
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ANALOG CIRCUIT TOPOLOGY DESIGN AND SIZING
WITH FLOW MATCHING GRAPH LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

The soaring demand for electronic devices calls for novel and more efficient ana-
log circuits design. Deep generative models have shown promise in assisting
topology, parameter sizing, and layout design process, but existing approaches
treat these tasks separately and lack generalizability across diverse problem set-
tings. In this work we introduce a flow matching model for automatic analog
circuit design, which achieves high-quality sampling across a variety of topolo-
gies and representations. Our model showcases state-of-the-art performance on
end-to-end topology design and sizing on the Open Circuit Benchmark (OCB)
dataset, and on transistor-level topology generation on the AnalogGenie dataset.
Code and models are provided as external supplementary files to this submission.

1 INTRODUCTION

The automation of analog circuit design stands as an active area of research, driven both by the
demand for increasingly efficient architectures to sustain the growth of the electronics industry and
by the intrinsic complexity of the task, which is notoriously more challenging than digital circuit
design due to its greater diversity of components. Accordingly, the literature presents a wide range of
data-driven approaches aimed at automating one or more steps of the analog design workflow, which
traditionally includes topology discovery (Lu et al., 2022; 2023; Poddar et al., 2024), parameter
sizing (Wang et al., 2018; 2020; Krylov et al., 2023), and layout prediction (Kunal et al., 2019; Xu
et al., 2019; Liu et al., 2025a).

Despite significant progress, several hurdles remain. Many methods exhibit limited generalizability,
restricting their applicability to a small set of circuit topologies. Others rely on multiple models
trained for different subtasks or require substantial computational resources. The absence of widely
adopted benchmarks and open models has also often been cited as a limiting factor for faster ad-
vancement in the field. This issue has been partly addressed by the recent release of benchmarks
and models targeting topology generation and device sizing (Dong et al., 2023; Gao et al., 2025),
enabling more systematic comparisons. In terms of model architectures, the long-standing paradigm
of representing circuits as graphs (Ren et al., 2020; Wang et al., 2020; Hakhamaneshi et al., 2022;
Shahane et al., 2023) now coexists with the recent adoption of Large Language Models (LLM)-
based methodologies (Yin et al., 2024; Liu et al., 2024a;b), which harness the exceptional ability
of LLMs for sequence modeling to generate circuit design as textual outputs (Chang et al., 2024;
Lai et al., 2025). There is however still room for improvement, while the generalizability of these
methods beyond pre-defined settings remains an open question.

We argue that graph-based representations of circuits hold untapped potential to address these limita-
tions. In particular, recent progress in generative modeling of graphs using denoising diffusion (Vi-
gnac et al., 2023) and flow matching (Eijkelboom et al., 2024; Qin et al., 2025) lets us foresee
promising applications for analog circuit design. These models are notorious for their high sample
quality (Esser et al., 2024), and can accommodate the conditional generation of multimodal data,
opening the door to applications such as circuit completion or parameter sizing within a single ar-
chitecture. Diffusion models have already proved successful for device sizing (de Azevedo et al.,
2025; Eid et al., 2025) and topology discovery (Liu et al., 2025b), but for a limited scope of circuits.
So far, only one study has attempted to tackle these tasks jointly (Hou et al., 2024)

In this work, we introduce a multimodal flow matching model, CircuitFlow, for end-to-end gen-
eration of analog circuit topology and device sizing. Built on a graph transformer backbone, it

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

shows remarkable sampling quality and allows a very fine control on the denoising process through
a modality-dependent time sampling scheme. We evaluate our approach on established benchmarks:
first at the behavioral level on the OCB dataset (Dong et al., 2023), and then at the transistor level on
the AnalogGenie dataset (Gao et al., 2025) with a separate model for the prediction of port connec-
tivity, achieving in both cases state-of-the-art improvement in the quality of generated circuits. The
main contribution of this work is the extension of multimodal flow matching to analog circuit design,
yielding a unified framework that jointly addresses discrete topology generation and continuous de-
vice sizing across multiple representation levels and circuit complexities. This is notably enabled by
sampling the denoising time index separately for each dimension, granting unprecedented flexibility
for diverse inference-time applications without the need for additional training. The remainder of
this paper is structured as follows. Related work is discussed in Section 2. Section 3 introduces the
theoretical foundations of this work. The proposed approach is detailed in Section 4, and experi-
mental results are presented in Section 5.

2 RELATED WORK

2.1 DATA-DRIVEN TOPOLOGY DESIGN AND SIZING OF ANALOG CIRCUITS

Topology generation. Data-driven approaches for topology design include Reinforcement Learning
(RL) (Fan et al., 2021; Zhao & Zhang, 2022), Bayesian Optimization (BO) in the continuous latent
space of a Variational Auto-Encoder (VAE) (Lu et al., 2022; 2023; Dong et al., 2023; Shen et al.,
2024), and retrieval from predefined building blocks (Fayazi et al., 2023; Poddar et al., 2024). RL
and BO methods often suffer from slow convergence, while retrieval-based strategies depend heavily
on the completeness of predefined architectures and typically lack flexibility. Recent works leverage
pre-trained LLMs to generate topologies as text output (Chang et al., 2024; Lai et al., 2025), but have
not yet scaled beyond a limited set of circuit types and complexity. AnalogGenie (Gao et al., 2025)
demonstrates strong scalability to diverse, transistor-level topologies, but its GPT-based backbone
requires extensive data augmentation to enforce permutation invariance over input graph nodes.

Device Sizing. Parameter sizing, whether at the behavior or transistor level, has been widely ex-
plored using RL (Wang et al., 2018; Settaluri et al., 2020; Wang et al., 2020; Cao et al., 2022; Gao
et al., 2023; Cao et al., 2024), BO (Lyu et al., 2018), supervised learning (Hakhamaneshi et al., 2022;
Krylov et al., 2023) or LLMs (Yin et al., 2024; Liu et al., 2024a;b). Some works aim to address both
topology design and sizing (Fayazi et al., 2023; Lu et al., 2023; Liu et al., 2025b), but do so in
several stages with separate, dedicated models. An exception is CktGen (Hou et al., 2024), which
addresses these tasks jointly using a VAE model. Their approach is however limited to operational
amplifiers, and the absence of released models precludes formal comparison.

2.2 FLOW MATCHING FOR GRAPH GENERATION

Flow matching models (Lipman et al., 2023; Esser et al., 2024; Tong et al., 2024) have emerged
as a sample-efficient alternative to diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020).
They have been extended to discrete state-space (Campbell et al., 2024; Gat et al., 2025) and proved
successful on diverse graph generation tasks (Eijkelboom et al., 2024; Qin et al., 2025). To date,
flow matching has not been applied to analog circuit design. A handful of methods have explored
the use of denoising diffusion for sizing and topology discovery (de Azevedo et al., 2025; Eid et al.,
2025; Liu et al., 2025b), but remain restricted to a narrow range of circuit topologies.

3 PRELIMINARIES

3.1 CONTINUOUS FLOW MATCHING

The objective of continuous flow matching is to learn an approximation function uθ
t of a quantity ut

called a vector or velocity field, which, given an arbitrary dimension d, is a function of Rd in itself
that describes the instantaneous change of a flow xt with respect to a time dimension:

ut(xt) =
dxt

dt
, with xt ∈ Rd. (1)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Given time-varying probability distribution pt, ut is said to generate the probability path pt if xt is
a random variable that follows pt, where the prior p0 is typically a standard Gaussian or uniform
distribution, and p1 is the unknown data distribution. This is expressed by the continuity equation
which links ut to pt:

dpt(xt)

dt
= −div(pt(xt)ut(xt)), (2)

where div(f(x)) =
∑

i
∂f(x)i
∂xi

is the divergence operator. Ideally, for a given pt that satisfies the
continuity equation and a trained approximation function uθ

t , sampling from the data distribution
can be achieved by drawing x0 from the prior and solving Equation (1) up to t = 1. In practice, one
cannot express pt and ut directly, but may instead define them as the expectations of a conditional
path and velocity field over the data distribution p1 (Lipman et al., 2023):

pt(xt) =

∫
pt(xt|x1)p1(x1)dx1, (3)

ut(xt) =

∫
ut(xt|x1)

pt(xt|x1)p1(x1)

pt(xt)
dx1. (4)

This definition allows two important results. The first corollary is that if ut(xt|x1) generates
pt(xt|x1), then ut generates pt. Hence it is enough to define a conditional velocity field and prob-
ability path that satisfy the continuity equation, which is a much easier task. Second, the same
parameter set θ minimizes the following objectives:

LFM = Et,xt∼pt

[
∥uθ

t (xt)− ut(xt)∥22
]
, and LCFM = Et,x1,xt∼pt(xt|x1)

[
∥uθ

t (xt)− ut(xt|x1)∥22
]
.

(5)
As LCFM offers a tractable objective, it is therefore enough to reason in terms of conditional quan-
tities. In summary, if pt(xt|x1) and ut(xt|x1) are chosen adequately such that ut(xt|x1) generates
pt(xt|x1), then minimizing Equation (5) (right) amounts to fitting a neural network uθ

t which gen-
erates pt, i.e., which may then be used to sample from p1. Lipman et al. (2023) propose to write the
conditional probability path as a Gaussian:

pt(xt|x1) = N (xt;µt(x1), σ
2
t (x1)I), (6)

with µ0(x1) = 0, µ1(x1) = x1, σ0(x1) = 1, and to write the flow xt as xt = σt(x1)x0 + µt(x1)
where x0 ∼ p0. When σt → 0, and µt(x1) = tx1 + (1− t)x0, one obtains the well-known rectified
flow (Liu, 2022):

xt = tx1 + (1− t)x0, (7)

ut(xt|x1) = x1 − x0 =
x1 − xt

1− t
, (8)

which can be used in Equation (5) to compute LCFM. Once trained, the model can be used to draw
from p1 starting from a noise sample x0 ∼ p0 and following denoising Euler steps ∆t:

xt+∆t = xt +∆t uθ
t (xt). (9)

3.2 DISCRETE FLOW MATCHING

One approach (Campbell et al., 2024) to modeling discrete data x1 ∈ [1, . . . , S]D, where each
dimension of x1 can take S different states, is to consider the whole flow xt as discrete, and allow
state transitions to occur one dimension at a time. This translates in the following factorization of
pt+∆t(xt+∆t|xt):

pt+∆t(xt+∆t|xt) =
∏
d

pt+∆t(x
d
t+∆t|xt). (10)

This allows to define the generative process using a rate matrix Rt ∈ RS×S which characterizes
state transition over single dimensions and replaces the velocity field ut from the continuous setting,
as can be seen from the denoising process:

xd
t+∆t ∼ Cat(δ{xd

t , x
d
t+∆t}+∆t Rt(x

d
t , x

d
t+∆t)). (11)

The rate matrix satisfies Rt(i, j) ≥ 0 if i ̸= j and Rt(i, i) = −
∑

j ̸=i Rt(i, j). As in the continuous
case, Rt must satisfy the continuity equation (known as the Kolmogorov equation in the discrete

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

case, see Gat et al. (2025)) to ensure that it generates pt, and that solving Equation (11) amounts
to sampling from the data distribution p1. Again, it is more convenient to define a conditional rate
matrix Rt(xt, xt+∆t|x1) that generates the conditional distribution pt|1, and that can be used to
recover the marginal rate matrix Rt through the following expectation:

Rt(xt, j) = Ep1|t(x1|xt)Rt(xt, j|x1). (12)

This time however the conditional rate matrix can be computed in closed form, and one instead aims
to learn the posterior probabilities p1|t(x1|xt). In the multivariate case, each dimension is learned
separately, such that the training objective writes:

LDFM = −Et,x1,xt

∑
d

log(pθ1|t(x
d
1|xt)), (13)

with pθ1|t the approximation function. Noised vector xt is sampled per dimension by interpolating
between xd

1 and a prior, that we take here equal to the product of marginal probability mass functions
over all states, simply written Cat(m), with m ∈ [0, 1]S (see Appendix A for the computation of
m):

xd
t ∼ Cat(tδ{xd

1, x
d
t }+ (1− t)×m)). (14)

Inference is done independently from training, which does not require access to the conditional rate
matrix. For the latter, Campbell et al. (2024) introduce the following expression:

Rt(x
d
t , x

d
t+∆t = j|xd

1) =
ReLU(∂tpt|1(x

d
t+∆t = j|xd

1)− ∂tpt|1(x
d
t |xd

1))

S.pt|1(x
d
t |xd

1)
+RDB(xd

t+∆t = j|xd
1),

(15)
where the detailed balance term RDB allows an adjustable level of stochasticity (see Appendix A
for the derivation of both terms for our choice of prior distribution). The expectation over xd

1 can be
derived in closed form to give the final expression of the marginal rate matrix Rt (see Appendix B):

Rt(x
d
t , j) =

(
1−mj +mxd

t

)
S(1− t)mxd

t

pθ1|t(x
d
1 = j|xt)

+
ReLU

(
mxd

t
−mj

)
S(1− t)mxd

t

(1− pθ1|t(x
d
1 = j|xt)− pθ1|t(x

d
1 = xd

t |xt))

+ η pθ1|t(x
d
1 = xd

t |xt) + η
t+ (1− t)mxd

t

(1− t)mj
pθ1|t(x

d
1 = j|xt), (16)

where η ∈ R+ is the tunable noise level.

Multimodal Flows. In the case of a multimodal flow (xt, yt), Campbell et al. (2024) showed that
if the noising process pt|1(xt, yt|x1, y1) factorizes over its variables such that:

pt|1(xt, yt|x1, y1) =

Dx∏
d

pt|1(x
d
t |xd

1)

Dy∏
d

pt|1(y
d
t |yd1), (17)

then the process composed separately of Rx
t (respectively ux

t if xt is continuous) and Ry
t (resp.

uy
t), as defined above, generates the marginal multimodal flow pt(xt, yt). This allows to sample t

independently for each variable, which enables a remarkable flexibility of the denoising process.

4 GRAPH FLOW MATCHING FOR ANALOG TOPOLOGY DESIGN AND SIZING

For the remainder of this work, we represent circuits as undirected graphs G composed of a set of
Dv nodes V , a set of edges E ⊆ V × V that connect the nodes, and when applicable, a node feature
vectorF that provides component sizes. Individual node elements and node features are respectively
noted vd and fd, ∀d ≤ Dv , and take values in {1, . . . , S} and R, respectively, where S is the total
number of node types. Individual edges are noted ed, ∀d ≤ De = Dv × Dv , and take values in
{0, 1}. The objective of this work is to train a multimodal flow matching model to sample from
the data distribution p1(G). This section first defines this flow along with its training process. We
then describe the architecture of the employed graph transformer model, and give details about the
chosen data representation.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.1 MULTIMODAL FLOW FOR FLEXIBLE CIRCUIT MODELING

The flow we consider here is composed of two discrete variables, node types Vt and edges Et, along
with the continuous device sizes Ft. As before, the noising process will factorize over variables, and
as suggested by Campbell et al. (2024) the noising time index will be sampled independently for each
variable, yielding respectively tv , te and tf for node types, edges and features. Here however we
go one step further and sample time independently for each dimension, such that tv, tf ∈ [0, 1]Dv

and te ∈ [0, 1]De/2 (graphs are undirected and only half of the edges are modeled). As we shall see
shortly, this makes the sampling process particularly flexible, allowing a whole range of key applica-
tions. The noising process thus writes, using the notations t = (tv, te, tf) and Gt = (Vtv , Ete ,Ftf):

pt|1(Gt|G1) =
Dv∏
d

ptv|1(v
d
tv |v

d
1)ptf |1(f

d
tf
|fd

1)

De/2∏
d

pte|1(e
d
te |e

d
1), (18)

where we omitted the dimension dependency on time for the sake of clarity. Each dimension is
noised independently according to Equations (14) and (7) for discrete and continuous variables,
respectively, and this can be seen as an extension of the previous multimodal flow where every
dimension is a variable on its own. From Proposition 4.2 of Campbell et al. (2024), we know that
the following process generates pt(Gt) = Ep1(G1)[pt|1(Gt|G1)]:

Rt(v
d
tv , j) = Epθ

1|t(v
d
1 |Gt)[Rt(v

d
tv , j|v

d
1)], (19)

Rt(e
d
te , j) = Epθ

1|t(e
d
1 |Gt)[Rt(e

d
te , j|e

d
1)], (20)

ut(f
d
tf
) = Epθ

1|t(f
d
1 |Gt)[ut(f

d
tf
|fd

1)], (21)

where we abused notations and simply referred to all marginal and conditional rate matrices as Rt

and Rt(.|G1) to keep notations uncluttered. The denoising process for vdtv and edte is done according
to Equation (11), where the two rate matrices Rt(v

d
tv , j) and Rt(e

d
te , j) are computed in closed form

using Equation (16) and their respective marginal prior distributions. The denoising process for
features fd

tf
follows Equation (9), using the vector field uθ

t (f
d
t) learned by the model.

Loss function. Our generative model is trained by minimizing LCFM on continuous variables and
LDFM on discrete variables. The overall loss function writes:

L = Et,G1,Gt

[
−

Dv∑
d

log(pθ1|t(v
d
1 |Gt))−

De/2∑
d

log(pθ1|t(e
d
1|Gt)) +

Dv∑
d

∥uθ,d
t (Gt)− ut(f

d
tf
|fd

1)∥22
]
.

(22)

Algorithm 1 Training

Input: Graph dataset D = {G1, . . . ,GM}
for e = 1 to Max training epoch E do

Sample G1 ∼ D, t ∼ U [0, 1]2Dv+De

Sample Gt ∼ pt|1(Gt|G1) ▷ Noising
pθ1|t(v1, e1|Gt), u

θ
t (Gt)← fθ(Gt, t) ▷

Forward pass
Lv ← log pθ1|t(v1|Gt) ▷ Node loss
Le ← log pθ1|t(e1|Gt) ▷ Edge loss

Lf ← ∥uθ
t (Gt)−

f1−ft
1−t ∥

2 ▷ Features loss
Update fθ weights

end for

Algorithm 2 Inference

Input: Number of nodes Dv

Sample G0 ∼ p0(G0) ▷ Sample from prior
for denoising step t = 0 to 1 with step ∆t do

pθ1|t(G1|Gt)← fθ(Gt, t) ▷ Denoising
Rt(vt, .), Rt(et, .)← 19, 20 ▷

Marginalize rate matrices
vt+∆t ∼ Cat(δ{vt, j}+∆tRt(vt, j))
et+∆t ∼ Cat(δ{et, j}+∆tRt(et, j))
ft+∆t ← ft +∆t.uθ

t (ft) ▷ Update Gt
end for
Return: G1

Flexible denoising. The main advantage of the proposed framework is that it allows all dimen-
sions, i.e., components or groups of components, to be denoised independently. Very diverse appli-
cations are therefore possible with the same model depending on the chosen time sampling scheme:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 1: Multiple applications enabled by our framework, here on the AnalogGenie dataset.

(a) End-to-end topology design and sizing – tv, te, tf : 0→ 1;
(b) Circuit completion / conditional inpainting – G = [(V, E ,F), (V ′, E ′,F ′)] such that

tv, te, tf = 1, and tv′ , te′ , tf ′ : 0→ 1;
(c) Topology-conditional sizing – tv, te = 1, and tf : 0→ 1;
(d) Link prediction – tv = 1, and te : 0→ 1.

Figure 2: The condi-
tional graph transformer
layer of CircuitFlow.

Another noteworthy application is continued denoising, where an output
graph G undergoes additional denoising steps if it fails to meet prede-
fined criteria. By fixing t between 0 and 1 independently for each device
and edge, one can control the extent to which one part of the circuit
must be denoised further or preserved, allowing a very fine-grained su-
pervision. Illustrations of several applications can be found in Figure 1
and Appendix F, while the overall training and sampling procedures are
summarized in Algorithm 1 and 2, respectively.

4.2 NETWORK ARCHITECTURE

We base our denoising network on the graph transformer architecture
of Ma et al. (2023) which combines a global receptive field with an ex-
pressive random walk structural encoding, achieving strong performance
across diverse graph learning tasks. To adapt it to our framework, we in-
troduce two key modifications. First, we incorporate a time-conditioning
mechanism, inspired by Diffusion Transformers (Peebles & Xie, 2023),
mapping tv (and respectively te and tf) into multiplicative and additive
biases αv , α′

v , βv , β′
v , γv , and γ′

v , applied at different stages of each
transformer layer. Second, we add a dedicated processing path for node
features f , mirroring the sequence of operations used for node types v.
The graph transformer layer of CircuitFlow is illustrated in Figure 2.
Overall, our model is a light architecture of 2.05M parameters.

4.3 CONDITIONAL GENERATION

In practice, analog circuit design typically supposes to adhere to prede-
fined performance objectives. We present here how such control can be
achieved, through two different guidance approaches (Nisonoff et al.,
2025). Classifier guidance (CG) requires training a classifier model
pϕ(c|Gt, t) to predict the class of the conditioning signal c, given a noised

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 3: Limitations of the OCB/CktGNN representation. Without explicit nets, graphs are more
complex (left), and ambiguous (right): the output of the second single-stage op-amp (++), on the
left side of the right panel, is not linked to the input of the third op-amp (+−), which belongs to a
feedback path: arrows direction should be reversed. The DAG representation wrongly portrays the
circuit as valid: it is open and therefore invalid, as shown when the feedback path edges are reversed.

sample Gt. It is then used during the denoising process to bias the rate matrix of an unconditional
generative model, yielding a guided rate matrix R

(γ)
t (.|c), where γ controls the guidance strength:

(CG) : R
(γ)
t (xt, j|c) =

[log pϕ(c|j, t)
log pϕ(c|xt, t)

]γ
Rt(xt, j). (23)

This necessitates evaluating pϕ over all state transitions, which can become costly. An alternative
is to use classifier-free guidance (CFG), which only requires two passes through the model at a
denoising step t, one with the conditioning signal c yielding the conditional rate matrix Rt(.|c), and
one where c is replaced by a mask token ∅, yielding the unconditional Rt. The mask token is learned
during training by randomly masking c with a chosen probability. In CFG, R(γ)

t (.|c) writes:

(CFG) : R
(γ)
t (xt, j|c) = Rt(xt, j|c)γRt(xt, j)

1−γ . (24)

The previous procedure is applied to node types and edges. For the continuous case of node fea-
tures, the unconditional velocity field uθ

t (ft|f1) is updated at each step t using one of the following
expressions (see Dhariwal & Nichol (2021) and Ho & Salimans (2022)):

(CG) : u(γ)
t (ft|f1, c) = uθ

t (ft|f1) + γ∇ft log p
ϕ(c|Gt, t), or

(CFG) : u(γ)
t (ft|f1, c) = uθ

t (ft|f1, ∅) + γ.(uθ
t (ft|f1, c)− uθ

t (ft|f1, ∅)).

4.4 UNIFIED CIRCUIT GRAPH REPRESENTATION

Topology design and device sizing can be performed at different levels of the circuit representation
hierarchy, including the behavior and the transistor level. In the former case, transistors do not
appear explicitly, but are included in larger substructures, such as single-stage operational amplifiers
(op-amps). Following prior work (Ren et al., 2020; Hakhamaneshi et al., 2022) we represent circuit
and voltage nodes (i.e., nets and ports) as graph nodes, along with circuit devices. This results in a
unified circuit representation that accommodates both representation levels, while conforming to the
writing conventions of the SPICE simulation software. At the transistor level, we do not represent
transistor pins explicitly, but proceed in a hierarchical approach to predict their connectivity. As
noted by Gao et al. (2025), this is necessary to disambiguate topologies which do not specify pin
assignments. To achieve this, we train a dedicated model to regress edge probabilities between
transistors and their neighboring nodes, based on the output of a topology generation model. This
approach ensures a one-to-one mapping between generated graphs and SPICE netlists across all
representation levels. Further details on the hierarchical model are provided in Appendix C.

5 EXPERIMENTS

We evaluate the performance of CircuitFlow on two standard benchmarks for circuit topology gen-
eration: OCB (Dong et al., 2023) and AnalogGenie (Gao et al., 2025), which represent circuits at
distinct abstraction levels. Since OCB also provides device sizes, we additionally assess the model’s
effectiveness on the sizing task on this dataset. Both datasets however require preprocessing to map
circuits into our unified representation, which we describe in the following section. All code, model
weights and processed datasets are made publicly available.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Model V.U.N.↑ Val. sim.↑ Val. graphs↑ Val. circuits↑ Uniqueness ↑ Novelty ↑
DAGNN – – 83.1 74.2 – 97.2
PACE – – 83.1 75.1 – 97.1
D-VAE 44.5 58.1 67.7 59.5 84.3 94.5
CktGNN 47.9 74.2 85.1 81.4 72.6 93.0

CircuitFlow (Ours) 74.3 92.9 99.4 98.4 85.8 91.1

Table 1: Evaluation of output topology quality across various architectures on OCB. Results that
could not be reproduced are reported from Dong et al. (2023). All metrics are expressed in percent-
age, and uniqueness is computed over 10, 000 samples.

Figure 4: Novel op-amp circuit topologies produced by CircuitFlow. Certain samples possess com-
ponents (parallel capacitors or resistors) that make them equivalent to a circuit with fewer nodes.

5.1 DATASETS AND PREPROCESSING

OCB. The OCB dataset consists of 10,000 DAGs describing up to 3-stage op-amps at the behav-
ioral level, split into 9,000 training samples (composed of 3,957, or 44%, unique topologies) and
1,000 test samples. Each graph comes in two versions, one where components are grouped using a
predefined set of subgraphs, and one decomposed into individual components, the latter including
device sizes. To keep the approach general we work at the component level, though several prepro-
cessing steps are more conveniently done at the subgraph level, which requires to map the circuit
back to its component and recover the sizes.

The first of these steps is to identify and revert feedback path edges: as illustrated in Figure 3
(right), using DAGs leads to ambiguous topologies, preventing the identification of feedback path
components and misrepresenting their input/output pin assignment. We therefore revert all input
and output edges to subgraphs containing feedback op-amps (gm- in OCB terminology). Following
common practice, we then add circuit nets as graph nodes, fully disambiguating device connections.
This also simplifies the graphs (Figure 3, left). Finally DAGs are converted into undirected graphs,
and we validate the robustness of the whole process by ensuring that all circuits remain simulatable.

AnalogGenie. The AnalogGenie dataset contains 3,350 samples spanning 11 analog circuit types
(op-amps, SC-samplers, bandgap references, power converters, etc.). Circuits are represented at the
transistor level and are substantially larger than OCB samples (see Table 7 in Appendix D for an
exhaustive comparison). Gao et al. (2025) highlight the need to represent transistor pins to disam-
biguate otherwise similar topologies, but omit net nodes. This has two detrimental consequences:
(i) as discussed in the previous section, it creates unnecessary complexity: adding net nodes reduces
mean graph density from 0.09 to 0.04; (ii) it breaks the invariance between the pins of symmetric
devices (resistors, capacitors, inductors), which must therefore be learned. We therefore preprocess
AnalogGenie circuits by adding net nodes, and removing pin nodes for symmetric devices.

5.2 BEHAVIOR-LEVEL TOPOLOGY GENERATION AND SIZING ON THE OCB DATASET

Topology Generation. We first evaluate the quality of circuit topologies generated by Circuit-
Flow, using several graph learning baselines: D-VAE (Zhang et al., 2019), DAGNN (Thost & Chen,
2021), PACE (Dong et al., 2022), and CktGNN (Dong et al., 2023). D-VAE and CktGNN were re-
trained using the code provided by Dong et al. (2023). We apply the same processing to CktGNN’s
outputs as described above for OCB subgraphs to reflect actual circuit topologies. Metrics from

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Accuracy (%) ↑ Gain UG-f PM Joint
CFG

Topology 50.3 24.3∗ 32.2 6.83
Topo. + sizing 62.3 28.0∗ 33.2 7.28

CG
Topo. + sizing 65.7 61.0 73.3 28.9

Table 2: Conditional generation accuracies
on gain, unit-gain frequency (UG-f) and
phase margin (PM), along with joint accu-
racy for two conditioning methods, classifier-
free guidance (CFG) and classifier guidance
(CG). Results marked with ∗ are undistin-
guishable from random sampling under a two-
sided binomial test (p-value > 0.05).

0 1 2 3
0.0

0.2

0.4

0.6

0.8

Cl
as

s 0

0 1 2 3

Cl
as

s 1

Gain
UG-f
PM
Rdm

0 1 2 3
0.0

0.2

0.4

0.6

0.8

Cl
as

s 2

0 1 2 3

Cl
as

s 3

Figure 5: Distribution of output circuit features for
the four conditioning categories and all three spec-
ifications, using CG. This shows the model has
learned to conform to the required spec values.

this work are used here, including Valid graphs (percentage of connected graphs with input and
output nodes) and Valid circuits (circuit with a main path composed only of single-stage op-amps).
However, these do not capture graphs with nodes of degree one, which indicates open circuits, and
ignore feedback paths. This means that some circuits that appear valid are not simulatable. We
therefore add a Valid sim metric, similarly to Gao et al. (2025), that gives the proportion of circuits
simulatable with SPICE with default parameters. Finally we also report the V.U.N (Vignac et al.,
2023), which gives the fraction of outputs that are simultaneously simulatable, unique, and novel.
Results from Table 1 show the exceptional ability of CircuitFlow to produce novel and valid outputs
using as few as 100 denoising Euler steps, improving on CktGNN by 18 points in Valid sim and 26
points in V.U.N, hence establishing a new state-of-the-art on the OCB dataset. Examples of novel
generated topologies can be found in Figure 4.

Conditional Circuit Design. We now examine how guidance can be used to control both topology
design and device sizing based on predefined performance specifications. The conditioning signal c
is a triplet (cg, cpm, cugf) corresponding to conditioning gain, phase margin and unit-gain frequency,
following the features from OCB. Each quantity is discretized into quartiles so that the resulting four
bins are equally likely. Marginal and joint accuracies between output and conditioning quantities
are reported in Table 2, for both topology generation alone and full circuit design. Statistical signif-
icance is evaluated with two-sided binomial tests. For CFG we set γ = 2 for all modalities, and use
γ = 15 for nodes and 30 for features for CG, and omit conditioning on edges. Results on topology
generation provide an important insight: circuit topology is correlated with circuit-level specifica-
tions, even with randomized features. Thus topology discovery must be performed conditionally on
circuit specifications, in contrast to previous approaches (Dong et al., 2023; Gao et al., 2025). Accu-
racy is further improved when jointly learning topology and sizes, and full conditional design with
CG achieves 28.9% joint accuracy over all 64 test categories. We represent in Figure 5 the marginal
distributions of output classes for all four conditioning categories of each specification, showing the
effectiveness of our conditioning method. Conditional generation examples can be found in Figure 8
in appendix.

5.3 TRANSISTOR-LEVEL TOPOLOGY GENERATION ON THE ANALOGGENIE DATASET

This section explores the scalability of CircuitFlow to the more complex and diverse graphs of the
AnalogGenie benchmark. Following Gao et al. (2025), we compare with Lamagic Chang et al.
(2024) and AnalogCoder (Lai et al., 2025) which, while both trained on distinct datasets and being
limited in terms of circuit complexity, represent important milestone works. We train CircuitFlow
with our hierarchical approach, using a dedicated model for the regression of pin assignment prob-
abilities. The number of denoising Euler steps is kept to 100. This time we explore using continued
denoising as a post-processing strategy. To this end we select invalid circuits based on predefined
but simple rules: disconnected graphs, absence of a VSS node, or node degree inconsistent with
device pin number. Those circuits then undergo 5 additional denoising steps starting from t = 0.9,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ensuring that most of the topology is preserved (examples of this process can be found in Figure 11
in appendix). The whole process, which can be seen as an adaptive denoising stop condition, is
repeated up to 5 times, obtaining significant improvements at a negligible cost. Results can be found
in Table 3. Overall, we achieve a new state-of-the-art on the AnalogGenie dataset over all considered
metrics, improving V.U.N over AnalogGenie by 13 to 26 points. Notably, this is done with minimal
inductive bias, and a very light preprocessing pipeline. Finally, we report the Jensen-Shannon di-
vergence between output and data distributions of node types (JSdata), showing that our method has
learned to match the node type distribution much more closely, hinting at a more faithful coverage
of the diversity of the training dataset. Examples of output circuits can be found in Figures 9 and 10.

Model (all metrics ↑) V.U.N. (%) Val. sim (%) Uniqueness (%) Novelty (%) Max Node Nb JSdata (×10−3) ↓
LaMAGIC – 68.2 – 12.7 4 -
AnalogCoder – 57.3 – 8.9 10 -

AnalogGenie 62.2 73.1 88.5 100 63 14.5
CircuitFlow (Ours) 75.6 75.7 98.9 100 71 2.6
CircuitFlow + post-pro. 88.0 88.1 98.7 100 71 1.8

Table 3: Output topology quality on the AnalogGenie dataset. The Jensen-Shannon divergence
between data and output node type distributions measures the diversity of generated architectures.

5.4 ABLATION STUDIES

We evaluate the effect of time sampling granularity by applying graph-, modality- and dimension-
wise time sampling both at training and inference (Table 4). Our findings indicate that sampling
time per modality or dimension during training leads to higher validity. The latter also improves the
validity on the circuit completion task, where sampling time per dimension at inference is necessary:
here, the denoising time index of conditioning nodes and edges needs to remain fixed to one, while
only the time index of new nodes can vary. Next, we study how the number of denoising Euler
steps affects topology quality on the AnalogGenie dataset (Table 5). Using as few as 50 denoising
steps yields results that surpass previous state-of-the art, while 100 steps increase the V.U.N. by 3
additional points. Adding more denoising steps beyond that point does not improve results further.

t granularity Inference
Topology Gen. Completion

Train Graph Mod. Dim.

Graph 80.5 81.0 56.5
Modality 92.6 92.7 65.7
Dimension 92.9 92.7 68.7

Table 4: Valid sim (%) per t sampling granu-
larity (graph, modality or dimension level) on
unconditional topology generation and circuit
completion on the OCB dataset. Circuit com-
pletion requires dimension-wise time sampling.

Euler steps V.U.N. (%) Latency (s)

20 58.1 0.20
50 72.8 0.47
100 75.6 0.96
200 74.9 1.95

AnalogGenie 62.2 13.1

Table 5: Influence of the number of Euler
steps on V.U.N. and latency (per sample) on
the AnalogGenie dataset.

6 CONCLUSION

This work introduces CircuitFlow, a flow matching framework for joint analog circuit topology gen-
eration and device sizing. By leveraging independent time sampling across dimensions and modal-
ities, the model achieves remarkable inference-time flexibility, enabling applications such as circuit
completion, error correction or link prediction. Experiments show that CircuitFlow consistently pro-
duces valid, novel, and simulatable circuits, outperforming prior state-of-the-art models across both
considered benchmarks. These results demonstrate its scalability from behavioral-level op-amps to
diverse transistor-level circuits, while requiring only minimal preprocessing and inductive bias. Im-
portantly, we also show that joint conditional topology generation and sizing is necessary to achieve
a fine-grained control over the performances of the output circuits. This work therefore opens new
research directions in generative circuit design, achieving together tasks that were previously treated
in isolation.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

All results reported here are fully reproducible using the provided code and weights, and the precise
pipeline will be described on the project’s github page. Likewise, we also realease the preprocessing
code for both dataset and for the outputs from the CktGNN model, together with the exact dataset
versions used to train our models.

REFERENCES

Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Generative
flows on discrete state-spaces: Enabling multimodal flows with applications to protein co-design.
arXiv preprint arXiv:2402.04997, 2024.

Weidong Cao, Mouhacine Benosman, Xuan Zhang, and Rui Ma. Domain knowledge-infused deep
learning for automated analog/radio-frequency circuit parameter optimization. In Proceedings of
the 59th ACM/IEEE Design Automation Conference, pp. 1015–1020, 2022.

Weidong Cao, Jian Gao, Tianrui Ma, Rui Ma, Mouhacine Benosman, and Xuan Zhang. Rose-opt:
Robust and efficient analog circuit parameter optimization with knowledge-infused reinforcement
learning. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2024.

Chen-Chia Chang, Yikang Shen, Shaoze Fan, Jing Li, Shun Zhang, Ningyuan Cao, Yiran Chen, and
Xin Zhang. Lamagic: Language-model-based topology generation for analog integrated circuits.
arXiv preprint arXiv:2407.18269, 2024.

Filipe Parrado de Azevedo, Nuno Calado Correia Lourenço, and Ricardo Miguel Ferreira Martins.
Comprehensive application of denoising diffusion probabilistic models towards the automation of
analog integrated circuit sizing. Expert Systems with Applications, pp. 128414, 2025.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Zehao Dong, Muhan Zhang, Fuhai Li, and Yixin Chen. Pace: A parallelizable computation encoder
for directed acyclic graphs. In International conference on machine learning, pp. 5360–5377.
PMLR, 2022.

Zehao Dong, Weidong Cao, Muhan Zhang, Dacheng Tao, Yixin Chen, and Xuan Zhang. CktGNN:
Circuit graph neural network for electronic design automation. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=NE2911Kq1sp.

Pedro Eid, Filipe Azevedo, Nuno Lourenço, and Ricardo Martins. Using denoising diffusion
probabilistic models to solve the inverse sizing problem of analog integrated circuits. AEU-
International Journal of Electronics and Communications, 195:155767, 2025.

Floor Eijkelboom, Grigory Bartosh, Christian Andersson Naesseth, Max Welling, and Jan-Willem
van de Meent. Variational flow matching for graph generation. Advances in Neural Information
Processing Systems, 37:11735–11764, 2024.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
for high-resolution image synthesis. In Forty-first international conference on machine learning,
2024.

Shaoze Fan, Ningyuan Cao, Shun Zhang, Jing Li, Xiaoxiao Guo, and Xin Zhang. From specification
to topology: Automatic power converter design via reinforcement learning. In 2021 IEEE/ACM
International Conference On Computer Aided Design (ICCAD), pp. 1–9. IEEE, 2021.

Morteza Fayazi, Morteza Tavakoli Taba, Ehsan Afshari, and Ronald Dreslinski. Angel: Fully-
automated analog circuit generator using a neural network assisted semi-supervised learning ap-
proach. IEEE Transactions on Circuits and Systems I: Regular Papers, 70(11):4516–4529, 2023.

11

https://openreview.net/forum?id=NE2911Kq1sp
https://openreview.net/forum?id=NE2911Kq1sp

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jian Gao, Weidong Cao, and Xuan Zhang. Rose: Robust analog circuit parameter optimization
with sampling-efficient reinforcement learning. In 2023 60th ACM/IEEE Design Automation
Conference (DAC), pp. 1–6. IEEE, 2023.

Jian Gao, Weidong Cao, Junyi Yang, and Xuan Zhang. Analoggenie: A generative engine for
automatic discovery of analog circuit topologies. In The Thirteenth International Conference on
Learning Representations, 2025.

Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky TQ Chen, Gabriel Synnaeve, Yossi Adi, and
Yaron Lipman. Discrete flow matching. Advances in Neural Information Processing Systems, 37:
133345–133385, 2025.

Kourosh Hakhamaneshi, Marcel Nassar, Mariano Phielipp, Pieter Abbeel, and Vladimir Stojanovic.
Pretraining graph neural networks for few-shot analog circuit modeling and design. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, 42(7):2163–2173, 2022.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Yuxuan Hou, Jianrong Zhang, Hua Chen, Min Zhou, Faxin Yu, Hehe Fan, and Yi Yang. Cktgen:
Specification-conditioned analog circuit generation. arXiv preprint arXiv:2410.00995, 2024.

Dmitrii Krylov, Pooya Khajeh, Junhan Ouyang, Thomas Reeves, Tongkai Liu, Hiba Ajmal,
Hamidreza Aghasi, and Roy Fox. Learning to design analog circuits to meet threshold speci-
fications. In International Conference on Machine Learning, pp. 17858–17873. PMLR, 2023.

Kishor Kunal, Meghna Madhusudan, Arvind K Sharma, Wenbin Xu, Steven M Burns, Ramesh
Harjani, Jiang Hu, Desmond A Kirkpatrick, and Sachin S Sapatnekar. Align: Open-source analog
layout automation from the ground up. In Proceedings of the 56th Annual Design Automation
Conference 2019, pp. 1–4, 2019.

Yao Lai, Sungyoung Lee, Guojin Chen, Souradip Poddar, Mengkang Hu, David Z Pan, and Ping
Luo. Analogcoder: Analog circuit design via training-free code generation. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 39, pp. 379–387, 2025.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In The Eleventh International Conference on Learning Repre-
sentations, 2023.

Bingyang Liu, Haoyi Zhang, Xiaohan Gao, Zichen Kong, Xiyuan Tang, Yibo Lin, Runsheng Wang,
and Ru Huang. Layoutcopilot: An llm-powered multi-agent collaborative framework for interac-
tive analog layout design. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 2025a.

Chengjie Liu, Weiyu Chen, Anlan Peng, Yuan Du, Li Du, and Jun Yang. Ampagent: An llm-
based multi-agent system for multi-stage amplifier schematic design from literature for process
and performance porting. arXiv preprint arXiv:2409.14739, 2024a.

Chengjie Liu, Yijiang Liu, Yuan Du, and Li Du. Ladac: Large language model-driven auto-designer
for analog circuits. Authorea Preprints, 2024b.

Chengjie Liu, Jiajia Li, Yabing Feng, Wenhao Huang, Weiyu Chen, Yuan Du, Jun Yang, and Li Du.
Diffckt: A diffusion model-based hybrid neural network framework for automatic transistor-level
generation of analog circuits. arXiv preprint arXiv:2507.00444, 2025b.

Qiang Liu. Rectified flow: A marginal preserving approach to optimal transport. arXiv preprint
arXiv:2209.14577, 2022.

Jialin Lu, Liangbo Lei, Fan Yang, Li Shang, and Xuan Zeng. Topology optimization of operational
amplifier in continuous space via graph embedding. In 2022 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp. 142–147. IEEE, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jialin Lu, Liangbo Lei, Jiangli Huang, Fan Yang, Li Shang, and Xuan Zeng. Automatic op-amp gen-
eration from specification to layout. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 42(12):4378–4390, 2023.

Wenlong Lyu, Fan Yang, Changhao Yan, Dian Zhou, and Xuan Zeng. Batch bayesian optimization
via multi-objective acquisition ensemble for automated analog circuit design. In International
conference on machine learning, pp. 3306–3314. PMLR, 2018.

Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, Puneet K Dokania, Mark Coates,
Philip Torr, and Ser-Nam Lim. Graph inductive biases in transformers without message passing.
In International Conference on Machine Learning, pp. 23321–23337. PMLR, 2023.

Hunter Nisonoff, Junhao Xiong, Stephan Allenspach, and Jennifer Listgarten. Unlocking guid-
ance for discrete state-space diffusion and flow models. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
XsgHl54yO7.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 4195–4205, 2023.

Souradip Poddar, Ahmet Budak, Linran Zhao, Chen-Hao Hsu, Supriyo Maji, Keren Zhu, Yaoyao
Jia, and David Z Pan. A data-driven analog circuit synthesizer with automatic topology selection
and sizing. In 2024 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp.
1–6. IEEE, 2024.

Yiming Qin, Manuel Madeira, Dorina Thanou, and Pascal Frossard. Defog: Discrete flow matching
for graph generation. In Proceedings of the 42nd International Conference on Machine Learning
(ICML), 2025. URL https://arxiv.org/abs/2410.04263.

Haoxing Ren, George F Kokai, Walker J Turner, and Ting-Sheng Ku. Paragraph: Layout parasitics
and device parameter prediction using graph neural networks. In 2020 57th ACM/IEEE Design
Automation Conference (DAC), pp. 1–6. IEEE, 2020.

Keertana Settaluri, Ameer Haj-Ali, Qijing Huang, Kourosh Hakhamaneshi, and Borivoje
Nikolic. Autockt: Deep reinforcement learning of analog circuit designs. arXiv preprint
arXiv:2001.01808, 2020.

Aditya Shahane, Saripilli Swapna Manjiri, Ankesh Jain, and Sandeep Kumar. Graph of circuits with
gnn for exploring the optimal design space. Advances in neural information processing systems,
36:6014–6025, 2023.

Jinyi Shen, Fan Yang, Li Shang, Changhao Yan, Zhaori Bi, Dian Zhou, and Xuan Zeng. Atom:
An automatic topology synthesis framework for operational amplifiers. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2024.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256–2265. pmlr, 2015.

Veronika Thost and Jie Chen. Directed acyclic graph neural networks. arXiv preprint
arXiv:2101.07965, 2021.

Alexander Tong, Kilian FATRAS, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-
Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models
with minibatch optimal transport. Transactions on Machine Learning Research, 2024. ISSN
2835-8856.

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal
Frossard. Digress: Discrete denoising diffusion for graph generation. In The Eleventh Interna-
tional Conference on Learning Representations, 2023. URL https://openreview.net/
forum?id=UaAD-Nu86WX.

Hanrui Wang, Jiacheng Yang, Hae-Seung Lee, and Song Han. Learning to design circuits. arXiv
preprint arXiv:1812.02734, 2018.

13

https://openreview.net/forum?id=XsgHl54yO7
https://openreview.net/forum?id=XsgHl54yO7
https://arxiv.org/abs/2410.04263
https://openreview.net/forum?id=UaAD-Nu86WX
https://openreview.net/forum?id=UaAD-Nu86WX

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Hanrui Wang, Kuan Wang, Jiacheng Yang, Linxiao Shen, Nan Sun, Hae-Seung Lee, and Song Han.
Gcn-rl circuit designer: Transferable transistor sizing with graph neural networks and reinforce-
ment learning. In 2020 57th ACM/IEEE Design Automation Conference (DAC), pp. 1–6. IEEE,
2020.

Biying Xu, Keren Zhu, Mingjie Liu, Yibo Lin, Shaolan Li, Xiyuan Tang, Nan Sun, and David Z Pan.
Magical: Toward fully automated analog ic layout leveraging human and machine intelligence. In
2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 1–8. IEEE,
2019.

Yuxuan Yin, Yu Wang, Boxun Xu, and Peng Li. Ado-llm: Analog design bayesian optimization with
in-context learning of large language models. In Proceedings of the 43rd IEEE/ACM International
Conference on Computer-Aided Design, pp. 1–9, 2024.

Muhan Zhang, Shali Jiang, Zhicheng Cui, Roman Garnett, and Yixin Chen. D-vae: A variational
autoencoder for directed acyclic graphs. Advances in neural information processing systems, 32,
2019.

Zhenxin Zhao and Lihong Zhang. Analog integrated circuit topology synthesis with deep reinforce-
ment learning. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
41(12):5138–5151, 2022.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A DERIVATION OF THE CONDITIONAL RATE MATRIX EXPRESSION

In this paper, we consider the prior distribution over node types and edges as the joint marginal
distribution over all S states, where S is the number of node types for nodes and 2 for edges. In the
following, we write indiscriminately the variable of interest as xt ∈ [1, . . . , S]D.

We have then:

x0 ∼ Cat(m1,m2, . . . ,mS), (25)

where:

∀i, mi ∈ [0, 1] and mi =
1

ND

∑
x∈Xdata

∑
d

δ{xd, i} (26)

Now the noised vector xd
t is sampled from the distribution obtained by interpolating between the

one-hot distribution in xd
1 and the prior p0.

xd
t ∼ Cat(tδ{xd

1, x
d
t }+ (1− t)×m)) (27)

The derivation of the conditional rate matrix is inspired from the uniform case of Campbell
et al. (2024), substituting the uniform distribution with the marginal one. We first need to derive
∂tpt|1(x

d
t |xd

1) in order to compute the first term of the conditional rate matrix in Equation (15).

∂tpt|1(x
d
t |xd

1) = ∂t

(
tδ{xd

t , x
d
1}+ (1− t)mxd

t

)
(28)

= δ{xd
t , x

d
1} −mxd

t
(29)

Thus, for xd
t ̸= j (diagonal entries will be computed later):

R∗
t (x

d
t , j | xd

1) =
ReLU

(
∂tpt|1(j | xd

1)− ∂tpt|1(x
d
t | xd

1)
)

Spt|1(x
d
t | xd

1)
(30)

=
ReLU

(
δ{j, xd

1} −mj − δ{xd
t , x

d
1}+mxd

t

)
S
(
t δ

{
xd
t , x

d
1

}
+ (1− t)mxd

t

) . (31)

This simplifies as:

R∗
t (x

d
t , j | xd

1) =

(
1−mj +mxd

t

)
S(1− t)mxd

t

δ{jd, xd
1}(1− δ{xd

t , x
d
1})

+
ReLU(mxd

t
−mj)

S(1− t)mxd
t

(1− δ{j, xd
1})(1− δ{xd

t , x
d
1}). (32)

We turn now to the derivation of the detailed balance term of the conditional rate matrix, which
allows to inject stochasticity in the denoising process. As per Campbell et al. (2024), to ensure that
the rate matrix still obeys the continuity equation, RDB

t must satisfy the following detailed balance
condition:

pt|1(i|xd
1)R

DB
t (i, j|xd

1) = pt|1(j|xd
1)R

DB
t (j, i|xd

1) (33)

Following their general recipe for DB rate matrix expression and again considering i ̸= j, we
assume:

RDB
t (i, j|xd

1) = atδ{i, xd
1}+ btδ{j, xd

1} (34)

Substituting this into Equation (33) yields:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

(
tδ{i, xd

1}+ (1− t)mi

) (
atδ{i, xd

1}+ btδ{j, xd
1}
)

(35)

=
(
tδ{j, xd

1}+ (1− t)mj

) (
atδ{j, xd

1}+ btδ{i, xd
1}
)
. (36)

As this must be true for all i and j as long as i ̸= j, one may fix i = xd
1 to force a simpler relation

between at and bt:

bt = at
t+ (1− t)mi

(1− t)mj
(37)

In the following at is set to a noise level η which can be seen as a re-noising rate of clean data.
Finally, the detailed balance conditional rate matrix writes:

RDB
t (i, j|xd

1) = ηδ{i, xd
1}+ η

t+ (1− t)mi

(1− t)mj
δ{j, xd

1}. (38)

B MARGINALIZATION OF THE CONDITIONAL RATE MATRIX

The unconditional rate matrix Rt(x
d
t , j) can be computed in closed form by marginalizing the overall

conditional rate matrix Rt(x
d
t , j | xd

1) = R∗
t (x

d
t , j | xd

1) + RDB
t (xd

t , j | xd
1) over xd

1, where the
probabilities pθ1|t(x

d
1 | xt) are output by the learned flow matching model θ:

Rt(x
d
t , j) = Epθ

1|t(x
d
1 |xt)

[
R∗

t (x
d
t , j | xd

1) +RDB
t (xd

t , j | xd
1)
]

(39)

= Epθ
1|t(x

d
1 |xt)

[(
1−mj +mxd

t

)
S(1− t)mxd

t

δ{j, xd
1}(1− δ{xd

t , x
d
1})

+
ReLU(mxd

t
−mj)

S(1− t)mxd
t

(1− δ{j, xd
1})(1− δ{xd

t , x
d
1})

+ ηδ{xd
t , x

d
1}+ η

t+ (1− t)mxd
t

(1− t)mj
δ{j, xd

1}

]
. (40)

Integrating over xd
1 yields the final expression for the marginal rate matrix, wherein each term can

be easily computed:

Rt(x
d
t , j) =

(
1−mj +mxd

t

)
S(1− t)mxd

t

pθ1|t(x
d
1 = j|xt)

+
ReLU

(
mxd

t
−mj

)
S(1− t)mxd

t

(1− pθ1|t(x
d
1 = j|xt)− pθ1|t(x

d
1 = xd

t |xt))

+ η pθ1|t(x
d
1 = xd

t |xt) + η
t+ (1− t)mxd

t

(1− t)mj
pθ1|t(x

d
1 = j|xt) (41)

Diagonal entries of Rt are then obtained following Rt(i, i) = −
∑

j ̸=i Rt(i, j).

We can finally compute the transition probabilities

pt+∆t|t(x
d
t+∆t = j | xt) = δ{j, xd

t }+Rt(x
d
t , j)∆t, (42)

which, when done on all dimensions d and all time steps t, finally allows to sample new data points
from p1.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 6: (Left) Device-level circuit, where the NMOS is treated as a single node connected to
three nets (NET, VOUT, and VSS). (Right) The corresponding pin-level graph, with explicit pin
connections.

C PIN-LEVEL PREDICTION

Our two-stage approach for pin-level topology generation involves a first model which generates a
circuit topology with device interconnections. Based on the output of the first stage, a second model
determines how pins connect to the neighboring components. The process is represented in Figure 6.

The pin assignment model shares the same architecture as the topology generation model, but is
trained to regress edge probabilities between a node’s pins and the neighboring net nodes. This is
done using a classical binary cross entropy objective:

LPIN = − 1

|EL|
∑
e∈EL

ye log(ŷe) + (1− ye) log(1− ŷe), (43)

where ye = 1 if edge e exists, and 0 otherwise. At inference, assigning transistor pins to their
neighbors requires to solve an assignment problem, using the (opposite of the) predicted edge prob-
abilities as the cost function, and fulfilling the constraint that all neighboring node is connected to at
least one pin.

The accuracy of the pin assignment model is reported in Table 6, after 150 training epochs.

Metric Value (%)

Precision 97.54
Recall 98.87
F1-score 98.2
Accuracy 98.2

Table 6: Test set performance metrics of the pin assignment model.

D DATASETS STATISTICS

Table 7 presents the main features of the datasets used in this paper. AnalogGenie (no pins) corre-
sponds to the dataset version that is used to train the topology generation model, which is completed
by a pin assigment model.

E TIME SAMPLING DISTORTION

Following Qin et al. (2025), we apply a time distortion function f to the time index t sampled
uniformly between 0 and 1. Here we use f : t 7→ 1 − (1 − t)n, and use the parameter n to
control the distortion strength. This procedure allows to control the denoising process by putting
an emphasis on critical time steps, e.g. when t approaches 1, where an output circuit can become

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Dataset OCB AnalogGenie AnalogGenie (no pins)

of graphs 10,000 3,350 3,350
% uniqueness 44.0 99.4 99.4
Number of node types 9 81 28
Avg. # of nodes per sample 12 107 38
Avg. # of edges per sample 15 145 60
Avg. density 0.25 0.042 0.11

Table 7: Main dataset statistics.

invalid due to a single edge misplacement. The distortion function is represented in Figure 7 for
typical values of n for both training and inference on the AnalogGenie dataset, where a distinct n is
used for nodes (nv) and edges (ne).

Figure 7: Node (tv) and edge time (te) sampling schemes on the AnalogGenie dataset.

F ILLUSTRATIONS OF DENOISING APPLICATIONS

Figure 8: Conditional analog circuit design on OCB.

In this section we illustrate several use cases of CircuitFlow applications, on both OCB and
AnalogGenie datasets. Figure 8 pictures two output circuits for two different sets of conditioning
specifications on OCB. Examples of transistor-level output topologies can be found in Figures 9 and
10. Then Figures 11, 12 and 13 illustrate the applications of continued denoising, circuit completion,
and link prediction, respectively.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 9: Output topologies generated on the AnalogGenie dataset, showcasing a possible Differen-
tial Amplifier (a) and NMOS Logic Gate (b).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 10: Additional topologies generated on the AnalogGenie dataset.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 11: Continued denoising can be used to fix topology inconsistencies, as illustrated here on
the AnalogGenie dataset.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 12: Circuit completion examples on the AnalogGenie dataset.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 13: Link prediction examples from the same initial empty graph, on the AnalogGenie
dataset. Generated topologies can include invalid component connections (see bottom right cir-
cuit), that could be fixed by additional denoising.

23

	Introduction
	Related Work
	Data-driven Topology Design and Sizing of Analog Circuits
	Flow Matching for Graph Generation

	Preliminaries
	Continuous Flow Matching
	Discrete Flow Matching

	Graph Flow Matching for Analog Topology Design and Sizing
	Multimodal Flow for Flexible Circuit Modeling
	Network Architecture
	Conditional Generation
	Unified Circuit Graph Representation

	Experiments
	Datasets and Preprocessing
	Behavior-Level Topology Generation and Sizing on the OCB Dataset
	Transistor-Level Topology Generation on the AnalogGenie Dataset
	Ablation studies

	Conclusion
	Derivation of the Conditional Rate Matrix Expression
	Marginalization of the Conditional Rate Matrix
	Pin-level Prediction
	Datasets Statistics
	Time Sampling Distortion
	Illustrations of Denoising Applications

