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ABSTRACT

The soaring demand for electronic devices calls for novel and more efficient ana-
log circuits design. Deep generative models have shown promise in assisting
topology, parameter sizing, and layout design process, but existing approaches
treat these tasks separately and lack generalizability across diverse problem set-
tings. In this work we introduce a flow matching model for automatic analog
circuit design, which achieves high-quality sampling across a variety of topolo-
gies and representations. Our model showcases state-of-the-art performance on
end-to-end topology design and sizing on the Open Circuit Benchmark (OCB)
dataset, and on transistor-level topology generation on the AnalogGenie dataset.
Code and models are provided as external supplementary files to this submission.

1 INTRODUCTION

The automation of analog circuit design stands as an active area of research, driven both by the
demand for increasingly efficient architectures to sustain the growth of the electronics industry and
by the intrinsic complexity of the task, which is notoriously more challenging than digital circuit
design due to its greater diversity of components. Accordingly, the literature presents a wide range of
data-driven approaches aimed at automating one or more steps of the analog design workflow, which
traditionally includes topology discovery (Lu et al) 2022; 2023} |Poddar et al. 2024), parameter
sizing (Wang et al., 2018} |[2020; [Krylov et al.,|2023)), and layout prediction (Kunal et al., 2019; |Xu
et al.,[2019; |Liu et al., [2025a).

Despite significant progress, several hurdles remain. Many methods exhibit limited generalizability,
restricting their applicability to a small set of circuit topologies. Others rely on multiple models
trained for different subtasks or require substantial computational resources. The absence of widely
adopted benchmarks and open models has also often been cited as a limiting factor for faster ad-
vancement in the field. This issue has been partly addressed by the recent release of benchmarks
and models targeting topology generation and device sizing (Dong et al., 2023} |Gao et al.| |2025)),
enabling more systematic comparisons.

In terms of model architectures, the long-standing paradigm of representing circuits as graphs (Ren
et al.| [2020; Wang et al.| |2020; Hakhamaneshi et al.,[2022)) now coexists with the recent adoption of
Large Language Models (LLM)-based methodologies (Yin et al., [2024; [Liu et al., 2024azb)), which
harness the exceptional ability of LLMs for sequence modeling to generate circuit design as textual
outputs (Chang et al.,[2024; |Lai et al., 2025). There is however still room for improvement, while
the generalizability of these methods beyond pre-defined settings remains an open question.

We argue that graph-based representations of circuits holds untapped potential to address these
limitations. In particular, recent progress in generative modeling of graphs using denoising dif-
fusion (Vignac et al., 2022) and flow matching (Eijkelboom et al.l 2024; |Qin et al., 2025) lets us
foresee promising applications for analog circuit design. These models are notorious for their high
sample quality (Esser et al.,[2024)), and can accommodate the conditional generation of multimodal
data, opening the door to applications such as circuit completion or parameter sizing within a single
architecture. Diffusion models have already proved successful for device sizing (de Azevedo et al.,
2025} [Eid et al., 2025)) and topology discovery (Liu et al.,|2025b)), but for a limited scope of circuits.
Further, no end-to-end framework has been proposed to date that jointly tackles these tasks.



Under review as a conference paper at ICLR 2026

In this work, we introduce a multimodal flow matching model, CircuitFlow, for end-to-end gen-
eration of analog circuit topology and device sizing. Built on a graph transformer backbone (Ma
et al., [2023), it shows remarkable sampling quality and allows a very fine control on the denoising
process through a modality-dependent time sampling scheme. We evaluate our approach on estab-
lished benchmarks: first at the behavioral level on the OCB dataset (Dong et al., |2023)), and then
at the transistor level on the AnalogGenie dataset (Gao et al., 2025) with a separate model for the
prediction of port connectivity, achieving in both cases state-of-the-art improvement in the quality
of generated circuits. The main contribution of this work is the extension of discrete flow matching
to analog circuit design, yielding a unified framework that jointly addresses topology generation and
device sizing across multiple representation levels and circuit complexities This is primarily enabled
by a novel dimension- and modality- dependent time sampling scheme, which grants unprecedented
flexibility for diverse inference-time applications without the need for additional training. The re-
mainder of this paper is structured as follows. Related work is discussed in Sections 2} Section 3]
introduces the theoretical foundations of this work. The proposed approach is detailed in Section 4]
Experimental results are presented in Section[5]and future research directions in Section [6}

2 RELATED WORK

2.1 DATA-DRIVEN TOPOLOGY DESIGN AND SIZING OF ANALOG CIRCUITS

Topology generation. Data-driven approaches for topology design include Reinforcement Learning
(RL) (Fan et al., 2021; Zhao & Zhang] 2022), Bayesian Optimization (BO) in the continuous latent
space of a Variational Auto-Encoder (VAE) (Lu et al., 2022; |2023}; [Dong et al., 2023} [Shen et al.,
2024), and retrieval from predefined building blocks (Fayazi et al.l 2023 [Poddar et al.| [2024). RL
and BO methods often suffer from slow convergence, while retrieval-based strategies depend heavily
on the completeness of predefined architectures and typically lack flexibility. Recent works leverage
pre-trained LLMs to generate topologies as text output (Chang et al., 20245 |Lai et al., 2025]), but have
not yet scaled beyond a limited set of circuit types and complexity. AnalogGenie (Gao et al., [2025))
demonstrates strong scalability to diverse, transistor-level topologies, but its GPT-based backbone
requires extensive data augmentation to enforce permutation invariance over input graph nodes.

Device Sizing. Parameter sizing, whether at the behavior or transistor level, has been widely ex-
plored using RL (Wang et al.| 2018}, [Settaluri et al., [2020; Wang et al., [2020; |Cao et al., |2022; |Gao
et al.,[2023;|Cao et al.,2024)), BO (Lyu et al.,|2018), supervised learning (Hakhamaneshi et al., 2022
Krylov et al., [2023) or LLMs (Yin et al., 2024} Liu et al.||2024aib). Some works aim to address both
topology design and sizing (Fayazi et al., 2023} |[Lu et al., [2023; [Liu et al.l 2025b), but do so in
several stages with separate, dedicated models.

2.2 FLOW MATCHING FOR GRAPH GENERATION

Flow matching models (Lipman et al., 2023} [Esser et al., [2024; Tong et al., 2024)) have emerged
as a sample-efficient alternative to diffusion models (Sohl-Dickstein et al.| 2015} [Ho et al., |2020).
They have been extended to discrete state-space (Campbell et al., 2024;|Gat et al., 2025) and proved
successful on diverse graph generation tasks (Eijkelboom et al, 2024} Qin et al., 2025)). To date,
flow matching has not been applied to analog circuit design. A handful of methods have explored
the use of denoising diffusion for sizing and topology discovery (de Azevedo et al., 2025; Eid et al.,
2025} |Liu et al.l 2025b)), but remain restricted to a narrow range of circuit topologies.

3 PRELIMINARIES

3.1 CONTINOUS FLOW MATCHING

The objective of continuous flow matching is to learn an approximation function u{ of a quantity u;
called a vector field, which, given an arbitrary dimension d, is a function of R? in itself that describes
the instantaneous change of a flow x, with respect to a time dimension:

d
% ith z; € RY. (1)

ur(re) =~
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Given time-varying probability distribution p;, u; is said to generate the probability path p, if = is
a random variable that follows p;, where the prior pq is typically a standard Gaussian or uniform
distribution, and p; is the unknown data distribution. This is expressed by the continuity equation
which links u; to p;:

dp( .
fd(t 2 —div(py (¢)ur (1)), 2)
where div(f(z)) = >, % is the divergence operator. Ideally, for a given p, that satisfies the

continuity equation and a trained approximation function u¢, sampling from the data distribution

can be achieved by drawing x from the prior and solving Equation (I) up to ¢ = 1. In practice, one
cannot express u; and p; directly, but may instead define them as the expectations of a conditional
path and velocity field over the data distribution p; (Lipman et al., [2023)):

pe(ze) = /pt(l't|x1)pl(1'1)d1'17 3)
ug () = /Ut($t|$1)Wdl‘l. (4)

This definition allows two important results. The first corollary is that if u;(x|x1) generates
pe(x¢|z1), then u; generates p;. Hence it is enough to define a conditional velocity field and prob-
ability path that respect the continuity equation, which is a much easier task. Second, the same
parameter set # minimizes the following objectives:

Lo = Buaype [0 (20) = wa(@)113] a0 Lo = Baay vy ooy [ 108 (20) = w2 13]

(&)
As Lcpy offers a tractable objective, it is therefore enough to reason in terms of conditional quan-
tities. In summary, if p;(z¢|z1) and us (24|21 ) are chosen adequately such that u;(x¢|x) generates
p¢(z¢|1), then minimizing Equation (5) amounts to fitting a neural network u{ which generates
pt, 1.e., which may then be used to sample from p;. [Lipman et al.| (2023) propose to write the
conditional probability path as a Gaussian:

pe(@eler) = N(we; pe(x1), 07 (20)1), (6)
with po(x1) = 0, p1(x1) = @1, op(z1) = 1, and to write the flow z; as x; = o¢(z1)zo + pe (1)
where 29 ~ pg. When oy — 0, and (1) = ta1 + (1 — t)x, one obtains the well-known rectified
flow (Liul 2022):
zy = tz1 + (1 — t)o, (7)
r1 — Tt
8
T ®)
which can be used in Equation @ to compute Lcry. Once trained, the model can be used to draw
from p; starting from a noise sample xy ~ pg and following denoising Euler steps A;:

up(xi|zr) =1 — 20 =

$t+At = Tt —+ Atuf(xt) (9)

3.2 DISCRETE FLOW MATCHING

One approach (Campbell et al., 2024) to modeling discrete data x; € [1,...,S]”, where each
dimension of z; can take S different states, is to consider the whole flow x; as discrete, and allow
state transitions to occur one dimension at a time. This translates in the following factorization of
pt+At($t+At|$t)1

perar(@eiades) = [ [ perac(@dsadler). (10)
d

This allows to define the generative process using a rate matrix Ry € R%*S which characterizes
state transition over single dimensions and replaces the velocity field u, from the continuous setting,
as can be seen from the denoising process:
d d ,d d ,d
Tipae ~ Cat(0{ay, wiyac} + At Re(xf, 281 A¢))- (In

The rate matrix satisfies R¢ (i, ) > 0if i # j and Ry (i,4) = — >, ; Re(4, j). As in the continuous
case, R; must satisfy the continuity equation (known as the Kolmogorov equation in the discrete
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case, see |Gat et al.[(2025)) to ensure that it generates p;, and that solving Equation @ amounts
to sampling from the data distribution p;. Again, it is more convenient to define a conditional rate
matrix Ri(x¢, 711 a¢|z1) that generates the conditional distribution py;, and that can be used to
recover the marginal rate matrix R; through the following expectation:

Ri(z¢,5) = Epl‘t(x1|xt)Rt(xt7j|xl)' (12)

This time however the conditional rate matrix can be computed in closed form, and one instead aims
to learn the posterior probabilities p;;(x1|z¢). In the multivariate case, each dimension is learned
separately, such that the training objective writes:

Lo = —Bie, 2, Y log(p)(x]21)), (13)
d
with pf‘ , the approximation function. Noised vector x; is sampled per dimension by interpolating
between ¢ and a prior, that we take here equal to the product of marginal probability mass functions
over all states, simply written Cat(m), with m € RY (see Appendix for the computation of m):
xd ~ Cat(to{xl,zd} + (1 —t) x m)). (14)
Inference is done independently from training, which does not require access to the conditional rate
matrix. For the latter, (Campbell et al.| (2024) introduce the following expression:

. ReLU(9ypy|1 (x4 oy = jl2) — Oepypr (2 |2F) ‘
Rt (I?v ‘rgl—O—At =] ‘xil) = S p |1(£L’d|xd) + RDB (x?—i-At = ]|Itli)5
Mt t 1

(15
where the detailed balance term RPB allows an adjustable level of stochasticity (see Appendix
for the derivation of both terms for our choice of prior distribution). The expectation over x¢ can be
derived in closed form to give the final expression of the marginal rate matrix R; (see Appendix [B):

(1 —mj + mzf)
S(1 —t)ymya

T

0 (d_
p1|t(x1 = jlz1)

Rt(x(tivj) =

ReLU (g —m;)

+ S(1 = t)ym,q (1= Pt = jlae) = pY)(af = af|ze))
t + (1 — t)m d
0 (2¢ = g4 of 0 (d_ -
+np (l’ =z |1’t)+77—p (x :]|1’t)7 (16)
1e\r1 t (1- t)mj e\t

where 17 € R is the tunable noise level.

Multimodal Flows. In the case of a multimodal flow (¢, y:),|Campbell et al.[(2024) showed that
if the noising process py|1 (%+, yt|21,y1) factorizes over its variables such that:

Dm Dy
pt|1(17ta Yelri, 1) = Hpt\l(xﬂxtli) Hpt|1(yg|y(1i); (17)
d d

then the process composed separately of R (respectively uf if z; is continuous) and RY (resp.
ui’), as defined above, generates the marginal multimodal flow p;(z;, y;). This allows to sample ¢
independently for each variable, which enables a remarkable flexibility of the denoising process.

4 GRAPH FLOW MATCHING FOR ANALOG TOPOLOGY DESIGN AND SIZING

For the remainder of this work, we represent circuits as undirected graphs G composed of a set of
D, nodes V, a set of edges £ C V x V that connect the nodes, and when applicable, a node feature
vector F that provides component sizes. Individual node elements and node features are respectively
noted v? and fd Vd < D,, and take values in {1, ..., S} and R, respectively, where S is the total
number of node types. Individual edges are noted et Yd < D, = D, x D, and take values in
{0,1}. The objective of this work is to train a multimodal flow matching model to sample from
the data distribution p;(G). This section first defines this flow along with its training process. We
then describe the architecture of the employed graph transformer model, and give details about the
chosen data representation.



Under review as a conference paper at ICLR 2026

4.1 MULTIMODAL FLOW FOR FLEXIBLE CIRCUIT MODELING

The flow we consider here is composed of two discrete variables, node types V; and edges &;, along
with the continuous device sizes F;. As before, the noising process will factorize over variables, and
as suggested by|Campbell et al.|(2024) the noising time index will be sampled independently for each
variable, yielding respectively ¢, t. and ¢y for node types, edges and features. Here however we
go one step further and sample time independently for each dimension, such that t,,,t; € [0, 1)P>
and t, € [0,1]P «/2 (graphs are undirected and only half of the edges are modeled). As we shall see
shortly, this makes the sampling process particularly flexible, allowing a whole range of key applica-
tions. The noising process thus writes, using the notations t = (t,,te,ts) and G = (Vy,, &, i, ):

D./2

Pt)1 (GtlG1) = )ptf|1 ftf|f1 H Pt.)1 et |€1) (18)

where we omitted the dimension dependency on time for the sake of clarity. Each dimension is
noised independently according to Equations and for discrete and continuous variables,
respectively, and this can be seen as an extension of the previous multimodal flow where every
dimension is a variable on its own. From Proposition 4.2 of (Campbell et al|(2024), we know that
the following process generates p;(G;) = E,, (g,)[p1(G¢|G1)]:

Ry(vf,j) = Bpe, (v aign [Re(vf, , o)), (19)
Ry(ef ,j) = Epe,etige) [Re(ef , jled)], (20)
w(ff) = Epf‘t(f{i‘gt)[ut(ft}lfl )], 21

where we abused notations and simply referred to all marginal and conditional rate matrices as R,
and R;(.|G1) to keep notations uncluttered. The denoising process for vtdq} and efe is done according

to Equation , where the two rate matrices Ry (v , j) and R;(e{ , j) are computed in closed form
using Equation and their respective marginal prior distributions. The denoising process for
features fff follows Equation @) using the vector field uf (f2) learned by the model.

Loss function. Our generative model is trained by minimizing Lcry on continuous variables and
Lpry 0n discrete variables. The overall loss function writes:

D./2

DU
L =Eg, g [— Zlog(P?\t(vﬂgt Z log( P1|t e1|gt )+ Z HU (Ge) — t(ff_’f |ffl)||§
d
(22)

Flexible denoising. The main advantage of the proposed framework is that it allows all dimen-
sions, i.e., components or groups of components, to be denoised independently. Very diverse appli-
cations are therefore possible with the same model depending on the chosen time sampling scheme:

(a) End-to-end topology design and sizing —t,,te,ty : 0 — 1;

(b) Circuit completion / conditional inpainting — G = [V,&E,F),(V', &', F')] such that
to,te, bty =1, and yr, ter, by 0 0 — 1

(c) Topology-conditional sizing —t,,t. = 1,and ty : 0 — 1;

(d) Link prediction —t, = 1,and t. : 0 — 1.

Another noteworthy application is continued denoising, where an output graph G undergoes addi-
tional denoising steps if it fails to meet predefined criteria. By fixing ¢ between 0 and 1 independently
for each device and edge, one can control the extent to which one part of the circuit must be denoised
further or preserved, allowing a very fine-grained supervision. Illustrations of several applications
can be found in Figure [I|and Appendix [F

4.2 NETWORK ARCHITECTURE
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Figure 1: Multiple applications enabled by our framework, here on the AnalogGenie dataset.

We base our denoising network on the graph transformer architecture
of Ma et al.| (2023)) which combines a global receptive field with an ex-
pressive random walk structural encoding, achieving strong performance
across diverse graph learning tasks. To adapt it to our framework, we in-
troduce two key modifications. First, we incorporate a time-conditioning
mechanism, inspired by Diffusion Transformers (Peebles & Xie, |[2023)),
mapping t,, (and respectively t. and tr) into multiplicative and additive
biases v, al, By, B, v, and ., applied at different stages of each
transformer layer. Second, we add a dedicated processing path for node
features f, mirroring the sequence of operations used for node types v.
The graph transformer layer of CircuitFlow is illustrated in Figure [2]
Overall, our model is a light architecture of 2.05M parameters.

4.3 UNIFIED CIRCUIT GRAPH REPRESENTATION

Topology design and device sizing can be performed at different levels
of the circuit representation hierarchy, which mainly includes the behav-
ior level and the transistor level. In the former case, transistors do not
appear explicitly, but are included in larger substructures, such as single-
stage operational amplifiers (op-amps). Following prior work (Ren et al.,
2020; |Hakhamaneshi et al., 2022) we represent devices along with cir-
cuit and voltage nodes (i.e., nets and ports) as graph nodes. This results
in a unified circuit representation that accommodates both representation
levels, while conforming to the writing conventions of the SPICE simula-
tion software. Finally, we proceed in a hierarchical approach to predict
the pin connectivity of transistors. As noted by |Gao et al.| (2025)), this
step is necessary to disambiguate topologies which do not specify pin
assignments. We therefore train a dedicated model to regress edge prob-
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Figure 2: The condi-

tional graph transformer
layer of CircuitFlow.

abilities between transistors and their neighboring nodes, conditioned on the output of the topology
generation model. This ensures a one-to-one mapping between generated graphs and SPICE netlists
across all representation levels. Further details on the circuit representation and the hierarchical

model are provided in Appendices[C|and D]

5 EXPERIMENTS

We evaluates the performance of CircuitFlow on two standard benchmarks for circuit topology gen-
eration: OCB (Dong et al., 2023) and AnalogGenie (Gao et al., 2025), which represent circuits at
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Figure 3: Limitations of the OCB/CktGNN representation. Without explicit nets, graphs are more
complex (left), and ambiguous (right): the output of the second single-stage op-amp (4+), on the
left side of the right panel, is not linked to the input of the third op-amp (4+—), which belongs to a
feedback path: arrows direction should be reversed. The DAG representation wrongly portrays the
circuit as valid: it is open and therefore invalid, as shown when the feedback path edges are reversed.

distinct abstraction levels. Since OCB also provides device sizes, we additionally assess the model’s
effectiveness on the sizing task on this dataset. Both datasets however require preprocessing to map
circuits into our unified representation, which we describe in the following section. We release the
processed datasets together with the code and model weights.

5.1 DATASETS AND PREPROCESSING

OCB. The OCB dataset consists of 10,000 DAGs describing up to 3-stage op-amps at the behav-
ioral level, split into 9,000 training samples (composed of 3,957, or 44%, unique topologies) and
1,000 test samples. Each graph comes in two versions, one where components are grouped using a
predefined set of subgraphs, and one decomposed into individual components, the latter including
device sizes. To keep the approach general we work at the component level, though several prepro-
cessing steps are more conveniently done at the subgraph level, which requires to map the circuit
back to its component and recover the sizes.

The first of these steps is to identify and revert feedback path edges: as illustrated in Figure
(right), using DAGs leads to ambiguous topologies, preventing the identification of feedback path
components and misrepresenting their input/output pin assignment. We therefore revert all input
and output edges to subgraphs containing feedback op-amps (gm- in OCB terminology). Following
common practice, we then add circuit nets as graph nodes, fully disambiguating device connections.
This also has the advantage to simplify the graphs. Finally DAGs are converted into undirected
graphs, and we validate the robustness of the whole process by ensuring that all circuits remain
simulatable.

AnalogGenie. The AnalogGenie dataset contains 3,350 samples
spanning 11 analog circuit types (op-amps, SC-samplers, bandgap
references, power converters, etc.). Circuits are represented at
the transistor level and are substantially larger than OCB samples
(see Table [5] in Appendix [E] for an exhaustive comparison). [Gao
et al.| (2025) highlight the need to represent transistor pins to dis-
ambiguate otherwise similar topologies, but omit net nodes. This
has two detrimental consequences: (i) as discussed in the previ-
ous section, it creates unnecessary complexity: adding net nodes
reduces mean graph density from 0.09 to 0.04; (ii) it breaks the
invariance between the pins of symmetric devices (resistors, capac-  Rjgure 4: The t-SNE em-
itors, inductors), which must therefore be learned. We therefore  peddings of circuit proper-
preprocess AnalogGenie circuits by adding net nodes, and remov-  tjes shows how the model has
ing pin nodes for symmetric devices. Resulting dataset statistic can  |earned to match data sizes.
be found in Table 3

5.2 BEHAVIOR-LEVEL TOPOLOGY GENERATION AND SIZING
ON THE OCB DATASET

Topology Generation. We first evaluate the quality of circuit topologies generated by CircuitFlow,
using several graph learning baselines: D-VAE (Zhang et al.,|2019), DAGNN (Thost & Chen,|2021)),



Under review as a conference paper at ICLR 2026

Model V.UN.t Val.sim.T Val graphs{ Val circuits Uniqueness? Novelty T
DAGNN - - 83.1 74.2 - 97.2
PACE - - 83.1 75.1 - 97.1
D-VAE 44.5 58.1 67.7 59.5 84.3 94.5
CktGNN 47.9 74.2 85.1 81.4 72.6 93.0
CircuitFlow (Ours) 74.3 92.7 99.4 98.4 85.8 91.1

Table 1: Evaluation of output topology quality across various architectures on OCB. Results that
could not be reproduced are reported from |Dong et al.|(2023)). All metrics are expressed in percent-
age, and uniqueness is computed over 10, 000 samples.

Simul. out Data CircuitFlow  Random feats.
Gain 1.60 £0.73 1.45+£0.70 1.31 £0.68
Pm 2.71 £1.09 2.20£1.18 1.97 +1.09
Ugw 12.59 +£8.99 18.50 +8.99 5.55 +6.25
KL (pdatal-) 0 0.48 1.15

Table 2: SPICE simulation outputs and KL divergence of circuit performance distributions on OCB.
CircuitFlow has learned to produce sizes that maximize all three properties.

PACE (Dong et al., 2022)), and CktGNN (Dong et al., 2023). D-VAE and CktGNN were retrained
using the code provided by |Dong et al.|(2023). We apply the same processing to CktGNN’s outputs
as described above for OCB subgraphs to reflect actual circuit topologies. Metrics from this work are
used here, including Valid graphs (percentage of connected graphs with input and output nodes) and
Valid circuits (circuit with a main path composed only of single-stage op-amps). However, these
do not capture graphs with nodes of degree one, which indicates open circuits, and ignore feedback
paths. This means that some circuits that appear valid are not simulatable. We therefore add a Valid
sim metric, similarly to |Gao et al.| (2025), that gives the proportion of circuits simulatable with
SPICE with default parameters. Finally we also report the V.U.N (Vignac et al.| 2022)), which gives
the fraction of outputs that are simultaneously simulatable, unique, and novel.

Results. Results from Table [T| show the exceptional ability of CircuitFlow to produce novel and
valid outputs using as few as 100 denoising Euler steps, improving on CktGNN by 18 points in Valid
sim and 26 points in V.U.N, hence establishing a new state-of-the-art on the OCB dataset.

Sizing Experiment. Our multimodal flow matching model is the first architecture capable of
jointly generating both circuit topologies and device features, providing an efficient alternative to the
common practice of addressing these tasks separately. In this section, we investigate how indirect
control over circuit performance can be achieved through our training objective, which maximizes
the log-likelihood of output sizes. This aligns the proposed framework with practical analog design,
where sizing is typically driven by performance objectives. To illustrate this, we simulate the gain,
phase margin (pm) and unit-gain frequency (ugw) of 10,000 generated circuits, repeat the operation
with randomly sampled sizes, and compare with data values. As reported in Table |2} by matching
the distribution of dataset sizes, our model has indirectly learned to maximize all three circuit prop-
erties. Finally, we note that the output sizes can also constitute highly effective initialization points
for classical optimization algorithms, such as BO or genetic algorithm. Figure [ represents t-SNE
embeddings of the simulated quantities, further illustrating the alignment between generated and
data distributions.

5.3 TRANSISTOR-LEVEL TOPOLOGY GENERATION ON THE ANALOGGENIE DATASET

This section explores the scalability of CircuitFlow to the more complex and diverse graphs of the
AnalogGenie benchmark. Following |Gao et al.| (2025), we compare with Lamagic |(Chang et al.
(2024) and AnalogCoder (Lai et al.,[2025) which, while both trained on distinct datasets and being
limited in terms of circuit complexity, represent important milestone works. We train CircuitFlow
with our hierarchical approach, using a dedicated model for the regression of pin assignment prob-
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abilities. The number of denoising Euler steps was increased to 1,000, which reduces rare but valid
outlier topologies and improves pin assignment. Finally, we explore using continued denoising as a
post-processing strategy. To this end we select invalid circuits based on predefined but simple rules:
disconnected graphs, absence of a VSS node, or node degree inconsistent with device pin number.
Those circuits then undergo 10 additional denoising steps starting from ¢ = 0.5, ensuring that most
of the topology is preserved (examples of this process can be found in Figure|/|in appendix). The
whole process is repeated up to 10 times, obtaining significant improvements at a negligible cost .

Results can be found in Table Overall, we achieve a new state-of-the-art on the AnalogGenie
dataset over all considered metrics, improving V.U.N over AnalogGenie by 11 to 22 points. Notably,
this is done with minimal inductive bias, and a very light preprocessing pipeline.

Model V.UN. (%) T Val sim(%)T Uniqueness(%)T Novelty (%)1 Max Node Number?t
LaMAGIC - 68.2 - 12.7 4
AnalogCoder - 57.3 - 8.9 10
AnalogGenie 62.2 73.1 88.5 100 63
CircuitFlow (Ours) 73.7 74.9 98.8 100 71
CircuitFlow + post-pro. 84.4 85.9 98.5 100 71

Table 3: Output topology quality on the AnalogGenie dataset.

6 LIMITATIONS AND FUTURE WORK

CircuitFlow offers a unified framework for the joint generation of topology and device sizes, achiev-
ing state-of-the-art quality in generated circuit architectures. While our training strategy already
enables indirect control over circuit performances, the practical utility of CircuitFlow for analog
circuit design would be further enhanced by direct conditioning mechanisms, potentially fully re-
placing classical optimization pipelines. This would however require further scaling of the current
datasets, along with costly simulation efforts, which is a long-standing bottleneck in the field. At
the transistor level, one promising direction is to integrate topology and pin assignment into a single
model. In practice, we found the current design to be the most effective balance between sam-
pling quality and model complexity, given the large graph sizes and relatively small scale of the
AnalogGenie dataset. Importantly, this constraint is not specific to our approach, and rather reflects
a broader domain-wise challenge. Still, our results demonstrate that strong generative models can
already be trained effectively on existing open benchmarks.

7 CONCLUSION

This work introduces CircuitFlow, a flow matching framework for joint analog circuit topology gen-
eration and device sizing. By leveraging independent time sampling across dimensions and modal-
ities, the model achieves remarkable inference-time flexibility, enabling applications such as circuit
completion, error correction or link prediction. Experiments show that CircuitFlow consistently pro-
duces valid, novel, and simulatable circuits, outperforming prior state-of-the-art models across both
considered benchmarks. These results demonstrate its scalability from behavioral-level op-amps to
diverse transistor-level circuits, while requiring only minimal preprocessing and inductive bias. Fi-
nally, this work opens new research directions in generative circuit design, achieving together tasks
that were previously treated in isolation. A promising next step is to enable fine-grained control over
device sizes, steering generation toward specific performance objectives.

REPRODUCIBILITY STATEMENT

All results reported here are fully reproducible using the provided code and weights, and the precise
pipeline will be described on the project’s github page. Likewise, we also realease the preprocessing
code for both dataset and for the outputs from CktGNN, together with the exact dataset versions
used to train our models.
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A DERIVATION OF THE CONDITIONAL RATE MATRIX EXPRESSION

In this paper, we consider the prior distribution over node types and edges as the joint marginal
distribution over all S states, where S is the number of node types for nodes and 2 for edges. In the
following, we write indiscriminately the variable of interest as z; € [1,...,S]P.

We have then:

xg ~ Cat(mq, ma,...,mg), (23)
where:
. 1 d .
Vi, m; € [0,1] and m; = ND 6; gé{x ,i} (24)
x data

Now the x¢ is sampled from the distribution obtained by an interpolation between the one-hot dis-
tribution in ¢ and the po.

xd ~ Cat(td{z{, zI} + (1 —t) x m)) (25)

The derivation of the conditional rate matrix is inspired from the uniform case of |Campbell
et al.| (2024), substituting the uniform distribution with the marginal one. We first need to derive
9epy1 (zf|2f) in order to compute the first term of the conditional rate matrix in Equation (15).

O (wflet) = 0y (0{af, al} + (1= thmyy ) (26)
= o{af, af} —myq 27)
Thus, for z¢ # j (diagonal entries will be computed later):
Re(at g | o) = LU (atpms(j @) = Opu (o | 21) 28)
Pep (g | 1)
ReLU (5{j, i} —m; — §{ad, x4} + mzf)

(29)
S (t(5 {of,2¢} + (1 - t)mxgz)
This simplifies as:
w(od oy d (liijrmx?i) d . d d ,.d
Rt(‘rtv.] |ZE1) = S(l_t>majg 5{.7 ,$1}(1—5{1’t7$1})
ReLU(m g4 — m,) .
Sa =t (LU e - 8{alat}). (30)

We turn now to the derivation of the detailed balance term of the conditional rate matrix, which
allows to inject stochasticity in the denoising process. As per|Campbell et al.|(2024), to ensure that
the rate matrix still obeys the continuity equation, RP® must satisfy the following detailed balance
condition:

pen (il RPB (3, jl2f) = pea (jl2$) RPB (5, 4] 2)) 31)

Following their general recipe for DB rate matrix expression and again considering i #* j, we
assume:

RYP(i, j|l2t) = ap6{i, 2} + b6 {4, 2{} (32)

Substituting this into Equation yields:
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(to{i, 21} + (1 — t)my) (a0 {i, 2{} + b:0{j, 2%}) (33)
= (t6{j, 21} + (L = t)my) (a;d{j, 27} + bed{i,2}) . (34)

As this must be true for all i and j as long as i # j, one may fix i = z¢ to force a simpler relation
between a; and b;:

t4 (1 —t)my

(1—t)m; (35)

bt = Q¢
In the following a; is set to a noise level n which can be seen as a re-noising rate of clean data.
Finally, the detailed balance conditional rate matrix writes:

RO (i, jlat) = noi, 24} + -0 —5{j, 21} (36)
J

(I-t)m
B MARGINALIZATION OF THE CONDITIONAL RATE MATRIX

The unconditional rate matrix R;(x¢, j) can be computed in closed form by marginalizing the overall
conditional rate matrix Ry (z¢,j | 2¢) = Ry (xl,j | 2¢) + RPB(2¢,j | x{) over z{, where the
probabilities pf‘t(m‘f | x¢) are output by the learned flow matching model 0:

(1_mj+mx?> o d d .d
:]Epf‘t(lﬂlﬂt) S(l*t)m P (5{],1}1}(1—(5{$t,l‘1})

ReLU(m s —m; | ,
el (R TN E 00

t 1-—t d
O D gy x?}] - (38)
J

+

+no{af,xl} +n

(1—-t)m

Integrating over ¢ yields the final expression for the marginal rate matrix, wherein each term can
be easily computed:

(1 —m; + ng)

Rt(afgvj) = S(l — t)m - p§|t(m(11 = j|xt>
ReLU (mxg _mj) 0 (.d _ - 0 (.d d
+ S(1—tym,q (L= pyyp (@] = jloe) — Py (] = 27 |2e))

t+ (1 — t)mzztl
(1 —t)m;

0

+ o) = 2f|z) +n Pl = jl) (39)

Diagonal entries of R; are then obtained following R (i,4) = — >, R (i, j).
We can finally compute the transition probabilities

Perade(tiiar =5 | 2e) = 0{j, 2} + Re(af, j)At, (40)
which, when done on all dimensions d and all time steps ¢, finally allows to sample new data points

from p;.

14



Under review as a conference paper at ICLR 2026

C GRAPH REPRESENTATION OF A CIRCUIT

The graph-level abstraction we use to represent circuits as graphs is inspired by the SPICE syntax.
Just as in a SPICE netlists, there are two main elements: electrical nodes and devices. Electrical
nodes include ports (e.g., VDD, VOUT, VIN, ...) and net nodes, which serve as connection points
linking two or more pins from different devices. Each device connects to a circuit through its pins,
which are linked to electrical nodes. The explicit representation of net nodes (together with transistor
pins) therefore allows a 1-to-1 mapping with SPICE netlists.

/ \ . R GATE
\\\\\\\\\\ R
/ \NMOS / NET \NMOS

Figure 5: Comparison of circuit graph representations. Left: Direct device-to-device connections
create a complex, densely connected graph structure. Right: Introduction of NET nodes as inter-
mediate connection points simplifies the topology by eliminating direct inter-device connections,
resulting in a cleaner graph representation.

D PIN-LEVEL PREDICTION

Our two-stage approach for pin-level topology generation involves a first model which generates a
circuit topology with device interconnections. Based on the output of the first stage, a second model
determines how pins connect to the neighboring components. The process is represented in Figure[6]

GATE
NET

—— BULK

NET NMOS
" e
VSS

VSS .
DRAIN
SOURCE

vouT
vouT

Figure 6: (Left) Device-level circuit, where the NMOS is treated as a single node connected to
three nets (NET, VOUT, and VSS). (Right) The corresponding pin-level graph, with explicit pin
connections.

The pin assignment model shares the same architecture as the topology generation model, but is
trained to regress edge probabilities between a node’s pins and the neighboring net nodes. This is
done using a classical 2-class cross entropy objective:

Loy = Z ve log(ge) (41)

e€5L
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The accuracy of the pin assignment model is reported in Table[d] after 150 training epochs.

Metric Value (%)
Precision 97.54

Recall 98.87
F1-score 98.2
Accuracy 98.2

Table 4: Test set performance metrics of the pin assignment model.

E DATASETS STATISTICS

Table [3 presents the main features of the datasets used in this paper. AnalogGenie (no pins) corre-
sponds to the dataset version that is used to train the topology generation model, which is completed
by a pin assigment model.

Dataset OCB AnalogGenie AnalogGenie (no pins)
# of graphs 10,000 3,350 3,350

% uniqueness 44.0 99.4 99.4

Number of node types 9 81 28

Avg. # of nodes per sample 12 107 38

Avg. # of edges per sample 15 145 60

Avg. density 0.25 0.042 0.11

Table 5: Main dataset statistics.

F ILLUSTRATIONS OF DENOISING APPLICATIONS
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Figure 7: Examples of continued denoising for topology correction on the AnalogGenie dataset.
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Figure 8: Examples of circuit completion on the AnalogGenie dataset.

18



	Introduction
	Related Work
	Data-driven Topology Design and Sizing of Analog Circuits
	Flow Matching for Graph Generation

	Preliminaries
	Continous Flow Matching
	Discrete Flow Matching

	Graph Flow Matching for Analog Topology Design and Sizing
	Multimodal Flow for Flexible Circuit Modeling
	Network Architecture
	Unified Circuit Graph Representation

	Experiments
	Datasets and Preprocessing
	Behavior-Level Topology Generation and Sizing on the OCB Dataset
	Transistor-Level Topology Generation on the AnalogGenie Dataset

	Limitations and Future Work
	Conclusion
	Derivation of the Conditional Rate Matrix Expression
	Marginalization of the Conditional Rate Matrix
	Graph representation of a circuit
	Pin-level Prediction
	Datasets Statistics
	Illustrations of Denoising Applications

