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Abstract. Intrapartum ultrasound monitoring is critical for maternal-
fetal safety, yet traditional manual annotation of key anatomical land-
marks (PS1, PS2, FH1) faces bottlenecks such as significant inter-observer
variability and time-intensive processes, hindering standardized imple-
mentation of the WHO Labor Care Guide (LCG). This study proposes
DSNT-DeepUNet, a deep learning-based ultrasound coordinate predic-
tion model. By integrating a U-Net backbone with a Differentiable Spa-
tial to Numerical Transform (DSNT) layer, it achieves end-to-end map-
ping from raw ultrasound images to keypoint coordinates. The model
employs a multi-task loss function to simultaneously optimize coordi-
nate accuracy and heatmap distribution, while an 8-fold cross-validation
strategy and dynamic data augmentation techniques significantly en-
hance generalization capability. On an independent test set, the model
achieved an angle of progression prediction error of 4.7005 pixels and
an average point distance error of 14.7712 pixels, with PS1 and PS2 lo-
calization errors at 9.0600 and 11.5661 pixels respectively, ranking sixth
in a public challenge. This solution successfully eliminates subjective
variations in manual annotation, demonstrating effective and precise ul-
trasound coordinate prediction.

Keywords: Intrapartum ultrasound monitoring - Anatomical landmark
localization - DSNT network.

1 Introduction

Intrapartum ultrasound examination, as a non-invasive and real-time fetal mon-
itoring method, is widely used to assess fetal position, predict delivery methods,
and aid clinical decision-making [9, 11]. Studies have demonstrated its superi-
ority over traditional digital vaginal examination in terms of objectivity, repro-
ducibility, and patient compliance, significantly reducing discomfort and infec-
tion risks [0, 11]. During the procedure, clinicians must manually annotate key
anatomical landmarks—such as the symphysis pubis, the midpoint of the fetal
cranium, and the umbilical cord insertion site—on ultrasound images to mea-
sure parameters like head-perineum distance (HPD) and angle of progression
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(AOP), which are critical for evaluating fetal descent and predicting delivery
outcomes [5, 10]. However, due to subjective variations in operator experience,
this annotation process exhibits significant inconsistency: multiple studies report
an average localization deviation of 10-15 pixels for the same landmark across
different clinicians, with a single annotation typically requiring 3-5 minutes [4].
Such limitations hinder rapid, precise monitoring in time-sensitive clinical set-
tings, particularly during the second stage of labor where timely decision-making
is crucial for avoiding adverse maternal and neonatal outcomes [5,9]. With the
advancement of deep learning in medical imaging, automated keypoint detec-
tion via convolutional neural networks (CNNs) has emerged as a research focus,
primarily following two approaches. First, direct coordinate regression uses fully
connected layers at the network’s terminus to predict coordinates [1,7]. While
structurally simple, this method struggles to leverage spatial contextual infor-
mation, limiting sub-pixel localization accuracy, and is highly sensitive to the
spatial distribution of training data, which can hinder generalization. Second,
heatmap-based methods generate probability distribution maps for anatomical
points, with coordinates determined via non-differentiable argmax operations.
Although preserving multi-scale features, this framework prevents end-to-end
optimization (due to argmax’s non-differentiability) and introduces quantization
errors from limited heatmap resolution. To address these constraints, the Dif-
ferentiable Spatial to Numerical Transform (DSNT) was proposed [7]. By com-
puting spatial expectations over heatmaps, DSNT maintains spatial probability
modeling while mapping discrete pixels to continuous coordinates, enabling gra-
dient propagation and reducing quantization errors, all without introducing ad-
ditional parameters [7]. Although DSNT has demonstrated superior performance
in fields such as human pose estimation and facial keypoint detection [7], its ap-
plication in medical ultrasound imaging remains in its nascent stages. Previous
studies in medical imaging have largely relied on segmentation-based approaches,
such as U-Net [3], for structure localization, which require pixel-level annotations
and are time-consuming to produce [1,3]. Alternatively, regression-based meth-
ods that directly output coordinates have been explored to reduce annotation
burden [1, 3], yet they often lack the ability to provide spatial interpretability.
Recent work has also shown that combining regression with implicit localization,
as in biomarker regression networks [3], can yield both accurate measurements
and spatial maps without segmentation labels, though such methods are still
underexplored in ultrasound. This study utilized 300 cases of data provided by
the competition organizers [2] and engaged three physicians with three years of
experience in ultrasound diagnostics to annotate an additional 169 cases, result-
ing in a total of 469 intrapartum ultrasound datasets. For the first time, the
DSNT module was seamlessly integrated into the heatmap branch of a deep U-
Net, establishing an end-to-end differentiable localization framework. Building
on this, the study designed a composite loss function that combines pixel-level
Euclidean distance with heatmap distribution regularization, automatically op-
timizing their weights through grid search to balance coordinate accuracy and
probability distribution quality. Furthermore, the study employed stratified 8-
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fold cross-validation and rigorous statistical testing to comprehensively evaluate
model performance, with additional testing on a separate test set to validate
the practical improvements in annotation efficiency and accuracy. The results
demonstrate that the proposed method not only significantly reduces the av-
erage localization error of keypoints but also substantially shortens physicians’
annotation time, offering a reliable and feasible technical solution for intelligent
assisted analysis of intrapartum ultrasound.

2 Method Design

2.1 Methodology

The model architecture in this study adopts a deep symmetric dual-branch col-
laborative optimization framework, as illustrated in Fig. 1, to fully integrate
multi-scale feature extraction with precise coordinate decoding capabilities. The
heatmap generation branch employs an improved U-Net as its backbone network,
featuring a seven-level progressive downsampling and symmetric upsampling de-
sign that enables hierarchical analysis from local textures to global anatomical
structures. Specifically, the encoding phase utilizes 3x3 convolutional kernels
with a stride of 2 for feature mapping during each downsampling step, followed
by batch normalization and ReLU activation to effectively mitigate gradient
vanishing and enhance the network’s nonlinear representation capacity. As the
network deepens, the number of channels progressively doubles from an initial
64 to 512, expanding the receptive field to capture anatomical information at
varying scales. Concurrently, each encoder stage incorporates a 2x2 max-pooling
operation at its endpoint to rapidly reduce feature map dimensions while pre-
serving critical spatial information, ensuring computational efficiency.

Model architecture
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2.2 Network Architecture

The model architecture in this study adopts a deep symmetric dual-branch
collaborative optimization framework, as shown in Fig. 2, to fully integrate
multi-scale feature extraction with precise coordinate decoding capabilities. The
heatmap generation branch employs an improved U-Net as its backbone network,
featuring a seven-level progressive downsampling and symmetric upsampling de-
sign that enables hierarchical analysis from local textures to global anatomical
structures. Specifically, the encoding phase utilizes 3x3 convolutional kernels
with a stride of 2 for feature mapping during each downsampling step, followed
by batch normalization and ReLU activation to effectively mitigate gradient
vanishing and enhance the network’s nonlinear representation capacity. As the
network deepens, the number of channels progressively doubles from an initial
64 to 512, expanding the receptive field to capture anatomical information at
varying scales. Concurrently, each encoder stage incorporates a 2x2 max-pooling
operation at its endpoint to rapidly reduce feature map dimensions while pre-
serving critical spatial information, ensuring computational efficiency.
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Fig. 2. Model Architecture Diagram

During the decoding phase, the model performs layer-wise upsampling via
transposed convolution and smoothly restores spatial resolution through bilinear
interpolation. Consistent with the traditional U-Net architecture, the decoder
employs skip connections to fuse high-resolution features from the encoder at
corresponding scales with the upsampled results, thereby mitigating the loss of
deep semantic information. On this basis, the concatenated high-dimensional
tensor undergoes further refinement through two consecutive 3x3 convolutional
modules, effectively balancing spatial details with semantic integrity.

At the fourth decoding level, the 256-dimensional features extracted from
the encoder’s third level are concatenated with the upsampled 512-dimensional
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features, forming a 768-dimensional feature descriptor. This descriptor is then
refined through successive convolutions to ensure that fused features at all levels
adequately represent anatomical structural variations. Finally, the decoder out-
put employs a 1x1 convolution to reduce the channel dimension to the number
of keypoints (three channels in this study), generating a 64x64 heatmap where
each channel corresponds to the probability distribution cloud of an anatomi-
cal landmark. This heatmap resolution, approximately one-eighth of the original
image size, maintains sufficient spatial detail while keeping computational costs
within a reasonable range.

The probability distribution maps generated by the heatmap branch are fur-
ther fed into the DSNT (Differentiable Spatial to Numerical Transform) layer,
enabling differentiable conversion from discrete probabilities to continuous coor-
dinates. During model initialization, the DSNT module constructs and registers
a Cartesian grid coordinate buffer with equidistant values in the range [-1, 1],
which is efficiently reused via tensor operations. In the forward pass, a pixel-wise
Softmax is first applied to each heatmap channel to ensure the probability distri-
bution adheres to normalization axioms. Subsequently, the expected coordinates
of the keypoints are computed by performing an element-wise Hadamard product
between the normalized probabilities and grid coordinates, followed by summa-
tion along the spatial dimensions. This mechanism fundamentally eliminates the
quantization error inherent in traditional argmax operations and allows gradi-
ents to backpropagate directly from the coordinate loss layer to the heatmap
generation branch, enabling fully end-to-end training.

In terms of model hyperparameter tuning, empirical optimization determined
an optimal balance between a seven-level depth and 3x3 convolutional kernel
size. The seven-level depth ensures sufficient receptive field coverage for complete
anatomical structures while avoiding gradient vanishing issues associated with
excessively deep networks. Fixed-size medium kernels enhance local feature rep-
resentation while keeping parameter counts manageable. The channel doubling
strategy draws inspiration from biological visual systems’ multiscale processing,
enabling the network to efficiently capture spatial details across different lev-
els. The 64x64 heatmap resolution provides sufficiently fine-grained probability
distributions for the DSNT layer while maintaining controllable GPU memory
usage.

Overall, this dual-branch architecture forms a closed-loop optimization pipeline
from 512x512-pixel ultrasound image inputs to three sets of keypoint pixel co-
ordinates. The spatial features distilled by the heatmap branch not only encap-
sulate rich local and global information but also establish a differentiable coor-
dinate learning pathway with the DSNT module. During training, the network
optimizes both heatmap distribution quality and coordinate precision through
a composite loss function, enabling the heatmap branch and DSNT layer to co-
evolve and ultimately achieve sub-pixel localization accuracy. This framework
provides an efficient, reliable, and easily deployable solution for automated an-
notation of intrapartum ultrasound images.
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3 Experiments

3.1 Data and Preprocessing

This study constructed a dataset sourced from multiple Grade A tertiary hos-
pitals and maternal and child health centers across China, including the First
Affiliated Hospital of Jinan University, Zhujiang Hospital of Southern Medical
University, Nanfang Hospital of Southern Medical University, the Third Affil-
iated Hospital of Sun Yat-sen University, Guangzhou Women and Children’s
Medical Center, and over ten other medical institutions, ensuring broad represen-
tativeness and clinical authenticity. The image data were acquired via transper-
ineal ultrasound examinations using devices from various manufacturers, such as
Philips CS50, Toshiba Aplio300, Voluson P8, Esaote MyLab, Mindray Resona
series, and Youkey Q7, thereby ensuring diversity in imaging equipment.

Image acquisition was performed by an experienced specialized team, with
all operators possessing more than seven years of expertise in ultrasound diag-
nostics. A standardized image acquisition protocol was followed, which included
probe preparation, the application of coupling gel, and fine adjustments in posi-
tioning to ensure clear visualization of key pelvic and fetal anatomical landmarks
while minimizing artifacts. Each case corresponds to a single ultrasound image.
The training set consists of 300 images, and the validation set contains 100 im-
ages, making it one of the largest publicly available labeled intrapartum ultra-
sound datasets to date. Furthermore, three obstetricians from the First Hospital
of Lanzhou University, each with over seven years of experience, independently
annotated 169 ultrasound cases from an unlabeled dataset provided by the com-
petition organizers. These data were also incorporated into the training set to
enhance model performance.

To evaluate the model’s robustness and generalization ability, an 8-fold strat-
ified cross-validation approach was employed for dataset partitioning. Stratifi-
cation was performed based on two dimensions—fetal presentation (cephalic,
breech, transverse) and scanning laterality (left, right)—to maintain propor-
tional distribution of different categories across all folds. Each fold was then
alternately used as the validation set while the remaining seven folds served as
the training set. This strategy not only maximized the utilization of limited clin-
ical data but also ensured that each model evaluation covered diverse anatomical
and scanning scenarios.

During preprocessing, to mitigate variations caused by different ultrasound
devices and scanning parameters, all DICOM pixel values were first linearly nor-
malized to the [0,1] range. Images with original resolutions ranging from 512x512
to 768x 768 were resized proportionally using bilinear interpolation and center-
cropped to a uniform 512x512 resolution to eliminate edge noise interference
in model training. A PyTorch-based augmentation pipeline was applied to each
image, including random color jitter (brightness, contrast, and saturation ad-
justments with an intensity of 0.4 each, and hue perturbation of 0.1), Gaussian
blur , and a 50% probability of horizontal or vertical flipping. Additionally, ran-
dom rotation (within +15°) and translation (up to +10 pixels) were applied. All
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geometric and pixel-level transformations were synchronized with the original
annotations via affine transformation matrices to ensure consistency between
model inputs and target outputs.

To generate the target heatmaps for training, each ground truth keypoint was
treated as the center of a 2D Gaussian distribution in the 64x64 low-resolution
space. A continuous probability density map was then constructed within the
[0,1] range, serving as the Gaussian target. These heatmaps, corresponding one-
to-one with the network outputs, were used for subsequent regularization loss
calculations, enabling the model to learn not only coordinate regression accuracy
but also spatial consistency in probability distribution.

3.2 Evaluation Metrics

This experiment selects the following 4 evaluation metrics: Mean Squared Er-
ror (MSE), Mean Absolute Error (MAE), Average Point Distance (APD), and
AOP_MAE.

Mean Squared Error (MSE): Quantifies the average squared difference be-
tween predicted and true values, emphasizing penalties for larger errors.

1 n
MSE = — i — )2
SE=—> (vi — )

i=1

Mean Absolute Error (MAE): Measures the average absolute deviation
between predicted and true values, more robust than MSE.

1 ¢ .
MAE =~ 3 |yi — il
i=1

Average Point Distance (APD): Evaluates the average Euclidean distance
between corresponding points in trajectory or spatial point prediction.

APD — % ; V(@ —5:)2 + (i — n)°

Error Metric for Anchor Offset Probability (AOP MAE): Measures
statistical error of bounding box offset in object detection or tracking.

K
— ® _ Aop®
AOP_MAE = — 3~ [AOP(}), — AOP

true pred
k=1

Additionally, we employed the Optuna hyperparameter optimization framework
to systematically tune critical model parameters, including the learning rate,



8 Yang Zi et al.

regularization factor A, Gaussian heatmap standard deviation o, and gradient
clipping norm clip_grad_norm. The optimization objective was to minimize the
combined validation loss £ = leye + A - peg. After 50 trials, the optimal hyper-
parameter set was determined as: learning rate — 5.352137134504593 x 1072,
A = 3.732135829310275, ¢ = 2.3022166650613793, and clip_grad_norm =
0.7221588712934679. This automated tuning process significantly enhanced model
stability and convergence efficiency.

3.3 Experimental Environment and Configuration

This experiment was conducted on a Windows 11 Professional operating system.
The hardware configuration consists of:

NVIDIA GeForce RTX 4090 GPU with 24GB VRAM

Intel Core 19-13900K processor (24 cores, 32 threads, base frequency 3.00GHz)
— 64GB DDR5 RAM

— 2TB NVMe SSD

The GPU’s Tensor Core architecture and 24GB VRAM provide powerful par-
allel computing capabilities for model training, while the processor’s 24 physical
cores efficiently support data preprocessing workflows.

The experiment is based on a PyTorch framework implementing the DSNT
keypoint detection model. Parameter updates were performed using the Adam
optimizer with an initial learning rate of 5.35 x 10~°. During training, a dynamic
learning rate scheduling strategy was employed: when the validation loss showed
no improvement for 10 consecutive epochs, the learning rate decayed to 50%
of its current value. This approach effectively balances convergence speed with
training stability.

3.4 Loss Function Analysis

In deep learning keypoint detection tasks, the DSNT loss function achieves end-
to-end coordinate regression through a dual-path supervision mechanism. Its
core consists of Euclidean distance loss and probability distribution regulariza-
tion loss, mathematically expressed as:

= gcuc +A- grcg

where A is the tunable regularization factor (set to 3.73 in the code). The Eu-
clidean loss directly constrains the normalized coordinate space: first, the true
pixel coordinates are linearly transformed to the interval [—1, 1], then the mean
squared error between predicted coordinates and transformed true coordinates
is calculated:

1 N
_ norm || 2
Lowe = N Zl ||C1 - Cgt,i H
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The regularization loss aligns the heatmap distribution via Kullback-Leibler
(KL) divergence: based on true coordinates, a Gaussian target heatmap is gen-
erated where the heat value for each keypoint channel is determined by a 2D
Gaussian function:

(Qf — xc)z + (y — yc)2
) = (-5

This loss computes the logarithmic probability difference between the pre-
dicted heatmap H and the target heatmap:

K
: 1 Lk X 7 ik
lrog = KL(Hg [ ) = <= > 1™ (log HGY —log A1)
i=1 k=1
This dual-path design enables the model to simultaneously learn precise co-
ordinate localization and heatmap representations conforming to spatial proba-
bility distributions, significantly enhancing regression stability.

4 Results and Analysis

4.1 Analysis of Loss and Pixel Error

In the eight-fold training, the seventh fold achieved the best performance. The
analysis of loss and pixel error for the seventh fold is shown in the figure below
(Fig. 3). Over the course of 66 training epochs, both the training loss and val-
idation loss exhibited a consistent declining trend. The training loss decreased
steadily from an initial value of approximately 1840 to around 1302, while the
validation loss showed a similar downward trend, starting from about 1556 and
eventually converging near 1364. This synchronous reduction in both losses in-
dicates effective learning without signs of overfitting. The validation pixel error
demonstrated significant improvement, dropping from nearly 20 pixels to below
10 pixels, reflecting enhanced localization accuracy of the model. It is worth
noting that the learning rate was reduced twice during training (at epochs 44
and 58), which effectively contributed to the stabilization of the loss curves.

4.2 Analysis of Experimental Results

This study systematically evaluated the performance of three models on both
validation and test sets, with the results shown in Table 1. The baseline U-Net
model, an improved model with multi-scale fusion (Deep-UNet), and a model
incorporating both multi-scale fusion and DSNT modules (DSNT-DeepUNet).
The evaluation considered four key performance metrics: Mean Squared Error
(MSE), Mean Absolute Error (MAE), Average Point Distance (APD), and Av-
erage Angular Deviation (AOP).
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Experimental results demonstrate that the DSNT-DeepUNet model, inte-
grating multi-scale features and DSN'T modules, achieved the best overall per-
formance on both datasets. Specifically, on the validation set, DSNT-DeepUNet
attained the lowest MSE (178.0195) and AOP (4.7906), with its MAE (9.9812)
and APD (15.5995) outperforming the baseline U-Net (MSE: 632.6917, MAE:
13.0450, APD: 20.2612, AOP: 8.0364) while approaching or slightly trailing
Deep-UNet (MSE: 219.8383, MAE: 9.9350, APD: 15.5393, AOP: 5.5850).

On the more challenging test set, DSNT-DeepUNet’s advantages were more
pronounced, achieving the best values across all four metrics: MSE (180.9396),
MAE (9.4630), APD (14.7712), and AOP (4.7005). In comparison, Deep-UNet’s
performance on the test set (MSE: 273.8074, MAE: 9.8526, APD: 15.3954, AOP:
5.9237) remained significantly better than baseline U-Net (MSE: 887.5399, MAE:
14.0043, APD: 21.8273, AOP: 8.3727) but showed a comprehensive gap compared
to DSNT-DeepUNet.

Overall, the multi-scale fusion strategy alone (Deep-UNet) effectively en-
hanced model performance, while the additional integration of DSNT modules
(DSNT-DeepUNet) brought more substantial accuracy improvements. This was
particularly evident in position (APD) and angular (AOP) prediction accuracy,
ultimately establishing DSNT-DeepUNet as the top-performing model architec-
ture in this study.

Table 1. Experimental Results

Dataset Model MSE | MAE| APD | AOP
Validation Unet 632.6917 |13.0450( 20.2612 | 8.0364
Validation Deep-UNet 219.8383 [9.9350(15.5393| 5.5850
Validation| DSNT-DeepUNet|178.0195| 9.9812 | 15.5995 |4.7906
Test Unet 887.5399 |14.0043| 21.8273 | 8.3727
Test Deep-UNet 273.8074 | 9.8526 | 15.3954 | 5.9237
Test DSNT-DeepUNet|180.9396|9.4630(14.7712|4.7005

5 Model Tooling

Our team has operationalized the model described in the paper and developed
a real-time automated tool for predicting the Angle of Progression (AoP) from
intrapartum ultrasound images. When a single ultrasound frame is uploaded,
the system automatically detects and precisely annotates three key anatom-
ical landmarks—the two endpoints of the pubic symphysis (PS1, PS2) and
the fetal head point (FH1)—within a standardized 512x512-pixel image co-
ordinate system, and computes the AoP from these spatial coordinates. The
system also generates a visualization showing the annotated landmarks, the
connecting lines, and the angle markers, and returns this visual output to-
gether with the numerical AoP result instantly. This end-to-end, fully automated
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pipeline eliminates manual intervention, substantially shortens processing time,
and reduces annotation variability, thereby providing an efficient and consis-
tent method for clinical assessment of fetal head progression. The web link is:
http://61.178.78.27:50210/aop_prediction/, as illustrated in Fig. 4.

Angle of Progression (AoP) Calculator

Note: This model automatica

Upload Ultrasound Image Result Visualization
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Select an image file or use test data

& Upload Image # Use Test Image

& Download Sample Image

Calculation Results

The predicted Angle of Pragression (AoP) is

106.87°

Keypoint Coordinates (based on a
512x512 image):

© 2025 Information Center, The First Hospital of LanZhou University. All Rights Reserved

Fig. 4. Model Tooling

6 Conclusion

This study addresses the challenges of significant inter-observer variability and
time-consuming manual annotation of key anatomical landmarks in intrapartum
ultrasound monitoring by proposing a deep learning-based coordinate prediction
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model named DSNT-DeepUNet. The model integrates a deep U-Net backbone
with a Differentiable Spatial to Numerical Transform (DSNT) module, achieving
end-to-end mapping from raw ultrasound images to keypoint coordinates. This
approach effectively mitigates quantization errors and non-differentiability issues
inherent in traditional methods, significantly improving localization accuracy
and inference efficiency.

By incorporating a multi-task loss function, the model optimizes coordinate
prediction accuracy while enhancing regularization constraints on the heatmap
probability distribution, thereby striking a balance between spatial consistency
and numerical regression stability. An eight-fold stratified cross-validation strat-
egy and dynamic data augmentation methods were employed, substantially im-
proving the model’s generalization capability and robustness. Experimental re-
sults demonstrate that DSNT-DeepUNet outperforms both the baseline U-Net
and the Deep-UNet model with only multi-scale fusion modules on an indepen-
dent test set, particularly in reducing keypoint distance errors and improving
the prediction accuracy of the angle of progression (AoP).

Furthermore, the model has been operationalized into a web-based system
capable of real-time ultrasound image processing and automatic AoP calculation,
providing a consistent, efficient, and non-invasive auxiliary tool for clinical prac-
tice. The system is publicly accessible for testing and demonstrates considerable
potential for clinical application.

Although the proposed model achieved sixth place in the open challenge with
no missed detections, indicating high reliability, it still exhibits certain errors
when handling complex anatomical structures such as tangent points. Future
work will focus on optimizing the model architecture through the incorporation
of attention mechanisms and multi-modal information to improve recognition
capability for challenging cases, while expanding the dataset to enhance gener-
alization across diverse devices and populations.
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