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ABSTRACT

Learning effective visual representations for robotic manipulation remains a funda-
mental challenge due to the complex body dynamics involved in action execution.
In this paper, we study how visual representations that carry body-relevant cues
can enable efficient policy learning for downstream robotic manipulation tasks.
We present Inter-token Contrast (ICon), a contrastive learning method applied to
the token-level representations of Vision Transformers (ViTs). ICon enforces a
separation in the feature space between agent-specific and environment-specific
tokens, resulting in agent-centric visual representations that embed body-specific
inductive biases. This framework can be seamlessly integrated into end-to-end
policy learning by incorporating the contrastive loss as an auxiliary objective. Our
experiments show that ICon not only improves policy performance across various
manipulation tasks but also facilitates policy transfer across different robots. The
project website: https://anonymous.4open.science/w/ICon/

1 INTRODUCTION

Vision serves not only the awareness of the external environment but also the awareness of one’s own
self (Gibson, 2002). Through vision, we perceive our bodies, monitor our movements, and maintain a
perceptual boundary between self and non-self. This form of bodily awareness, commonly referred to
as visual proprioception (Bermúdez, 2011), enables agents to respond to their own bodily dynamics
in a flexible and adaptive manner. Such responsiveness is essential for planning and executing actions
in tasks that require high-level action sensitivity, such as locomotion and manipulation (Gibson,
1966). Going further, incorporating such inductive biases, particularly those arising from the agent’s
body within the visual field, can be highly beneficial to learning policies for robotic tasks (Gmelin
et al., 2023; Hu et al., 2021; Soter et al., 2018). With awareness of the position and movement of its
own body, a robotic agent can efficiently learn structured agent-environment representations from
raw pixel observations (Gmelin et al., 2023).

However, despite existing efforts in visuomotor policy learning, extracting body-aware information
from high-dimensional images remains challenging, especially in end-to-end learning frameworks
where visual encoders are jointly optimized with policy networks (Levine et al., 2016). Since both
components share the same optimization objective, models can easily converge to bottlenecks that
inadvertently filter out task-irrelevant cues, including visual signals related to the agent’s body. This
issue becomes even more pronounced when training data is deficient. To address this, one approach
is to augment the policy loss with an agent-centric auxiliary objective (Gmelin et al., 2023; Pore et al.,
2024). These methods typically involve reconstructing RGB observations or agent masks from latent
representations to implicitly disentangle a robotic agent from its environment. While this strategy
has proven effective across various tasks, we argue that the reconstruction loss can undermine the
training stability of policy learning. This raises a key question: is there a more natural way to derive
disentangled agent-environment representations from pixels without sacrificing model performance
and training stability?

To this end, we propose Inter-token Contrast (ICon), a contrastive learning approach designed to
extract agent-centric representations from the Vision Transformer (ViT) (Dosovitskiy et al., 2020), a
high-capacity visual encoder widely utilized in robotic manipulation (Fu et al., 2024; Karamcheti
et al., 2023; Radosavovic et al., 2023; Xiao et al., 2022). ICon applies contrastive learning to the
ViT’s token-level features, where features corresponding to the agent are pulled together, and are
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contrasted against those corresponding to the environment, and vice versa. By explicitly decoupling
agent-specific and agent-agnostic features, we implicitly encourage the model to focus on agent-
relevant information, rather than information of the entire scene. We further introduce the following
technical contributions to enhance the performance of ICon:

• We bring Farthest Point Sampling (FPS) (Qi et al., 2017) into 2D domains to sample keys
from tokens for contrastive learning. By encouraging a wide spatial distribution of keys,
FPS ensures that the selected features capture diverse and informative aspects of either the
agent or the environment, maintaining a good representation of the overall structure.

• We propose a multi-level design that fuses inter-token contrastive losses from multiple layers
of the ViT encoder, enabling a more complete disentanglement between the agent and its
environment within the learned visual representations.

Through extensive experiments, we demonstrate that integrating ICon with Diffusion Policy (Chi et al.,
2023), a state-of-the-art imitation learning algorithm, leads to consistent performance improvements
across 8 manipulation tasks spanning 3 different robots from 2 benchmarks. Code, data, and videos
can be found: https://anonymous.4open.science/w/ICon/

2 RELATED WORK AND BACKGROUND

2.1 VISUOMOTOR POLICY LEARNING

Training control policies that map visual sensory inputs directly to motor actions has been widely
studied in reinforcement learning (RL) (Kostrikov et al., 2020; Levine et al., 2016; Yarats et al., 2021a)
and imitation learning (IL) (Chi et al., 2023; Lee et al., 2024; Mandlekar et al., 2021; Shafiullah et al.,
2022). Among all, several works have explored learning improved representations for visual control
through auxiliary tasks. Dasari and Gupta (2021) leverage learned representations to predict the
gripper’s future location as a 2D keypoint in the image for debugging purposes, although they do not
explicitly use this auxiliary objective for representation learning. Extending this line of work, Yarats
et al. (2021b) couple a policy network with an autoencoder to reconstruct raw image pixels from the
learned latent space, which has proven effective to improve the sample efficiency of RL algorithms.
Building upon this idea, Gmelin et al. (2023) incorporate an additional autoencoder to reconstruct
binary agent masks, yielding an agent–centric representation that facilitates policy transfer across
different robots. More recently, Li et al. (2024) introduce the reconstruction approach to the reverse
diffusion process (Ho et al., 2020), where a decoder reconstructs both pixel and state information
from the intermediate representations of a U-Net model (Ronneberger et al., 2015) to enhance the
performance of a diffusion-based policy (Chi et al., 2023). Our approach is similar to Laskin et al.
(2020) and Zhu et al. (2022), which augment the policy objective with an auxiliary contrastive loss.
However, instead of focusing on extracting task-relevant semantics from high-dimensional images,
we aim to explicitly encourage the policy to learn agent-centric visual representations.

2.2 CONTRASTIVE LEARNING

Contrastive learning is a self-supervised learning paradigm to learn useful representations from
high-dimensional data, such as natural language (Radford et al., 2021), images (Caron et al., 2021;
Chen et al., 2020; He et al., 2020; Radford et al., 2021), and videos (Nair et al., 2022; Sermanet
et al., 2018; Xu et al., 2023). It can be interpreted as training an encoder for a dictionary look-up
task, whose goal is to pull the query closer to a positive key while pushing it away from all other
negative keys. This is typically achieved by minimizing a contrastive loss (Chopra et al., 2005),
which serves as an unsupervised objective function for training the encoder networks. Commonly
used contrastive losses include Triplet loss (Schroff et al., 2015), N-pair loss (Sohn, 2016), Noise
Contrastive Estimation (NCE) loss (Gutmann and Hyvärinen, 2010), and InfoNCE loss (Oord et al.,
2018). In this paper, we adopt a variant of the InfoNCE loss proposed by Wang et al. (2022):

LInfoNCE(q,K+,K−) =
1

|K+|
∑

k+∈K+

− log
exp (q · k+/τ)

exp (q · k+/τ) +
∑

k−∈K−
exp (q · k−/τ)

, (1)

where q, K+, and K− denote the query, the set of positive keys, and the set of negative keys,
respectively; (·) denotes the dot product; and τ is a temperature hyperparameter.
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3 VISUALLY GROUNDED AGENT-CENTRIC REPRESENTATIONS

In principle, it is possible to integrate ICon with any visuomotor policy that uses vision transformers
as visual encoders. In this section, we begin with an overview of the vanilla vision transformer,
followed by a detailed explanation of the key design choices of ICon as well as its integration with a
visuomotor policy network. An overview of ICon is shown in Figure 1.

Figure 1: Overview of ICon. A full-scene RGB image containing a robotic agent is tokenized and
processed by a vision transformer. The resulting token-level features (excluding the [CLS] token) are
reshaped and aligned with a token-level mask derived from the agent’s segmentation mask. Tokens
corresponding to the agent and the environment are then sampled and used as keys to compute the
inter-token contrastive loss.

3.1 PRELIMINARIES: VISION TRANSFORMERS

Vision Transformers (ViTs) (Dosovitskiy et al., 2020) extract token-level representations from
high-dimensional images. As depicted in Figure 1, an image I ∈ RH×W×3 is first divided into non-
overlapping patches, each of size P × P , and then embedded into a sequence of tokens T ∈ RN×D,
where N = HW/P 2 denotes the number of patches and D is the embedding dimension. The token
embeddings, prepended with a learnable classification token [CLS], are subsequently fed into the ViT
encoder to produce a sequence of token-level features [Fcls,F ], where Fcls ∈ RD and F ∈ RN×D

correspond to the [CLS] token and the patch embeddings, respectively.

3.2 TOKEN-LEVEL AGENT MASKS

While we have obtained token-level features from the vision transformer, how can we determine
which features are agent-specific and which are agent-agnostic? Recall that each token corresponds
to an image patch consisting of a set of pixels. Each pixel can be classified as belonging to either the
agent or the environment based on an agent mask (Gmelin et al., 2023; Hu et al., 2021; Pore et al.,
2024). Therefore, we can propagate these pixel-level assignments to the token level.

Specifically, given the image I of the full scene, we use a segmentation model to generate a binary
maskM∈ RH×W , whereMi,j = 1 for pixels occupied by the agent and 0 otherwise. This maskM
is then patchified into Pmask = {pk,l}H/P,W/P

k=1,l=1 following the same patchification procedure applied
to the image I in ViT encoding. Since each patch pk,l may contain a mix of agent-related and
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environment-related pixels, we determine its dominant class based on a masking threshold β ∈ [0, 1]:
if the proportion of agent pixels in a patch exceeds β, the patch is considered agent-dominated and
assigned a value of 1; otherwise, it is considered environment-dominated and assigned a value of
0 (Equation (2)). This yields a new patch-level (or token-level) maskMtoken = {mk,l}H/P,W/P

k=1,l=1 ,
where mk,l ∈ {0, 1}.

mk, l =

{
1 if sum(pk, l) > βP 2

0 otherwise
. (2)

3.3 INTER-TOKEN CONTRASTIVE LOSS

Now that we have acquired the token-level features and the agent masks, we introduce an inter-
token contrastive loss to help the model distinguish between the agent and its environment.
Our intuition is straightforward: features that
belong to the same class (agent or environment)
should be similar, while features coming from
different classes should be dissimilar. To fulfill
this, we encourage features of the same class
to cluster together while enforcing separation
between features of different classes, resulting
in a clearer boundary between the agent and its
environment in the learned feature space.

Specifically, given the token-level featuresF and
the corresponding agent masksMtoken, we first
rearrange the sequence-like features F into a 2D
feature map Fmap = {fk,l}H/P,W/P

k=1,l=1 for subse-
quent processing. We then compute the agent-
specific query qa and environment-specific query
qe by averaging the corresponding features, as
defined in Equation (3), where I(·) stands for the
indicator function. As for key selection, we adapt
the Farthest Point Sampling (FPS) method (Qi
et al., 2017) from point cloud sampling to the 2D
domain (see Algorithm 1). Compared with ran-
dom sampling, FPS promotes diversity through
selecting points that are spatially well-distributed
(see Figure 2), ensuring that the sampled keys
capture diverse and representative features of the
agent and the environment. By applying FPS
within the feature map Fmap while restricting the

Algorithm 1 2D Farthest Point Sampling

1: Input: 2D indices V = {(k, l)}H,W
k=1,l=1 , a

binary maskM = {mk,l ∈ {0, 1}}H,W
k=1,l=1

indicating sampling regions, number of sam-
ples N (N ≤

∑
mk,l)

2: Output: Indices of samples V ′

3: D ← {dk,l =∞}H,W
k=1,l=1 ▷ Distance map

4: Randomly select (k̃, l̃) where mk̃,l̃ = 1

5: V ′ ← {(k̃, l̃)}
6: for s = 1 to N − 1 do
7: (k̂, l̂)← V ′[−1]
8: for k = 1 to H , l = 1 to W do
9: d̂k,l ← |k̂ − k|+ |l̂ − l|

10: if d̂k,l < dk,l then
11: Update dk,l ← d̂k,l
12: end if
13: end for
14: (k∗, l∗)← argmax

k,l
(mk,l · dk,l)

15: V ′ ← V ′ ∪ {(k∗, l∗)}
16: end for
17: return V ′

sampling regions usingMtoken and (1−Mtoken), we obtain a set of agent-specific keys Ka and a set
of environment-specific keys Ke, respectively. Note that for the agent-specific query qa, the agent-
specific keys Ka serve as positive keys, while the environment-specific keys Ke serve as negative
keys, and vice versa for the environment-specific query qe. Finally, we compute two symmetric
InfoNCE losses (Equation (1)) for the queries using their respective positive and negative keys, and
combine them together to form the ICon objective (Equation (4)). The complete pseudocode for ICon
is provided in Algorithm 2.

qa =
1

sum(Mtoken)

H/P∑
k=1

W/P∑
l=1

I(mk,l = 1)fk,l,

qe =
1

sum(1−Mtoken)

H/P∑
k=1

W/P∑
l=1

I(mk,l = 0)fk,l.

(3)

LICon = LInfoNCE(qa,Ka,Ke) + LInfoNCE(qe,Ke,Ka). (4)
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(a) Random sampling (b) Farthest Point Sampling

Figure 2: Visualization of point distributions sampled from the agent mask. (a) Random sampling
may result in points clustered within a small region. (b) Farthest Point Sampling (FPS) produces
points that are well-distributed across the entire agent.

3.4 MULTI-LEVEL CONTRAST (MLC)

In the standard ICon formulation, inter-token contrastive learning is applied only at the final layer of
the vision transformer. However, we argue that this is insufficient to fully decouple the agent and
its environment within the visual representations. To achieve a more complete agent-environment
disentanglement, we extend ICon to each transformer encoder layer (Vaswani et al., 2017) of the
vision transformer. Specifically, let F (i) represent the token-level output features (excluding the
[CLS] token) from the i-th layer. The inter-token contrastive loss for this layer, L(i)

ICon, is computed as
described in Section 3.3. The overall contrastive objective is then obtained by taking a weighted sum
of the layer-wise contrastive losses:

LICon =
∑
i

exp (γ · i)∑
i

exp (γ · i)
L(i)

ICon. (5)

Here, γ is a hyperparameter that controls the disentangling degree across transformer encoder layers.
Prior work has shown that the shallow layers of a vision transformer primarily capture positional
information, while deeper layers shift toward encoding more semantic features (Amir et al., 2021).
This implies that shallower layers tend to produce more entangled agent-environment representations,
resulting in larger inter-token contrastive losses. To strike a balance, we set γ > 0 to assign greater
weights to the contrastive losses from deeper layers.

3.5 TRAINING

As described above, ICon enhances a policy’s visual representations by introducing an agent-centric
contrastive loss as an auxiliary objective during policy optimization. We utilize the widely adopted
Diffusion Policy (Chi et al., 2023) to demonstrate how ICon can be incorporated into its training
pipeline. Let D = {(ot ∈ O, at ∈ A)}Tt=1 denote a dataset consisting of observation-action pairs,
where the observation space O comprises both image observations I and low-dimensional state
information S . Diffusion Policy learns a mapping π : O → A by training a visual encoder E jointly
with a diffusion model (Ho et al., 2020) using a prediction loss Lpred. In our framework, the visual
encoder is instantiated as a vision transformer, whose output features Fcls and F are used to condition
on the denoising diffusion process and compute the contrastive objective LICon, respectively. By
combining the prediction loss and the contrastive loss together with a weighting coefficient λ, we
derive the following training objective for policy update:

L = Lpred + λLICon. (6)

In practice, we precompute the agent masksM and store them alongside the observations ot and
actions at in the dataset D. During training, for each mini-batch sampled from D, we apply identical
image augmentations to the image observations and their corresponding masks before computing the
training objective.

5
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4 EXPERIMENTS

We conduct a systematic evaluation of ICon across 8 manipulation tasks spanning 3 robots from 2
simulation benchmarks. Through our experiments, we seek to answer the following questions:

1) To what extent does ICon improve the performance of the base policy?

2) What are the advantages of ICon over its counterparts?

3) Does ICon facilitate policy transfer across different robots?

4) What design choices of ICon have the most influence on its performance?

Figure 3: Visualization of simulated environments used for evaluation.

4.1 SIMULATION BENCHMARKS

RLBench (James et al., 2020): is a large-scale manipulation benchmark designed for meta learning,
reinforcement learning, and imitation learning. It provides more than 100 robotic manipulation
tasks ranging from simple target-reaching to complex long-horizon tasks. We select 5 tabletop
tasks—Close Microwave, Close Drawer, Take Lid off Saucepan, Open Box, and Put Rubbish in
Bin—which encompass object picking, articulated object manipulation, and long-horizon pick-and-
place.

Robosuite (Zhu et al., 2020): is a widely used manipulation benchmark comprising 19 task envi-
ronments that span both single-arm and dual-arm manipulation. From this benchmark, We select
3 representative tasks—Lift, Door, and Stack—which involve lifting a cube, opening a door, and
stacking one cube on top of another, respectively.

4.2 DATASETS

We release a new dataset covering the 8 manipulation tasks across 3 different robots in the RLBench
and Robosuite environments. In RLBench, data are collected using the built-in motion planning
toolkit, whereas in Robosuite, data are collected via teleoperation. Specifically, we collect 50 human
demonstrations per task using a Franka Emika Panda robot, and an additional 5 demonstrations
each from a Kinova Gen3 robot and a KUKA LBR IIWA robot for the Lift and Stack tasks. Each
human demonstration comprises a sequence of paired observations and actions, where observations
include RGB images from two viewpoints (a third-person and a wrist-mounted camera) and robot
proprioception (e.g., joint position, gripper status), and actions correspond to the end-effector poses.
For each RGB image, we use the Segment Anything Model (SAM) (Kirillov et al., 2023; Ravi
et al., 2024) to extract a segmentation mask of the robot in the scene, and store the robot mask
alongside the observation-action pairs in the dataset, forming a sequence of observation-mask-action
triplets. In the following experiments, we train different policies using the Franka-specific data for
performance comparison and fine-tune the pre-trained policies on Kinova-specific and IIWA-specific
data to evaluate few-shot policy transfer across robots.

6
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4.3 EVALUATION SETUP

Baselines. We integrate and compare ICon with two variants of the Diffusion Policy (Chi et al., 2023):
(i) Diff-C, a CNN-based variant that performs well on most manipulation tasks with minimal need for
hyperparameter tuning; and (ii) Diff-T, a transformer-based variant shown to be particularly effective
for complex manipulation tasks involving frequent action changes. We refer to our methods as ICon-
Diff-C and ICon-Diff-T, respectively. Additionally, we compare against Crossway Diffusion (Li
et al., 2024), which shares the same backbone as Diff-C but incorporates an auxiliary reconstruction
loss to improve representation learning. For brevity, we refer to it as Crossway-Diff-C.

Policy rollout. Before each rollout, the simulated environment is randomly initialized using a
predefined seed that is consistent across all learning algorithms. At each step, instead of relying solely
on the current observation to predict the next action, the policy receives the past To observations from
the environment and predicts the next Ta actions, of which only the first T ′

a are executed in the scene.
In practice, we find it crucial to apply Temporal Ensemble (Zhao et al., 2023) to the predicted action
sequences to ensure smoother control and mitigate action jitters.

Evaluation methodology. We report success rates for each learning algorithm and manipulation
task. Results are averaged over 3 training seeds and 50 different environment initial conditions (150
episodes in total), with standard deviations computed across the 3 training seeds. A task is considered
successful if and only if the reward returned by the simulated environment changes from 0 to 1. In
addition, each task has a predefined maximum number of rollout steps; if the robotic agent fails to
complete the task within this limit, the episode is deemed a failure.

Table 1: Performance comparison of different algorithms on the RLBench benchmark. We present
success rates for 5 algorithms across 5 tasks in the format of (mean) ± (standard deviation), as
described in Section 4.3.

Diff-C Diff-T Crossway-Diff-C ICon-Diff-C ICon-Diff-T

Close Microwave 0.040 ± 0.016 0.993 ± 0.009 0.033 ± 0.019 0.153 ± 0.034 1.000

Close Drawer 0.713 ± 0.034 0.893 ± 0.025 0.667 ± 0.041 0.713 ± 0.050 0.913 ± 0.047

Take Lid off Saucepan 0.033 ± 0.019 0.280 ± 0.075 0.073 ± 0.025 0.113 ± 0.050 0.413 ± 0.151

Open Box 0.087 ± 0.074 0.113 ± 0.090 0.047 ± 0.066 0.300 ± 0.043 0.127 ± 0.019

Put Rubbish in Bin 0.000 0.033 ± 0.025 0.000 0.000 0.093 ± 0.082

Table 2: Performance comparison of different algorithms on the Robosuite benchmark. Success rates
are reported for 3 algorithms across 3 tasks in the same format as in Table 1.

Diff-C Crossway-Diff-C ICon-Diff-C

Lift 0.527 ± 0.104 0.573 ± 0.100 0.627 ± 0.129

Door 0.860 ± 0.028 0.827 ± 0.082 0.887 ± 0.034

Stack 0.160 ± 0.016 0.067 ± 0.025 0.220 ± 0.016

4.4 PERFORMANCE IMPROVEMENTS

As shown in Table 1, diffusion policies coupled with ICon consistently outperform or match the
baselines across all 5 tasks in the RLBench simulated environments. Notably, ICon-Diff-C achieves
absolute improvements of 21.3% and 11.3% over Diff-C in the Open Box and Close Microwave tasks,
respectively. In another articulated object manipulation task Close Drawer, the positive effects of
incorporating ICon are less pronounced, but ICon-augmented policies still perform on par with or
better than the baselines. In contrast, Crossway-Diff-C underperforms Diff-C and ICon-Diff-C across
all three articulated object manipulation tasks. In the Take Lid off Saucepan task, ICon-Diff-C and
Crossway-Diff-C both exhibit higher success rates than Diff-C, with ICon-Diff-C showing more
substantial improvements. Likewise, ICon-Diff-T surpasses Diff-T with an absolute improvement of

7
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13.3%. In the long-horizon Put Rubbish in Bin task, all CNN-based diffusion policies fail to succeed,
whereas ICon-Diff-T remains better than Diff-T.

As displayed in Table 2, ICon-Diff-C outperforms both Diff-C and Crossway-Diff-C across all
tasks. In the Open Door task, Diff-C underperforms ICon-Diff-C but outperforms Crossway-Diff-C,
aligning with earlier experimental results on articulated object manipulation tasks in the RLBench
environments. In the Stack task, ICon-Diff-C surpasses both Diff-C and Crossway-Diff-C with
improvements of 6.0% and 15.3%, respectively. Overall, integrating ICon into diffusion policies
leads to improved performance across all 8 manipulation tasks.

4.5 TRAINING STABILITY

A key strength of ICon is to maintain good train-
ing stability during end-to-end policy learning.
For a quantitative measure, we train each policy
for an equal number of epochs with checkpoints
saved every 50 epochs, and report the average
of the top-10 success rates as well as the overall
maximum success rate for the Open Door task.
Results are visualized in Figure 4, with dark and
light colors representing maximum and average
success rates, respectively. The accompanying
percentages stand for the relative drop from the
maximum to the average performance. We see
that when maximum performances are compa-
rable, Crossway-Diff-C exhibits the largest gap
between maximum and average success rates,
indicating that the auxiliary reconstruction loss
hinders the training stability of the base policy.
In contrast, ICon-Diff-C shows superior training

Figure 4: Comparison of training stability based
on maximum and average performance during
the training process.

stability by maintaining a relatively higher average performance throughout the training process. This
suggests that ICon enables the base policy to learn more robust and consistent behaviors from pixel
observations.

Table 3: Results of few-shot policy transfer across different robots on the Robosuite benchmark.
Policies are transferred from a source robot to a target robot, with task success rates reported for each
robot and learning algorithm. Success rates are displayed following the same format as in Table 1
and Table 2.

Task

Source Robot Target Robot

Franka (Default Gripper) Kinova (Robotiq85) IIWA (Robotiq140)

Diff-C ICon-Diff-C Diff-C ICon-Diff-C Diff-C ICon-Diff-C

Lift 0.527 ± 0.104 0.627 ± 0.129 0.233 ± 0.066 0.260 ± 0.102 0.060 ± 0.016 0.100 ± 0.125

Stack 0.160 ± 0.016 0.220 ± 0.016 0.007 ± 0.009 0.053 ± 0.025 0.007 ± 0.009 0.047 ± 0.025

4.6 TRANSFERABILITY ACROSS ROBOTS

Here, we evaluate the transferability of ICon-augmented policies across 3 robots from the Robosuite
benchmark, where variations come from both robotic arms (Franka, Kinova, IIWA) and grippers
(Franka Default Gripper, Robotiq85, Robotiq140). We initially pre-train policies on data collected
from a source robot, and then fine-tune them using a smaller dataset collected from a target robot.
Results in Table 3 show that ICon enhances the performance of the base policy across all three
robots in both the Lift and Stack tasks. We also find that polices are more effectively transferred to
the Kinova robot than to the IIWA robot, which we believe is because of the appearance similarity
between the Kinova and the source Franka robot.
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4.7 ABLATION STUDY

We evaluate how each key component of ICon contributes to its overall performance. Specifically,
we conduct ablation studies on: (i) the masking threshold β; (ii) the number of agent keys Na and
environment keys Ne used in computing the contrastive loss; and (iii) the key sampling and loss
fusion strategies. These experiments are performed on the Open Door, Close Microwave, and Open
Box tasks, respectively. A summary of the results is presented in Figure 5.

We note that choosing either β < 0.5 or β > 0.5 substantially impairs model performance, indicating
that assigning equal weights (0.5) to agent-specific and environment-specific pixels during agent
mask propagation yields the most accurate approximation of token-level masks. Next, we find that
increasing the number of sampled keys beyond a certain point markedly extends training time. While
a larger number of keys enables more effective disentanglement, a practical trade-off is achieved
by setting Na = 10 and Ne = 50. Finally, we observe that omitting Multi-Level Contrast (MLC)
results in a noticeable decline in performance, which we attribute to the insufficient disentangling of
intermediate representations in the vision transformer. A more significant performance degradation
occurs when random sampling is applied in place of FPS for key sampling, likely due to the reduced
expressivity of the sampled keys.
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Figure 5: Summary of ablation experiments on (a) the masking threshold β, (b) the number of agent
keys Na and environment keys Ne, and (c) the use of Farthest Point Sampling (FPS) and Multi-Level
Contrast (MLC).

5 LIMITATIONS

While our simulation experiments demonstrate that ICon improves the base policy across a variety
of manipulation tasks, our work has several limitations. First, our method is compatible only with
vision transformers and their variants, which restricts its applicability to other commonly used visual
encoder architectures in visuomotor policy learning, such as ResNet (He et al., 2016). Second, the
Farthest Point Sampling (FPS) process incurs substantial computational overhead during forward
propagation, making ICon inefficient for policy training. Eventually, our experiments are confined to
simulation, and we have not yet evaluated our method in real-world settings due to limited hardware
resources.

6 DISCUSSION AND FUTURE WORK

In this work, we investigate the benefits of grounding bodily awareness in visual representations
and introduce ICon, a contrastive learning framework for extracting agent-centric representations
from pixel observations. We demonstrate that policies augmented with ICon consistently achieve
performance improvements across a diversity of manipulation tasks and can be effectively transferred
across robots with different morphologies and configurations. In our future work, we plan to evaluate
our method in complex real-world settings, where additional noise and distractors are present in the
environments. Additionally, we hope to further enhance the learned agent-centric representations and
develop more effective ones to enable cross-embodiment policy transfer.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

S. Amir, Y. Gandelsman, S. Bagon, and T. Dekel. Deep vit features as dense visual descriptors. arXiv
preprint arXiv:2112.05814, 2021.

J. L. Bermúdez. Bodily awareness and self-consciousness. In Shaun Gallagher, editor, The Oxford
Handbook of the Self, pages 157–179. Oxford University Press, 2011.

M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and A. Joulin. Emerging
properties in self-supervised vision transformers. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 9650–9660, Montreal, Canada, 2021.

T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive learning of
visual representations. In Proceedings of the 37th International Conference on Machine Learning,
pages 1597–1607, Vienna, Austria, 2020.

C. Chi, Z. Xu, S. Feng, E. Cousineau, Y. Du, B. Burchfiel, R. Tedrake, and S. Song. Diffusion policy:
Visuomotor policy learning via action diffusion. In Proceedings of Robotics: Science and Systems,
Daegu, Republic of Korea, 2023.

S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric discriminatively, with application
to face verification. In Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, pages 539–546, San Diego, CA, USA, 2005.

S. Dasari and A. Gupta. Transformers for one-shot visual imitation. In Proceedings of the 5th
Conference on Robot Learning, pages 2071–2084, London, UK, 2021.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

L. Fu, H. Huang, G. Datta, L. Y. Chen, W. C. Panitch, F. Liu, H. Li, and K. Goldberg. In-context
imitation learning via next-token prediction. arXiv preprint arXiv:2408.15980, 2024.

J. J. Gibson. The senses considered as perceptual systems. 1966.

J. J. Gibson. A theory of direct visual perception. Vision and Mind: selected readings in the
philosophy of perception, pages 77–90, 2002.

K. Gmelin, S. Bahl, R. Mendonca, and D. Pathak. Efficient rl via disentangled environment and agent
representations. arXiv preprint arXiv:2309.02435, 2023.

M. Gutmann and A. Hyvärinen. Noise-contrastive estimation: A new estimation principle for
unnormalized statistical models. In Proceedings of the 13th International Conference on Artificial
Intelligence and Statistics, pages 297–304, Sardinia, Italy, 2010.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 770–778, Las
Vegas, NV, USA, 2016.

K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick. Momentum contrast for unsupervised visual
representation learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 9729–9738, Seattle, WA, USA, 2020.

J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. In Proceedings of the 34th
Conference on Neural Information Processing Systems, pages 6840–6851, Vancouver, Canada,
2020.

E. S. Hu, K. Huang, O. Rybkin, and D. Jayaraman. Know thyself: Transferable visual control policies
through robot-awareness. arXiv preprint arXiv:2107.09047, 2021.

S. James, Z. Ma, D. R. Arrojo, and A. J. Davison. Rlbench: The robot learning benchmark and
learning environment. IEEE Robotics and Automation Letters, 5(2):3019–3026, 2020.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

S. Karamcheti, S. Nair, A. S. Chen, T. Kollar, C. Finn, D. Sadigh, and P. Liang. Language-driven
representation learning for robotics. In Proceedings of Robotics: Science and Systems, Daegu,
Republic of Korea, 2023.

A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C.
Berg, W. Lo, P. Dollár, and R. Girshick. Segment anything. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 4015–4026, Paris, France, 2023.

I. Kostrikov, D. Yarats, and R. Fergus. Image augmentation is all you need: Regularizing deep
reinforcement learning from pixels. arXiv preprint arXiv:2004.13649, 2020.

M. Laskin, A. Srinivas, and P. Abbeel. Curl: Contrastive unsupervised representations for reinforce-
ment learning. In Proceedings of the 37th International Conference on Machine Learning, pages
5639–5650, Vienna, Austria, 2020.

S. Lee, Y. Wang, H. Etukuru, H. J. Kim, N. M. M. Shafiullah, and L. Pinto. Behavior generation with
latent actions. In Proceedings of the 41st International Conference on Machine Learning, pages
26991–27008, Vienna, Austria, 2024.

S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor policies.
Journal of Machine Learning Research, 17(39):1–40, 2016.

X. Li, V. Belagali, J. Shang, and M. S. Ryoo. Crossway diffusion: Improving diffusion-based visuo-
motor policy via self-supervised learning. In Proceedings of the IEEE International Conference on
Robotics and Automation, pages 16841–16849, Yokohama, Japan, 2024.

A. Mandlekar, D. Xu, J. Wong, S. Nasiriany, C. Wang, R. Kulkarni, L. Fei-Fei, S. Savarese, Y. Zhu,
and R. Martín-Martín. What matters in learning from offline human demonstrations for robot
manipulation. arXiv preprint arXiv:2108.03298, 2021.

S. Nair, A. Rajeswaran, V. Kumar, C. Finn, and A. Gupta. R3m: A universal visual representation
for robot manipulation. In Proceedings of the 6th Conference on Robot Learning, pages 892–909,
Auckland, New Zealand, 2022.

A. V. D. Oord, Y. Li, and O. Vinyals. Representation learning with contrastive predictive coding.
arXiv preprint arXiv:1807.03748, 2018.

A. Pore, R. Muradore, and D. Dall’Alba. Dear: Disentangled environment and agent representations
for reinforcement learning without reconstruction. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 650–655, Abu Dhabi, UAE, 2024.

C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hierarchical feature learning on point
sets in a metric space. In Proceedings of the 31st International Conference on Neural Information
Processing Systems, pages 5099–5108, Long Beach, CA, USA, 2017.

A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin,
J. Clark, G. Krueger, and I. Sutskever. Learning transferable visual models from natural language
supervision. In Proceedings of the 38th International conference on machine learning, pages
8748–8763, 2021.

I. Radosavovic, T. Xiao, S. James, P. Abbeel, J. Malik, and T. Darrell. Real-world robot learning
with masked visual pre-training. In Proceedings of the 7th Conference on Robot Learning, pages
416–426, Atlanta, GA, USA, 2023.

N. Ravi, V. Gabeur, Y. Hu, R. Hu, C. Ryali, T. Ma, H. Khedr, R. Rädle, C. Rolland, L. Gustafson,
E. Mintun, J. Pan, K. V. Alwala, N. Carion, C. Wu, R. Girshick, P. Dollár, and C. Feichtenhofer.
Sam 2: Segment anything in images and videos. arXiv preprint arXiv:2408.00714, 2024.

O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image
segmentation. In Proceedings of the International Conference on Medical Image Computing and
Computer-Assisted Intervention, pages 234–241, Munich, Germany, 2015.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding for face recognition and
clustering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 815–823, Boston, MA, USA, 2015.

P. Sermanet, C. Lynch, Y. Chebotar, J. Hsu, E. Jang, S. Schaal, S. Levine, and Google Brain.
Time-contrastive networks: Self-supervised learning from video. In Proceedings of the IEEE
International Conference on Robotics and Automation, pages 1134–1141, Brisbane, Australia,
2018.

N. M. Shafiullah, Z. Cui, A. A. Altanzaya, and L. Pinto. Behavior transformers: Cloning k modes
with one stone. In Proceedings of the 36th Conference on Neural Information Processing Systems,
pages 22955–22968, New Orleans, LA, USA, 2022.

Kihyuk Sohn. Improved deep metric learning with multi-class n-pair loss objective. In Proceedings
of the 30th International Conference on Neural Information Processing Systems, page 1857–1865,
Red Hook, NY, USA, 2016.

G. Soter, A. Conn, H. Hauser, and J. Rossiter. Bodily aware soft robots: integration of proprioceptive
and exteroceptive sensors. In Proceedings of the IEEE International Conference on Robotics and
Automation, pages 2448–2453, Brisbane, Australia, 2018.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polo-
sukhin. Attention is all you need. In Proceedings of the 31st International Conference on Neural
Information Processing Systems, pages 6000–6010, Long Beach, CA, USA, 2017.

X. Wang, K. Zhao, R. Zhang, S. Ding, Y. Wang, and W. Shen. Contrastmask: Contrastive learning
to segment every thing. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 11604–11613, New Orleans, LA, USA, 2022.

T. Xiao, I. Radosavovic, T. Darrell, and J. Malik. Masked visual pre-training for motor control. arXiv
preprint arXiv:2203.06173, 2022.

M. Xu, Z. Xu, C. Chi, M. Veloso, and S. Song. Xskill: Cross embodiment skill discovery. In
Proceedings of the 7th Conference on Robot Learning, pages 3536–3555, Atlanta, GA, USA, 2023.

D. Yarats, R. Fergus, A. Lazaric, and L. Pinto. Mastering visual continuous control: Improved
data-augmented reinforcement learning. arXiv preprint arXiv:2107.09645, 2021a.

D. Yarats, A. Zhang, I. Kostrikov, B. Amos, J. Pineau, and R. Fergus. Improving sample efficiency
in model-free reinforcement learning from images. In Proceedings of the AAAI Conference on
Artificial Intelligence, pages 10674–10681, 2021b.

T. Z. Zhao, V. Kumar, S. Levine, and C. Finn. Learning fine-grained bimanual manipulation with
low-cost hardware. In Proceedings of Robotics: Science and Systems, Daegu, Republic of Korea,
2023.

J. Zhu, Y. Xia, L. Wu, J. Deng, W. Zhou, T. Qin, T. Liu, and H. Li. Masked contrastive represen-
tation learning for reinforcement learning. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 45(3):3421–3433, 2022.

Y. Zhu, J. Wong, A. Mandlekar, R. Martín-Martín, A. Joshi, S. Nasiriany, and Y. Zhu. robosuite: A
modular simulation framework and benchmark for robot learning. arXiv preprint arXiv:2009.12293,
2020.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A PSEUDOCODE FOR ICON

Algorithm 2 Inter-token Contrast (ICon)

1: Input: an RGB image I ∈ RH×W×3, an agent maskM ∈ RH×W , a vision transformer E(·)
with patch size P and embedding dimension D, number of agent-specific keys Na, number of
environment-specific keys Ne

2: Output: a contrastive loss LICon
3: [Fcls,F ]← E(I)
4: Fmap = {fk,l ∈ RD}H/P,W/P

k=1,l=1 ← Reshape(F)
5: Pmask = {pk,l}H/P,W/P

k=1,l=1 ← Patchify(M)

6: Mtoken = {mk,l ∈ {0, 1}}H/P,W/P
k=1,l=1 ← Threshold(Pmask) ▷ Equation (2)

7: qa, qe ← Average(Fmap,Mtoken), Average(Fmap, 1−Mtoken) ▷ Equation (3)
8: Ka, Ke =← FPS(Fmap,Mtoken, Na), FPS(Fmap, 1−Mtoken, Ne) ▷ Algorithm 1
9: La, Le ← LInfoNCE(qa,Ka,Ke), LInfoNCE(qe,Ke,Ka) ▷ Equation (1)

10: LICon ← La + Le

11: return LICon

B IMPLEMENTATION DETAILS

B.1 DATA AUGMENTATION

Following Chi et al. (2023), we apply random cropping to both RGB images and agent masks during
training. The crop size is fixed at 3× 224× 224 across all tasks. During inference, a static center
crop of the same size is used.

B.2 MODEL ARCHITECTURE

The policy networks used in this work are built upon the Diffusion Policy (Chi et al., 2023). We keep
the overall model architecture unchanged except for the visual encoder, where we replace the ResNet
(He et al., 2016) with a Vision Transformer (ViT) (Dosovitskiy et al., 2020). To save computing
resources, we employ ViT-S with a patch size of 16 and an input image size of 224 as the visual
encoder for our policy network.

B.3 ENVIRONMENT SETUP

Details of the environment setup for RLBench and Robosuite are provided in Table 4. Note that in
RLBench, robot proprioception includes arm joint positions, end-effector poses, and gripper status,
whereas in Robosuite, robot proprioception consists of end-effector poses and gripper joint positions.

Table 4: Summary of task environments. Objs: number of objects in the scene; Views: number of
viewpoints; Img-Size: image size; P-D: robot proprioception dimension; A-D: action dimension;
Controller: robotic arm controller; Steps: maximum number of rollout steps.

Objs Views Img-Size P-D A-D Controller Steps

Close Microwave 1 2 3× 256× 256 14 7 IK Pose 150
Close Drawer 1 2 3× 256× 256 14 7 IK Pose 200

Open Box 1 2 3× 256× 256 14 7 IK Pose 200
Take Lid off Saucepan 2 2 3× 256× 256 14 7 IK Pose 200

Put Rubbish in Bin 4 2 3× 256× 256 14 7 IK Pose 300

Lift 1 2 3× 256× 256 9 7 OSC Pose 200
Door 1 2 3× 256× 256 9 7 OSC Pose 300
Stack 2 2 3× 256× 256 9 7 OSC Pose 300
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B.4 TRAINING

We train our policy networks, ICon-Diff-C and ICon-Diff-T, using 3 training seeds (0, 42, and 100)
and a batch size of 64. For each task, all policies are trained for 600 epochs on a single Nvidia
GeForce RTX 3090 GPU, while in cross-robot transfer settings, the pre-trained policies are fine-tuned
on the target robotic data for an additional 300 epochs. All other training configurations follow the
settings described in the original codebase of Diffusion Policy (Chi et al., 2023).

C VISUALIZATION OF LEARNED REPRESENTATIONS

Figure 6: Visualization of representations learned by different algorithms across several tasks. For
each task, we show the original image alongside the feature maps produced by different algorithms.
Each feature map is computed by averaging the attention maps from all heads in the final layer of the
vision transformer, with the [CLS] token as the query.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

After training the vision transformer end-to-end with the policy network from scratch, we visualize
the attention maps from the final layer of the vision transformer across several tasks. As shown in
Figure 6, unlike the dispersed attention patterns exhibited by the baseline method, our contrastive
learning approach encourages the vision transformer to focus on the agent’s body rather than the
entire scene. This confirms that the learned representations are agent-centric and carry body-relevant
information about the robotic agent.
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