reinforcement Learning
 073 (RL) (Fan et al., 2021; Zhao & Zhang, 2022), Bayesian Optimization (BO) in the continuous latent
 074 space of a Variational Auto-Encoder (VAE) (Lu et al., 2022; 2023; Dong et al., 2023; Shen et al.,
 075 2024), and retrieval from predefined building blocks (Fayazi et al., 2023; Poddar et al., 2024). RL
 076 and BO methods often suffer from slow convergence, while retrieval-based strategies depend heavily
 077 on the completeness of predefined architectures and typically lack flexibility. Recent works leverage
 078 pre-trained LLMs to generate topologies as text output (Chang et al., 2024; Lai et al., 2025), but have
 079 not yet scaled beyond a limited set of circuit types and complexity. AnalogGenie (Gao et al., 2025)
 080 demonstrates strong scalability to diverse, transistor-level topologies, but its GPT-based backbone
 requires extensive data augmentation to enforce permutation invariance over input graph nodes.

081 **Device Sizing.** Parameter sizing, whether at the behavior or transistor level, has been widely ex-
 082 plored using RL (Wang et al., 2018; Settaluri et al., 2020; Wang et al., 2020; Cao et al., 2022; Gao
 083 et al., 2023; Cao et al., 2024), BO (Lyu et al., 2018), supervised learning (Hakhamaneshi et al., 2022;
 084 Krylov et al., 2023) or LLMs (Yin et al., 2024; Liu et al., 2024a;b). Some works aim to address both
 085 topology design and sizing (Fayazi et al., 2023; Lu et al., 2023; Liu et al., 2025b), but do so in
 086 several stages with separate, dedicated models. An exception is CktGen (Hou et al., 2024), which
 087 addresses these tasks jointly using a VAE model. Their approach is however limited to operational
 088 amplifiers, and the absence of released models precludes formal comparison.

090 2.2 FLOW MATCHING FOR GRAPH GENERATION

092 Flow matching models (Lipman et al., 2023; Esser et al., 2024; Tong et al., 2024) have emerged
 093 as a sample-efficient alternative to diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020).
 094 They have been extended to discrete state-space (Campbell et al., 2024; Gat et al., 2025) and proved
 095 successful on diverse graph generation tasks (Eijkelboom et al., 2024; Qin et al., 2025). To date,
 096 flow matching has not been applied to analog circuit design. A handful of methods have explored
 097 the use of denoising diffusion for sizing and topology discovery (de Azevedo et al., 2025; Eid et al.,
 098 2025; Liu et al., 2025b), but remain restricted to a narrow range of circuit topologies.

100 3 PRELIMINARIES

102 3.1 CONTINUOUS FLOW MATCHING

104 The objective of continuous flow matching is to learn an approximation function u_t^θ of a quantity u_t
 105 called a *vector* or *velocity field*, which, given an arbitrary dimension d , is a function of \mathbb{R}^d in itself
 106 that describes the instantaneous change of a *flow* x_t with respect to a *time dimension*:

$$107 u_t(x_t) = \frac{dx_t}{dt}, \text{ with } x_t \in \mathbb{R}^d. \quad (1)$$

Given time-varying probability distribution p_t , u_t is said to *generate* the probability path p_t if x_t is a random variable that follows p_t , where the *prior* p_0 is typically a standard Gaussian or uniform distribution, and p_1 is the unknown data distribution. This is expressed by the *continuity equation* which links u_t to p_t :

$$\frac{dp_t(x_t)}{dt} = -\text{div}(p_t(x_t)u_t(x_t)), \quad (2)$$

where $\text{div}(f(x)) = \sum_i \frac{\partial f(x)_i}{\partial x_i}$ is the divergence operator. Ideally, for a given p_t that satisfies the continuity equation and a trained approximation function u_t^θ , sampling from the data distribution can be achieved by drawing x_0 from the prior and solving Equation (1) up to $t = 1$. In practice, one cannot express p_t and u_t directly, but may instead define them as the expectations of a *conditional* path and velocity field over the data distribution p_1 (Lipman et al., 2023):

$$p_t(x_t) = \int p_t(x_t|x_1)p_1(x_1)dx_1, \quad (3)$$

$$u_t(x_t) = \int u_t(x_t|x_1) \frac{p_t(x_t|x_1)p_1(x_1)}{p_t(x_t)} dx_1. \quad (4)$$

This definition allows two important results. The first corollary is that if $u_t(x_t|x_1)$ generates $p_t(x_t|x_1)$, then u_t generates p_t . Hence it is enough to define a conditional velocity field and probability path that satisfy the continuity equation, which is a much easier task. Second, the same parameter set θ minimizes the following objectives:

$$\mathcal{L}_{\text{FM}} = \mathbb{E}_{t, x_t \sim p_t} \left[\|u_t^\theta(x_t) - u_t(x_t)\|_2^2 \right], \text{ and } \mathcal{L}_{\text{CFM}} = \mathbb{E}_{t, x_1, x_t \sim p_t(x_t|x_1)} \left[\|u_t^\theta(x_t) - u_t(x_t|x_1)\|_2^2 \right]. \quad (5)$$

As \mathcal{L}_{CFM} offers a tractable objective, it is therefore enough to reason in terms of conditional quantities. In summary, if $p_t(x_t|x_1)$ and $u_t(x_t|x_1)$ are chosen adequately such that $u_t(x_t|x_1)$ generates $p_t(x_t|x_1)$, then minimizing Equation (5) (right) amounts to fitting a neural network u_t^θ which generates p_t , i.e., which may then be used to sample from p_1 . Lipman et al. (2023) propose to write the conditional probability path as a Gaussian:

$$p_t(x_t|x_1) = \mathcal{N}(x_t; \mu_t(x_1), \sigma_t^2(x_1)I), \quad (6)$$

with $\mu_0(x_1) = 0$, $\mu_1(x_1) = x_1$, $\sigma_0(x_1) = 1$, and to write the flow x_t as $x_t = \sigma_t(x_1)x_0 + \mu_t(x_1)$ where $x_0 \sim p_0$. When $\sigma_t \rightarrow 0$, and $\mu_t(x_1) = tx_1 + (1-t)x_0$, one obtains the well-known *rectified flow* (Liu, 2022):

$$x_t = tx_1 + (1-t)x_0, \quad (7)$$

$$u_t(x_t|x_1) = x_1 - x_0 = \frac{x_1 - x_t}{1-t}, \quad (8)$$

which can be used in Equation (5) to compute \mathcal{L}_{CFM} . Once trained, the model can be used to draw from p_1 starting from a noise sample $x_0 \sim p_0$ and following denoising Euler steps Δt :

$$x_{t+\Delta t} = x_t + \Delta t u_t^\theta(x_t). \quad (9)$$

3.2 DISCRETE FLOW MATCHING

One approach (Campbell et al., 2024) to modeling discrete data $x_1 \in [1, \dots, S]^D$, where each dimension of x_1 can take S different states, is to consider the whole flow x_t as discrete, and allow state transitions to occur *one dimension at a time*. This translates in the following factorization of $p_{t+\Delta t}(x_{t+\Delta t}|x_t)$:

$$p_{t+\Delta t}(x_{t+\Delta t}|x_t) = \prod_d p_{t+\Delta t}(x_{t+\Delta t}^d|x_t^d). \quad (10)$$

This allows to define the generative process using a *rate matrix* $R_t \in \mathbb{R}^{S \times S}$ which characterizes state transition over single dimensions and replaces the velocity field u_t from the continuous setting, as can be seen from the denoising process:

$$x_{t+\Delta t}^d \sim \text{Cat}(\delta\{x_t^d, x_{t+\Delta t}^d\} + \Delta t R_t(x_t^d, x_{t+\Delta t}^d)). \quad (11)$$

The rate matrix satisfies $R_t(i, j) \geq 0$ if $i \neq j$ and $R_t(i, i) = -\sum_{j \neq i} R_t(i, j)$. As in the continuous case, R_t must satisfy the continuity equation (known as the Kolmogorov equation in the discrete

case, see Gat et al. (2025)) to ensure that it generates p_t , and that solving Equation (11) amounts to sampling from the data distribution p_1 . Again, it is more convenient to define a *conditional rate matrix* $R_t(x_t, x_{t+\Delta t}|x_1)$ that generates the conditional distribution $p_{t|1}$, and that can be used to recover the marginal rate matrix R_t through the following expectation:

$$R_t(x_t, j) = \mathbb{E}_{p_{1|t}(x_1|x_t)} R_t(x_t, j|x_1). \quad (12)$$

This time however the conditional rate matrix can be computed in closed form, and one instead aims to learn the posterior probabilities $p_{1|t}(x_1|x_t)$. In the multivariate case, each dimension is learned separately, such that the training objective writes:

$$\mathcal{L}_{\text{DFM}} = -\mathbb{E}_{t, x_1, x_t} \sum_d \log(p_{1|t}^\theta(x_1^d|x_t)), \quad (13)$$

with $p_{1|t}^\theta$ the approximation function. Noised vector x_t is sampled per dimension by interpolating between x_1^d and a prior, that we take here equal to the product of marginal probability mass functions over all states, simply written $\text{Cat}(m)$, with $m \in [0, 1]^S$ (see Appendix A for the computation of m):

$$x_t^d \sim \text{Cat}(t\delta\{x_1^d, x_t^d\} + (1-t) \times m)). \quad (14)$$

Inference is done independently from training, which does not require access to the conditional rate matrix. For the latter, Campbell et al. (2024) introduce the following expression:

$$R_t(x_t^d, x_{t+\Delta t}^d = j|x_1^d) = \frac{\text{ReLU}(\partial_t p_{t|1}(x_{t+\Delta t}^d = j|x_1^d) - \partial_t p_{t|1}(x_t^d|x_1^d))}{S.p_{t|1}(x_t^d|x_1^d)} + R^{\text{DB}}(x_{t+\Delta t}^d = j|x_1^d), \quad (15)$$

where the *detailed balance* term R^{DB} allows an adjustable level of stochasticity (see Appendix A for the derivation of both terms for our choice of prior distribution). The expectation over x_1^d can be derived in closed form to give the final expression of the marginal rate matrix R_t (see Appendix B):

$$\begin{aligned} R_t(x_t^d, j) &= \frac{\left(1 - m_j + m_{x_t^d}\right)}{S(1-t)m_{x_t^d}} p_{1|t}^\theta(x_1^d = j|x_t) \\ &+ \frac{\text{ReLU}\left(m_{x_t^d} - m_j\right)}{S(1-t)m_{x_t^d}} (1 - p_{1|t}^\theta(x_1^d = j|x_t) - p_{1|t}^\theta(x_1^d = x_t^d|x_t)) \\ &+ \eta p_{1|t}^\theta(x_1^d = x_t^d|x_t) + \eta \frac{t + (1-t)m_{x_t^d}}{(1-t)m_j} p_{1|t}^\theta(x_1^d = j|x_t), \end{aligned} \quad (16)$$

where $\eta \in \mathbb{R}^+$ is the tunable noise level.

Multimodal Flows. In the case of a multimodal flow (x_t, y_t) , Campbell et al. (2024) showed that if the noising process $p_{t|1}(x_t, y_t|x_1, y_1)$ factorizes over its variables such that:

$$p_{t|1}(x_t, y_t|x_1, y_1) = \prod_d^{D_x} p_{t|1}(x_t^d|x_1^d) \prod_d^{D_y} p_{t|1}(y_t^d|y_1^d), \quad (17)$$

then the process composed separately of R_t^x (respectively u_t^x if x_t is continuous) and R_t^y (resp. u_t^y), as defined above, generates the marginal multimodal flow $p_t(x_t, y_t)$. This allows to sample t independently for each variable, which enables a remarkable flexibility of the denoising process.

4 GRAPH FLOW MATCHING FOR ANALOG TOPOLOGY DESIGN AND SIZING

For the remainder of this work, we represent circuits as undirected graphs \mathcal{G} composed of a set of D_v nodes \mathcal{V} , a set of edges $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$ that connect the nodes, and when applicable, a node feature vector \mathcal{F} that provides component sizes. Individual node elements and node features are respectively noted v^d and f^d , $\forall d \leq D_v$, and take values in $\{1, \dots, S\}$ and \mathbb{R} , respectively, where S is the total number of node types. Individual edges are noted e^d , $\forall d \leq D_e = D_v \times D_v$, and take values in $\{0, 1\}$. The objective of this work is to train a multimodal flow matching model to sample from the data distribution $p_1(\mathcal{G})$. This section first defines this flow along with its training process. We then describe the architecture of the employed graph transformer model, and give details about the chosen data representation.

216 4.1 MULTIMODAL FLOW FOR FLEXIBLE CIRCUIT MODELING
217

218 The flow we consider here is composed of two discrete variables, node types \mathcal{V}_t and edges \mathcal{E}_t , along
219 with the continuous device sizes \mathcal{F}_t . As before, the noising process will factorize over variables, and
220 as suggested by Campbell et al. (2024) the noising time index will be sampled independently for each
221 variable, yielding respectively t_v , t_e and t_f for node types, edges and features. Here however we
222 go one step further and sample time *independently for each dimension*, such that $t_v, t_f \in [0, 1]^{D_v}$
223 and $t_e \in [0, 1]^{D_e/2}$ (graphs are undirected and only half of the edges are modeled). As we shall see
224 shortly, this makes the sampling process particularly flexible, allowing a whole range of key applica-
225 tions. The noising process thus writes, using the notations $t = (t_v, t_e, t_f)$ and $\mathcal{G}_t = (\mathcal{V}_{t_v}, \mathcal{E}_{t_e}, \mathcal{F}_{t_f})$:

$$226 \quad 227 \quad 228 \quad p_{t|1}(\mathcal{G}_t | \mathcal{G}_1) = \prod_d^{D_v} p_{t_v|1}(v_{t_v}^d | v_1^d) p_{t_f|1}(f_{t_f}^d | f_1^d) \prod_d^{D_e/2} p_{t_e|1}(e_{t_e}^d | e_1^d), \quad (18)$$

229 where we omitted the dimension dependency on time for the sake of clarity. Each dimension is
230 noised independently according to Equations (14) and (7) for discrete and continuous variables,
231 respectively, and this can be seen as an extension of the previous multimodal flow where every
232 dimension is a variable on its own. From Proposition 4.2 of Campbell et al. (2024), we know that
233 the following process generates $p_t(\mathcal{G}_t) = \mathbb{E}_{p_1(\mathcal{G}_1)}[p_{t|1}(\mathcal{G}_t | \mathcal{G}_1)]$:

$$234 \quad R_t(v_{t_v}^d, j) = \mathbb{E}_{p_{1|t}^\theta(v_1^d | \mathcal{G}_t)}[R_t(v_{t_v}^d, j | v_1^d)], \quad (19)$$

$$235 \quad R_t(e_{t_e}^d, j) = \mathbb{E}_{p_{1|t}^\theta(e_1^d | \mathcal{G}_t)}[R_t(e_{t_e}^d, j | e_1^d)], \quad (20)$$

$$236 \quad u_t(f_{t_f}^d) = \mathbb{E}_{p_{1|t}^\theta(f_1^d | \mathcal{G}_t)}[u_t(f_{t_f}^d | f_1^d)], \quad (21)$$

237 where we abused notations and simply referred to all marginal and conditional rate matrices as R_t
238 and $R_t(\cdot | \mathcal{G}_1)$ to keep notations uncluttered. The denoising process for $v_{t_v}^d$ and $e_{t_e}^d$ is done according
239 to Equation (11), where the two rate matrices $R_t(v_{t_v}^d, j)$ and $R_t(e_{t_e}^d, j)$ are computed in closed form
240 using Equation (16) and their respective marginal prior distributions. The denoising process for
241 features $f_{t_f}^d$ follows Equation (9), using the vector field $u_t^\theta(f_t^d)$ learned by the model.

242 **Loss function.** Our generative model is trained by minimizing \mathcal{L}_{CFM} on continuous variables and
243 \mathcal{L}_{DFM} on discrete variables. The overall loss function writes:

$$244 \quad \mathcal{L} = \mathbb{E}_{t, \mathcal{G}_1, \mathcal{G}_t} \left[- \sum_d^{D_v} \log(p_{1|t}^\theta(v_1^d | \mathcal{G}_t)) - \sum_d^{D_e/2} \log(p_{1|t}^\theta(e_1^d | \mathcal{G}_t)) + \sum_d^{D_v} \|u_t^{\theta, d}(\mathcal{G}_t) - u_t(f_{t_f}^d | f_1^d)\|_2^2 \right]. \quad (22)$$

253 **Algorithm 1** Training
254

255 **Input:** Graph dataset $\mathcal{D} = \{\mathcal{G}^1, \dots, \mathcal{G}^M\}$
256 **for** $e = 1$ **to** Max training epoch E **do**
257 Sample $\mathcal{G}_1 \sim \mathcal{D}$, $t \sim \mathcal{U}[0, 1]^{2D_v + D_e}$
258 Sample $\mathcal{G}_t \sim p_{t|1}(\mathcal{G}_t | \mathcal{G}_1)$ \triangleright Noising
259 $p_{1|t}^\theta(v_1, e_1 | \mathcal{G}_t)$, $u_t^\theta(\mathcal{G}_t) \leftarrow f_\theta(\mathcal{G}_t, t)$ \triangleright
260 Forward pass
261 $\mathcal{L}_v \leftarrow \log p_{1|t}^\theta(v_1 | \mathcal{G}_t)$ \triangleright Node loss
262 $\mathcal{L}_e \leftarrow \log p_{1|t}^\theta(e_1 | \mathcal{G}_t)$ \triangleright Edge loss
263 $\mathcal{L}_f \leftarrow \|u_t^\theta(\mathcal{G}_t) - f_{t_f}^d\|_2^2$ \triangleright Features loss
264 Update f_θ weights
265 **end for**

253 **Algorithm 2** Inference
254

255 **Input:** Number of nodes D_v
256 Sample $\mathcal{G}_0 \sim p_0(\mathcal{G}_0)$ \triangleright Sample from prior
257 **for** denoising step $t = 0$ to 1 with step Δt **do**
258 $p_{1|t}^\theta(\mathcal{G}_t | \mathcal{G}_0) \leftarrow f_\theta(\mathcal{G}_t, t)$ \triangleright Denoising
259 $R_t(v_t, .), R_t(e_t, .) \leftarrow 19, 20$ \triangleright
260 Marginalize rate matrices
261 $v_{t+\Delta t} \sim \text{Cat}(\delta\{v_t, j\} + \Delta_t R_t(v_t, j))$
262 $e_{t+\Delta t} \sim \text{Cat}(\delta\{e_t, j\} + \Delta_t R_t(e_t, j))$
263 $f_{t+\Delta t} \leftarrow f_t + \Delta t \cdot u_t^\theta(f_t)$ \triangleright Update \mathcal{G}_t
264 **end for**
265 **Return:** \mathcal{G}_1

266 **Flexible denoising.** The main advantage of the proposed framework is that it allows all dimensions,
267 i.e., components or groups of components, to be denoised independently. Very diverse applica-
268 tions are therefore possible with the same model depending on the chosen *time sampling scheme*:

Figure 1: Multiple applications enabled by our framework, here on the AnalogGenie dataset.

- (a) End-to-end topology design and sizing – $t_v, t_e, t_f : 0 \rightarrow 1$;
- (b) Circuit completion / conditional inpainting – $\mathcal{G} = [(\mathcal{V}, \mathcal{E}, \mathcal{F}), (\mathcal{V}', \mathcal{E}', \mathcal{F}')]$ such that $t_v, t_e, t_f = 1$, and $t_{v'}, t_{e'}, t_{f'} : 0 \rightarrow 1$;
- (c) Topology-conditional sizing – $t_v, t_e = 1$, and $t_f : 0 \rightarrow 1$;
- (d) Link prediction – $t_v = 1$, and $t_e : 0 \rightarrow 1$.

Another noteworthy application is *continued denoising*, where an output graph \mathcal{G} undergoes additional denoising steps if it fails to meet predefined criteria. By fixing t between 0 and 1 independently for each device and edge, one can control the extent to which one part of the circuit must be denoised further or preserved, allowing a very fine-grained supervision. Illustrations of several applications can be found in Figure 1 and Appendix F, while the overall training and sampling procedures are summarized in Algorithm 1 and 2, respectively.

4.2 NETWORK ARCHITECTURE

We base our denoising network on the graph transformer architecture of Ma et al. (2023) which combines a global receptive field with an expressive random walk structural encoding, achieving strong performance across diverse graph learning tasks. To adapt it to our framework, we introduce two key modifications. First, we incorporate a time-conditioning mechanism, inspired by Diffusion Transformers (Peebles & Xie, 2023), mapping t_v (and respectively t_e and t_f) into multiplicative and additive biases $\alpha_v, \alpha'_v, \beta_v, \beta'_v, \gamma_v$, and γ'_v , applied at different stages of each transformer layer. Second, we add a dedicated processing path for node features f , mirroring the sequence of operations used for node types v . The graph transformer layer of CircuitFlow is illustrated in Figure 2. Overall, our model is a light architecture of 2.05M parameters.

4.3 CONDITIONAL GENERATION

In practice, analog circuit design typically supposes to adhere to predefined performance objectives. We present here how such control can be achieved, through two different guidance approaches (Nisonoff et al., 2025). Classifier guidance (CG) requires training a classifier model $p^\phi(c|\mathcal{G}_t, t)$ to predict the class of the conditioning signal c , given a noised

Figure 2: The conditional graph transformer layer of CircuitFlow.

Figure 3: Limitations of the OCB/CktGNN representation. Without explicit nets, graphs are more complex (**left**), and ambiguous (**right**): the output of the second single-stage op-amp (++) on the left side of the right panel, is *not* linked to the input of the third op-amp (+-), which belongs to a *feedback path*: arrows direction should be reversed. The DAG representation wrongly portrays the circuit as valid: it is *open* and therefore invalid, as shown when the feedback path edges are reversed.

sample \mathcal{G}_t . It is then used during the denoising process to bias the rate matrix of an *unconditional* generative model, yielding a *guided* rate matrix $R_t^{(\gamma)}(.|c)$, where γ controls the *guidance strength*:

$$(\text{CG}) : R_t^{(\gamma)}(x_t, j|c) = \left[\frac{\log p^\phi(c|j, t)}{\log p^\phi(c|x_t, t)} \right]^\gamma R_t(x_t, j). \quad (23)$$

This necessitates evaluating p^ϕ over all state transitions, which can become costly. An alternative is to use classifier-free guidance (CFG), which only requires two passes through the model at a denoising step t , one with the conditioning signal c yielding the conditional rate matrix $R_t(.|c)$, and one where c is replaced by a mask token \emptyset , yielding the unconditional R_t . The mask token is learned during training by randomly masking c with a chosen probability. In CFG, $R_t^{(\gamma)}(.|c)$ writes:

$$(\text{CFG}) : R_t^{(\gamma)}(x_t, j|c) = R_t(x_t, j|c)^\gamma R_t(x_t, j)^{1-\gamma}. \quad (24)$$

The previous procedure is applied to node types and edges. For the continuous case of node features, the unconditional velocity field $u_t^\theta(f_t|f_1)$ is updated at each step t using one of the following expressions (see Dhariwal & Nichol (2021) and Ho & Salimans (2022)):

$$(\text{CG}) : u_t^{(\gamma)}(f_t|f_1, c) = u_t^\theta(f_t|f_1) + \gamma \nabla_{f_t} \log p^\phi(c|\mathcal{G}_t, t), \text{ or}$$

$$(\text{CFG}) : u_t^{(\gamma)}(f_t|f_1, c) = u_t^\theta(f_t|f_1, \emptyset) + \gamma \cdot (u_t^\theta(f_t|f_1, c) - u_t^\theta(f_t|f_1, \emptyset)).$$

4.4 UNIFIED CIRCUIT GRAPH REPRESENTATION

Topology design and device sizing can be performed at different levels of the circuit representation hierarchy, including the behavior and the transistor level. In the former case, transistors do not appear explicitly, but are included in larger substructures, such as single-stage operational amplifiers (op-amps). Following prior work (Ren et al., 2020; Hakhamaneshi et al., 2022) we represent circuit and voltage nodes (i.e., nets and ports) as graph nodes, along with circuit devices. This results in a unified circuit representation that accommodates both representation levels, while conforming to the writing conventions of the SPICE simulation software. At the transistor level, we do not represent transistor pins explicitly, but proceed in a *hierarchical approach* to predict their connectivity. As noted by Gao et al. (2025), this is necessary to disambiguate topologies which do not specify pin assignments. To achieve this, we train a dedicated model to regress edge probabilities between transistors and their neighboring nodes, based on the output of a topology generation model. This approach ensures a one-to-one mapping between generated graphs and SPICE netlists across all representation levels. Further details on the hierarchical model are provided in Appendix C.

5 EXPERIMENTS

We evaluate the performance of CircuitFlow on two standard benchmarks for circuit topology generation: OCB (Dong et al., 2023) and AnalogGenie (Gao et al., 2025), which represent circuits at distinct abstraction levels. Since OCB also provides device sizes, we additionally assess the model’s effectiveness on the sizing task on this dataset. Both datasets however require preprocessing to map circuits into our unified representation, which we describe in the following section. All code, model weights and processed datasets are made publicly available.

378	Model	V.U.N.↑	Val. sim.↑	Val. graphs↑	Val. circuits↑	Uniqueness ↑	Novelty ↑
379	DAGNN	–	–	83.1	74.2	–	97.2
380	PACE	–	–	83.1	75.1	–	97.1
381	D-VAE	44.5	58.1	67.7	59.5	84.3	94.5
382	CktGNN	47.9	74.2	85.1	81.4	72.6	93.0
383	CircuitFlow (Ours)	74.3	92.9	99.4	98.4	85.8	91.1

384
385 Table 1: Evaluation of output topology quality across various architectures on OCB. Results that
386 could not be reproduced are reported from Dong et al. (2023). All metrics are expressed in **percent-**
387 **age**, and uniqueness is computed over 10,000 samples.

397 Figure 4: Novel op-amp circuit topologies produced by CircuitFlow. Certain samples possess com-
398 ponents (parallel capacitors or resistors) that make them equivalent to a circuit with fewer nodes.

400 5.1 DATASETS AND PREPROCESSING

402 **OCB.** The OCB dataset consists of 10,000 DAGs describing up to 3-stage op-amps at the *behavioral level*, split into 9,000 training samples (composed of 3,957, or 44%, unique topologies) and 404 1,000 test samples. Each graph comes in two versions, one where components are grouped using a 405 predefined set of *subgraphs*, and one decomposed into individual components, the latter including 406 device sizes. To keep the approach general we work at the component level, though several pre- 407 processing steps are more conveniently done at the subgraph level, which requires to map the circuit 408 back to its component and recover the sizes.

409 The first of these steps is to *identify and revert feedback path edges*: as illustrated in Figure 3 410 (right), using DAGs leads to *ambiguous topologies*, preventing the identification of feedback path 411 components and misrepresenting their input/output pin assignment. We therefore revert all input 412 and output edges to subgraphs containing feedback op-amps (*gm*- in OCB terminology). Following 413 common practice, we then add *circuit nets* as graph nodes, fully disambiguating device connections. 414 This also simplifies the graphs (Figure 3, left). Finally DAGs are converted into undirected graphs, 415 and we validate the robustness of the whole process by ensuring that all circuits remain simulatable.

416 **AnalogGenie.** The AnalogGenie dataset contains 3,350 samples spanning 11 analog circuit types 417 (op-amps, SC-samplers, bandgap references, power converters, etc.). Circuits are represented at the 418 transistor level and are substantially larger than OCB samples (see Table 7 in Appendix D for an 419 exhaustive comparison). Gao et al. (2025) highlight the need to represent transistor pins to disam- 420 biguate otherwise similar topologies, but omit net nodes. This has two detrimental consequences: 421 (i) as discussed in the previous section, it creates unnecessary complexity: adding net nodes reduces 422 mean graph density from 0.09 to 0.04; (ii) it breaks the invariance between the pins of symmetric 423 devices (resistors, capacitors, inductors), which must therefore be learned. We therefore preprocess 424 AnalogGenie circuits by adding net nodes, and removing pin nodes for symmetric devices.

426 5.2 BEHAVIOR-LEVEL TOPOLOGY GENERATION AND SIZING ON THE OCB DATASET

428 **Topology Generation.** We first evaluate the quality of circuit topologies generated by Circuit- 429 Flow, using several graph learning baselines: D-VAE (Zhang et al., 2019), DAGNN (Thost & Chen, 430 2021), PACE (Dong et al., 2022), and CktGNN (Dong et al., 2023). D-VAE and CktGNN were 431 re-trained using the code provided by Dong et al. (2023). We apply the same processing to CktGNN’s 432 outputs as described above for OCB subgraphs to reflect actual circuit topologies. Metrics from

	Accuracy (%) \uparrow	Gain	UG- f	PM	Joint
CFG					
<i>Topology</i>	50.3	24.3*	32.2	6.83	
<i>Topo. + sizing</i>	62.3	28.0*	33.2	7.28	
CG					
<i>Topo. + sizing</i>	65.7	61.0	73.3	28.9	

Table 2: Conditional generation accuracies on gain, unit-gain frequency (UG- f) and phase margin (PM), along with joint accuracy for two conditioning methods, classifier-free guidance (**CFG**) and classifier guidance (**CG**). Results marked with * are undistinguishable from random sampling under a two-sided binomial test (p -value > 0.05).

Figure 5: Distribution of output circuit features for the four conditioning categories and all three specifications, using CG. This shows the model has learned to conform to the required spec values.

this work are used here, including **Valid graphs** (percentage of connected graphs with input and output nodes) and **Valid circuits** (circuit with a main path composed only of single-stage op-amps). However, these do not capture graphs with nodes of degree one, which indicates open circuits, and ignore feedback paths. This means that some circuits that appear valid are not simulatable. We therefore add a **Valid sim** metric, similarly to Gao et al. (2025), that gives the proportion of circuits simulatable with SPICE with default parameters. Finally we also report the **V.U.N** (Vignac et al., 2023), which gives the fraction of outputs that are simultaneously simulatable, unique, and novel. Results from Table 1 show the exceptional ability of CircuitFlow to produce novel and valid outputs using as few as 100 denoising Euler steps, improving on CktGNN by 18 points in Valid sim and 26 points in V.U.N, hence establishing a new state-of-the-art on the OCB dataset. Examples of novel generated topologies can be found in Figure 4.

Conditional Circuit Design. We now examine how guidance can be used to control both topology design and device sizing based on predefined performance specifications. The conditioning signal c is a triplet (c_g, c_{pm}, c_{ugf}) corresponding to conditioning gain, phase margin and unit-gain frequency, following the features from OCB. Each quantity is discretized into quartiles so that the resulting four bins are equally likely. Marginal and joint accuracies between output and conditioning quantities are reported in Table 2, for both topology generation alone and full circuit design. Statistical significance is evaluated with two-sided binomial tests. For CFG we set $\gamma = 2$ for all modalities, and use $\gamma = 15$ for nodes and 30 for features for CG, and omit conditioning on edges. Results on topology generation provide an important insight: circuit topology is correlated with circuit-level specifications, even with randomized features. Thus topology discovery must be performed *conditionally* on circuit specifications, in contrast to previous approaches (Dong et al., 2023; Gao et al., 2025). Accuracy is further improved when jointly learning topology and sizes, and full conditional design with CG achieves 28.9% *joint accuracy* over all 64 test categories. We represent in Figure 5 the marginal distributions of output classes for all four conditioning categories of each specification, showing the effectiveness of our conditioning method. Conditional generation examples can be found in Figure 8 in appendix.

5.3 TRANSISTOR-LEVEL TOPOLOGY GENERATION ON THE ANALOGGENIE DATASET

This section explores the scalability of CircuitFlow to the more complex and diverse graphs of the AnalogGenie benchmark. Following Gao et al. (2025), we compare with Lamagic Chang et al. (2024) and AnalogCoder (Lai et al., 2025) which, while both trained on distinct datasets and being limited in terms of circuit complexity, represent important milestone works. We train CircuitFlow with our hierarchical approach, using a dedicated model for the regression of pin assignment probabilities. The number of denoising Euler steps is kept to 100. This time we explore using continued denoising as a post-processing strategy. To this end we select invalid circuits based on predefined but simple rules: disconnected graphs, absence of a *VSS* node, or node degree inconsistent with device pin number. Those circuits then undergo 5 additional denoising steps starting from $t = 0.9$,

ensuring that most of the topology is preserved (examples of this process can be found in Figure 11 in appendix). The whole process, which can be seen as an adaptive denoising stop condition, is repeated up to 5 times, obtaining significant improvements at a negligible cost. Results can be found in Table 3. Overall, we achieve a new state-of-the-art on the AnalogGenie dataset over all considered metrics, improving V.U.N over AnalogGenie by 13 to 26 points. Notably, this is done with minimal inductive bias, and a very light preprocessing pipeline. Finally, we report the Jensen-Shannon divergence between output and data distributions of node types (JS_{data}), showing that our method has learned to match the node type distribution much more closely, hinting at a more faithful coverage of the diversity of the training dataset. Examples of output circuits can be found in Figures 9 and 10.

Model (all metrics \uparrow)	V.U.N. (%)	Val. sim (%)	Uniqueness (%)	Novelty (%)	Max Node Nb	$JS_{data} (\times 10^{-3}) \downarrow$
LaMAGIC	—	68.2	—	12.7	4	—
AnalogCoder	—	57.3	—	8.9	10	—
AnalogGenie	62.2	73.1	88.5	100	63	14.5
CircuitFlow (Ours)	75.6	75.7	98.9	100	71	2.6
CircuitFlow + post-pro.	88.0	88.1	98.7	100	71	1.8

Table 3: Output topology quality on the AnalogGenie dataset. The Jensen-Shannon divergence between data and output node type distributions measures the diversity of generated architectures.

5.4 ABLATION STUDIES

We evaluate the effect of time sampling granularity by applying graph-, modality- and dimension-wise time sampling both at training and inference (Table 4). Our findings indicate that sampling time per modality or dimension during training leads to higher validity. The latter also improves the validity on the circuit completion task, where *sampling time per dimension at inference is necessary*: here, the denoising time index of conditioning nodes and edges needs to remain fixed to one, while only the time index of new nodes can vary. Next, we study how the number of denoising Euler steps affects topology quality on the AnalogGenie dataset (Table 5). Using as few as 50 denoising steps yields results that surpass previous state-of-the art, while 100 steps increase the V.U.N. by 3 additional points. Adding more denoising steps beyond that point does not improve results further.

t granularity	Inference		
	Topology Gen.		Completion
Train	Graph	Mod.	Dim.
Graph	80.5	81.0	56.5
Modality	92.6	92.7	65.7
Dimension	92.9	92.7	68.7

Table 4: Valid sim (%) per t sampling granularity (graph, modality or dimension level) on unconditional topology generation and circuit completion on the OCB dataset. Circuit completion requires dimension-wise time sampling.

Euler steps	V.U.N. (%)	Latency (s)
20	58.1	0.20
50	72.8	0.47
100	75.6	0.96
200	74.9	1.95
AnalogGenie	62.2	13.1

Table 5: Influence of the number of Euler steps on V.U.N. and latency (per sample) on the AnalogGenie dataset.

6 CONCLUSION

This work introduces CircuitFlow, a flow matching framework for joint analog circuit topology generation and device sizing. By leveraging independent time sampling across dimensions and modalities, the model achieves remarkable inference-time flexibility, enabling applications such as circuit completion, error correction or link prediction. Experiments show that CircuitFlow consistently produces valid, novel, and simulatable circuits, outperforming prior state-of-the-art models across both considered benchmarks. These results demonstrate its scalability from behavioral-level op-amps to diverse transistor-level circuits, while requiring only minimal preprocessing and inductive bias. Importantly, we also show that joint conditional topology generation and sizing is necessary to achieve a fine-grained control over the performances of the output circuits. This work therefore opens new research directions in generative circuit design, achieving together tasks that were previously treated in isolation.

540 REPRODUCIBILITY STATEMENT
541

542 All results reported here are fully reproducible using the provided code and weights, and the precise
543 pipeline will be described on the project’s github page. Likewise, we also release the preprocessing
544 code for both dataset and for the outputs from the CktGNN model, together with the exact dataset
545 versions used to train our models.

546
547 REFERENCES
548

549 Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Generative
550 flows on discrete state-spaces: Enabling multimodal flows with applications to protein co-design.
551 *arXiv preprint arXiv:2402.04997*, 2024.

552 Weidong Cao, Mouhacine Benosman, Xuan Zhang, and Rui Ma. Domain knowledge-infused deep
553 learning for automated analog/radio-frequency circuit parameter optimization. In *Proceedings of*
554 *the 59th ACM/IEEE Design Automation Conference*, pp. 1015–1020, 2022.

555 Weidong Cao, Jian Gao, Tianrui Ma, Rui Ma, Mouhacine Benosman, and Xuan Zhang. Rose-opt:
556 Robust and efficient analog circuit parameter optimization with knowledge-infused reinforcement
557 learning. *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems*, 2024.

559 Chen-Chia Chang, Yikang Shen, Shaoze Fan, Jing Li, Shun Zhang, Ningyuan Cao, Yiran Chen, and
560 Xin Zhang. Lamagic: Language-model-based topology generation for analog integrated circuits.
561 *arXiv preprint arXiv:2407.18269*, 2024.

562 Filipe Parrado de Azevedo, Nuno Calado Correia Lourenço, and Ricardo Miguel Ferreira Martins.
563 Comprehensive application of denoising diffusion probabilistic models towards the automation of
564 analog integrated circuit sizing. *Expert Systems with Applications*, pp. 128414, 2025.

566 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances*
567 *in neural information processing systems*, 34:8780–8794, 2021.

569 Zehao Dong, Muhan Zhang, Fuhai Li, and Yixin Chen. Pace: A parallelizable computation encoder
570 for directed acyclic graphs. In *International conference on machine learning*, pp. 5360–5377.
571 PMLR, 2022.

572 Zehao Dong, Weidong Cao, Muhan Zhang, Dacheng Tao, Yixin Chen, and Xuan Zhang. CktGNN:
573 Circuit graph neural network for electronic design automation. In *The Eleventh International*
574 *Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=NE2911Kq1sp>.

577 Pedro Eid, Filipe Azevedo, Nuno Lourenço, and Ricardo Martins. Using denoising diffusion
578 probabilistic models to solve the inverse sizing problem of analog integrated circuits. *AEU-*
579 *International Journal of Electronics and Communications*, 195:155767, 2025.

580 Floor Eijkelboom, Grigory Bartosh, Christian Andersson Naesseth, Max Welling, and Jan-Willem
581 van de Meent. Variational flow matching for graph generation. *Advances in Neural Information*
582 *Processing Systems*, 37:11735–11764, 2024.

584 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
585 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
586 for high-resolution image synthesis. In *Forty-first international conference on machine learning*,
587 2024.

588 Shaoze Fan, Ningyuan Cao, Shun Zhang, Jing Li, Xiaoxiao Guo, and Xin Zhang. From specification
589 to topology: Automatic power converter design via reinforcement learning. In *2021 IEEE/ACM*
590 *International Conference On Computer Aided Design (ICCAD)*, pp. 1–9. IEEE, 2021.

592 Morteza Fayazi, Morteza Tavakoli Taba, Ehsan Afshari, and Ronald Dreslinski. Angel: Fully-
593 automated analog circuit generator using a neural network assisted semi-supervised learning ap-
proach. *IEEE Transactions on Circuits and Systems I: Regular Papers*, 70(11):4516–4529, 2023.

594 Jian Gao, Weidong Cao, and Xuan Zhang. Rose: Robust analog circuit parameter optimization
 595 with sampling-efficient reinforcement learning. In *2023 60th ACM/IEEE Design Automation*
 596 *Conference (DAC)*, pp. 1–6. IEEE, 2023.

597

598 Jian Gao, Weidong Cao, Junyi Yang, and Xuan Zhang. Analogenie: A generative engine for
 599 automatic discovery of analog circuit topologies. In *The Thirteenth International Conference on*
 600 *Learning Representations*, 2025.

601 Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky TQ Chen, Gabriel Synnaeve, Yossi Adi, and
 602 Yaron Lipman. Discrete flow matching. *Advances in Neural Information Processing Systems*, 37:
 603 133345–133385, 2025.

604 Kourosh Hakhamaneshi, Marcel Nassar, Mariano Phielipp, Pieter Abbeel, and Vladimir Stojanovic.
 605 Pretraining graph neural networks for few-shot analog circuit modeling and design. *IEEE Trans-*
 606 *actions on Computer-Aided Design of Integrated Circuits and Systems*, 42(7):2163–2173, 2022.

607

608 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint*
 609 *arXiv:2207.12598*, 2022.

610 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 611 *neural information processing systems*, 33:6840–6851, 2020.

612

613 Yuxuan Hou, Jianrong Zhang, Hua Chen, Min Zhou, Faxin Yu, Hehe Fan, and Yi Yang. Cktgen:
 614 Specification-conditioned analog circuit generation. *arXiv preprint arXiv:2410.00995*, 2024.

615 Dmitrii Krylov, Pooya Khajeh, Junhan Ouyang, Thomas Reeves, Tongkai Liu, Hiba Ajmal,
 616 Hamidreza Aghasi, and Roy Fox. Learning to design analog circuits to meet threshold speci-
 617 fications. In *International Conference on Machine Learning*, pp. 17858–17873. PMLR, 2023.

618

619 Kishor Kunal, Meghna Madhusudan, Arvind K Sharma, Wenbin Xu, Steven M Burns, Ramesh
 620 Harjani, Jiang Hu, Desmond A Kirkpatrick, and Sachin S Sapatnekar. Align: Open-source analog
 621 layout automation from the ground up. In *Proceedings of the 56th Annual Design Automation*
 622 *Conference 2019*, pp. 1–4, 2019.

623 Yao Lai, Sungyoung Lee, Guojin Chen, Souradip Poddar, Mengkang Hu, David Z Pan, and Ping
 624 Luo. Analogcoder: Analog circuit design via training-free code generation. In *Proceedings of the*
 625 *AAAI Conference on Artificial Intelligence*, volume 39, pp. 379–387, 2025.

626 Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
 627 matching for generative modeling. In *The Eleventh International Conference on Learning Repre-*
 628 *sentations*, 2023.

629

630 Bingyang Liu, Haoyi Zhang, Xiaohan Gao, Zichen Kong, Xiyuan Tang, Yibo Lin, Runsheng Wang,
 631 and Ru Huang. Layoutcopilot: An llm-powered multi-agent collaborative framework for interac-
 632 tive analog layout design. *IEEE Transactions on Computer-Aided Design of Integrated Circuits*
 633 *and Systems*, 2025a.

634 Chengjie Liu, Weiyu Chen, Anlan Peng, Yuan Du, Li Du, and Jun Yang. Ampagent: An llm-
 635 based multi-agent system for multi-stage amplifier schematic design from literature for process
 636 and performance porting. *arXiv preprint arXiv:2409.14739*, 2024a.

637

638 Chengjie Liu, Yijiang Liu, Yuan Du, and Li Du. Ladac: Large language model-driven auto-designer
 639 for analog circuits. *Authorea Preprints*, 2024b.

640 Chengjie Liu, Jiajia Li, Yabing Feng, Wenhao Huang, Weiyu Chen, Yuan Du, Jun Yang, and Li Du.
 641 Diffckt: A diffusion model-based hybrid neural network framework for automatic transistor-level
 642 generation of analog circuits. *arXiv preprint arXiv:2507.00444*, 2025b.

643

644 Qiang Liu. Rectified flow: A marginal preserving approach to optimal transport. *arXiv preprint*
 645 *arXiv:2209.14577*, 2022.

646

647 Jialin Lu, Liangbo Lei, Fan Yang, Li Shang, and Xuan Zeng. Topology optimization of operational
 648 amplifier in continuous space via graph embedding. In *2022 Design, Automation & Test in Europe*
 649 *Conference & Exhibition (DATE)*, pp. 142–147. IEEE, 2022.

648 Jialin Lu, Liangbo Lei, Jiangli Huang, Fan Yang, Li Shang, and Xuan Zeng. Automatic op-amp gen-
 649 eration from specification to layout. *IEEE Transactions on Computer-Aided Design of Integrated*
 650 *Circuits and Systems*, 42(12):4378–4390, 2023.

651

652 Wenlong Lyu, Fan Yang, Changhao Yan, Dian Zhou, and Xuan Zeng. Batch bayesian optimization
 653 via multi-objective acquisition ensemble for automated analog circuit design. In *International*
 654 *conference on machine learning*, pp. 3306–3314. PMLR, 2018.

655 Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, Puneet K Dokania, Mark Coates,
 656 Philip Torr, and Ser-Nam Lim. Graph inductive biases in transformers without message passing.
 657 In *International Conference on Machine Learning*, pp. 23321–23337. PMLR, 2023.

658 Hunter Nisonoff, Junhao Xiong, Stephan Allenspach, and Jennifer Listgarten. Unlocking guid-
 659 ance for discrete state-space diffusion and flow models. In *The Thirteenth International Confer-
 660 ence on Learning Representations*, 2025. URL <https://openreview.net/forum?id=XsgH154y07>.

661

662 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of*
 663 *the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.

664

665 Souradip Poddar, Ahmet Budak, Linran Zhao, Chen-Hao Hsu, Supriyo Maji, Keren Zhu, Yaoyao
 666 Jia, and David Z Pan. A data-driven analog circuit synthesizer with automatic topology selection
 667 and sizing. In *2024 Design, Automation & Test in Europe Conference & Exhibition (DATE)*, pp.
 668 1–6. IEEE, 2024.

669

670 Yiming Qin, Manuel Madeira, Dorina Thanou, and Pascal Frossard. Defog: Discrete flow matching
 671 for graph generation. In *Proceedings of the 42nd International Conference on Machine Learning*
 672 (*ICML*), 2025. URL <https://arxiv.org/abs/2410.04263>.

673

674 Haoxing Ren, George F Kokai, Walker J Turner, and Ting-Sheng Ku. Paragraph: Layout parasitics
 675 and device parameter prediction using graph neural networks. In *2020 57th ACM/IEEE Design
 676 Automation Conference (DAC)*, pp. 1–6. IEEE, 2020.

677

678 Keertana Settaluri, Ameer Haj-Ali, Qijing Huang, Kourosh Hakhamaneshi, and Borivoje
 679 Nikolic. Autockt: Deep reinforcement learning of analog circuit designs. *arXiv preprint*
 680 *arXiv:2001.01808*, 2020.

681

682 Aditya Shahane, Saripilli Swapna Manjiri, Ankesh Jain, and Sandeep Kumar. Graph of circuits with
 683 gnn for exploring the optimal design space. *Advances in neural information processing systems*,
 684 36:6014–6025, 2023.

685

686 Jinyi Shen, Fan Yang, Li Shang, Changhao Yan, Zhaori Bi, Dian Zhou, and Xuan Zeng. Atom:
 687 An automatic topology synthesis framework for operational amplifiers. *IEEE Transactions on*
 688 *Computer-Aided Design of Integrated Circuits and Systems*, 2024.

689

690 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 691 learning using nonequilibrium thermodynamics. In *International conference on machine learn-
 692 ing*, pp. 2256–2265. pmlr, 2015.

693

694 Veronika Thost and Jie Chen. Directed acyclic graph neural networks. *arXiv preprint*
 695 *arXiv:2101.07965*, 2021.

696

697 Alexander Tong, Kilian FATRAS, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-
 698 Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models
 699 with minibatch optimal transport. *Transactions on Machine Learning Research*, 2024. ISSN
 700 2835-8856.

701 Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal
 702 Frossard. Digress: Discrete denoising diffusion for graph generation. In *The Eleventh Interna-
 703 tional Conference on Learning Representations*, 2023. URL [13](https://openreview.net/

 704 <i>forum?id=UaAD-Nu86WX</i>.</p>
<p>705</p>
<p>706 Hanrui Wang, Jiacheng Yang, Hae-Seung Lee, and Song Han. Learning to design circuits. <i>arXiv</i>

 707 <i>preprint arXiv:1812.02734</i>, 2018.</p>
</div>
<div data-bbox=)

702 Hanrui Wang, Kuan Wang, Jiacheng Yang, Linxiao Shen, Nan Sun, Hae-Seung Lee, and Song Han.
703 Gcn-rl circuit designer: Transferable transistor sizing with graph neural networks and reinforce-
704 ment learning. In *2020 57th ACM/IEEE Design Automation Conference (DAC)*, pp. 1–6. IEEE,
705 2020.

706 Biying Xu, Keren Zhu, Mingjie Liu, Yibo Lin, Shaolan Li, Xiyuan Tang, Nan Sun, and David Z Pan.
707 Magical: Toward fully automated analog ic layout leveraging human and machine intelligence. In
708 *2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)*, pp. 1–8. IEEE,
709 2019.

710 Yuxuan Yin, Yu Wang, Boxun Xu, and Peng Li. Ado-llm: Analog design bayesian optimization with
711 in-context learning of large language models. In *Proceedings of the 43rd IEEE/ACM International
712 Conference on Computer-Aided Design*, pp. 1–9, 2024.

713 Muhan Zhang, Shali Jiang, Zhicheng Cui, Roman Garnett, and Yixin Chen. D-vae: A variational
714 autoencoder for directed acyclic graphs. *Advances in neural information processing systems*, 32,
715 2019.

716 Zhenxin Zhao and Lihong Zhang. Analog integrated circuit topology synthesis with deep reinforce-
717 ment learning. *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems*,
718 41(12):5138–5151, 2022.

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A DERIVATION OF THE CONDITIONAL RATE MATRIX EXPRESSION**
 757

758 In this paper, we consider the prior distribution over node types and edges as the joint marginal
 759 distribution over all S states, where S is the number of node types for nodes and 2 for edges. In the
 760 following, we write indiscriminately the variable of interest as $x_t \in [1, \dots, S]^D$.

761 We have then:

763 $x_0 \sim \text{Cat}(m_1, m_2, \dots, m_S),$ (25)
 764

765 where:

766 $\forall i, m_i \in [0, 1] \quad \text{and} \quad m_i = \frac{1}{ND} \sum_{x \in X_{\text{data}}} \sum_d \delta\{x^d, i\}$ (26)
 767
 768

769 Now the noised vector x_t^d is sampled from the distribution obtained by interpolating between the
 770 one-hot distribution in x_1^d and the prior p_0 .
 771

772 $x_t^d \sim \text{Cat}(t\delta\{x_1^d, x_t^d\} + (1 - t) \times m)$ (27)
 773
 774

775 The derivation of the conditional rate matrix is inspired from the uniform case of Campbell
 776 et al. (2024), substituting the uniform distribution with the marginal one. We first need to derive
 777 $\partial_t p_{t|1}(x_t^d | x_1^d)$ in order to compute the first term of the conditional rate matrix in Equation (15).
 778

779 $\partial_t p_{t|1}(x_t^d | x_1^d) = \partial_t \left(t\delta\{x_t^d, x_1^d\} + (1 - t)m_{x_t^d} \right)$ (28)
 780

781 $= \delta\{x_t^d, x_1^d\} - m_{x_t^d}$ (29)
 782

783 Thus, for $x_t^d \neq j$ (diagonal entries will be computed later):
 784

785 $R_t^*(x_t^d, j | x_1^d) = \frac{\text{ReLU}(\partial_t p_{t|1}(j | x_1^d) - \partial_t p_{t|1}(x_t^d | x_1^d))}{S p_{t|1}(x_t^d | x_1^d)}$ (30)
 786

787 $= \frac{\text{ReLU}(\delta\{j, x_1^d\} - m_j - \delta\{x_t^d, x_1^d\} + m_{x_t^d})}{S(t\delta\{x_t^d, x_1^d\} + (1 - t)m_{x_t^d})}.$ (31)
 788
 789

790 This simplifies as:

791 $R_t^*(x_t^d, j | x_1^d) = \frac{(1 - m_j + m_{x_t^d})}{S(1 - t)m_{x_t^d}} \delta\{j^d, x_1^d\} (1 - \delta\{x_t^d, x_1^d\})$
 792
 793 $+ \frac{\text{ReLU}(m_{x_t^d} - m_j)}{S(1 - t)m_{x_t^d}} (1 - \delta\{j, x_1^d\}) (1 - \delta\{x_t^d, x_1^d\}).$ (32)
 794
 795

796 We turn now to the derivation of the *detailed balance* term of the conditional rate matrix, which
 797 allows to inject stochasticity in the denoising process. As per Campbell et al. (2024), to ensure that
 798 the rate matrix still obeys the continuity equation, R_t^{DB} must satisfy the following detailed balance
 799 condition:

800 $p_{t|1}(i | x_1^d) R_t^{\text{DB}}(i, j | x_1^d) = p_{t|1}(j | x_1^d) R_t^{\text{DB}}(j, i | x_1^d)$ (33)
 801

802 Following their general recipe for DB rate matrix expression and again considering $i \neq j$, we
 803 assume:

804 $R_t^{\text{DB}}(i, j | x_1^d) = a_t \delta\{i, x_1^d\} + b_t \delta\{j, x_1^d\}$ (34)
 805

806 Substituting this into Equation (33) yields:
 807

810
811
812
813
814

$$(t\delta\{i, x_1^d\} + (1-t)m_i) (a_t\delta\{i, x_1^d\} + b_t\delta\{j, x_1^d\}) \quad (35)$$

$$= (t\delta\{j, x_1^d\} + (1-t)m_j) (a_t\delta\{j, x_1^d\} + b_t\delta\{i, x_1^d\}). \quad (36)$$

As this must be true for all i and j as long as $i \neq j$, one may fix $i = x_1^d$ to force a simpler relation between a_t and b_t :

817
818
819

$$b_t = a_t \frac{t + (1-t)m_i}{(1-t)m_j} \quad (37)$$

In the following a_t is set to a *noise level* η which can be seen as a re-noising rate of clean data. Finally, the detailed balance conditional rate matrix writes:

820
821
822
823

$$R_t^{\text{DB}}(i, j | x_1^d) = \eta\delta\{i, x_1^d\} + \eta \frac{t + (1-t)m_i}{(1-t)m_j} \delta\{j, x_1^d\}. \quad (38)$$

B MARGINALIZATION OF THE CONDITIONAL RATE MATRIX

The unconditional rate matrix $R_t(x_t^d, j)$ can be computed in closed form by marginalizing the overall conditional rate matrix $R_t(x_t^d, j | x_1^d) = R_t^*(x_t^d, j | x_1^d) + R_t^{\text{DB}}(x_t^d, j | x_1^d)$ over x_1^d , where the probabilities $p_{1|t}^\theta(x_1^d | x_t)$ are output by the learned flow matching model θ :

827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

$$\begin{aligned} R_t(x_t^d, j) &= \mathbb{E}_{p_{1|t}^\theta(x_1^d | x_t)} [R_t^*(x_t^d, j | x_1^d) + R_t^{\text{DB}}(x_t^d, j | x_1^d)] \\ &= \mathbb{E}_{p_{1|t}^\theta(x_1^d | x_t)} \left[\frac{(1 - m_j + m_{x_t^d})}{S(1-t)m_{x_t^d}} \delta\{j, x_1^d\} (1 - \delta\{x_t^d, x_1^d\}) \right. \\ &\quad + \frac{\text{ReLU}(m_{x_t^d} - m_j)}{S(1-t)m_{x_t^d}} (1 - \delta\{j, x_1^d\}) (1 - \delta\{x_t^d, x_1^d\}) \\ &\quad \left. + \eta\delta\{x_t^d, x_1^d\} + \eta \frac{t + (1-t)m_{x_t^d}}{(1-t)m_j} \delta\{j, x_1^d\} \right]. \end{aligned} \quad (40)$$

Integrating over x_1^d yields the final expression for the marginal rate matrix, wherein each term can be easily computed:

848
849
850
851
852
853
854
855
856
857

$$\begin{aligned} R_t(x_t^d, j) &= \frac{(1 - m_j + m_{x_t^d})}{S(1-t)m_{x_t^d}} p_{1|t}^\theta(x_1^d = j | x_t) \\ &\quad + \frac{\text{ReLU}(m_{x_t^d} - m_j)}{S(1-t)m_{x_t^d}} (1 - p_{1|t}^\theta(x_1^d = j | x_t) - p_{1|t}^\theta(x_1^d = x_t^d | x_t)) \\ &\quad + \eta p_{1|t}^\theta(x_1^d = x_t^d | x_t) + \eta \frac{t + (1-t)m_{x_t^d}}{(1-t)m_j} p_{1|t}^\theta(x_1^d = j | x_t) \end{aligned} \quad (41)$$

Diagonal entries of R_t are then obtained following $R_t(i, i) = -\sum_{j \neq i} R_t(i, j)$.

We can finally compute the transition probabilities

861
862
863

$$p_{t+\Delta t|t}(x_{t+\Delta t}^d = j | x_t) = \delta\{j, x_t^d\} + R_t(x_t^d, j) \Delta t, \quad (42)$$

which, when done on all dimensions d and all time steps t , finally allows to sample new data points from p_1 .

Figure 6: (Left) Device-level circuit, where the NMOS is treated as a single node connected to three nets (NET, VOUT, and VSS). (Right) The corresponding pin-level graph, with explicit pin connections.

C PIN-LEVEL PREDICTION

Our two-stage approach for pin-level topology generation involves a first model which generates a circuit topology with device interconnections. Based on the output of the first stage, a second model determines how pins connect to the neighboring components. The process is represented in Figure 6.

The pin assignment model shares the same architecture as the topology generation model, but is trained to regress edge probabilities between a node’s pins and the neighboring net nodes. This is done using a classical binary cross entropy objective:

$$\mathcal{L}_{\text{PIN}} = -\frac{1}{|\mathcal{E}_L|} \sum_{e \in \mathcal{E}_L} y_e \log(\hat{y}_e) + (1 - y_e) \log(1 - \hat{y}_e), \quad (43)$$

where $y_e = 1$ if edge e exists, and 0 otherwise. At inference, assigning transistor pins to their neighbors requires to solve an assignment problem, using the (opposite of the) predicted edge probabilities as the cost function, and fulfilling the constraint that all neighboring node is connected to at least one pin.

The accuracy of the pin assignment model is reported in Table 6, after 150 training epochs.

Metric	Value (%)
Precision	97.54
Recall	98.87
F1-score	98.2
Accuracy	98.2

Table 6: Test set performance metrics of the pin assignment model.

D DATASETS STATISTICS

Table 7 presents the main features of the datasets used in this paper. AnalogGenie (no pins) corresponds to the dataset version that is used to train the topology generation model, which is completed by a pin assignment model.

E TIME SAMPLING DISTORTION

Following Qin et al. (2025), we apply a *time distortion* function f to the time index t sampled uniformly between 0 and 1. Here we use $f : t \mapsto 1 - (1 - t)^n$, and use the parameter n to control the distortion strength. This procedure allows to control the denoising process by putting an emphasis on critical time steps, e.g. when t approaches 1, where an output circuit can become

Dataset	OCB	AnalogGenie	AnalogGenie (no pins)
# of graphs	10,000	3,350	3,350
% uniqueness	44.0	99.4	99.4
Number of node types	9	81	28
Avg. # of nodes per sample	12	107	38
Avg. # of edges per sample	15	145	60
Avg. density	0.25	0.042	0.11

Table 7: Main dataset statistics.

invalid due to a single edge misplacement. The distortion function is represented in Figure 7 for typical values of n for both training and inference on the AnalogGenie dataset, where a distinct n is used for nodes (n_v) and edges (n_e).

Figure 7: Node (t_v) and edge time (t_e) sampling schemes on the AnalogGenie dataset.

F ILLUSTRATIONS OF DENOISING APPLICATIONS

Figure 8: Conditional analog circuit design on OCB.

In this section we illustrate several use cases of CircuitFlow applications, on both OCB and AnalogGenie datasets. Figure 8 pictures two output circuits for two different sets of conditioning specifications on OCB. Examples of transistor-level output topologies can be found in Figures 9 and 10. Then Figures 11, 12 and 13 illustrate the applications of continued denoising, circuit completion, and link prediction, respectively.

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001

(a)

1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021

(b)

Figure 9: Output topologies generated on the AnalogGenie dataset, showcasing a possible Differential Amplifier (a) and NMOS Logic Gate (b).

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

(c)

(d)

Figure 10: Additional topologies generated on the AnalogGenie dataset.

Figure 11: **Continued denoising** can be used to fix topology inconsistencies, as illustrated here on the AnalogGenie dataset.

Figure 12: **Circuit completion** examples on the AnalogGenie dataset.

1232 Figure 13: **Link prediction** examples from the same initial *empty graph*, on the AnalogGenie
 1233 dataset. Generated topologies can include invalid component connections (see bottom right cir-
 1234 cuit), that could be fixed by additional denoising.

1235
 1236
 1237
 1238
 1239
 1240
 1241