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Abstract

Temporal Graph Learning (TGL) aims to discover patterns in evolving networks or
temporal graphs and leverage these patterns to predict future interactions. However,
most existing research focuses on learning from a single network in isolation,
leaving the challenges of within-domain and cross-domain generalization largely
unaddressed. In this study, we introduce a new benchmark of 84 real-world tempo-
ral transaction networks and propose Temporal Multi-network Transfer (MiNT),
a pre-training framework designed to capture transferable temporal dynamics across
diverse networks. We train MiNT models on up to 64 transaction networks and
evaluate their generalization ability on 20 held-out, unseen networks. Our results
show that MiNT consistently outperforms individually trained models, revealing
a strong relation between the number of pre-training networks and transfer per-
formance. These findings highlight scaling trends in temporal graph learning and
underscore the importance of network diversity in improving generalization. This
work establishes the first large-scale benchmark for studying transferability in TGL
and lays the groundwork for developing Temporal Graph Foundation Models. Our
code is available at https://github.com/benjaminnNgo/ScalingTGNs

1 Introduction

Temporal graph learning has emerged as a vital area of research for modeling dynamic systems where
relationships among entities evolve over time. Many real-world phenomena naturally form temporal
graphs, including social interactions [31], blockchain transactions [22], biological networks [8], and
communication systems [52]. Unlike static graphs, temporal graphs capture time-varying patterns,
enabling more accurate forecasting, anomaly detection, and representation learning [34].

The recent success of large pre-trained models in natural language processing (NLP) [9, 10, 44]
and computer vision (CV) [43, 6] has spurred interest in developing Graph Foundation Models [36].
These models use a pre-train and transfer strategy, where neural networks trained on large datasets
can generalize to new tasks with minimal supervision [7, 54]. While this paradigm is well-established
in NLP and CV, its application to graph data, especially temporal graphs, is still nascent.

Existing TGL literature typically focuses on training and evaluating models on a single temporal
network [19, 46, 40]. These methods learn temporal patterns from a single graph’s evolution,
implicitly assuming that the temporal dynamics are unique and not generalizable. This practice
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limits the potential to learn shared temporal structures across different networks and hinders transfer
learning, especially in zero-shot scenarios where labeled data is unavailable for new graphs.

In this work, we challenge this limitation and ask two fundamental questions: (1) Can temporal graph
models benefit from learning across multiple networks within a single domain? (2) Can these models
generalize to previously unseen networks, including those from different domains?

To address these questions, we construct a benchmark of 84 temporal transaction networks derived
from the Ethereum blockchain. These networks collectively contain over 3 million nodes and 19
million edges, reflecting real-world financial dynamics over multi-year periods. To study cross-
domain generalization, we also incorporate eight temporal social interaction networks from online
communities. This benchmark allows for systematic evaluation of scaling behavior, transfer learning,
and zero-shot generalization in TGL.

We introduce Temporal Multi-network Transfer (MiNT), the first algorithm to pre-train temporal
graph neural networks (TGNNs) across multiple dynamic graphs. MiNT alternates between networks
during training, resets historical embeddings to ensure independence, and uses network-agnostic
validation for model selection. We train MiNT models on up to 64 transaction networks and evaluate
them on held-out networks. Our results show that MiNT models outperform single-network models,
with performance improving as the number of pre-training networks increases (see Figure 1). These
findings reveal a neural scaling trend in TGL and highlight the potential for building generalizable
temporal graph models.
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Figure 1: Scaling behavior of MiNT on unseen networks. Transferred inference performance of
MiNT (multi-network model) on unseen networks, compared with standard training of individual
networks (single model). The base TGNN models are (a) HTGN and (b) GC-LSTM. The metric is
the average ROC AUC over 20 test networks.

Our contributions are:

» Extensive Temporal Benchmark. We release the first large-scale transfer learning benchmark
of 84 Ethereum-based token networks and 8 existing social networks, enabling research on multi-
network pre-training and generalization in TGL.

* Multi-network Training Algorithm. We introduce MiNT-train, the first algorithm to train
TGNNs across multiple temporal graphs, leveraging order shuffling and context switching to ensure
robustness and network independence.

* Neural Scaling in TGL. We empirically demonstrate that model performance improves with both
the number of pre-training networks and the duration of training (in days), revealing a scaling trend
analogous to those seen in NLP and CV foundation models for the first time.

* Superior Zero-shot Transferability. MiNT achieves competitive zero-shot performance on 20
unseen token networks, with the best average rank over all the baselines.

2 Related Work

Temporal Graph Learning. Temporal graph neural networks have shown promising performance
in tasks such as link prediction and node classification. Current literature [46, 62, 11] focuses
on learning from a single network and partitioning the network into a training set and a test set
chronologically. Thus, the objective is to extract patterns from the observed temporal graph and then
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Figure 2: MiNT framework. Temporal graphs are preprocessed to generate discrete-time snapshots.
The multi-network training pipeline leverages these snapshots to train TGNNs across multiple
networks for network-transferred inference on unseen temporal networks. MiNT models of varying
sizes (for example, MiNT-2, MiNT-4, MiNT-8, up to MiNT-64) each corresponding to a different
number of training networks. Each model is trained on a distinct number of networks (e.g., 2, 4, 8,
16, 32, 64) and evaluated in a zero-shot setting on the same set of held-out test networks.

predict its future evolution. In the inductive settings, TGNNs predict accurately for novel nodes from
the same network that were not observed in the training set [61, 56]. TGNNs have shown strong
predictive performance but typically need large amounts of training data, which is often not available
in practice. To mitigate this data scarcity, Agarwal et al. introduces a structured bipartite encoding
mechanism that disentangles node representations from their features, enabling transfer of memory
components from a source temporal graph to a target temporal graph on link prediction. In this work,
we propose the first algorithm to effectively learn from multiple temporal graphs and focus on the
temporal graph property prediction task. Additionally, we test the transferability of TGNNs on novel
networks, unobserved during training.

Kazemi et al. [21] categorized temporal graphs into Discrete Time Dynamic Graphs (DTDGs) and
Continuous Time Dynamic Graphs (CTDGs). In this work, we focus on DTDGs, since the temporal
graph property prediction task is more appropriately defined over graph snapshots [50].

DTDG methods process each graph snapshot sequentially and use recurrent modules to learn temporal
dependencies. For example, GCLSTM [11] stacks a graph CNN for feature extraction and an LSTM
cell for temporal reasoning. In addition, leveraging the power of hyperbolic geometry, HTGN
maps the temporal graph into hyperbolic space and utilizes hyperbolic graph neural networks and
hyperbolic-gated recurrent neural networks to model the evolving dynamics. The SOTA for temporal
graph property prediction is GraphPulse [50], which leverages topological data analysis to extract
information from each snapshot. However, all DTDG models are designed to train and test on a
single network, whereas this work explores multi-network training.

Graph Foundation Models. Recently, Xia and Huang [59] outlined the challenges associated
with building a graph foundation model as structural heterogeneity, feature heterogeneity, fast
adaptation, and achieving the neural scaling law. Neural scaling law is often used to categorize
the relationship between model performance and factors in model training and design such as the
number of parameters, the size of the training set and the amount of computation required [45, 20, 2].
Liu et al. [33] investigated neural scaling laws for static graphs by observing the performance of
GNN s given the increase in the model size and training set size. Graph foundation models such as
GraphAny [67] and AnyGraph [59] focus on designing architectures that allow for easy adaptation to
unseen networks. There are also approaches to build domain-specific foundation models, such as
those for molecular graphs [7, 53, 25]. In this work, we provide a novel collection of temporal graphs,
which are necessary for building future TG foundation models. We also demonstrate the significant
benefit of pre-training TGNNs on multiple networks for transferability to unseen networks.

Zero-shot Inference. Zero-shot learning has emerged as a powerful approach to enable pre-trained
models to extrapolate predictions on unseen data from datasets used in the pre-training stage. Inspired
by recent advancements in zero-shot learning and the power of pre-trained models in LLM [44] and
CV [51],Wang et al. [54] introduced TEA-GLM, a novel framework that aligns GNN representations
with LLM token embeddings by a linear projector. The incorporation of LLMs and GNNs enables



zero-shot inference on unseen graphs. Additionally, Xia et al. [60] proposed OpenGraph, an initiative
promoting transparency, reproducibility, and community-driven advancements in graph representation
learning. In this work, our proposed MiNT algorithm allows pre-trained TGNNs to achieve zero-shot
inference without the need for fine-tuning or modifications, relying directly on the inference pass of a
frozen pre-trained model.

Benchmarks. Due to space constraints, we defer a detailed discussion of graph benchmarks to
Appendix B. In brief, while temporal graph benchmarks such as EdgeBank [42], GraphPulse [50],
and TGB [19] have significantly advanced evaluation for within-network tasks, they remain limited
for studying transferability, which requires training across a diverse set of distinct temporal networks.

3 Background

This section provides the background for temporal graph learning and the temporal graph property
prediction task.

In this work, we focus on discrete-time dynamic graphs (DTDGs), which model temporal evolution
through a sequence of graph snapshots. This choice aligns with the inherently discrete nature of
our data source, the Ethereum blockchain, where thousands of transactions are batch-transferred in
time-stamped blocks [49].

Definition 1 (Discrete Time Dynamic Graphs). DTDGs represent a network as a sequence of graph
snapshots denoted as G = {G1, G2, Gs, ..., G, }. Each snapshot G; = (W4, &, Xy, Y+) corresponds
to the graph at timestamp ¢, where V; and &; are the sets of nodes and edges, respectively. X;

and Y, are the node and edge feature matrices, respectively. A collection of DTDGs is defined as
D ={G',G? ...,G™}, where m is the number of DTDGs.

Temporal Graph Property Prediction. We consider a graph-level binary classification task where the
goal is to predict whether a property of a discrete-time dynamic graph will increase or decrease over
a future interval. Given a DTDG G and a current time ¢,,, we define a future window [t,, 15, , tns,)
with §; < d5. The model predicts the directional change of a chosen property, such as network
growth:

Definition (Network Growth). Let ¢ and ¢,, denote the start and end of the observation window,
and 01, d5 define the prediction interval. Let E(t,s, , tnts,) be the multi-set of edges between times
tn+s, and t,,45,. The binary property P is defined as:

1, if|E(t t > |E(tq,t
P(g7t1,tn761’52) — ’ ‘ ( ".7«+513 n+52)‘ ‘ ( 1, "l)|’ (1)
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In this section, we introduce our Temporal Multi-
network Training (MiNT) algorithm, an innovative multi-network pre-training framework designed
to be applied to any backbone TGNN architecture for DTDG. By leveraging MiNT pre-training, the
base TGNN model can transfer to unseen networks for inference. Figure 2 provides an overview of



our MiNT framework, illustrating the process from dataset curation to the model pre-training stage,
and finally network transferred inference on test networks.

4.1 Multi-network Training

Existing temporal graph learning models typically train on a single temporal graph, limiting their
ability to capture similar behaviors and generalize across different networks [46, 62]. In contrast,
we consider a classical learning scenario where a training dataset of m temporal graphs D =
{G',G?,...,G™} is drawn identically and independently (IID) from an unknown distribution, and
the learned model is evaluated on a test set of unseen temporal networks.

Our MiINT algorithm trains across multiple temporal graphs by modifying a single network training
model with two crucial steps: shuffling and context switching. As explained below, these steps render
the algorithm network-agnostic, capable of learning from various temporal graphs to generalize
effectively to unseen networks. Algorithm 1 shows the MiNT-train approach in detail. As the
first step, we load the list of temporal graphs D, where each temporal graph G’ is represented as a
sequence of snapshot {Gi, G, ..., th }. For each epoch, we shuffle the orders of the list of datasets
D to preserve the IID assumption of neural network training.

Order Shuffling. Previous works focus on training models on a single network for temporal tasks;
instead, we incorporate a shuffling step at each epoch to facilitate training on multiple networks and
enable inference on unseen networks. The randomized ordering of networks during training at each
epoch is important because it helps prevent the model from learning spurious correlations that could
arise if the data were presented in a fixed order. Shuffling the datasets promotes randomness in the
training process, contributing to more robust and generalizable model performance. Sequentially,
we first initialize the historical embeddings, then train the model end-to-end on each dataset Gt in
a similar manner to training a single model, and evaluate the performance on the corresponding
validation set of dataset G’. After training on m datasets from D, we compute the average validation
results across these datasets. This average is used to select the best model, which is then used for
inference. Early stopping is applied if needed. We verify the importance of order shuffling in the
ablation study of Table 4.

Context Switching. Many TGNNS store and utilize node embeddings or latent states from previous
timestamps at later timestamps; we refer to those embeddings as historical embeddings [62, 11, 40].
In Algorithm 1, this is represented in line 7 as
H: = TGNN(G;, Hi—1),

indicating that at time steps ¢, the temporal graph model takes as input both the current snapshot
G! and the latent state H;_, from the previous time step (similar to RNNs). Resetting historical
embeddings at the beginning of each epoch (line 5 of Algorithm 1) is a key step in training a temporal
model across multiple networks for several reasons. First, it helps prevent the model from carrying
over biases or assumptions from one network to another, ensuring that it can adapt effectively to the
unique characteristics of each network. Second, it enables the model to learn the most relevant and
up-to-date information from the current network, improving performance and generalization across
different networks. This is equivalent to resetting the initial vector of recurrent neural networks at the
beginning of each sequence.

NTI: Network-Transferred Inference. To evaluate the transferability of each multi-network model,
we test the model on test sets that are unseen by the models during the training phase. We first divide
our networks into two disjoint sets, where one set is used for training, obtained by randomly selecting
64 token networks, and the remaining 20 token networks are used to evaluate the performance. In
the inference phase, we begin by loading all the weights of multi-network models, including the
pre-trained encoder and decoder parameters, while initializing fresh historical embeddings. Then, we
perform a single forward pass over the train and validation split to adapt the historical embeddings
specific to the testing dataset.

4.2 MiNT Datasets

We construct a diverse collection of 84 large-scale ERC20 token networks derived from the Ethereum
blockchain [58], capturing real transaction patterns from 2017 onward [5]. Each network reflects
distinct investor behaviors and evolves independently, with varying start times and durations. Further-
more, edges have different types and scales per token. Hence, networks cannot be combined. These
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Figure 3: Network statistics of MiNT networks. (a) Novelty score, (b) number of nodes, (c) number
of days, and (d) number of edges.

characteristics make the dataset well-suited for studying shared and unique temporal graph dynamics.
The data extraction process is detailed in Appendix C.

Table 1 and Figure 3 summarize the diversity of the MiNT benchmark, illustrating variations in scale,
temporal resolution, and structural dynamics across 84 token networks. Most networks contain over
10k nodes (investors) and 100k weighted directed edges (transactions), with lifespans ranging from
107 days to 6 years. Figure 3(a) reports novelty scores [42], showing that most networks exhibit daily
novelty above 0.3, indicating a consistent influx of new edges. We follow a 70%-15%-15% split
for train, validation, and test sets, and compute the surprise score [42] to assess edge uniqueness in
the test set. As shown in Table 7, the networks have a high average surprise of 0.82, indicating that
test edges are structurally dissimilar to those seen during training, making the prediction task more
challenging. Appendix Figure 7 further compares the node, edge, and duration distributions of train
and test sets, showing similar edge and time spans, with train sets typically containing more nodes.

We split the 84 networks into 64 for training and 20 for Table 1: Summary of the 84 token net-
network-transferred inference. This partition allows robust  works in the MiNT benchmark.

evaluation of MiNT °’s ability to generalize to entirely
unseen temporal graphs. Additional statistics are provided — Category Metric Min Max Mean Med.

in Appendix C.2. Scale #Nodes 14K 128K 49K 43K
#Transactions 78K 555K 312K 298K

Additionally, we adopt a diverse set of eight real-world so-
cial interaction networks. This evaluation aims to demon- Novel s 07 om ose
strate that MiNT is not constrained to transactional graph  Structural Surprisye 041 099 086 088
domains and can effectively transfer learned representa-
tions to structurally and semantically distinct networks. The selected social datasets are LastFM[48],
MathOverflow[39], SuperUser[39], Email-Eu[39], AskUbuntu[39], CollegeMsg[38], StackOver-
Sflow[39], and RedditB[26]. These datasets span a wide range of social communication settings, from
question-answering platforms to messaging and collaboration networks, providing a rigorous testbed
for cross-domain transfer.

Temporal Duration (days) 100 2200 1080 960

S Experiments

We evaluate the transferability of our proposed MiNT approach on unseen test networks in both
single-domain (Section 5.2) and cross-domain (Section 5.3) settings. Our code is available at https:
//github.com/benjaminnNgo/ScalingTGNs, and the datasets are hosted at https://zenodo.
org/records/15364297. We begin by defining the baseline models and backbone architectures
used in our experiments.

We focus on network growth or shrinkage [50] as the main prediction task. Additionally, we include
the growth of the largest connected component to demonstrate the model’s capability on a different
property prediction task in Appendix I. Detailed task definitions are provided in Appendix E. As
weekly forecasts are common in the financial context for facilitating financial decisions [23], we
set 81 = 3 and &, = 10 days for the tasks, thus predicting the temporal graph property over weekly
snapshots.

In addition, to show that MiNT is agnostic to the underlying TGNN architecture, we select two widely-
used TGNN models as our backbone: HTGN [62] and GCLSTM [11]. We formulate our datasets
as discrete-time dynamic graphs, as our prediction tasks are defined over weekly graph snapshots
that naturally capture financial and behavioral cycles observed in blockchain networks [1]. This
formulation preserves the temporal evolution of transaction structures while maintaining consistency
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Figure 4: MiNT Performance with Varying Training Scales. Test ROC AUC of MiNT models
trained on 4, 16 and 64 networks and evaluated on unseen test datasets. We compare the performance
with HTGN single models trained and tested on each dataset.

with the aggregated nature of the data. While continuous-time dynamic graph models can also be
applied to this domain, we limit the scope of this study to the discrete-time formulation, which
is highly suitable for our prediction setting and data granularity. Based on this setting, we select
HTGN, which has shown state-of-the-art performance on a similar task [50], and GC-LSTM, a robust
baseline that effectively models temporal dependencies in discrete sequences. These two architectures
provide strong and complementary backbones for evaluating the transferability and stability of MiNT.
Experimental results suggest that HTGN has superior performance overall; thus, we adopt this model
for in-depth analysis and ablation studies. 2

5.1 Contenders And Baselines

For comparison, we include heuristics, single-network models, and our pre-trained MiNT models.
We refer to models that are trained on only a single network (such as in existing literature) as single
models. For each temporal graph, we use a 70%-15%-15% split for training, validation, and test sets.
During each epoch, the model processes snapshots sequentially in chronological order. Train and test
networks share approximately 2% of their nodes (see Appendix Table 8). The results are reported
with an average and standard deviation of three runs with different random seeds. We also provide
our train/validation/test splits.

We train each model for 100 to 250 epochs with a learning rate of 1.5 x 10~3, applying early stopping
based on validation AUC with patience 20 and tolerance 5 x 10~2. Binary Cross-Entropy Loss is
used for evaluation, and Adam [24] for optimization. The graph pooling layer, loss function, and
optimizer are shared in the multi-network training setup. The final pooling layer, implemented as a
Multi-Layer Perceptron (MLP), computes the mean of node embeddings, concatenates it with four
graph-level snapshot features (mean of in-degree, weighted in-degree, out-degree, and weighted
out-degree), and outputs a binary prediction. The choice of mean pooling is further discussed in K,
and Hyperparameter details are in Appendix F.

Single Models. We use five models from the literature, HTGN [62], GCLSTM [11], EvolveGCN [40],
ROLAND [64], GraphPulse [50], WinGNN [68] and a naive heuristic baseline, Persistent Forecasting
(P.F.), as our baseline models trained from scratch on individual networks. We explain each model in
Appendix D.

MIiNT Models. We train six multi-network transfer models, each with a different number of networks
corresponding to 2* datasets, where k € [1,6]. We name each multi-network model based on the
number of datasets used in training; for example, MiNT-16 is trained with 16 datasets. The default
TGNN architecture is HTGN, which shows superior performance, while the GCLSTM architecture is
also trained and discussed in Table 2.

Computational Resource. We ran all experiments on NVIDIA Quadro RTX 8000 (48G memory)
with 4 standard CPU nodes (either Milan Zen 3 2.8 GHz and 768GB of memory each or Rome Zen 2,
2.5GHz and 256GB of memory each).

In what follows, the default MiNT models refer to HTGN with our MiNT pre-training, for example in
Figure 4.



Table 2: ROC AUC scores of MiNT transfer models (with HTGN and GC-LSTM backbones) and
single models (trained on test networks) on unseen test sets (average precision results and smaller
MiNT results are reported in Appendix M). Best AUC in bold, second best underlined.

Single Model on Individual Networks Transfer Model - 64 Networks
Network ‘ HTGN GC-LSTM  EvolveGCN  GraphPulse =~ ROLAND WinGNN PF. | GC-LSTM HTGN
WOJAK 0.479+0.005 0.484+0.000 0.505+0.023  0.467+0030 0.529 +0005 0.511x0026 0.378 | 0.534-0.020 0.524+0.027
DOGE2.0 0.590+0.059  0.538+0.000 0.551+0.022  0.384x0180 0.513 £o0022 0.577x0038 0.250 | 0.551+0022 0.538+0.038
EVERMOON | 0.512+0023  0.562+0.179  0.451+0046  0.519+0130  0.349 +0.119  0.525+0114 0.241 | 0.494=0047 0.517+0.039
QOM 0.633+0017 0.612+0001  0.618+0002  0.775+0.011  0.641 +0003 0.645+009 0.334 | 0.618+0.004 0.647+0.019
SDEX 0.762+0.034  0.720+0.002  0.733+0.028  0.436+0030 0.483 0254 0.726x0000 0.423 | 0.723=0.002 0.614+0.020
ETH2x-FLI 0.610+0.059  0.670+0.009  0.688+0.010  0.666+0047  0.621 £0023 0.617x0056 0.355 | 0.697+0.009 0.729+0.015
BEPRO 0.655+0038  0.632+0019  0.610+0012  0.783+0.003 0.439 +0125 0.736+0018 0.393 | 0.746+0.015 0.782:£0.003
XCN 0.668+0.099  0.306+0092  0.512+0067  0.821+0004 0.765 £ 0015  0.586+0020 0.592 | 0.733+0.003 0.851-£0.043
BAG 0.673+0227  0.196+0.179  0.329+0.040  0.934+0020 0.418 +o0016 0.485x0.105 0.792 | 0.529+0023 0.931+0.028
TRAC 0.712+0071  0.748+0000  0.748+0000  0.767+0001  0.495 +0223  0.752+0007 0.400 | 0.742-+0.004 0.785+0.008
DERC 0.683+0013  0.703+0022  0.669+0009  0.769+0.040 0.405 +0357  0.674+0044 0.353 | 0.696+0.011 0.798-£0.027
Metis 0.715+0.122  0.646+0023  0.688+0027  0.812+0.011  0.696 0108  0.690+0.039 0.423 | 0.697+0.013 0.760-£0.025
REPv2 0.760+0.012  0.725+0.014  0.709+0.002  0.830+0001  0.751 0003 0.744x0026 0.321 | 0.733=0.019 0.789-+0.020
DINO 0.730+0.195  0.874+0.028  0.868+0.020  0.801+0020 0.497 xo0092 0.628x0251 0.431 | 0.659+0039 0.779+0.113
HOICHI 0.807+0.047  0.857+0000  0.856+0001  0.714x0010 0.815 +0036 0.769+0.101  0.374 | 0.847+0.005 0.765+0.018
MUTE 0.649+0.015  0.593+0030  0.617+0010  0.779+0.004 0.289 0042 0.593+0054 0.536 | 0.636+0.003 0.673+0.013
GLM 0.830+£0.029 0.451+0003  0.501+0033  0.769+0018  0.559 £0357 0.530+0.004 0.427 | 0.501+0.027 0.831+0.024
MIR 0.750+0.005  0.768+0.026  0.745+0.015  0.689+0007 0.228 £o060 0.742x0015  0.327 | 0.788+0022 0.836+0.016
stkAAVE 0.702+0042  0.368+0011  0.397+0022  0.743+0.006 0.591 +0122  0.572+0018 0.426 | 0.650+0.028 0.709-£0.022
ADX 0.769+0.018  0.723+0002  0.718+0004  0.784+0.002 0.761 0011 0.733x0023 0.362 | 0.673+0.022 0.679+0.024
Top rank 1 | 2 3 0 8 0 0 0 1 6
Avg. rank | | 4.10 5.35 5.5 3.30 5.85 4.95 8.35 | 4.35 2.80

5.2 Single Domain Transfer Results

This section presents the network growth task performance of our multi-network models trained on
the 64-token datasets and evaluated in zero-shot inference on 20 unseen token test datasets. Similar
trends for the second task are reported in Appendix I. To evaluate that MiNT’s transferability is
not limited to the transaction domain, we also trained MiNT on social network datasets, where it
demonstrates positive transfer. The detailed results are presented in Appendix H. We additionally
investigate the (negligible) effect of data selection on the performance of MiNT, with detailed results
provided in Appendix K.

Table 2 compares our results with the five baseline single models that are trained and tested on the
same 20 datasets. We also report the top rank, average rank, and win ratio for each model. The top
rank indicates the number of datasets where a method ranks first. To calculate the average rank,
we assign an AUC-based rank (ranging from 1 to 9) to every model across the 20 test datasets and
compute the average. The win ratio represents the proportion of datasets where a model outperforms
a single model. Overall, MiNT-64 exhibits the best overall performance, achieving the state-of-the-art
AUC performance in 6 networks and top two performance in 7 out of 20 total test networks with
network-transferred inference.

Although the single GraphPulse model achieves the top rank of 8, it is a topology-based method
without a GNN and requires supervised training on each dataset. In contrast, our GNN-based
MiNT-64 model performs transferred inference efficiently across all datasets in just a few minutes.
Despite some trained models like HTGN or GCLSTM excelling on specific datasets (e.g., SDEX and
DINO), MiNT-64 consistently ranks competitively across the full benchmark, demonstrating strong
generalization without per-dataset training.

For visual clarity, Figure 4 shows the AUC Table 3: MiNT vs single model Performance Rank-

on test data results for MiNT-4, MiNT-16 and 18-
MiNT-64, as well as the single HTGN model.
We show the performance of all six multi-

Model Toprank T  Avg.rank |  Win ratio T

network models in Appendix Figure 8. Overall,  Single model 3 4.35 -
an upward trend is observed in most datasets ~ MINT-2 0 6.15 025
from multi-network models 2 to 64, such as in NNt 2 433 043
u w » Such as MiNT-8 1 445 045
BAG, MIR, and BEPRO datasets, highlighting MiNT-16 1 3.45 0.65
the power of larger multi-network models in ~ MiNT-32 2 3.20 0.70
MiNT-64 1 2.15 0.80

temporal graph learning.

Effect Of Scaling. In Table 3, we further compare the models by reporting the top rank, average
rank, and win ratio for different configurations of the multi-network models. We observe a notable
improvement in performance as the number of training networks increases. For instance, the average



rank (lower is better) improves from 6.15 for MiNT-2 to 2.15 for MiNT-64, which signifies a roughly
50% performance enhancement when scaling from two networks to sixty-four. The improvement in
the win ratio is also substantial, with MiNT-64 achieving the highest win ratio of 0.80, outperforming
the other models in most datasets. This indicates that increasing the number of networks in a multi-
network model significantly enhances its robustness and predictive power, particularly when compared
to single models and smaller multi-network configurations. Overall, the multi-network-based models
have shown superior zero-shot performance and transferability ability. We also conducted a study on
the effect of the number of snapshots used for training, with the results presented in Appendix J.

Ablation Study.

We conducted an ablation study for the MiNT-

train algorithm to assess the effects of con-

Table 4: Ablation study results in ROC AUC.

text switching and order shuffling. Models are _Model MINT-327 MiNT-64 1
trained in the same way as a multi-network  Full Model 0.714+ 0107  0.727+ 0.114
model training setup and tested on the 20 unseen ~ w/0 Order shuffling 0.708+0.099  0.694+0.109
test datasets. The average results are presented ~ W/0 Context Switching ~ 0.677+0098  0.688+0.095

in Table 4. Training different multi-network

models without resetting memory revealed that

persistent memory across epochs negatively impacts generalization, emphasizing the importance
of reset mechanisms to reduce overfitting. The gain from context switching is considerable when
compared to the full model, as it enables stable zero-shot transfer across heterogeneous graphs. This
mechanism prevents interference between structurally distinct networks during training and preserves
embedding consistency across domains, which is essential for maintaining generalization under
large-scale multi-network settings. Additionally, in Appendix K, we explored the necessity of shuf-
fling data by fixing the order of training networks. The observed performance decline indicates that
incorporating randomness to MiNT is vital for improving the model’s robustness and generalizability.

5.3 Cross-domain Transfer Results

To further explore the potential of do- Table 5: ROC AUC scores of MiNT, HTGN and MiNT Mix.

main mixing, we train a combined
model (MiNT-12 Mix) using six token

Scores in first and second. T indicates social networks.

networks and six social networks for ~ Network Standzg{} C;l‘l\rlaining M.NTTll';nsfer 1\1/\1;.#; o
the network growth task. The num- i i
MIR 0.750 + 0.005 0771 £0.038  0.779 £ 0.011
glezriecdh?;?n El(“)hbete;r??l tc;nhe(tl\g DOGE2.0 0.590 -+ 0.059 0.538 £0.000  0.538 & 0.000
n 1X. 18 transier mo MUTE 0.649 4 0.015 0.698 & 0.033  0.660 & 0.015
is evaluated in a fu]]y zero-shot set- EVERMOON 0.512 + 0.023 0.503 £ 0.037 0438 £ 0.011
. DERC 0.683 + 0.013 0722 £0.034  0.661 & 0.006
ting across unseen networks fromboth ;v 0769 £0.018 | 0.677+£0014 0712 % 0.004
domains. Results in Table 5 show  HoicH 0.807 = 0.047 0.795 £ 0.041  0.815 £ 0.012
that MiNT12 Mix achieves the best [T 067340277 | 0372002 O8I L00
average rank (1.91) and consistently  xcn 0668 £ 0099 | 0.761£0.153 0.837 £ 0.014
places in the top two across 16 out  ETH2x-FLI 0.610 £ 0.059 0.714 £0.014  0.670 = 0.002
. StkAAVE 0.702 + 0.042 0.656 £ 0.010  0.615 & 0.019
of 20 datasets and outperforms MiNT- /'y 0.830+£0.029 | 0.811E0011 0718 £ 0.045
12, which is trained on 12 transac- qom 0.633 £ 0.017 0.640 £ 0.011  0.631 £ 0.010
tion networks. On social datasets, I ¥ 071040195 | UISEETORE 0846 £ 0,03
such as RedditB and MathOverflow, g 071540122 | 0697+£0.036  0.735 £ 0.024
MiNT-12 Mix performs on par with, or ~ REPv2 0.760 £ 0.012 0.749 £ 0017 0.756 & 0.011
¢ than. the stan HTGN. de-  TRAC 0.712 £ 0.071 0.761 £0.034  0.768 & 0.009
E;.t:: ntota b’ej[n; St;a'r(lj:cidon aﬁ ag& BEPRO 0.655 + 0.038 0.765 £ 0.010  0.736 & 0.041
i i i y m—
: _ mathoverflow } 0.788 + 0.051 0.575+£0.195  0.782 & 0.004
;f.r om tlze evﬁluatlﬁn S(;(LCIC\)IH tﬁ‘ﬁ?}% RedditB § 0.656 & 0.040 0.653 0011  0.695 & 0.004
ion networks such as an —
. ’ Top One 1 8 7 7
it also outperforms both HTGN and Top Two + 5 8 9
MiNT models trained only on finan-
Avg. Rank | \ 2.05 \ 2.00 1.91

cial graphs. Table 5 shows the AUC

results of two Mix models compared to a single model on both social and transaction test networks.

These findings highlight the value of cross-domain pre-training: exposure to diverse structural and
temporal patterns enables MiNT to develop representations that generalize effectively across domains.



The results support the broader hypothesis that multi-network pre-training can help build more robust
temporal graph models.

800
Time Complexity Analysis. The MiNT-train algorithm has the =
same complexity as training the single model, but across all the ~ § 600 e !
training networks. Specifically, for the best performing HTGN- qi} a0l e o«
based model, the time complexity using MiNT-trainis O(m - g e v
(Nmazdd + d'|Emaz|)) where m is the number of training € 200 | o
networks, N,,qz 1S set to the maximum number of nodes of F

0

networks in the training set, d and d’ are the dimensions of the . . . . ;

. | . ) 2 4 6 8 10 12 14
input and output features while |E,,,4.| is the maximum number Number Of Networks

of edges in a snapshot. Empirically, we observe that the MiNT-

training time scales linearly to the number of networks as seen Figure 5: Time per epoch for train-
in Figure 5, where we report the time per epoch for each multi- ing multi-network models.
network model.

A key strength of MiNT is its ability to perform zero-shot inference: once trained on multiple
networks, it can generalize to unseen networks via a single forward pass without retraining. This
makes MiNT highly efficient in real-world scenarios where new temporal graphs frequently emerge.
To quantify this efficiency, we compare the time to train a single HTGN model on each test network
with the inference time of a pretrained MiNT model, defining an Efficiency Ratio as the ratio between
the two. As shown in Appendix Table 15, MiNT achieves over 180 x faster inference on average
while maintaining competitive or superior performance. These results underscore the scalability and
transferability of MiNT.

Limitations & Future Work

Our work has the following limitations. i) Our scaling results show that training with a larger
number of networks improves generalization. Although we limited the foundation model to sixty-
four networks due to computational constraints, scaling to a broader set of graphs may further
enhance transferability. ii) We focused on the DTDG setting, which effectively captures the temporal
aggregation structure of our datasets. However, this choice restricts the current benchmark to discrete
snapshots. Continuous-time formulations could also be applied to this domain, but would require
dedicated event-level modeling and system design, which we consider an important direction for future
work. iii) The current benchmark primarily includes transaction-based temporal graphs. Extending
it with additional datasets from other domains, such as those in the Netzschleuder repository [41],
could provide a more comprehensive evaluation environment and support broader assessment of
model generalization across temporal graph types. iv) Beyond benchmarking, MiNT also opens
several promising research avenues, including studying transferability mechanisms across dynamic
systems, developing temporal pooling strategies for long-horizon reasoning, and exploring unified
architectures toward temporal graph foundation models capable of cross-domain adaptation.

6 Conclusion

This work addresses a central question in temporal graph learning: can models trained on collections
of temporal networks generalize to predict the evolution of previously unseen networks, both within
and across domains? Our findings show that such generalization is not only feasible but effective.

We have introduced a benchmark of 84 Ethereum-based temporal graphs designed to support research
on graph-level forecasting, neural scaling, and the development of foundation models for temporal
graphs. To enable learning across diverse networks, we have proposed MiNT-train, the first framework
for training temporal graph neural networks on multiple independent dynamic graphs.

Empirically, we have observed clear neural scaling behavior: model performance improves as the
number of training networks and the number of snapshots increase. Additionally, MiNT-trained
models achieve the highest average rank over single models on both within-domain and cross-domain
test graphs. These results highlight the promise of multi-network training as a foundation for building
generalizable temporal graph models and advancing the field toward temporal graph foundation
models.
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paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly claim that MiNT Algorithm demonstrates
positive dataset scaling and achieves superior transferability. In addition to MiNT Algorithm,
the abstract and introduction state that 84 originally temporal graphs were introduced by
this work which is also true and we provide the datasets. The scope and contributions align
with these claims.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We provide an extensive discussion of the limitations of this work in Appendix
Section 5.3. The discussed limitations include dataset domains, the discretization of temporal
graphs, and other topics.

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: There aren’t any theoretical results introduced in our paper.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, we provide a comprehensive description of the datasets, model configu-
rations, and hyperparameters used, ensuring that the experimental results are reproducible.
Our code is available at https://github.com/benjaminnNgo/ScalingTGNs while the
datasets are available at https://zenodo.org/records/156364297

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code to reproduce results and 84 token networks introduced in this work are
publicly available at https://github.com/benjaminnNgo/ScalingTGNs and https:
//zenodo.org/records/15364297, respectively, with detailed instructions provided in
the supplemental material to ensure reproducibility.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies all relevant details regarding the training and testing
settings, including data splits, hyperparameters, optimizers, and other configuration settings
in Section 5.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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13.

14.

Answer: [Yes]

Justification: We show results of three runs along with standard deviations, providing clear
information on the statistical significance of the experiments.

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper details the compute resources used for the experiments, including
the type of hardware, memory, and time required for execution, ensuring transparency and
reproducibility, see Section 5.

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research adheres to the NeurIPS Code of Ethics, with considerations for
responsible Al practices and transparency in the methodologies and data used

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We provide an extensive discussion of the broader impact of our work in
Section A.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The datasets collected in this paper are extracted from the public transaction
history of cryptocurrency, and any user information has been anonymized. Therefore, this
work pose no such risks.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper credits the creators of all assets used, including datasets and code,
and adheres to the respective licenses and terms of use.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The documentation of the proposed Ethereum transaction token networks is
provided in Section 4.2 and Appendix C.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
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Justification: The paper does not involve crowdsourcing or research with human subjects.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The research does not involve human subjects, and therefore, IRB approval is
not applicable.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The research doesn’t involve LLMs.
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Appendix

A Broader Impacts

The proposed research on pre-training temporal graph neural networks across multiple networks has
the potential to advance the field of machine learning and its applications significantly. By introducing
methodologies to enhance the scalability and transferability of TGNNs, this work could revolutionize
areas like network security, financial fraud detection, and real-time social network analysis, where
dynamic and adaptive models are essential. The publicly available dataset of 84 Ethereum-based
temporal networks will serve as a valuable resource for the research community, fostering innovation
and collaboration. Furthermore, the principles of multi-network pre-training introduced here can
inspire analogous advances in other temporal data domains, such as healthcare, transportation, and
climate science. This research opens up a new direction in training generalizable temporal graph
models that, for the first time, can be trained on distinct temporal networks, paving the way for
Temporal Graph Foundation Models.

This work also introduces a set of Ethereum transaction token networks, which are publicly available
to users who have the necessary resources, such as fast SSDs, large RAM, and ample disk space,
to synchronize Ethereum clients and manually extract blocks. Additionally, all Ethereum data is
accessible on numerous Ethereum explorer sites such as etherscan.io. An Ethereum user’s privacy
depends on whether personally identifiable information (PII) is associated with any of their blockchain
address, which serves as account handles and are considered pseudonymous. If such PII were obtained
from other sources, our datasets could potentially be used to link Ethereum addresses. However,
real-life identities can only be discovered using IP tracking information, which we neither have nor
share. Our data does not contain any PII. Furthermore, we have developed a request to exclude an
address from the dataset.

B Extended Related Work on Graph Benchmarks

Benchmark datasets have become fundamental for advancing graph machine learning, providing a
common ground to evaluate models and facilitate the development of graph foundation models. Early
graph ML studies often relied on a handful of small, static benchmark graphs (e.g., citation networks
like Cora/Citeseer and molecular graphs from the TU collection [37]). Repositories such as the
Stanford SNAP dataset collection and the Network Repository cataloged many graphs for research
use, but without standardized tasks or unified evaluation protocols [28, 47]. The lack of consistency
in tasks and splits made it difficult to compare algorithms fairly. This motivated community efforts to
create dedicated benchmark suites that are large-scale, diverse, and standardized.

B.1 Static Graph Benchmarks

Static graph benchmarks focus on time-agnostic graph tasks (node classification, link prediction,
graph classification) on fixed networks or sets of graphs. A seminal effort in this direction is the Open
Graph Benchmark (OGB) [15], introduced at NeurIPS 2021. OGB provides a diverse collection
of realistic graph datasets spanning domains such as social networks, citation networks, molecular
graphs, knowledge graphs, and more. Importantly, OGB defines consistent evaluation protocols with
meaningful train/validation/test splits (e.g., avoiding overly easy random splits) and unified metrics,
addressing issues of reproducibility and out-of-distribution evaluation. The OGB suite includes
challenging datasets like a citation network with hundreds of thousands of nodes (OGBN-Arxiv), a
protein interface graph (OGBL-PPA) for link prediction, and molecule datasets for graph property
prediction [15]. By benchmarking various GNN models on these datasets, Hu et al. showed that OGB
tasks remain far from solved and identified key challenges such as scalability to large graphs and
generalization under realistic splits. Following OGB’s release, it has become a standard evaluation
framework in graph ML research, with a public leaderboard tracking state-of-the-art results on each
task.

Building on OGB, the community pushed toward even larger-scale benchmarks to catalyze foundation
model-level advances. Hu et al. organized the OGB Large-Scale Challenge (OGB-LSC) in 2021, as
part of the KDD Cup and later reported at NeurIPS 2021 [17]. OGB-LSC introduced three exceedingly
large graph datasets, each targeting a core task at unprecedented scale: (1) a node classification task
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on a heterogeneous academic graph with over 240 million nodes and 1.2 billion edges (MAG240M),
(2) a link prediction task on a massive knowledge graph with 90 million entities (WikiKG90M), and
(3) a graph regression task on a molecular dataset with 4 million molecular graphs (PCQM4M) [17].
These datasets are orders of magnitude larger than prior benchmarks. The challenge drew 500+
teams, yielding innovative, scalable GNN approaches and significant performance improvements.
Notably, the best-performing models in OGB-LSC employed techniques like deep transformer-based
GNNs and aggressive neighbor sampling to handle scale (e.g., the Graphormer model, a Transformer
tailored to graphs, won the molecular track) [63]. The OGB-LSC findings highlighted that expressive
models can significantly outperform simpler, scalable baselines on large graphs, but also that many
standard GNNs fail to even run at this scale without specialized training algorithms [17]. The annual
OGB-LSC benchmark (continued in 2022) serves as a graph analog to ImageNet challenges, steering
the community towards scalable graph learning techniques and pretraining strategies suited for
extremely large data.

Another notable effort for static graphs is the Benchmarking Graph Neural Networks study by
Dwivedi et al. [32]. Rather than introducing new data, the work systematically evaluated popular
GNN architectures on a curated set of existing graph datasets (including both classical node/graph
classification benchmarks and synthetic graph tasks). It revealed inconsistencies in prior evaluations
and underscored the need for standard benchmarks like OGB. Overall, these static benchmark
initiatives (OGB and others) have greatly improved the rigor and comparability of graph model
evaluation. They also supply the data foundation for graph representation learning — for instance,
OGB datasets are commonly used to pre-train GNNs or evaluate graph foundation models via
fine-tuning.

B.2 Temporal Graph Benchmarks

While static benchmarks assume a fixed graph structure, many real-world graphs are dynamic, evolv-
ing over time with new nodes or edges (e.g., social interactions, transaction networks, communication
networks). Until recently, research on temporal graph neural networks relied on individually curated
datasets and inconsistent protocols. For example, Kumar et al. (KDD 2019) introduced dynamic
interaction graphs for Reddit and Wikipedia to evaluate embedding trajectory prediction [27], and
various works used their own splits of social network data (e.g., user-item interaction logs, citation
dynamics) to benchmark temporal GNN models. This fragmented landscape made it hard to gauge
progress in learning on temporal graphs.

Recognizing this gap, Huang et al. proposed the Temporal Graph Benchmark (TGB), first released
in 2023 [19]. TGB (accepted at NeurIPS 2023) is a unified collection of large-scale temporal graph
datasets with standardized tasks and evaluation pipelines. It covers diverse domains, including social
networks, communication, trade, finance, and transportation, reflecting the broad applicability of
temporal graph learning. TGB defines two primary task categories: dynamic link prediction (predict-
ing the future existence or properties of edges) and dynamic node property prediction (predicting
future attributes or labels of nodes). Each dataset consists of a sequence of graph snapshots or time-
stamped edge events spanning multiple years. For example, TGB includes a Wikipedia co-editing
network (users editing pages over time), an E-commerce review network (Amazon user—product
interactions over 20+ years), a Reddit reply network (users replying to each other over time), and
an air traffic network (temporal flights between airports), among others. Crucially, TGB provides
consistent train/validation/test splits along the timeline and an automatic evaluation pipeline, enabling
reproducible benchmarking of temporal graph models.

In their extensive experiments, Huang et al. found that the performance of popular temporal GNN
architectures varies wildly across different TGB datasets, and intriguingly, on certain dynamic node
prediction tasks, simple time-series models can outperform complex temporal GNNs [19]. These
insights point to open challenges and the need for better inductive biases in temporal models. TGB is
an actively maintained project with a public leaderboard, poised to drive research in temporal graph
representation learning. Recently, TGB 2.0 was introduced at NeurIPS 2024 to extend this benchmark
to multi-relational dynamic graphs, i.e., temporal knowledge graphs and heterogeneous graphs with
various edge types [13]. TGB 2.0 contributed eight new datasets spanning domains like social media,
biomedicine, and communications, with up to tens of millions of time-stamped edges [13]. The
inclusion of temporal knowledge graphs (e.g., evolving knowledge bases of events) bridges graph
ML with temporal reasoning tasks from the knowledge graph community. Experiments in TGB
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2.0 underscored that leveraging edge type (relation) information is crucial for high performance
on multi-relational tasks, and again noted that simple heuristic methods can sometimes rival more
sophisticated models [13]. However, most existing methods struggled to scale to the largest TGB 2.0
graphs, reinforcing the necessity for new scalable temporal GNN techniques. Together, TGB and its
extension provide a comprehensive platform to evaluate how well algorithms handle the evolving,
temporal aspect of graphs, complementing the static benchmarks like OGB.

B.3 Blockchain Graph Benchmarks

One emerging application domain for graph learning is blockchain networks, which pose unique
challenges and opportunities for benchmarks. Blockchains (like Bitcoin and Ethereum) can be
represented as graphs (e.g., transaction networks where addresses are nodes and transactions are
edges), often large-scale, dynamic, and multi-layered. For instance, the Bitcoin network continuously
grows with each block of transactions, and Ethereum’s smart contract calls form complex interaction
graphs. Traditionally, machine learning on blockchain graphs was limited by data accessibility and
labeling: researchers relied on isolated datasets curated for specific tasks, with no unified benchmark.
A notable example is the Elliptic illicit transaction dataset [57], introduced in 2019, which consists of
a Bitcoin transaction graph with ~200K nodes labeled as licit or illicit. This dataset has been widely
used to evaluate graph-based fraud detection and anti-money laundering models, and it established
a baseline task of classifying illicit transactions on a large transaction graph. Other works have
compiled datasets for tasks like Ethereum phishing address detection or DeFi fraud, but each dataset
was used in a siloed manner in its respective paper [30].

To advance graph ML for blockchain data, Shamsi et al. introduced Chartalist [49], the first com-
prehensive repository of labeled blockchain graph datasets, which was published in the NeurIPS
2022 Datasets and Benchmarks track. Chartalist organizes blockchain data (from both UTXO-based
blockchains like Bitcoin and account-based blockchains like Ethereum) into ML-ready graph datasets,
complete with labels and task definitions. Importantly, it addresses the considerable preprocessing
burden: raw blockchain ledgers are massive and require domain expertise to convert into meaningful
graph features and labels. Chartalist provides cleaned and annotated graphs, including dynamic
multi-layer networks extracted from blockchains. For example, it curates the evolving transaction
graph of Bitcoin with ground-truth labels for certain known illicit events (like ransomware addresses),
and similarly for Ethereum, it tracks address interaction networks with identified scams or anoma-
lies [49]. By incorporating major blockchain events and annotating addresses (e.g., hacks, frauds),
Chartalist enables supervised learning tasks such as address classification, transaction link prediction,
temporal anomaly detection, and forecasting on blockchain graphs. This was a significant step, as
previously no public benchmark existed for graph ML on blockchain data [49]. Chartalist’s datasets
are large-scale (the Bitcoin network graph in 2025 exceeds 400 million edges) and dynamic by nature,
reflecting months or years of blockchain activity rather than static snapshots.

Recent benchmark efforts have further expanded blockchain graph datasets and tasks. One example
is the "Multi-Chain Graphs of Graphs" dataset proposed by Luo et al. [35]. This work goes beyond
single-chain analysis by constructing a hierarchical Graph-of-Graphs: local transaction graphs for
multiple cryptocurrencies are connected via a higher-level graph that captures interactions between
those cryptocurrencies (for instance, if one token is used to purchase another). Their dataset includes
detailed labels at the token level and links across blockchains, supporting novel tasks like cross-
chain link prediction and anomaly detection. This approach recognizes that modern blockchain
ecosystems are interconnected (e.g., users swapping assets across chains), and analyzing them
requires considering a network-of-networks structure. Another notable dataset is EX-Graph by
Wang et al. [55], introduced at ICLR 2024, which bridges blockchain data with social networks.
EX-Graph links the Ethereum transaction graph with the Twitter (X) social graph by identifying
accounts that are active in both networks. It contains 2 million Ethereum addresses (nodes) and 30
million transaction edges, alongside 1 million Twitter user nodes and their following relationships,
with over 30,000 address—social account linkages. By combining on-chain and off-chain (social)
information, this benchmark allows researchers to study how incorporating external social features
can improve blockchain analytics, for example, using Twitter interactions to predict cryptocurrency
address behavior or to detect coordinated illicit activities. The introduction of EX-Graph underscores
a trend of creating hybrid benchmarks that connect blockchain graphs with other data modalities to
enrich learning signals.

22



It is worth noting that blockchain graphs also appear in the aforementioned broad benchmarks: for
instance, the Temporal Graph Benchmark includes a cryptocurrency transaction dataset derived
from Ethereum token transfers (a stablecoin transaction network during the 2022 Terra collapse) as
one of its dynamic link prediction tasks [19, 49]. Similarly, TGB’s dynamic node prediction tasks
include a user—token interaction graph where the goal is to predict users’ future activity with various
cryptocurrencies [19]. The inclusion of these in TGB indicates a convergence where domain-specific
efforts (like Chartalist) feed into general benchmark frameworks (like TGB). Going forward, we
anticipate more blockchain-specific benchmarks to emerge, potentially covering areas like smart
contract vulnerability graphs or transaction network simulations, given the growing interest in
applying GNNSs to cryptocurrency ecosystems. For now, Chartalist and its derivatives represent
the state-of-the-art in providing public, labeled blockchain graph benchmarks for machine learning
research.

B.4 Benchmarks and Graph Foundation Models

The development of these benchmarks has been closely intertwined with progress on graph foundation
models and training algorithms. By graph foundation models, we refer to large, general-purpose
graph neural networks (or related architectures) that are trained on broad graph data (often via
self-supervised learning) and can be adapted to a wide range of downstream tasks, analogous to
NLP’s pre-trained language models. High-quality benchmark datasets are a prerequisite for training
and evaluating such models. For example, the massive node classification graph in OGB-LSC
(MAG240M) and the huge molecular graph set in OGB have spurred research into pre-training GNNs
on unlabeled graph data at scale [17]. Likewise, the diverse tasks in OGB (node, link, graph prediction
across domains) provide natural downstream evaluations for a foundation model’s versatility. We
have started to see the emergence of self-supervised GNN training frameworks leveraging these
benchmarks. Notably, Hu et al. proposed GPT-GNN [18], a generative pre-training method for GNNs
using an attribute-masked graph generation task, which they demonstrated on the billion-edge Open
Academic Graph (a subset of MAG) and an Amazon reviews graph. Their pre-trained model achieved
significant gains on downstream node classification, showing the promise of foundation models on
large graphs. Similarly, contrastive learning approaches like GraphCL [65] and graph autoencoders
like GraphMAE [14] have been applied to OGB datasets to learn transferable representations. These
algorithms create task-agnostic embeddings by maximizing agreement between differently perturbed
versions of the same graph or by reconstructing masked features, enabling the model to capture
generic graph structure and semantics.

Finally, benchmarks like TGB are driving advances in temporal graph learning algorithms that will
feed into foundation models capable of handling dynamic data. The surprising observation that
simple models sometimes beat complex temporal GNNs on TGB [19] suggests current architectures
are not fully capturing temporal information; this has led researchers to rethink model designs
(e.g., incorporating memory modules or temporal attention mechanisms) and training procedures for
dynamic graphs. A foundation model that can jointly understand structure and temporal evolution
might be trained by self-supervision on large temporal graphs (many of which are now available
through TGB and related efforts). The multi-relational focus of TGB 2.0 [13] also pushes the
development of models that can handle richly attributed graphs (multiple edge types, dynamic
attributes), which is relevant for heterogeneous graph foundation models.

The ecosystem of graph and blockchain benchmarks, from static collections like OGB, to dynamic
suites like TGB, and domain-specific data like Chartalist, provides the critical testbed and training
ground for graph foundation models. These benchmarks cover a broad spectrum of graph scenarios
that a foundation model should excel in: large-scale static networks, evolving temporal graphs,
and complex multi-relational or cross-domain graphs (as in blockchains). By benchmarking new
algorithms on these datasets, researchers can identify generalization gaps and scalability issues,
guiding the design of more powerful graph neural network architectures. The continued expansion
of benchmark datasets (especially at top venues like NeurIPS) ensures that, as graph ML enters the
foundation model era, it does so on a firm, well-evaluated base.

Why is the MiNT Benchmark Unique? Our MiNT benchmark introduces a novel scale and
structure for temporal graph learning by assembling 84 real-world ERC20 token transaction networks
and 8 social interaction graphs, enabling both within- and cross-domain transfer studies. Unlike
prior benchmarks such as TGB [19] and OGB [15, 16], which offer diverse but isolated dynamic
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or static graph tasks, MiNT focuses specifically on the challenge of learning transferable temporal
representations across independent dynamic graphs.

Each token network in MiNT is temporally dis- Table 6: Comparison of temporal graph bench-
joint, semantically distinct, and characterized marks.
by varying lifespan, novelty, and transactional

behavior making lt unsuitable fOI' naive aggrega_ Dataset # temporal graphs included # newly introduced graphs
. > . . L. EdgeBank [42] 13 6
tion or multi-label classification. This indepen-  RroLAND [64] 8 0
. . . . TGB [19] 9 8
dence suppo'rts rigorous 1nvest1gqt10n of zero- GraphPulse [50] o 7
shot generalization and pre-training on long- _Ours (MiNT) 92 84

range temporal structures. Moreover, MiNT

introduces network-level property prediction tasks, shifting the focus from local node- or edge-
level tasks to macro-scale graph dynamics forecasting. It is the first benchmark to reveal neural
scaling trends in temporal graph learning, demonstrating how increasing the number of training
networks improves performance on unseen graphs. These properties position MiNT as the first
foundation-model-oriented benchmark for temporal graph learning, complementing prior efforts by
enabling systematic pre-training, ablation, and transfer evaluations across a controlled, large, and
heterogeneous collection of temporal graphs.

C MiNT Datasets

Numerous graph benchmark datasets have been introduced to advance research within the temporal
graph learning community. Poursafaei et al. [42] introduced six dynamic graph datasets while
proposing visualization techniques and novel negative edge sampling strategies to facilitate link
prediction tasks of dynamic graphs. Following the good practice from OGB [15], [19] introduced
TGB, which provides automated and reproducible results with a novel standardized evaluation
pipeline for both link and node property prediction tasks. However, these datasets belong to different
domains, making them unsuitable for studying the scaling laws of neural network models trained with
a large number of datasets from the same domain. [29] provides a temporal benchmark for evaluating
graph neural networks in link prediction tasks, though their focus does not extend to training on
multiple networks. Conversely, the Live Graph Lab dataset by [66] offers a temporal dataset and
benchmark, employed for tasks like temporal node classification using TGNNs. This work aims to
explore multi-network training and understand the transferability across temporal graphs. Therefore,
we curate a collection of temporal graphs rather than focusing on individual ones as in prior work.

C.1 Datasets Extraction

We utilize a dataset of temporal graphs sourced from the Ethereum blockchain [58]. In this section,
we will describe Ethereum, explain our data pipeline, and conclude by defining the characteristics of
the resulting dataset.

Ethereum and ERC20 Token Networks. We create our transaction network data by first in-
stalling an Ethereum node and accessing the P2P network by using the Ethereum client Geth
(https://github.com/ethereum/go-ethereum). Then, we use Ethereum-ETL (https://
github.com/blockchain-etl/ethereum-etl) to parse all ERC20 tokens and extract asset trans-
actions. We extracted more than sixty thousand ERC20 tokens from the entire history of the Ethereum
blockchain. However, during the lifespans of most token networks, there are interim periods without
any transactions. Additionally, a significant number of tokens live for only a short time span. To
avoid training data quality challenges, we use 84 token networks with at least one transaction every
day during their lifespan and are large enough to be used as a benchmark dataset for multi-network
model training.

Temporal Networks. Each token network represents a distinct temporal graph, reflecting the time-
stamped nature of its transactions. In these networks, nodes (addresses), edges (transactions), and
edge weights (transaction values) evolve over time, capturing the dynamic behavior of the network.
Additionally, these networks differ in their start dates and durations, introducing further variation
in their evolution. While each token network operates independently with its own set of investors,
they exhibit common patterns and behaviors characteristic of transaction networks. These similarities
allow the model to learn and generalize from these patterns across different networks. Collecting
temporal graphs from various ERC20 token networks allows for comparative analysis, uncovering
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Figure 6: MINT data processing overview. (1) Token extraction: extracting the token transaction
network from the Ethereum node. (2) Discretization: creating weekly snapshots to form discrete time
dynamic graphs.

common patterns and unique behaviors. This strengthens the model’s ability to generalize and
improves its robustness.

Figure 6 illustrates the MiNT overview from dataset extraction and discretizing graph networks for
the model training step.

Table 7: All token networks’ statistics.

Token #Node #Transaction Duration (days) Growth rate  Novelty ~ Surprise | Token #Node #Transaction ~Duration (days) ~Growthrate Novelty ~ Surprise
ARC 11325 70968 606 0.43 0.32 0.88 Metis 52586 343141 907 0.44 0.48 0.89
CELR 65350 235807 1691 0.49 0.56 0.96 cDAI 52753 358050 1437 045 0.46 09
CMT 86895 205961 309 0.45 0.72 0.92 BITCOIN 34051 347054 178 0.48 0.39 0.63
DRGN 113453 341849 2164 0.44 0.57 0.97 INJ 60472 312822 1113 0.46 0.52 0.98
GHST 35156 180955 1146 0.43 051 0.93 MIM 23038 269366 885 0.44 04 0.89
INU 8556 66315 154 0.27 041 0.59 GLM 53385 234912 1080 0.5 0.53 0.96
10TX 63079 288469 1993 0.45 0.56 0.99 Mog 14590 240680 107 0.37 0.38 0.55
Qsp 117977 299671 2178 0.45 0.67 0.99 DPI 40627 234246 1150 0.49 0.5 0.86
REP 83282 224843 346 0.46 0.69 0.96 LINA 45342 227147 1144 045 0.46 0.95
RFD 23208 173695 169 0.3 0.39 0.6 Yf-DAI 22466 226875 1158 042 031 0.87
TNT 88247 316352 1216 0.43 0.55 0.93 BOB 42806 212099 199 0.35 0.48 0.73
TRAC 71667 299181 2110 0.46 0.54 0.97 RGT 35277 211932 1110 0.44 0.46 0.98
RLB 28033 240291 129 0.43 0.49 0.76 TVK 42539 208082 1062 0.41 0.48 0.93
steCRV 19079 211538 1033 0.45 0.53 0.9 RSR 50645 205906 659 047 0.62 091
ALBT 63042 434881 1152 0.43 0.44 0.89 WOJAK 34341 198653 201 0.37 0.48 0.73
POLS 128159 554705 1132 0.45 0.61 0.94 ANT 36517 200262 1107 047 0.46 0.93
SWAP 69230 509769 1213 0.46 045 0.79 LADYS 37486 192176 181 0.37 0.52 0.79
SUPER 83299 502030 986 0.47 0.46 0.85 ETH2x-FLI 11008 199088 965 047 0.28 0.84
RARI 87186 502960 1207 0.43 047 091 TURBO 38638 189048 189 0.33 0.48 0.72
KP3R 39323 493258 1102 0.43 0.33 0.88 REPv2 39061 191367 1194 0.48 0.5 0.97
MIR 79984 444998 1066 0.45 043 0.92 NOIA 29798 185528 1133 0.46 0.37 0.7
aUSDC 23742 475680 1067 0.46 04 0.73 0x0 21531 182430 283 051 0.46 0.81
LUSD 25852 430473 943 0.48 0.36 0.87 PSYOP 25450 168896 169 0.32 0.39 0.59
PICKLE 28498 430262 1149 0.48 0.34 0.69 ShibDoge 40023 134697 680 043 0.53 0.8
DODO 47046 390443 1131 0.47 045 091 ADX 14567 123755 1188 0.44 04 091
YFII 43964 391984 1196 0.44 0.44 0.96 BAG 11860 122634 298 031 0.44 0.87
STARL 71590 369913 856 0.46 0.48 0.86 QOM 21757 118292 598 0.46 0.41 0.81
LQTY 34687 374230 943 0.45 0.34 0.91 BEPRO 26521 120261 1132 0.46 0.48 0.87
FEG 118294 367584 1007 0.4 0.62 0.92 AIOZ 29231 119926 947 0.43 0.49 0.89
AUDIO 91218 362685 1108 0.45 0.58 0.95 PRE 40476 118625 1113 0.5 0.55 0.86
OHM 45728 377068 690 0.43 0.46 0.88 CRU 19990 117712 1144 0.5 0.43 0.95
WOOL 16874 351178 716 0.41 0.18 0.41 POOH 27245 111641 193 0.26 0.49 0.69
DERC 24277 111205 824 0.45 0.49 0.83 aDAI 13648 187050 1068 0.45 0.46 0.82
stk AAVE 37355 110924 1128 0.42 0.57 0.71 ORN 44010 239451 1134 0.46 0.47 0.87
BTRFLY 8450 108371 453 0.48 0.34 0.44 DOGE2.0 7664 79047 123 0.45 0.38 0.66
SDEX 9127 104869 240 0.41 0.44 0.75 HOICHI 5075 77361 436 0.36 0.32 0.71
XCN 20085 104185 607 0.46 0.42 0.84 EVERMOON 7552 79868 163 0.24 0.35 0.52
HOP 37004 102650 514 0.41 0.6 0.88 MUTE 12426 82345 977 0.43 0.46 0.95
MAHA 18401 96180 749 0.43 0.47 091 crvUSD 2950 88647 174 0.61 0.37 0.73
DINO 15837 94140 358 0.44 0.44 0.74 SLP 6675 95368 1151 0.43 0.36 0.91
bendWETH 1454 96898 593 0.51 0.21 0.51 sILV2 12838 92905 611 0.4 0.34 0.48
PUSH 14501 93103 936 0.46 0.38 0.83 SPONGE 25852 90468 184 0.31 0.66 0.81

C.2 Dataset Statistics

Our MiNT dataset is a collection of 84 ERC20 token networks derived from Ethereum from 2017 to
2023. Each token network is represented as a dynamic graph, in which each address and transaction
between addresses are a node and a directed edge, respectively. The biggest MiNT token network
contains 128, 159 unique addresses and 554, 705 transactions, while the smallest token network has
1, 454 nodes.

Figure 3 shows that most networks have more than 10k nodes and over 100k edges. The lifespan
of MiNT networks varies from 107 days to 6 years, and there exists at least one transaction each
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day. Figure 3.a shows the novelty scores, i.e., the average ratio of unseen edges in each timestamp,
introduced by [42]. Figure 3 shows that most of the 84 networks have novelty scores greater than
0.3, indicating that each day sees a considerable proportion of new edges in these token networks.
We adopt a 70% — 15% — 15% split of train-test-validation for each token network and calculate the
surprise score [42], which indicates the number of edges that appear only in the test data. As Table 7
shows, the token networks have quite high surprise values with an average of 0.82. We also provide
the node, edge, and length distribution for train and test sets separately in Figure 7. Overall, train set
datasets mostly have more nodes than those in the test set, while the number of edges and days are in
the same range for both.

We summarize detailed statistics of each token network in MiNT datasets in Table 7. In the table, the
growth rate is the ratio of label 1, indicating the increase in the number of edge counts concerning the
problem definition defined in Appendix section E. In addition, we use the novelty and surprise scores
introduced by Poursafaei et al. [42]. The novelty score is defined as the average ratio of new edges in
each timestamp. The surprise score is defined as the ratio of edges that only appear in the test set.
Formally,

T
1 |Et \ E;een‘

Ity = = E —_ 2
noveity T pr ‘Et‘ ’ (2a)
surprise = W, (2g)

€es

where Et and EY,,,, denotes the set of edges present only in timestamp ¢ and seen in previous
timestamps, respectively. E.s; represents edges that appear in the test set, and edges appearing in

the train set are represented as Ej;.qp, -

Comparison Between Training And Testing Set. Nodes, transactions, and length (in days) dis-
tribution over the training and testing sets are shown in Figure 7. Training sets well-support the
multi-network model to generalize characteristics of the entire MiNT dataset due to the similarity be-
tween nodes, edge and length in days distributions shown in Figures 7a, 7b, 7c and those distributions
across 84 token networks of MiNT datasets. In addition, the variance of datasets’ characteristics of
the testing set is shown in Figures 7d, 7e and 7f.
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Figure 7: Distribution of the characteristics of the datasets over training and testing sets.

Node Overlap Analysis. We analyze the overlap of nodes between different datasets and within
each dataset, which helps demonstrate the highly dynamic nature of our datasets. Specifically, we
compared the nodes in each test network with those in the training networks and calculated the average
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overlap. As shown in Table 8, on average, only 2% of the nodes are common between the training and
test datasets, highlighting the rapidly changing structure of these networks. Furthermore, we analyzed
the node overlap within each test dataset by splitting it into the standard train-validation-test setup.
We compared the nodes in the 70% training snapshots with the nodes in the final 15% test snapshots,
and on average, only 4% of the nodes overlapped. This indicates the highly inductive nature of our
model and emphasizes the zero-shot challenge it addresses in this domain. These findings underscore
the importance of tackling such dynamic and evolving challenges in temporal graph learning.

D Temporal Graph Learning

In this section, we give further details about the tem- Table 8: Overlapping Nodes Statistics

poral graph learning models we used as a baseline

Avg. Common Nodes Train vs Test
for our work
. Dataset vs Train Set (MiNT-64) Node Overlap

Persistence Forecast (P.F) uses data from the pre- MR 0.021 +0.019 0.007
vious and current weeks to predict the next week’s ~ DOGE2.0 0.026 +0.033 0015
It b . ine trend in th MUTE 0.033 % 0.020 0.045
property. If we observe an increasing trend in the  gygrmoon 0,023 = 0.033 0.043
number of transactions in the current week compared =~ DERC 0.020 = 0.020 0.031
to the previous week, we predict a similar increasing ~ A0% P oL
trend for the following week. This simple model is ~ spgx 0.024 + 0.019 0.141
based on the assumption that trends in transaction = BAG 0.019 £0.017 0.107
: . : XCN 0.016 £ 0.010 0.034
networks can persist over time. Our baseline method o1 &g 0.038 £ 0.041 0.028
has three key aspects. First, we do not use any future  skAAVE 0.026 % 0.027 0.057
information to generate the labels. Second, we com- ~ GLM 0.014 £0.015 0.047
th " 105 ¢ i t o that of M 0.018£0.014 0.044
pare the current week’s transaction count to that o WOJAK 0025 % 0.032 0018
the previous week to determine the trend. Finally, if ~ DINO 0.018 +0.014 0.049
the current week shows an increase, we predict the ~— Metis 0.020 +0.013 0.041
. . REPv2 0.016 £ 0.017 0.013
same trend for the next week. This straightforward  tgrac 0.015  0.016 0.031
approach provides a basic baseline for comparison =~ BEPRO 0.023 +0.022 0.021

against more sophisticated predictive models.

HTGN leverages the power of hyperbolic geometry, which is well-suited for capturing hierarchical
structures and complex relationships in temporal networks. HTGN maps the temporal graph into
hyperbolic space and utilizes hyperbolic graph neural networks and hyperbolic gated recurrent neural
networks to model the evolving dynamics. It incorporates two key modules that are hyperbolic
temporal contextual self-attention (HTA) and hyperbolic temporal consistency (HTC)-to ensure that
temporal dependencies are effectively captured and that the model is both stable and generalizable
across various tasks [62].

GraphPulse addresses the challenge of learning from nodes and edges with different timestamps,
which many existing models struggle with. It combines two key techniques: the Mapper method from
topological data analysis to extract clustering information from graph nodes and Recurrent Neural
Networks (RNNs) for temporal reasoning. This principled approach helps capture both the structure
and dynamics of evolving graphs [50].

GCLSTM combines a Graph Convolutional Network (GCN) and Long Short-Term Memory (LSTM)
units to handle both the structural and temporal aspects of evolving networks. The GCN is used to
capture the local structural properties of the network at each snapshot, while the LSTM learns the
temporal evolution of these snapshots over time [11].

EvolveGCN is designed to capture the temporal dynamics of graph-structured data. Instead of relying
on static node embeddings, EvolveGCN evolves the parameters of a graph convolutional network
(GCN) over time. By using a recurrent neural network (RNN) to adapt the GCN parameters, this
model is capable of dynamically adjusting during both training and testing, allowing it to handle
evolving graphs, even when node sets vary significantly across different time steps [40].

ROLAND is a dynamic graph learning framework that models node representations as hierarchical
states, updated recurrently to capture temporal dependencies in evolving graphs. It supports scalable
training using techniques like truncated backpropagation through time and meta-learning. In our
DTDG setting, we use ROLAND to benchmark its performance and adaptability across diverse
temporal networks [64].
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WinGNN employs a lightweight GNN to capture the graph’s structural features, similar to prior
approaches. To address temporal dependencies, it introduces a unique random gradient aggregation
mechanism combined with meta-learning. Specifically, WinGNN computes snapshot-level losses and
propagates their gradients forward to model temporal evolution without relying on recurrent units. A
randomized sliding window is further applied to extract window-aware gradients across snapshots,
which are then aggregated to update the GNN parameters effectively [68].

E Temporal Graph Property Prediction

We define graph property prediction as the task of forecasting a specific structural property of a
temporal graph over a future time interval. In this work, we focus on two binary classification tasks:
predicting the growth or shrinkage of (i) transaction volume (i.e., edge count), and (ii) the size of the
largest connected component (LCC).

In the network growth prediction task, the goal is to determine whether the number of transactions
will increase in the upcoming time window relative to a preceding interval. Given the current
weekly snapshot of a network, the model predicts whether transaction activity will rise or decline
in the following week. This task is particularly relevant in financial domains, where fluctuations in
transaction volume can reflect shifts in user engagement, liquidity, or investor interest. We adopt the
same evaluation setup used in GraphPulse [50], and define the property formally as follows:

Definition (Network Growth). Let ¢; and t,, denote the start and end of the observation window,
and 1, d2 define the prediction interval. Let E (¢4, , tn+s,) be the multi-set of edges between times
tn+s, and t,,45,. The binary property P is defined as:

L i [E(tnts s tatss)| > [E(t1, 6],
0, otherwise.

P(G,t1,t,,61,02) = { 3)

Why is this task useful? The network growth/shrink property prediction in financial networks
forecasts changes in transaction numbers (edge count), revealing trends in investment activity. A
growth in edge count indicates increased investor engagement, while a shrinkage suggests reduced
activity or market hesitation. Such investor behavior impacts token prices, and analyzing the behavior
helps guide investment strategies, resource allocation, and risk management by providing insights
into the evolving dynamics of token networks. For social networks, network growth in time requires
resource (e.g., server) allocation and maintaining dynamic load balancing. As a result, forecasting
the growth allows for efficient planning.

Definition (LCC Growth). The second prediction task focuses on structural connectivity. Let C}
denote the size of the largest connected component (LCC) at time ¢. The model predicts whether the
LCC will grow over the upcoming interval. Formally:

L, if|C<tn+51vtn+52)| > |C(t17tn)|’
0, otherwise.

P(gatlatna51) - { (4)

Why is this task useful? In Ethereum token networks, the growth of the largest connected component
reflects increasing structural integration, where more addresses become part of a unified transaction
graph. This is important because token networks typically evolve through isolated pairwise trades,
leading to many disconnected components or "islands" of investors. Such fragmentation limits
information flow and liquidity, which can undermine price stability and market efficiency. A growing
LCC, by contrast, indicates expanding interaction and network cohesion, which are often associated
with higher liquidity, stronger network effects, and sustained adoption. Predicting LCC growth helps
identify tokens that are moving toward broader market integration.

Setting n = 7, §; = 3, and d2 = 10 days, we establish a practical graph property with a 7-day
prediction window. This choice is particularly relevant in financial contexts, such as Ethereum asset
networks, where it can guide investment decisions, and in social network infrastructure, like Reddit,
where it supports maintenance planning.
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While this work focuses on specific properties, numerous other characteristics, such as temporal
triangle counting that can identify wash trades [12], can also be defined in this domain to highlight
the significance of temporal graph property predictions.

F Hyperparameters

Single Models. We adopt a 70% —15% — 15% split ratio for the train, validation, and test, respectively,
for each token network, and during each epoch, the training model processes all snapshots in
chronological order. We train every single model for a minimum of 100 and a maximum of 250
epochs with a learning rate set to 15 x 10~%. We apply early stopping based on the AUC results on the
validation set, with patience and tolerance set to 20 and 5 x 10~2, respectively. Specifically, in HTGN
training, the node embeddings are reset at the end of every epoch. We use Binary Cross-Entropy Loss
for performance measurement and Adam [24] as the optimization algorithm. It is important to note
that the graph pooling layer, performance measurement, and optimization algorithm are also shared
by the multi-network model training setup.

Multi-network Models. While following a similar training approach as in the single model training,
we make specific adjustments for the multi-network model training. We set the number of epochs to
300 with a learning rate of 10~* and a train-validation-test chronological split ratio same as single
models. Early stopping is applied based on the validation loss with a tolerance of 5 x 10~2 and the
patience is set to 30. The best model is selected based on the validation AUC and used to predict the
unseen test dataset.

G Hyperbolic Temporal Graph Network

Hyperbolic geometry has been increasingly recognized for its ability to achieve state-of-the-art
performance in several static graph embedding tasks [62]. HTGN is a recent hyperbolic work that
shows strong performance in learning over dynamic graphs in a DTDG manner. The model employs
a hyperbolic graph neural network (HGNN) to learn the topological dependencies of the nodes and a
hyperbolic-gated recurrent unit (HGRU) to capture the temporal dependencies. Temporal contextual
attention (HTA) is also used to prevent recurrent neural networks from only emphasizing the most
nearby time and to ensure stability, along with generalization of the embedding. In addition, HTGN
enables updating the model’s state at test time to incorporate new information, which makes it a
good candidate for learning the scaling law of TGNNSs. In our MiNT framework, we use the HTGN
architecture as part of our multi-network model because it excels in dynamic graph learning through
hyperbolic geometry. Its strong performance makes it a valuable addition to our approach.

Given feature vectors X of snapshot t in Euclidean space, an HGNN layer first adopts an exponential
map to project Euclidean space vectors to hyperbolic space as follows X/t = exp®(XF), and then
performs aggregation and activation similar to GNN but in a hyperbolic manner, X H=HGNN(X]).
To prevent recurrent neural networks from only emphasizing the most nearby time and to ensure
stability along with generalization of the embedding, HTGN uses temporal contextual attention (HTA)
to generalize the lastest w hidden states such that ﬁf‘f 1 =HTA(H;_y;...; Hi—1) [62]. HGRU takes
the outputs from HGNN, )N(Z", and the attentive hidden state, F 7t ., from HTA as input to update gates

and memory cells and then provides the latest hidden state as the output, H7* = HGRU (X7, H} ).
To interpret hyperbolic embeddings, [62] adopt Poincaré ball model with negative curve —c, given
¢ > 0, coresponds to the Riemannian manifold (H™¢) = {x € R" : ¢||z||*> < 1} is an open
n-dimensional ball. Given a Euclidean space vector 7 € R9, we consider it as a point in the tangent

space T,/ H% and adopt the exponential map to project it into hyperbolic space :

H

alt = expl (zF) 5)

Resulting in x7* € H%*, which is then served as input to the HGNN layer as follows [62]:
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m =W x*e°b, (6a)

m;" = expS, ( Z ijlogs, (mlY)), (6b)
JEN(D)
%!t = expSs (o (logs, (). (6¢)

where W, b are learnable parameters and hyperbolic activation function o achieved by applying

logarithmic and exponential mapping. HGNN leverages attention-based aggregation by assigning

attention score oy;; to indicate the importance of neighbour j to node 4, computed as followed:
exp(si;)

> ren; exp(sir)’ )

sij = LeakReLU(a” [log§ (m;)| logg (mj)]),

iy = softmazen(iy)(sij) =

where a is trainable vector and || denotes concatenation operation.

The output of HGNN, X7, is then used as input to HGRU along with attentive hidden state ﬁzf 1
obtained by HTA, which generalize H;_1 to lastest w snapshots { H;_.,, ..., H;_1 } [62]. Operations
behind HGRU are characterized by the following equation [62]:

XF =1logt (XY, (8a)
H{? = logs, (H{* ), (8b)
PE =oc(W.XF +U.HE ) (8¢)
RE = o(W,.XE + U-HE ), (8d)
HF = tanh(Wy X + Un (R, ©® HE ), (8e)
HE =(1-PPYo AP + PP o HE (8f)
H* = expl, (HE). (8g)

where W, W,., W, U, U,, Uy, are the trainable weight matrices, PtE is the update gate to control
the output and RY is the reset gate to balance the input and memory [62].

MiNT-2 = MiNT-4 = MiNT-8 m MiNT-16 m MiNT-32 mMiNT-64 === Single Model
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Figure 8: Test AUC-ROC of multi-network models trained on 2" datasets where n. € [1, 6] and
evaluated on unseen test datasets for network growth or shrink task. Comparing the performance of
single models trained and tested on each dataset.

H Social Domain Results
To assess the generalizability of our proposed MiNT models beyond transaction-based networks,
we conducted experiments on a diverse set of eight real-world social interaction networks. This

evaluation aims to demonstrate that MiNT is not constrained to transactional graph domains and can
effectively transfer learned representations to structurally and semantically distinct networks.
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The selected social datasets include LastFM[48], Table 9: AUC scores of social multi-network mod-
MathOverflow[39], SuperUser[39], Email- elsand single models on test sets across three seeds
Eu[39], AskUbuntu[39], CollegeMsg[38], for the network growth or shrink task. Best scores
StackOverflow[39], and RedditB[26]. These per dataset are shown in bold.

datasets span a wide range of social commu-
nication settings, from question-answering
platforms to messaging and collaboration e | 0w | e (Ew e
networks, providing a rigorous testbed for

cross-domain transfer.

We trained three variants of the MiNT model, MiNT-2, MiNT-4 and MiNT-6 on six social networks
and evaluated them on two held-out unseen networks: MathOverflow and RedditB. As shown in
Table 9, the transferable MiNT models perform competitively with the standard HTGN model
that is trained directly on the test network. Notably, MiNT-6 achieves the best performance on
RedditB (0.663 AUC), surpassing the standard HTGN model, and demonstrates strong results on
MathOverflow (0.758 AUC), further closing the gap with the single model baseline. We observe a
consistent scaling behavior with increasing model capacity (i.e., number of source networks), similar
to what was reported in transaction network experiments. This trend indicates that as the number of
training networks increases, the MiNT models are better equipped to capture structural and temporal
patterns in unseen networks. This reinforces the model’s ability to extract transferable knowledge
and leverage broader training contexts effectively.

Transfer Model

MiNT-2 Social MiNT-4 Social MiNT-6 Social

Network Standard Training
TGN

I MiNT on Additional Property Prediction Task

Table 10: AUC scores of multi-network models and single models on test sets across three seeds on
the largest connected component growth task. Best results in bold, second best underlined.

Standard Training Transfer Model
Network HTGN MiNT-4 \ MiNT-8 \ MiNT-16 \ MiNT-32 \ MiNT-64
MIR 0.745 4+ 0.023 0.570 £ 0.117 | 0.655 +0.012 | 0.783 &+ 0.041 0.766 £ 0.053 | 0.845 £ 0.035
DOGE2.0 0.446 £ 0.164 0.530 £ 0.113 | 0.548 +0.063 | 0.631 £ 0.027 | 0.571 £0.139 | 0.661 £ 0.047
MUTE 0.574 £+ 0.022 0.471 £0.014 | 0.468 +0.021 | 0.509 £ 0.037 | 0.592 £ 0.038 | 0.582 £ 0.078
EVERMOON 0.494 £ 0.127 0.424 £0.059 | 0.421 £0.029 | 0.376 £0.014 | 0.542 £ 0.077 | 0.527 £0.118
DERC 0.717 £ 0.035 0.552 £ 0.015 | 0.584 +0.040 | 0.554 + 0.011 0.733 £ 0.067 | 0.689 % 0.096
ADX 0.753 £ 0.013 0.610 £ 0.019 | 0.63540.033 | 0.603 +0.019 | 0.619 £0.012 | 0.587 £ 0.014
HOICHI 0.746 £ 0.010 0.738 £ 0.009 | 0.696 +0.072 | 0.715+0.027 | 0.592 £0.147 | 0.722 £ 0.034
SDEX 0.911 £ 0.104 0.330 £ 0.117 | 0.42540.199 | 0.361 £0.113 | 0437 £0.316 | 0.382 £ 0.280
BAG 0.493 £ 0.043 0.772 £0.213 | 0.685+0.163 | 0.892 +0.036 | 0.952 £ 0.019 | 0.893 £ 0.074
XCN 0.566 £ 0.199 0.742 £ 0.039 | 0.688 £ 0.041 0.802 4 0.037 | 0.774 £ 0.144 | 0.827 £ 0.025
ETH2x-FLI 0.561 £ 0.037 0.610 £ 0.015 | 0.625 +0.020 | 0.658 + 0.018 | 0.636 £ 0.076 | 0.618 £ 0.025
stk AAVE 0.623 4 0.077 0.613 £ 0.041 0.567 £ 0.038 | 0.668 4 0.061 0.687 4 0.045 | 0.688 + 0.019
GLM 0.761 4 0.031 0.585 £ 0.144 | 0.679 +0.026 | 0.698 £ 0.054 | 0.783 £ 0.031 0.818 £ 0.074
QOM 0.658 £ 0.150 0.535 £0.036 | 0.513 +£0.003 | 0.566 £ 0.036 | 0.696 £ 0.092 | 0.645 £ 0.109
WOJAK 0.378 £ 0.028 0.407 £0.012 | 0.362 +0.053 | 0.384 £ 0.024 | 0.421 40.029 | 0.492 + 0.107
DINO 0.706 £ 0.120 0.794 £ 0.090 | 0.827 +0.039 | 0.815+0.043 | 0.753 £0.165 | 0.561 £ 0.006
Metis 0.679 £ 0.039 0.697 £ 0.031 0.671 £0.047 | 0.711 £0.028 | 0.705 = 0.047 | 0.780 £ 0.041
REPv2 0.730 4 0.007 0.653 +0.014 | 0.642 +0.061 | 0.694 +0.002 | 0.765 £ 0.030 | 0.742 £ 0.041
TRAC 0.733 4 0.009 0.658 £ 0.040 | 0.643 +0.052 | 0.720 £ 0.048 | 0.767 £ 0.012 | 0.762 £ 0.028
BEPRO 0.694 £ 0.009 0.587 £0.002 | 0.604 +0.006 | 0.589 £ 0.018 | 0.601 £0.129 | 0.628 £ 0.017
Top Rank 1 | 4 | 0 | 1 | 1 | 6 | 7
Avg. Rank | | 2.80 | 4.40 | 4.65 | 3.45 | 2.50 | 2.20

To further demonstrate that the scalability of our approach is not restricted to a specific property, we
extended our experiments to evaluate the performance of MiNT models on a new task. This task
involves predicting the growth or shrinkage of the largest connected component, which is particularly
meaningful in the context of transaction networks.

Experimental Results. Table 10 presents the performance of MiNT models and the baseline HTGN
across twenty networks. MiNT models, especially MiNT-32 and MiNT-64, outperform the baseline
in the majority of cases. MiNT 64 achieves the highest AUC in seven networks and ranks second in
three others. It also records the best average rank overall, indicating strong generalization to this new
property prediction task.

These results show that MiNT models are not limited to a particular type of graph signal. Instead,
they are capable of adapting to a broad range of temporal properties.
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—— MINT Model
Al snapshot training

J Effect of Snapshot Scaling on Model Performance -

‘D( 0:70
We conducted an additional experiment to analyze how the number \//
of training snapshots affects model performance over time. Specif- o

ically, we evaluated the scaling behavior of the MiNT-64 model by ¢
training it on different amounts of historical data. For this study, we 75 160 o e
selected five snapshot counts: 50, 100, 200, 500, and full snapshot

history. These snapshots were drawn sequentially from the end of Figure 9: Scaling effect of
each dataset, just before the validation period, to simulate a realistic number of snapshots used in
training scenario. MiNT-64 training.

For each configuration, MiNT-64 was trained using three random seeds, and the average AUC results
are presented in Figure 9. The trend illustrates the scaling behavior of the model as more snapshots
are provided. As the training window expands, the model gains access to richer temporal information,
which contributes to improved generalization and performance. The trend suggests that access to a
larger number of historical snapshots enables temporal models to better capture evolving patterns and
improve predictive performance.

K Effect Of Data Selection

We investigate the effect of data selection on the perfor-
mance of MiNT models trained with different training 1

mData Pack A mData Pack B mData Pack C

data packs. As the first work on multi-network training for 0.9

temporal graphs, we explore the importance of our dataset 08

selection process. To avoid any bias, we randomly sam- ,

pled the training datasets from the 64 available networks. %7

We conducted an empirical experiment to examine the 0.6

impact of dataset selection on training MiNT models. In 0.5

this experiment, we choose three disjoint sets of datasets 0.4

(data pack A, B, and C) for training MiNT-2, MiNT-4, MINT-2  MINT-4  MINT-8  MINT-16  MINT-32

MiNT-8, and MiNT-16 and two disjoint sets of datasets . .

(data pack A, B) for training MiNT-32. Using disjoint Figure 10: Effect of data selection on
data packs ensures that each model is trained on unique ~model performance for network growth
data, eliminating any overlap that could obscure the results. ©F shrink task. When models reach larger
We then test our models on 20 unseen test datasets. Note  512€s (i.e., Mint-32), the effect of data
that MiNT-32 has only two packs, whereas other MiNT packs is negligibly similar.

models have three packs due to the limited number of available training networks. Specifically, since
MiNT-32 requires 32 distinct networks per training run and only 64 total networks are available, we
can only create two non-overlapping training sets of size 32. In contrast, smaller models such as
MiNT-2 through MiNT-16 allow for more disjoint groupings.

As shown in Figure 10, as the number of training networks increases, the multi-network model
performance increases while the variance between different choices of training networks decreases.
However, the difference between models that use the same number of datasets diminishes as we
move from models of 2 to 32 datasets. We observe that smaller models (i.e., MiNT-2) have a higher
variance when compared to larger models (i.e., MiNT-64); in addition, the model performance also
increases from small to large models. For example, MiNT-64 outperforms MiNT-32 on 16 out of 20
datasets.

L Choice of graph pooling

Pooling plays an important role in temporal graph property prediction. In our study, we employ mean
pooling due to its stability across diverse datasets. To assess alternative choices, we compared mean
pooling with max pooling and found that the latter leads to an average 6% drop in AUC, Table 11,
highlighting the effectiveness of mean pooling in our zero-shot temporal graph setting. Adaptive or
hierarchical pooling mechanisms may better capture structural dependencies, and we consider this an
interesting direction for future work.

32



M Additional Results

Here, we present the test results for the six multi-
network models trained on different network sizes, as
well as the single model results. Figure 8 illustrates
the AUC of these models on the test set. In most
datasets, multi-network models outperform the single
model. We have also compared our model against
additional state-of-the-art models, specifically includ-
ing Roland [64], EvolveGCN [40], GC-LSTM [11],
and the only model designed for temporal graph prop-
erties prediction, GraphPulse [50] as baselines for the
test set. In Table 12 and Table 13 the average and
standard deviation of AUC and AP are presented, re-
spectively, for all models. Surprisingly, MiNT-64
stands out as the best model, consistently achiev-
ing competitive performance in a greater number of
datasets for both AUC and AP scores compared to
all other models. Similarly, MN-32 demonstrates
strong performance, achieving the highest score in
several datasets and placing second in numerous oth-
ers; however, it does not surpass MN-64 in overall
rankings. These results show the power of multi-
network models in performing downstream tasks on

Table 11: Test AUC on unseen networks be-
tween MiNT-4 with max pooling and MiNT-4
with mean pooling

MiNT-4 Test AUC

MiNT-4 Test AUC

Dataset Max Pooling Mean Pooling
MIR 0.588 0.510
DOGE2.0 0.500 0.667
MUTE 0.685 0.627
EVERMOON 0.622 0.373
DERC 0.761 0.617
ADX 0.692 0.708
HOICHI 0.583 0.795
SDEX 0.401 0.643
BAG 0.610 0.802
XCN 0.557 0.774
ETH2x-FLI 0.704 0.632
stkAAVE 0.525 0.571
GLM 0.598 0.671
QOM 0.611 0.624
WOJAK 0.611 0.556
DINO 0.480 0.827
Metis 0.558 0.734
REPvV2 0.746 0.725
TRAC 0.572 0.752
BEPRO 0.788 0.742
Average 0.6096 0.668

unseen datasets. Importantly, this high level of performance is achieved through zero-shot inference,
meaning that the model was not specifically trained on these datasets. In contrast, other models,
including GraphPulse, were trained directly for the datasets they evaluated. This considerable dif-
ference underscores the potential of MiNT-64 and highlights the power of zero-shot learning in
effectively leveraging knowledge across different temporal graphs.

Table 14 presents the detailed performance of all MiNT models trained with GCLSTM. Notably, we
observed a consistent trend with GCLSTM: as the model was trained on a larger number of networks,
its zero-shot inference performance improved significantly. This highlights the positive impact of

training on diverse networks for enhancing the model’s generalization capabilities.

Table 12: AUC scores of multi-network models and single models on test sets across three seeds, in-
cluding comparisons with state-of-the-art models EvolveGCN, GC-LSTM, GraphPulse and ROLAND
for network growth or shrink task. The best performance is shown in bold, and the second best is

underlined.

Token ‘ ROLAND ‘ GraphPulse ‘ HTGN ‘ GCLSTM ‘ EvolveGCN ‘ MiNT-2 ‘ MiNT-4 ‘ MiNT-8 ‘ MiNT-16 ‘ MiNT-32 ‘ MiNT-64

WOJAK 0.529 + 0005 | 0.467+ 0030 | 0.479 + 0005 | 0.484 + 0000 | 0.505 4 0023 | 0.534 £ 0020 | 0.556 + 0029 | 0.561 & 0.018 | 0.556 =+ 0016 | 0.534 + 0017 | 0.524 + 0027
DOGE2.0 0.513 £0022 | 0.384 & 0180 | 0.590 £ 0.059 | 0.538 +0.000 | 0.551 40022 | 0.397 £ 0.124 | 0.667 + 0219 | 0.603 4 0080 | 0.526 £ 0059 | 0.551 0022 | 0.538 & 0.038
EVERMOON | 0.349 +0.119 | 0.519 £ 0130 | 0.512 40023 | 0.562 & 0179 | 0.451 £ 0.046 | 0.287 £ 0153 | 0.373 £ 0037 | 0.426 £ 0.065 | 0.488 £ 0054 | 0.543 0075 | 0.517 £ 0.039
QOM 0.641 +0003 | 0775 £+ 0.011 | 0.633 £ 0.017 | 0.612 £ 0.001 | 0.618 £ 0.002 | 0.635 £ 0061 | 0.624 £ 0025 | 0.633 £ 0032 | 0.644 + 0009 | 0.669 & 0034 | 0.647 £ 0.019
SDEX 0.483 £0254 | 0.436 0030 | 0.762 £ 0.034 | 0.720 £ 0002 | 0.733 40028 | 0.585 £ 0.139 | 0.643 £ 0021 | 0.515 %0031 | 0.476 £ 0010 | 0.536 £ 0.042 | 0.614 % 0020
ETH2x-FLI 0.621 £0.023 | 0.666 £ 0047 | 0.610 £ 0059 | 0.670 % 0.009 | 0.688 & 0.010 | 0.595 £ 0083 | 0.632 £ 0.019 | 0.663 & 0.018 | 0.710 £ 0037 | 0.715 £ 0032 | 0.729 & 0.015
BEPRO 0.439 0125 | 0.783 £+ 0.003 | 0.655 & 0038 | 0.632 = 0019 | 0.610 £ 0012 | 0.720 £ 0028 | 0.742 0013 | 0.762 & 0.007 | 0.765 £ 0.024 | 0.776 £ 0008 | 0.782 + 0.003
XCN 0.765 0015 | 0.821 £ 0004 | 0.668 £ 0099 | 0.306 = 0.092 | 0.512 %0067 | 0.754 +0025 | 0.774 £ 0062 | 0.773 0076 | 0.827 £ 0061 | 0.848 + 0.000 | 0.851 & 0.043
BAG 0.418 £0.016 | 0.934 £ 0020 | 0.673 £ 0227 | 0.196 + 0179 | 0.329 & 0.040 | 0.667 £ 0134 | 0.802 £ 0.155 | 0.808 & 0.095 | 0.884 £ 0044 | 0.898 + 0075 | 0.931 & 0.028
TRAC 0.495 +£0223 | 0.767 40001 | 0.712 £ 0071 | 0.748 £ 0.000 | 0.748 40000 | 0.734 £ 0012 | 0.752 £ 0009 | 0.764 % 0012 | 0.776 £ 0012 | 0.770 £ 0.007 | 0.785 + 0.008
DERC 0.405 0357 | 0.769 & 0040 | 0.683 40013 | 0.703 & 0.022 | 0.669 £ 0009 | 0.593 £ 0108 | 0.617 0030 | 0.657 & 0000 | 0.723 £ 0058 | 0.756 £ 0045 | 0.798 = 0.027
Metis 0.696 +0.108 | 0.812 & 0.011 | 0.715 £ 0122 | 0.646 + 0023 | 0.688 £ 0027 | 0.672 £ 0.103 | 0.734 L0017 | 0.730 £ 0036 | 0.734 £ 0016 | 0.753 & 0005 | 0.760 = 0.025
REPv2 0.751 £0003 | 0.830 & 0.001 | 0.760 = 0.012 | 0.725 + 0014 | 0.709 & 0002 | 0.690 == 0.024 | 0.725 £ 0023 | 0.719 0022 | 0.774 £ 0013 | 0.773 £ 0013 | 0.789 + 0020
DINO 0.497 £0092 | 0.801 0020 | 0.730 £ 0.195 | 0.874 % 0.028 | 0.868 & 0029 | 0.692 £ 0.140 | 0.827 £ 0112 | 0.794 £ 009 | 0.809 £ 0.087 | 0.764 £ 0048 | 0.779 £ 0113
HOICHI 0.815 £ 0036 | 0.714 £ 0010 | 0.807 £ 0.047 | 0.857 £+ 0000 | 0.856 £ 0001 | 0.733 £ o101 | 0.795 £ 0025 | 0.759 £ 0040 | 0.763 £ 0.026 | 0.731 £ 0029 | 0.765 £ 0.018
MUTE 0.289 +0.042 | 0.779 £ 0.004 | 0.649 £ 0015 | 0.593 + 0030 | 0.617 0010 | 0.613 £ 0027 | 0.627 £ 0024 | 0.633 & 0.024 | 0.684 £ 0042 | 0.657 £ 0035 | 0.673 % 0.013
GLM 0.559 0357 | 0.769 0018 | 0.830 £ 0.029 | 0.451 +0.003 | 0.501 40033 | 0.613 £ 0115 | 0.671 £ 0034 | 0.746 0082 | 0.800 £ 0.062 | 0.826 + 0.035 | 0.831 + 0.024
MIR 0.228 £ 0060 | 0.689 4 0097 | 0.750 £ 0.005 | 0.768 + 0.026 | 0.745 4 0015 | 0.497 £ 0192 | 0.510 £ 0.015 | 0.669 + 0.103 | 0.800 £ 0.044 | 0.809 + 0.022 | 0.836 + 0.016
stkAAVE 0.591 0122 | 0.743 & 0.006 | 0.702 £ 0.042 | 0.368 + 0011 | 0.397 40022 | 0.597 £ 0076 | 0.571 £ 0026 | 0.626 40023 | 0.666 £ 0,033 | 0.696 + 0.027 | 0.709 =+ 0.022
ADX 0.761 o011 | 0.784 £ 0002 | 0.769 £ 0018 | 0.723 £ 0002 | 0.718 40004 | 0.695 £ 0.003 | 0.708 £ 0.025 | 0.680 % 0008 | 0.678 £ 0.019 | 0.671 £ 0015 | 0.679 % 0.024

N Zero-Shot Inference Efficiency of MiNT

As shown in Table 15, MiNT demonstrates remarkable computational efficiency across all unseen
datasets compared to training a single HTGN model on each individual unseen network. On average,
HTGN requires 2141.66 seconds to train a model per dataset, whereas MiNT completes inference in
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Table 13: AP scores of multi-network models, and single models on test sets across three seeds,
including comparisons with state-of-the-art models EvolveGCN, GC-LSTM, GraphPulse, and Roland
for the network growth or shrink task. The best performance is shown in bold, and the second best is
underlined.

Token | ROLAND | GraphPulse | HTGN | GCLSTM | EvolveGCN | MiNT-2 | MiNT-4 | MiNT-8 | MiNT-16 | MiNT-32 | MiNT-64

WOJAK 0.844 £0003 | 0.863+ 0.006 | 0.812 0003 | 0.812 £ 0000 | 0.827 £ 0017 | 0.832 £ 0009 | 0.836 £ 0.015 | 0.842 % 0015 | 0.850 £ 0.006 | 0.842 + 0.008 | 0.837 £ 0019
DOGE2.0 0.918 £ 0006 | 0.966 & 0.002 | 0.933 £ 0.010 | 0.925 % 0.000 | 0.927 40004 | 0.889 £ 0.031 | 0.940 % 0050 | 0.936 & 0014 | 0.920 £ 0014 | 0.927 + 0004 | 0.921 £ 0014
EVERMOON | 0.390 +0033 | 0.768 001 | 0.585 + 0065 | 0.612 40200 | 0.494 £ 0.017 | 0.442 + 0059 | 0.508 40045 | 0.542 £ 0.031 | 0.530 £ 0040 | 0.567 0053 | 0.551 £ 0.021
QOM 0.624 +0.004 | 0.840 & 0002 | 0.623 £ 0.024 | 0.592 £ 0.001 | 0.597 £ 0.002 | 0.632 £ 0070 | 0.617 £ 0022 | 0.616 £ 0007 | 0.626 + 0020 | 0.648 + 0.027 | 0.635 + 0.027
SDEX 0.631 £0.133 | 0.662 4 0017 | 0.825 £ 0.048 | 0.725 + 0002 | 0.750 4= 0025 | 0.723 £ 0039 | 0.725 £ 0021 | 0.650 & 0046 | 0.628 £ 0.036 | 0.697 £ 0.064 | 0.699 & 0021
ETH2x-FLI 0.619 £0077 | 0.836 & 0.015 | 0.590 £ 0.103 | 0.735 £ 0018 | 0.756 0013 | 0.607 £ 0.122 | 0.621 + 0039 | 0.658 & 0057 | 0.745 £ 0051 | 0.737 £ 0049 | 0.784 £ 0.007
BEPRO 0.513 0080 | 0.802 4 0001 | 0.686 £ 0.042 | 0.637 + 0022 | 0.622 4 0009 | 0.743 £ 0033 | 0.769 + 0015 | 0.799 % 0016 | 0.804 & 0034 | 0.815 + 0.007 | 0.816 + 0.014
XCN 0.747 £0037 | 0.793 £ 0002 | 0.687 £ 0.085 | 0.420 £ 0032 | 0.555 40073 | 0.708 £ 0.065 | 0.765 £ 0080 | 0.781 0082 | 0.829 £ 0057 | 0.851 + 0.023 | 0.861 + 0.042
BAG 0.289 £0005 | 0.957 & 0.004 | 0.523 £ 0290 | 0.235 £ 0041 | 0.263 £ 0011 | 0.474 £ 0152 | 0.699 £+ 0.193 | 0.682 £ 0160 | 0.784 £ o118 | 0.829 £ 0119 | 0.889 £ 0.043
TRAC 0.499 +0.192 | 0.767 & 0.002 | 0.685 £ 0074 | 0.716 + 0006 | 0.722 4 0001 | 0.705 £ 0.013 | 0.734 £ 0012 | 0.741 & 0006 | 0.764 = 0015 | 0.741 £ 0015 | 0.758 + 0021
DERC 0.460 0296 | 0.773 £ 0.004 | 0.532 £ 0021 | 0.621 £ 0053 | 0.513 £ 0012 | 0.505 £ 0157 | 0.477 L0021 | 0.516 0030 | 0.639 £ o118 | 0.700 + 0080 | 0.741 & 0.024
Metis 0.596 £0.120 | 0.801 & 0.003 | 0.601 £ 0.187 | 0.575 £ 0041 | 0.577 0006 | 0.532 £ 0.126 | 0.645 £ 0029 | 0.632 £ 0056 | 0.611 £ 0.021 | 0.647 £ 0026 | 0.639 £ 0.077
REPv2 0.727 £0003 | 0.797 4 0.003 | 0.758 £ 0,033 | 0.691 % 0.006 | 0.689 4 0001 | 0.610 £ 0063 | 0.619 £ 0019 | 0.635 4 0042 | 0.705 £ 0027 | 0.721 £ 0004 | 0.729 % 0011
DINO 0.591 £ 0076 | 0.871 0026 | 0.747 40175 | 0.881 & 0.029 | 0.875 £ 0.024 | 0.738 £ 0113 | 0.842 0102 | 0.793 & 0,094 | 0.824 £ 0077 | 0.753 £ 0030 | 0.765 % 0.119
HOICHI 0.699 0031 | 0.623 & 0003 | 0.666 £ 0.062 | 0.650 + 0000 | 0.658 £ 0011 | 0.531 £ 0.109 | 0.677 £ 0049 | 0.605 £ 0037 | 0.609 £ 0.016 | 0.551 £ 0045 | 0.594 £ 0012
MUTE 0.332 £ 0012 | 0.726 & 0.002 | 0.615 £ 0.049 | 0.504 + 0012 | 0.527 & 0015 | 0.579 £ 0023 | 0.612 + 0041 | 0.603 & 0058 | 0.675 £ 0032 | 0.609 + 0021 | 0.647 =+ 0.048
GLM 0.585 £ 0191 | 0.712 0047 | 0.797 4 0024 | 0.513 £ 0001 | 0.529 £ 0013 | 0.598 £ 0123 | 0.651 %0031 | 0.709 & 0088 | 0.783 £ 0.092 | 0.819 £ 0035 | 0.838 + 0.032
MIR 0.317 £0019 | 0.766 % 0041 | 0.751 40003 | 0.765 = 0.012 | 0.752 £ 0007 | 0.493 £ 0212 | 0.442 & 0024 | 0.645 £ 0.133 | 0.783 £ 0.064 | 0.799 £ 0015 | 0.811 + 0.019
stk AAVE 0.630 0100 | 0.751 40005 | 0.750 £ 0.020 | 0.506 + 0,003 | 0.493 40009 | 0.662 = 0.066 | 0.622 £ 0011 | 0.694 & 0021 | 0.730 £ 0037 | 0.741 £ 0.020 | 0.759 % 0.019
ADX 0.738 £0026 | 0.765 & 0.003 | 0.758 + 0.017 | 0.666 %+ 0.002 | 0.661 £ 0017 | 0.638 £ 0.021 | 0.667 + 0040 | 0.632 % 0010 | 0.621 £ 0013 | 0.622 + 0015 | 0.628 £ 0012

Table 14: AP and AUC scores of GCLSTM-based multi-network models on test sets across three
seeds for network growth or shrink task. The best performance is shown in bold, and the second best
is underlined.

AUC

Token ‘ MiNT-2 MiNT-4 MiNT-8 MIiNT-16 MiNT-32 MiNT-64 ‘ MIiNT-2 MiNT-4 MiNT-8 MiNT-16 MiNT-32 MiNT-64

MIR 0.653 0154 0.638 £ 0090 0.588 0135  0.765 £ 0049  0.742 £ 0036  0.789 £ 0016 | 0.667 £ 0153  0.602 £ 0134 0.550 0166 0.750 £ 0019 0.758 £ 0016 0.777 & 0.013
DOGE2 0.487 £0080  0.590 0146  0.487 0219 02820097 0.769 £ 0133 0.551 £ 0022 | 0.910 0019 0930 £ 0030 0.907 0046 0.839 £ 0057 0. 0.927 + 0.004
MUTE 0.592 +0076  0.627 o018 0.561 % 0.035 0.627 + 0009 0.636 £ 0.003 | 0.534 £ 0056  0.555 0017 0.502 £ 0022 0.501 + 0.006 0.568 + 0.002
EVERMOON | 0.429 +o078 0318 0152 0.306 =+ 0.085 0420 + 0084 0.494 £ 0048 | 0.493 0005 0423 = 0097  0.427 £ 0037 0447 £ 0123 0.560 =+ 0.010
DERC 0.614 0129  0.618 £ 0058  0.569 + 0.085 0.647 0054 0.696 £ o011 | 0.541 £ o150 0.546 £0113  0.460 £ 0078  0.693 + 0.032 0.629 + 0012
ADX 0.692 £ 0007  0.605 £ 0182  0.674 £ o008 0.676 £ 0003 0.678 £ 0004 0.674 £ 0022 | 0.614 £ o011 0.583 £ 0147  0.634 £+ 0024 0.609 + 0.005 . 0.611 £ 0010
HOICHI 0.663 +0312 0.793 £ 0065  0.633 0197 0.817 £ 0010 0.816 0043  0.847 L0005 | 0529 £ 0210 0.602 0066 0471 0178  0.637 £ 0016  0.630 £ 0055  0.656 + 0.014
SDEX 0.619 £0210 0.721 £ 0032 0574 0233 0.741 L0014 0717 £0020 0.724 £ 0002 | 0.678 L0115 0.732 004  0.670 0092 0.752 L0007  0.728 £ 0009  0.729 + 0.002
BAG 0.573 0072 0.525 0010 0.374 +0029 0.442 40039 0469 £0060 0.529 0023 | 0.358 0036 0.334 £o00s 0.277 £ ooi0  0.303 £ 0013 0311 £ 0025 0.337 £ 0.009
XCN 0.753 0026 0.739 £ 0005  0.726 o014 0.736 £ o006  0.731 0005  0.733 £ 0003 | 0.690 £ 0064 0.657 £ 0009 0.665 £ 0031  0.656 0007 0.650 + 0003  0.653 + 0.002
ETH2x-FLI 0.621 £ o119 0.615+ 0074  0.542 £ 0086  0.675 £ o008  0.666 0021 0.697 £ 0.010 | 0.669 £ 0165 0.669 0084 0.570 0154 0.752 £ 0015 0.747 £ 0021 0.766 £ 0.006
stkAAVE 0.601 £0121 0573 £ 0084 0.517 0011 0.609 £ 0032 0.624 + 0017 0.650 £ 0.028 | 0.687 £ o101 0.616 £ o108 0.571 o045 0.669 £ 0066 0.710 £ 0017 0.736 & 0.022
GLM 0.448 £0097  0.363 0132 0.331 0083  0.563 £ 0016 0463 £0053  0.502 40027 | 0467 o041 0436 £ o052 0437 o020 0541 £ o010 0480 £o0026 0490 + 0012
QOM 0.594 0043 0.613 £ 0009 0.574 + 0030 0.614 + 0005 0.614 +0007 0.618 + 0.004 | 0.587 £ 0020 0.598 + 0004 0.573 £ o018  0.596 + 0005 0.597 + 0005  0.599 =+ 0.003
WOJAK 0.516 0057 0.524 0016 0.561 0026 0.489 £ o060 0.598 £ 0075  0.534 £ 0020 | 0.810 o052 0.838 £ 0014 0.834 o016  0.808 £ 0027 0.862 £ 0026 0.844 & 0007
DINO 0.667 0138 0.695 0147 0.738 L0047 0.617 L0148 0.704 £ 0065  0.659 £ 0039 | 0.719 £ 0120 0.740 £ 0107 0.746 0083  0.619 £ 0073  0.683 £ o006  0.643 + 0041
Metis 0.692 +0023  0.677 £ 0030 0.609 + 0025  0.674 £ 0020 0.690 £ 0016  0.697 + 0.013 | 0.558 £ 0029 0.541 0083 0.485 + 0065 0555+ 0019 0.586 + 0022 0.564 + 0019
REPv2 0.670 £0053  0.686 + 0043 0.706 = 0040  0.735 £ 0017 0.707 £ 0019  0.733 £ 0019 | 0.617 £ 0080 0.633 £ o00s 0.619 £ 0054 0720 £ 0031  0.654 £ 0032  0.683 & 0.022
TRAC 0.736 0015 0.736 0014 0.710 £ 0027 0.741 + 0003  0.741 £ 0007  0.742 £ 0.004 | 0.702 £ 0031 0.709 0020 0.708 + 0016  0.720 & 0002  0.717 + 0003  0.717 =+ 0.005
BEPRO 0.723 0053 0.720 £ 0035 0.685 0069 0.734 £ 0016 0.757 o005 0.746 £ 005 | 0.730 £ o096  0.755 £ 0019 0.727 0063  0.764 £ 0021 0.791 £ 0007 0.776 & 0012

only 11.52 seconds, yielding an impressive average efficiency ratio of 180.86 x. This result highlights
the clear advantage of MiNT ’s zero-shot inference capability. Once pretrained on multiple networks,
it can generalize to unseen temporal graphs without the need for retraining, thus saving substantial
computational resources.

A closer look at the dataset-level results reveals Table 15: Comparison of time efficiency on unseen
consistent and significant efficiency gains datasets (in seconds): HTGN vs. MiNT
across all cases. Particularly, datasets such as

DERC (303.45x), DOGE2.0 (266.78x), WO- HTGN Single Model | - MiNT Inference | Efficiency
i i Dataset Train Time Time Ratio

JAK (249.11x), BEPRO (240.73x), HOICHI VERMOON TS 0 o
(220.80x), ADX (221.69x), and TRAC  pogezo 392.16 1.47 266.78
(220.39x) exhibit extremely large efficiency  SDEX 51629 3.21 160.84
X ; . X - BAG 504.99 4.06 124.38
ratios, with MiNT inference being more than  pno 451.06 491 91.87
two hundred times faster than training a new NNAK oo el o
HTGN model. These datasets tend to have  woichr 1262.99 572 220,80
; ; Metis 1359.59 12.93 105.15
relatively 'complex tf;mporal d}./nan’ncs or lgrger QoM learos - o
network sizes, implying that MiNT’s pretraining ~ mute 1679.20 13.74 12221
; : : : GLM 1896.96 1535 123.58

enables it to genqrghze efficiently Wlthout ETHOXFLI 203161 Py S7ed
the expensive retraining process required by  Rrepv2 3275.41 16.70 196.13
HTGN DERC 3486.62 1149 303.45
: BEPRO 3789.14 15.74 240.73

. . SIKAAVE 3194.12 15.81 202.03

Even for datasets where the efficiency ratio is  apx 3673.39 16.57 221.69
relatively smaller, such as DINO (91.87x), XCN ~ MR 452521 28.04 161.38
. TRAC 6596.15 29.93 220.39

(90.65x%), and GLM (123.58x), the improvement

Average | 2141.66 | 11.52 | 180.86

still amounts to nearly two orders of magnitude,
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representing a dramatic reduction in computational cost. This consistency across diverse datasets
underscores MiNT ’s scalability and robustness.

Overall, these findings emphasize that MiNT not only provides dramatic time savings but also
scales effectively across both small and large networks, maintaining reliable inference speed without
sacrificing model performance. The ability to perform inference hundreds of times faster makes
MiNT particularly advantageous in dynamic, real-world scenarios, such as financial transaction
networks, communication systems, and social platforms, where new temporal graphs continuously
emerge and require immediate adaptation. Consequently, this efficiency establishes MiNT as a highly
practical and deployable framework for advancing the development of temporal graph foundation
models.
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